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Abstract

Hot collisionless accretion flows, such as the one in Sgr A* at our Galactic center, provide a unique setting for the
investigation of magnetic reconnection. Here protons are nonrelativistic, while electrons can be ultrarelativistic. By
means of 2D particle-in-cell simulations, we investigate electron and proton heating in the outflows of
transrelativistic reconnection (i.e., o,, ~ 0.1-1, where the magnetization o, is the ratio of magnetic energy density
to enthalpy density). For both electrons and protons, we find that heating at high g; (here g; is the ratio of proton
thermal pressure to magnetic pressure) is dominated by adiabatic compression (“adiabatic heating”), while at low
(i it is accompanied by a genuine increase in entropy (“irreversible heating”). For our fiducial o,, = 0.1, the
irreversible heating efficiency at §; < 1 is nearly independent of the electron-to-proton temperature ratio 7. /T
(which we vary from 0.1 up to 1), and it asymptotes to ~2% of the inflowing magnetic energy in the low-3; limit.
Protons are heated more efficiently than electrons at low and moderate 3; (by a factor of ~7), whereas the electron
and proton heating efficiencies become comparable at 8; ~ 2 if T./T, = 1, when both species start already
relativistically hot. We find comparable heating efficiencies between the two species also in the limit of relativistic
reconnection (o, 2 1). Our results have important implications for the two-temperature nature of collisionless

~

accretion flows and may provide the subgrid physics needed in general relativistic MHD simulations.
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1. Introduction

The ultra-low-luminosity source at the center of the Milky
Way, Sagittarius A* (Sgr A"), is thought to be powered by
accretion onto a supermassive black hole. Sgr A* radiates well
below the Eddington limit, and there is strong evidence that
the accreting gas can be described as an advection-dominated
accretion flow (ADAF, also referred to as a radiatively inefficient
accretion flow [RIAF]; Narayan & Yi 1994, 1995a, 1995b;
Abramowicz et al. 1995; Narayan & McClintock 2008; Yuan &
Narayan 2014). In ADAFs, the disk is geometrically thick and
optically thin. Additionally, the plasma is predicted to be two-
temperature for several reasons: first, in the ADAF configura-
tion, the density of accreting gas is low enough that Coulomb
collisions between electrons and protons are extremely rare on
accretion timescales, so that the species become thermally
decoupled. Second, electrons radiate more efficiently than
protons. Lastly, relativistic electrons are heated less than
nonrelativistic protons when subjected to the same adiabatic
compression. For all these reasons, the plasma is expected to be
two-temperature, with protons significantly hotter than electrons
(Narayan & Yi 1995b; Yuan et al. 2003).

Despite the above arguments, the two-temperature gas may
be driven to a single-temperature state by kinetic processes,
such as reconnection and instabilities (Quataert et al. 2002;
Riquelme et al. 2012, 2015; Sironi 2015; Sironi & Narayan
2015; Wermner et al. 2016). To capture the effects of these
plasma processes, one requires a fully kinetic description,
which can be achieved via numerical techniques such as
particle-in-cell (PIC) simulations. In principle, such ab initio
simulations can be used to provide the necessary subgrid
physics that, to date, cannot be captured in magnetohydro-
dynamic (MHD) simulations (e.g., Ressler et al. 2015, 2017,
Ball et al. 2016, 2017; Chael et al. 2017; Sddowski et al. 2017).

In supermassive black hole accretion flows, the ratio of ion
thermal pressure to magnetic pressure,
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(where ny is the ion number density, kg is Boltzmann’s
constant, 7; is the ion temperature, and By is the magnitude of
the magnetic field), is expected to vary in the disk midplane in
the range (3; ~ 10-30 (see Figure 1 of Sddowski et al. 2013).
However, in plasma far above and below the midplane, i.e., the
“corona,” the system is expected to be magnetically dominated,
such that 8; < 1. Here, the dissipation of magnetic energy via
reconnection can result in particle heating, acceleration, and

bulk motion.

Even in the magnetized corona, the magnetization,
2
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is generally small, i.e., o; < 1. Electron heating by reconnection
in the nonrelativistic limit (o; < 1) has been studied extensively,
both theoretically and by means of PIC simulations, in the
context of the solar wind, Earth’s magnetotail, and laboratory
plasmas (Hoshino et al. 2001; Jaroschek et al. 2004; Schoeffler
et al. 2011, 2013; Loureiro et al. 2013; Dahlin et al. 2014,
Daughton et al. 2014; Shay et al. 2014; Haggerty et al. 2015; Li
et al. 2015; Numata & Loureiro 2015; Le et al. 2016; Li
et al. 2017). Though less commonly studied, relativistic
reconnection (i.e., o; > 1) in electron—proton plasmas has also
received some attention in recent years (Sironi et al. 2015; Guo

et al. 2016).
The collisionless plasma in hot accretion flows around black
holes provides a peculiar environment for reconnection, since
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o, < 1, a regime that falls between the well-studied nonrela-
tivistic and ultrarelativistic regimes. For §; ~ 1 and o; < 1,
protons are generally nonrelativistic, yet electrons can be
ultrarelativistic. This territory remains largely unexplored, in
terms of both simulation and theory, and studies have only
recently begun to probe reconnection in this parameter regime
(Melzani et al. 2014; Werner et al. 2016).

The aim of this work is to explore particle heating via
magnetic reconnection in the transrelativistic regime o; < 1.
We study heating in the outflows of antiparallel reconnection
(i.e., in the absence of a guide field perpendicular to the
alternating fields) by means of fully kinetic PIC simulations,
choosing inflow parameters appropriate for the coronae of
collisionless accretion flows. We present the electron and
proton heating as a function of mass ratio (up to the physical
value), inflow magnetization, ion plasma (3;, and temperature
ratio 7, /T;.

We show that heating in the high-3; regime is primarily
dominated by adiabatic compression (we shall call this
contribution “adiabatic heating”), while for low §; the heating
is genuine, in the sense that it is associated with an increase in
entropy (“irreversible heating”). At our fiducial o; ~ 0.1, we
find that for 3; < 1 the irreversible heating efficiency is
independent of T, /T, (which we vary from 0.1 up to 1). For
equal electron and proton temperatures, the fraction of
inflowing magnetic energy converted to electron irreversible
heating at realistic mass ratios decreases from ~1.6% down to
~0.2% as 3; ranges from 5; ~ 1072 up to 3; ~ 0.5, but then it
increases up to ~3% as 3; approaches ~2. Protons are heated
much more efficiently than electrons at low and moderate 3;
(by a factor of ~7), whereas the electron and proton heating
efficiencies become comparable at g; ~ 2 if T, /T, = 1, when
both species start already relativistically hot. We find
comparable heating efficiencies between the two species also
in the limit of relativistic reconnection, when the magnetization
exceeds unity. The unifying feature of these two cases (i.e.,
high magnetization, and high 8; at low magnetization) is that
the scale separation between electrons and protons in the
reconnection outflows approaches unity, so the two species
behave nearly the same. Motivated by our findings, we propose
an empirical formula (Equation (34)) that captures the
magnetization and plasma-3; dependence of the electron
heating efficiency (normalized to the overall electron -+ proton
heating efficiency) over the whole range of magnetization and
(i that we explore.

We also measure the inflow speed (i.e., the reconnection
rate) as a function of the flow conditions, finding that for our
fiducial magnetization o, = 0.1 it decreases from v;, /vy =~
0.08 down to 0.04 as B; ranges from [; ~ 1072 up to Gy~ 2
(here, vp is the Alfvén speed). Similarly, the outflow speed
saturates at the Alfvén velocity for low (;, but it decreases with
increasing 3; down to v,y /W ~ 0.7 at 3; ~ 2. The inflow
(outflow) speed is independent of T, /T; at low (3;, with only a
minor tendency for lower (higher) speeds at larger 7. /T; in the
high-3; regime.

The organization of the paper is as follows. In Section 2, we
provide details about the simulation setup and parameters. In
Section 3, we discuss our technique for extracting from PIC
simulations the heating efficiencies. In Section 4, we discuss
the dependence of the reconnection rate, the outflow speed, and
the electron and proton heating efficiencies on the flow
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Figure 1. Schematic depiction of the reconnection layer initial configuration.
Red and blue regions show magnetic field lines of opposite polarity. A hot,
overdense component of plasma (green region) balances the magnetic pressure
outside the current sheet.

conditions. We conclude in Section 5, with a summary and
discussion.

2. Simulation Setup

We use the electromagnetic PIC code TRISTAN-MP to
perform fully kinetic simulations of reconnection (Buneman
1993; Spitkovsky 2005). We employ 2D simulations, but all
three components of velocity and electromagnetic fields are
tracked. Our setup is similar to that described in Sironi &
Spitkovsky (2014). The initial field configuration is illustrated
in Figure 1. From the red to the blue region, the polarity of the
inflow magnetic field reverses, as shown by the white arrows.
An out-of-plane current, in the green region, satisfies Ampere’s
law for the curl of the magnetic field. The reconnection layer is
initialized in Harris equilibrium, with a magnetic field profile
B = Bytanh(27wy/A)x. We focus on antiparallel reconnection,
postponing the study of guide-field effects to a future work.
The field strength is parameterized via the magnetization

By
UW = %
47w
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where B, is the magnitude of the magnetic field in the inflow
region, w = (p, + p)c’ + A, Ue + %,u; is the enthalpy density
per unit volume, and p, = meno, p; = Ming, 3, F,, and U, u;
are the rest-mass densities, adiabatic indices, and internal
energy densities, respectively, of electrons and protons. Here,
ng is the electron number density in the inflow region, and i,
and m; are the electron and proton masses. The definition of
magnetization in Equation (3) reduces to Equation (2) in the
limit of nonrelativistic temperatures, but for relativistic particles
the enthalpy in o, properly accounts for the relativistic inertia.

In all runs, we set the current sheet thickness to be
A = 40 ¢/wpe, where ¢/wy. is the electron skin depth and

> —1/2
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is the electron plasma frequency. Here, 6. = kT, / mec? is the
dimensionless electron temperature, whereas ¢ is the electric
charge. The size of the computational domain in the x
direction is L, = 4318¢/wp., which is large enough to resolve
both electron and proton heating physics (see Appendix A,
where we study the convergence of our results with respect to
the domain size). While L, in units of ¢/w,. remains fixed
across our simulations, the domain size in units of the proton
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Table 1

Initial Parameters for the m; /m, = 25 Simulations with Our Fiducial oy, = 0.1
D A[0] All] Al2] A[3] Al4]
Bi 0.0078 0.031 0.13 0.50 2.0
Be 0.00078 0.0031 0.013 0.050 0.20
0; 0.00041 0.0016 0.0066 0.028 0.16
0. 0.0010 0.0041 0.017 0.070 0.39
Vi 0.00061 0.0024 0.010 0.043 0.27
Ve 0.0015 0.0062 0.025 0.11 0.78
o 0.10 0.10 0.10 0.11 0.15
T./T; 0.10 0.10 0.10 0.10 0.10
Nppe 16 16 16 16 64
cf wpi 20 20 20 19 16
Ly[c/wyil 860 870 870 890 1100
D B[0] B[1] B[2] B[3] B[4]
Bi 0.0078 0.031 0.13 0.50 2.0
s 0.0023 0.0094 0.038 0.15 0.60
0; 0.00041 0.0016 0.0066 0.029 0.18
B 0.0031 0.012 0.050 0.21 1.3
i 0.00061 0.0025 0.010 0.044 0.32
Ve 0.0046 0.019 0.079 0.39 33
o 0.10 0.10 0.10 0.11 0.17
L./T; 0.30 0.30 0.30 0.30 0.30
Nppe 16 16 16 16 64
¢/ wi 20 20 19 17 11
Ly[cfwi] 870 870 890 1000 1600
1D C[0] C[1] C[2] C[3] C[4]
Bi 0.0078 0.031 0.13 0.50 2.0
Bi 0.0078 0.031 0.13 0.50 2.0
0; 0.00041 0.0016 0.0067 0.031 0.39
e 0.010 0.041 0.17 0.77 9.9
Ui 0.00061 0.0024 0.010 0.048 0.79
Ve 0.015 0.064 0.30 1.8 29

g 0.10 0.10 0.10 0.12 0.38
L./T; 1.0 1.0 1.0 1.0 1.0
Nppe 16 16 16 16 64
¢/ wpi 20 19 17 12 5.0
Ly[cfwi] 870 890 990 1500 3400

Note. The proton skin depth ¢/wy;, calculated according to Equation (5), is
expressed in number of cells. The definition of the various quantities is in
Section 2. Simulation sets A, B, and C differ by the initial temperature ratio,
with T, /T, = 0.1, 0.3, and 1, respectively. From left to right, 3; increases. We
fix the mass ratio m; /m, = 25, magnetization oy, = 0.1, electron skin depth
¢fwpe = 4 cells, and domain size Ly = 4318¢/wpe. We also perform a number
of additional simulations, up to the realistic mass ratio m; /m, = 1836 and with
higher magnetizations (o, = 0.3, 1, 3, 10), as described in Section 2.

skin depth,

—-1/2, 1/2
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increases as electrons become more relativistic (see Table 1).
Here, 0; = kgT; /m;c? is the dimensionless proton temperature.

We typically employ periodic boundary conditions along the
x direction, but we have tested that our main results do not
change when using outflow boundary conditions, similar to
those described in Sironi et al. (2016). With the latter, it is
possible to study the dynamical evolution of the reconnection
system over multiple Alfvénic crossing times, whereas the
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evolution of a periodic simulation is limited to a few Alfvénic
crossing times, before the periodic boundaries start affecting
the reconnection physics. We compare the results of simula-
tions with outflow and periodic boundaries in Appendix B.

Fresh plasma, described by a Maxwell-Jiittner distribution,
is introduced at two moving injectors. Each injector recedes
from y = 0 at the speed of light, and the simulation domain is
enlarged when the injectors reach the boundaries, so that the
injectors may continue receding in the 4y directions. This
strategy—described in more detail in Sironi & Spitkovsky
(2011)—ensures that the domain includes all causally con-
nected regions throughout the evolution of the system, while
making efficient use of the available memory and computing
time. Additional computational optimization is achieved by
allowing the injectors to periodically “jump” backward (toward
y = 0), removing all particles beyond the injectors and resetting
the electromagnetic fields to their initial values (Sironi &
Spitkovsky 2011).

A hot, overdense population of particles is initialized in the
current sheet to balance the magnetic pressure from outside.
These particles have temperature kg T, /mic> = 0, /27, where
is the overdensity relative to the inflowing plasma; we use
1 = 3. Reconnection is triggered at the initial time by cooling
by hand the overdense population in the middle of the current
sheet (x, v) =~ (0, 0). This causes a local collapse of the layer,
leading to the formation of an X-point, after which the system
evolves self-consistently (Sironi et al. 2016).

Adequate resolution of the electron skin depth c/wy is
required for accuracy and stability of PIC codes. We use 4 cells
per electron skin depth and fix ¢ = 0.45 cells/time step, which
is less than required by the Courant—Friedrichs—Lewy condition
in 2D. The time resolution of our simulations is then
At~ 0.1 w;,el, which properly captures the physics at electron
scales. For two cases (G; = 0.0078 and G; = 2, with the same
o, = 0.1 and T, /T, = 1), we have tested for convergence by
varying the spatial resolution (we have tested with ¢/wpe = 2
or § cells), which has the effect of changing also the temporal
resolution (we still fix ¢ = 0.45 cells/time step). For both
choices of [3;, our results are essentially the same (see
Appendix C, where we study the convergence of our results
with respect to the spatial resolution of the electron skin depth).

For simulations with §; = 2, we use 64 particles per cell
(Nppe), whereas Ny, = 16 at lower 3;. We have found that
these values of N,,. are sufficient to keep numerical heating
under control, even for 7, /T, < 1. We have extensively tested
the impact of numerical heating in simulations with 8; = 2 for
several values of Ny, in some cases up to Nype = 256; see
Appendix D for some discussion.

In our parameter scan (Table 1), we fix o,, and study the
reconnection physics as a function of G; and 7; /7,. We choose
to fix o,, rather than o, given that the parameter space we probe
involves relativistic particles whose thermal contribution to
the inertia is non-negligible (see Equation (3)). For a constant
oy, the Alfvén velocity,

Ya _ f o ©6)
& 1+ o,

remains fixed across our simulations. The reconnection layer is
evolved for ~1 Alfvénic crossing time (f4 = L, /vy), which for
our reference magnetization of o;, = 0.1 and L, = 4318¢/wpe

corresponds to ¢ ~ 14,000 w;,el.



THE ASTROPHYSICAL JOURNAL, 850:29 (26pp), 2017 November 20

300
150

y [c/o,]
o

-150

-300
300

150

y [c/o,]
o

-150

-300
300

150

y [c/o,]
o

-150

-300

-2000 -1000

Rowan, Sironi, & Narayan

0 1000 2000
X [c/w

pel

Figure 2. Time evolution of a representative low-3; simulation (A[0] in Table 1), with 8; = 0.0078 and T, /T, = 0.1. The snapshots show number density of electrons
in units of the initial density at (a) t = 3713 w;el ~= 0.25ta, (b) t = 7200 w;el =2 0.50 t, and (c) t = 10688 w;el =2 0.75 t5. We show the whole dimension of the box
in x and only a small portion close to the center in y. A characteristic feature of this and other low-3; simulations is the presence of secondary magnetic islands, i.e.,
structures like those at x ~s 300 ¢ /wp. and x ~2 —900 ¢/w. (panel (c)). These are to be distinguished from the large primary island at x ~~ +2200c¢/wp., whose
properties depend on choices at initialization. As the primary island grows, it will eventually inhibit further accretion of magnetic flux and the reconnection process

will terminate.

The focus of our investigation is the so-called transrelativistic
regime of reconnection; hence, we select g,, = 0.1 as our fiducial
magnetization, and we vary 3; from 0.0078 to 2. Additionally,
we study the effect of the initial electron-to-proton temperature
ratio 7, /7; on the reconnection physics. For each value of j3;, we
run three simulations with T, /7; = 0.1, 0.3, and 1. Our choice of
initial parameters, both physical (o, 8;, and 7./7;) and
computational (Nppc, c/ wpe), 1s summarized in Table 1. Other
derived physical parameters in the inflow region, namely, the
electron plasma 8. = ;1. /T, the dimensionless proton and
electron temperatures 8; = kg T, /mic® and 0, = kg T, /m.c?, the
dimensionless internal energy per particle for protons and
electrons v = u; /nom;c? and ve = u. /ngmec?, and the ratio o;
of magnetic pressure to rest-mass energy density, are also
included. In addition to the simulations listed in the table, which
employ mass ratio m; /m. = 25, we also investigate mass ratios
m;/m. = 10, 50, and 1836 for 3; in the range 5 x 107* — 2
(with fixed o,, = 0.1 and a fixed electron-to-proton temperature
ratio T, /T, = 1). With realistic mass ratios and T, /T, = 1, we
also explore the 5; dependence of the heating efficiency at higher
values of the magnetization: o, = 0.3, 1, 3, and 10.

3. Technique for Extracting the Heating Efficiency

In this section, we discuss our method of extracting the
heating efficiency from PIC simulations. First, in Section 3.1,
we discuss the time evolution of the reconnection layer for two
representative cases at low and high 5;. Then, in Section 3.2,
we describe the identification of inflow (upstream) and outflow
(downstream) regions. Lastly, in Section 3.3, we isolate the
irreversible heating, i.e., the part associated with a genuine
increase in entropy, from the reversible heating induced by
adiabatic compression.

3.1. Time Evolution of the Reconnection Layer

To illustrate the time evolution of the reconnection layer, we
show in Figure 2 a few snapshots of density from a
representative simulation (A[0] in Table 1) with 8; = 0.0078
and 7. /T, = 0.1. We plot the 2D profile of the number density
in units of the initial value, n/70. In each panel, we show only a
small fraction of the domain in the y direction (we present only
the region closest to the current sheet) and the full extent of the
domain in x. White lines with arrows show magnetic field lines.

Panels (a)—(c) show the time evolution of the system over
~1 Alfvénic crossing time. By removing by hand the plasma
pressure at the center of the current sheet (x ~ 0), we trigger a
local collapse of the layer, forming an X-point. After the
formation of the central X-point, two reconnection “wave-
fronts” are pulled outward in the £ directions by the magnetic
tension of the field lines, and the fronts recede from the center
at close to the Alfvén speed. In panels (a)—(c), the wavefronts
are located at x ~ £400, 1100, and 1800c¢ fw., respectively,
corresponding to the innermost (i.e., closest to x = 0) locations
of the large semicircular red/yellow density blobs.

The fronts carry away the hot particles initialized in the
current sheet. With periodic boundary conditions, this leads to
the formation of a primary island at the boundary of the
simulation domain (in Figure 2(c), located at x ~ +2200c¢ fwp.).
The primary island continues to accrete plasma as the system
evolves, but eventually it grows so large that further accretion of
magnetic flux into the layer is inhibited and reconnection stops.

The primary island shows the hottest electron temperatures.
Here, electron heating might be due in part to reconnection, but
also in part to weak shocks at the interface between the
reconnection outflow and the island. In addition, the plasma
conditions in the island are sensitive to our arbitrary choice for
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Figure 3. 2D plot of the ratio of top to total particle density, #p /R, for a representative simulation with g; = 0.0078 and T, /T; = 0.1 (A[0] in Table 1) at time
t A 11,000 wil ~ 0.8 t4. The green and black contours show the boundaries of the regions we use to calculate the downstream and upstream temperatures,

pe

respectively. The box edges at the interface between upstream and downstream change as the system evolves, and are calculated according to Equations (7) and (8).
Particle mixing serves as a tracer for the downstream region. Particles from the top (y > 0) of the domain are tagged; as they enter the reconnection layer, they mix
with particles from the bottom (y < 0) of the domain. The reconnection downstream is identified via the mixing fraction 74, /711 and a choice of the threshold 7yqyn,

as in Equation (7).

the current sheet initialization. For these reasons, we choose not
to focus on the heating physics in the primary island.

In this paper, we focus exclusively on the outflow (ie.,
before the the plasma reaches the primary island; see also Shay
et al. 2014, in the context of nonrelativistic reconnection),
shown by the green region between the two wavefronts in
Figure 2. In Section 3.2, we detail the steps we take to avoid
contamination of our temperature measurements by the primary
island.

As the two reconnection fronts recede from the center,
plasma flows into the reconnection layer and particles are
heated and accelerated as a bulk, flowing along =% toward the
domain boundaries. The dense (green) region in between the
two wavefronts is the reconnection outflow. A key feature of
low-3; simulations is the formation in the reconnection
exhausts of secondary islands due to the secondary tearing
instability, e.g., Figure 2(c) at x ~ 300c/w,. and x =~
—900 ¢/wpe (Daughton & Karimabadi 2007; Uzdensky
et al. 2010). Between each pair of secondary islands, there is
a secondary X-point, e.g., at x == —1000¢/wp,.. We discuss the
structure of the reconnection layer as a function of §; in
Section 4.1.

3.2. Upstream and Downstream Identification

We now describe how we determine which computational
cells in the simulation domain belong to the upstream (or
inflow) and downstream (or outflow) regions. We identify
downstream cells by using a particle mixing criterion between
the two sides of the current sheet. Particles that originate above
y = 0 (top of the domain) are tagged, to distinguish them from
particles originating below y = 0 (bottom of the domain).

In Figure 3, we show the ratio of top to total number density.
Away from the current sheet, i.e., in the blue and red regions,
there is no mixing between the two populations. Particles from
the two sides of the current sheet get mixed as they enter the
reconnection layer; the region with the greatest amount of
mixing is shown in white/light yellow. We compute the ratio
of top particle density 7, to total particle density 7y = 7
(including particles from both top and bottom) in each cell. If
this ratio in a given cell exceeds a chosen threshold 74,,,, and is
below the complementary threshold, i.e.,

ntop

Tdown < <1~ Tdown> (7)

Aot

then the cell is counted as one where plasma has reconnected
(i.e., the cell belongs to the reconnection downstream). This
technique is similar to that used in Daughton et al. (2014). In
our analysis, we choose 73,4, = 0.3, but we have verified that
the identification of the reconnection region, and therefore the
heating efficiencies that we extract, does not significantly
depend on this choice. For 7y, in the range 0.1-0.3, the
heating efficiencies typically differ only by ~15%. The choice
Taown = 0.3 is restrictive enough to exclude contamination by
the upstream region. This is especially important for high 3;,
where, even if the electron gyrocenter is located in a cell that is
safely part of the downstream, if the cell is close to the interface
between downstream and upstream, the particle gyro-motion
may temporarily lead this “downstream” electron to the
upstream side. If ry,,, were to be too small, the region where
the electron motion extends into the upstream might be
incorrectly counted as part of the downstream, biasing our
temperature estimates toward lower values. Our choice of 7354,
is to some extent arbitrary, but we have found that a relatively
large value like 74,4y, = 0.3 is suitable for identifying the
genuine reconnection downstream.

In Figure 4, we show 1D plots of the density fraction of
tagged particles and the temperature profiles along the y
direction, in a slice located at x ~ 1000c¢ /wy.. In panel (a), we
show the profiles of the ratio of top and bottom density to total
density, denoted by solid and dashed lines, respectively, at time
t =~ 8400 w;,el ~ 0.60 5. Between the two vertical dotted lines,
the ratio of top to total density ranges between 0.3 and 0.7, as
required to satisfy our mixing criterion. As shown in panel (b),
both the electron (blue) and the proton (red) temperature in the
region between the vertical lines are remarkably uniform,
proving that our mixing criterion can confidently capture the
reconnection downstream.

The upstream region is identified via

(”“’P < rup) or (”“’P =1 rup), ®)

Mot Mot

and we choose 7, = 3 X 107>, As before, this definition
avoids contamination of the upstream region by any “down-
stream” particles that leak out of the current sheet. In practice, a
buffer zone with a width on the order of a few tens of ¢/wy, is
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Figure 4. (a) 1D profile along the y direction of the top-to-total particle density
ratio (solid line) and the bottom-to-total ratio (dashed line) in a slice at
X =2 1000¢ fwpe, at time f =2 8400 w;el ~ 0.60ts. The profiles are from the
same simulation we show in Figure 3 (with g; = 0.0078 and T./T; = 0.1).
Vertical dotted lines indicate the locations in x where the top-to-total density
ratio is between 0.3 and 0.7 (at y ~= —25 and 25 ¢ /wpe, respectively). Between
the vertical dotted lines (i.e., in the region we define as the reconnection
downstream), mixing has efficiently occurred. (b) Proton and electron
temperature profiles in the same region. In between the vertical dotted lines,
the temperature profiles are nearly flat.

established between the regions we identify as upstream and
downstream.

While Equation (7) (Equation (8)) identifies the whole
reconnection outflow (inflow), we enforce an additional
constraint on the downstream and upstream regions that we
employ to extract our heating efficiencies. We select down-
stream regions far enough from the central X-point that the
electron and proton outflow bulk velocities have saturated, and
also that the electron and proton temperatures have reached
their asymptotic values. At the same time, we select these
regions to be far enough from the boundaries to avoid
contamination from the material inside the primary island,
and only capture the genuine reconnection outflow. The
downstream region that satisfies these constraints (identified
by the green contours in Figure 3) varies for different
simulations: for J; < 2 it is located at a distance of
~630 ¢/wy, from the center, whereas for §; =2 it is at
~350 ¢/wy, from the center (as we show below, the primary
island tends to be larger at higher ;). The extent of the
downstream region across the layer (i.e., along y) is determined
by the mixing criterion in Equation (7), while the length along
the layer is fixed at ~170 ¢/wy. (see the green contours in
Figure 3). The corresponding upstream values are measured at
the same distance from the center of the layer, within the black
contours in Figure 3. Their extent along the y direction does not
significantly affect our results.
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3.3. Characterization of Heating

In this section, we describe our assessment of particle
heating. First, in Section 3.3.1, we describe our calculation of
rest-frame internal energy and temperature. Next, in
Section 3.3.2, we define ratios that characterize the total
amount of heating. Finally, in Section 3.3.3, we provide a more
detailed analysis of the heating physics by isolating the effect
of a genuine entropy increase (which we call “irreversible
heating”) from the contribution of adiabatic compression
(giving “adiabatic heating”).

3.3.1. Temperature Calculation

We measure the total particle energy density in the
simulation frame and then extract the corresponding fluid-
frame internal energy and temperature, by employing the
perfect, isotropic fluid approximation, i.e.,

1% = (e + P UL — pgh, ©)

where T+ is the stress—energy tensor of the fluid, ¢ is the
rest-frame energy density, p is the pressure, U* is the fluid
dimensionless four-velocity, and g"*” is the flat-space
Minkowski metric. The rest-frame energy density is the sum
of rest-mass and internal energy densities, i.e.,

e =amc: 4+ u (10)

L, (n
-1
where 77 is the rest-frame particle number density, u# is the
internal energy density, and % is the adiabatic index. The
dimensionless internal energy per particle in the fluid rest frame
Vs may be expressed as

(1Y /ngmgc? — THT
1+ 4% - 1)

where 72° is the total energy density in the simulation frame, r,
is the lab-frame particle number density, I is the Lorentz factor
corresponding to the local fluid velocity, 4, is the adiabatic
index, and the subscript s = e, i refers to the particle species.

To make use of Equation (12), we need to express the
adiabatic index 4, as a function of the internal energy per
particle, so that the equation may be solved iteratively. For a
plasma described by a Maxwell-Jiittner distribution with
dimensionless temperature 0,

Sy (s 09) o< 47 — L exp (=7/6), 13)

where ~y denotes the particle Lorentz factor, the dimensionless
internal energy is given by

_ et By
I s 00ay

We have numerically evaluated the integral on the right-hand
side for a range of temperatures and thereby produced
interpolating tables for 4,(vy) and (), to be used for finding
vs in Equation (12).

Equations (9) and (12) assume that the stress—energy tensor
is diagonal and isotropic in the fluid frame. We have explicitly
tested this assumption by measuring all the components
of the stress—energy tensor in our computational domain. By

= amc? +

; 12)

s

(14)

s
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boosting into the local fluid frame, we can calculate all the
components of the pressure tensor. We find that the off-
diagonal components are generally negligible. With regard to
the diagonal components, we quantify the degree of anisotropy
with the temperature ratios T, /Tior, Ty /Tior, and T, /Lo, where
Lot = (T + Ty + Tpp) /3. For an isotropic fluid, T /T =
Ly /T = Ty /T = 1. For electrons in the reconnection
downstream, we find that these ratios typically lie in the range
Ly /Tt = Ty [Tir ~ 0.9-0.95 and T, /T ~ 12-1.1 (see
Appendix E for further discussion, including the dependence
of the anisotropy on 3; and 7; /T;). We find greater anisotropy
along the outflow direction £ than either y or Z. This is in
qualitative agreement with the findings of Shay et al. (2014),
who demonstrated that the electron pressure tensor in
the immediate reconnection exhausts is anisotropic, with the
component parallel to the local magnetic field larger than the
perpendicular component.

As an additional test, we have also measured the temperature
and internal energy via an explicit boost of the stress—energy
tensor into the fluid rest frame, and we compared the results to
those computed by employing the perfect-fluid approximation
as described above. We find that the disagreement between the
two methods is only of order ~1%, providing a posteriori
justification for the perfect-fluid assumption.

3.3.2. Total Heating

The main focus of our investigation is particle heating by
reconnection, and how the heating efficiency depends on the
upstream parameters. From each simulation, we extract a
dimensionless ratio M, (., Which we define as

Ve,down — Ue,up

Mue,tot =
O—imi/me

s)
The numerator is the difference in dimensionless internal
energy per electron between downstream and upstream, while
the denominator represents (apart from a factor of two) the
available magnetic energy per electron in the upstream, in units
of the electron rest-mass energy (:BO2 /47m0 #.c?). The ratio
M, 1ot 1s then a measure of the efficiency of reconnection in
converting available magnetic energy to electron heating.
Alternatively, the efficiency parameter may be phrased in terms
of the dimensionless temperature,

ae,down - ae,up

16
oin /e =

MTe,tot =
as in Shay et al. (2014). We define analogous ratios for protons
as

Vi,down — Ui,up
Myifor = ————— (17

Oi
and

ai,down - ai,up

My = (18)

Oj
For the results presented below, we average the dimensionless
internal energy and temperature appearing in the above
equations over time, starting at ~0.3 Alfvénic crossing times
(or equivalently, ~4500 w;,el), when the two reconnection
wavefronts—and with them, the particles initialized in the
current sheet—have moved beyond the region that we use for
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our computations (green and black boxes in Figure 3). We
typically time-average our results over an interval of ~0.3
Alfvénic crossing times.

3.3.3. Adiabatic and Irreversible Heating

When gas is adiabatically compressed, its internal energy
increases while its entropy remains constant. The reconnecting
plasma may experience such adiabatic heating, since the
downstream region is denser than the upstream (see Figure 2).
However, adiabatic heating is not a genuine signature of the
conversion of field energy into particle energy. We isolate the
irreversible heating generated by magnetic field dissipation by
subtracting out the adiabatic heating from the total particle
heating.

The predicted internal energy per particle in the downstream
resulting from adiabatic compression alone (which we shall call
v?fidown for species s) is calculated from the upstream internal
energy per particle v ,,, the upstream rest-frame number
density 7is.p, and the downstream rest-frame number density
fls down using the second law of thermodynamics for constant
entropy,

dU, = —p,dv. (19)

From the ideal gas equation of state, the pressure is
p, = AkgT; = (5, — Du,. Using the relation U/V = u, =
UsflsMsC2, we can integrate Equation (19) to obtain

ad

Us, lown _S own
f w1 gy —tog| T | _ g (20
Y, (’Y (Us) - 1)Us

s,up nS ,up

We compute the argument of the logarithm in Equation (20) as
the ratio of downstream to upstream rest-frame density,
spatially averaged over the regions marked in Figure 3. The
lower bound of the integral v, is computed as a density-
weighted spatial average in the selected upstream region. The
adiabatic index 4,(v;) is tabulated as discussed above. We
numerically solve Equation (20) for the predicted downstream
dimensionless internal energy per particle v?fidown resulting from
adiabatic compression. We refer to the corresponding dimen-
sionless temperature as ﬁifidown. We call the difference between
the initial and the predicted dimensionless temperature or
internal energy per particle due to adiabatic compression,
i-e-’ Aas,ad = 0?fidown - as,up and AUs,ad = U?fidown — Us,up» the
“adiabatic” component of heating.

The irreversible heating, which is associated with a genuine
increase in entropy, is the residual between the total heating
and the adiabatic heating:

Aas,irr = (as,down - s,up) - Aas,ad7 (21)
AUs,irr = (Us,down - Us,up) - AUs,ad- (22)

As in Section 3.3.2, we introduce efficiency ratios to
characterize the irreversible and adiabatic heating of electrons,

MG, Ab,
MTe,irr = ¢7 MTe,ad = ¢v (23)
oy /i oy /Ml
Avg; AV, g
Mue,irr = ¢7 Mue,ad = ¢v (24)
oimi /e i/ Me
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and define analogous ratios for protons,

AG; AG;
Mrim = ——, My = L, (25)
(o Oi
Ay Ay
Mui,irr = — > Mui,ad = _Lad- (26)
Oi Oi
4, Results

In this section, we describe our main results, focusing on the
dependence of the heating efficiency on the plasma conditions.
First, in Section 4.1, we present the dynamics of the
reconnection layer and describe the main differences between
low-g; and high-3; cases, for our fiducial magnetization
0, = 0.1 and mass ratio m;/m. = 25. Next, in Section 4.2,
we discuss the inflow and outflow rates as a function of J; and
1./T. Then, in Section 4.3, we show the dependence of
electron and proton heating on 5; and 7, /T, still for our fiducial
magnetization o, = 0.1 and mass ratio m;/m. = 25. In
Section 4.4, we extend our results for 7. /7, = 1 and o,, = 0.1
up to the physical mass ratio m; /m. = 1836, emphasizing the
(i dependence of the particle heating efficiencies. Finally, in
Section 4.5, we show how the heating physics changes when
the magnetization o,, extends above unity (i.e., in the regime of
ultrarelativistic reconnection), for mass ratio m;/m. = 1836
and temperature ratio 7, /7, = 1.

4.1. Reconnection Physics as a Function of B;

The physics of reconnection shows a marked difference
between low- and high-g; regimes. In Figures 5 and 6, we
present various fluid quantities for representative low- and
high-3; simulations, respectively (3; = 0.0078 in Figure 5 and
Bi =2 in Figure 6). In both cases, o, = 0.1, I. /T, = 0.1,
and m;/m, = 25. At t = 11250 w;,el ~ 0.75 to, we show 2D
plots of (a) the total density in the simulation frame in units of
the initial density, n/ny; (b) the dimensionless electron
temperature, 0.; (c) the magnetic energy fraction, 5=
B?/Smnomic?; (d) the inflow velocity, vin/va =7V -§/%
(i is the Alfvén speed); and (e) the outflow velocity,
Vout/Va =V - X /Wx.

A striking difference between the simulations shown in
Figures 5 and 6 is that, while the reconnection outflow at high
(; is nearly homogeneous, a number of secondary magnetic
islands appear at low 3; (see Figure 5(a)). The secondary
islands are overdense, and at their center they can reach
temperatures a few times larger than the bulk of the outflow
(Figure 5(b)). They also correspond to peaks in magnetic
energy (Figure 5(c)).

The difference in electron temperature between inflow and
outflow regions is more pronounced in the low- than in the
high-g; case (compare Figures 5(b) and 6(b)). However, as we
demonstrate in Section 4.3, the fraction of available magnetic
energy converted into total electron heating is roughly
comparable between the two cases.

The inflow velocity vi, /s = v - ¥ /5 is shown in panel (d).
For low 3;, the inflow velocity is [viy|/va & 0.08. It is nearly
uniform in the upstream, with the exception of the regions
ahead of the secondary islands, where the velocity reverses its
sign relative to the ambient inflow (see, e.g., Figure 5(d) at
X ~2 —1100c¢ fwpe). This reversal occurs as the secondary island
moves along the outflow direction, pushing aside the inflowing
plasma. For high 3;, the plasma inflow is remarkably uniform,
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with |v;,|/va = 0.04, which is half the value of the low-3; case.
The inflow velocity at high §; shows no reversals near the
reconnection exhausts, as there are no secondary islands.

The outflow velocity vy, /va = v - £/3 is shown in panel
(e). For low 3; the outflow speed nearly reaches the Alfvén
limit, [voue| /YA & 1, whereas for high (3; it approaches a smaller
value, [Vout|/va = 0.6. For both low and high 3;, the outflow
velocity is nearly uniform in the reconnection exhausts, but it
drops close to the periodic boundaries at x ~ 2200, as the
outflowing plasma accretes onto the primary island.

We show in Figure 7 a direct comparison between one low-
B; and one high-3; simulation. The left column in Figure 7
refers to (§; = 0.0078 (the same as in Figure 5), whereas
G; = 0.5 for the right column. In both cases, o, = 0.1,
1./T7, = 0.1, and m;/m, = 25. In the top row, we show the
profile along x of the outflow velocity, for protons (red) and
electrons (blue). We find that electrons move slightly faster
than protons in the vicinity of the central X-point, but at larger
distances the speeds of the two species are the same, and they
saturate at a fixed fraction of the Alfvén limit. We show in the
middle row of panels the x-profile of the dimensionless electron
temperature 0., in the upstream (magenta) and downstream
(green). The secondary magnetic islands present in the
low-g; simulation (panel (c)) are correlated with spikes in
the downstream electron temperature (see the peak at x ~
—500 ¢/wy, in Figure 7(b)). Aside from the temperature spikes
at low G, the two panels in the middle row of Figure 7
demonstrate that, far enough from the central X-point, the
electron temperature is nearly uniform.

To estimate the reconnection heating efficiency, we measure
the downstream temperature in the two slabs delimited by the
vertical dotted lines in Figures 7(b) and (e) (more precisely, within
the green contours in Figure 3). The time evolutions of the total
electron heating efficiency Mr. 1, of the adiabatic contribution
Mre o4, and of the irreversible component My, i, are shown in
Figure 8 with black, dashed blue, and dashed red lines,
respectively. The top panel refers to a low-3; simulation with
B; = 0.0078, whereas the bottom panel refers to the high-3; case
G; = 2. In both cases, o, = 0.1, . /T, = 0.1, and m; /m, = 25.
The horizontal axis in the figure starts from { = 5000 w;,el, which
corresponds to the time when the two reconnection wavefronts
pass beyond the region that we employ for calculating the
downstream quantities (as discussed above, after this time the
measurements are no longer affected by our choice of initializa-
tion of the current sheet).> While the heating efficiencies are
nearly constant in time for high 3; (bottom panel), the temporal
profiles at low 3; (top panel) present quasi-periodic modulations.
They mark the passage of secondary islands—whose temperature
is typically hotter than the bulk outflow—through the region used
for our computations. To minimize the temperature variations
associated with secondary islands, we average the heating
efficiencies over time, as described in Section 3.3.2. In doing
so, the results we obtain are a reliable assessment of the steady-
state heating physics in reconnection.

Panels (a) and (b) in Figure 8 also demonstrate that the
fractional contributions of adiabatic and irreversible heating to
the total electron heating significantly depend on §;, as we
further discuss in Section 4.3. In the low-3; regime, adiabatic
heating is unimportant as compared to the irreversible part,
whereas the two components are comparable at high 3.

3 This time is typically in the range f ~ 4000-5000 w;el, with marginal
dependence on g; and on the initial sheet thickness A.



THE ASTROPHYSICAL JOURNAL, 850:29 (26pp), 2017 November 20

B=0.0078, T/T=0.1

300
150
0
-150

-300
300

150
0
-150

-300
300

150
0
-150

-300
300

150
0
-150

-300
300

150
0
-150
-300

y [c/o,] y [c/o,] y [cla, ] y [clo,]

y [clo,]

-2000 -1000 0
x [clo,.]

Rowan, Sironi, & Narayan

ee

l0g4(€s)

VilVa

1000 2000

Figure 5. 2D structure at t = 11250 w;el = 0.75 15 from a representative low-g3; simulation (A[0] in Table 1) with 3; = 0.0078, o, = 0.1, I./T; = 0.1, and
m; /me = 25. We present 2D plots of (a) particle density in units of the upstream initial value, 1/n, with overplotted magnetic field lines; (b) dimensionless electron
temperature, 6,; (c) logarithm of the magnetic energy fraction, g = BZ /8mngm;c?; (d) inflow velocity, in units of Alfvén speed vi,/va = v - § /v; and (e) outflow
velocity, in units of Alfvén speed vy /va = v - £/v. We show the full extent of the domain in the x direction (Ly = 4318¢/wpe) and only a small fraction of the box
close to the current sheet in the y direction. The primary island, which contains the particles initialized in the current sheet, can be seen at the boundaries
(x = £2200c/wye). As shown in panel (a), the density reaches n/ng =~ 2.3 in the bulk of the outflow, with sharp increases up to n/ng ~ 5 in the core of secondary
islands (e.g., at x = —1000c /wpe and x = 300 ¢ fwpe). The primary island has a high density throughout its interior, n/ng 2 5. Similarly, the temperature (panel (b)) is
uniform, 6, ~= 0.1, in the bulk of the outflow, with spikes up to 6, == 0.25 at the center of secondary islands. The primary island has a temperature 6, ~= 0.15 throughout
its interior. In panel (c), we show that the magnetic energy fraction eg is extremely small in the outflow, g < 0.01. The inflow velocity in panel (d) is a fraction of the
Alfvén limit |vi,|/va == 0.08, and the outflow velocity in panel (e) approaches the Alfvén limit, |[Vou|/va == 1.

4.2. Dependence of Inflow and Outflow Velocity on [3;
and 1./ T;

In Figure 9, we show the dependence on 5; and T./T of
various fluid quantities, from a suite of simulations with fixed
o, = 0.1 and m;/m. = 25. We present (a) the inflow velocity
normalized to the Alfvén speed, |vi)|/w; (b) the outflow
velocity normalized to the Alfvén speed, [Vou|/va; (¢) the ratio
of inflow to outflow velocity, [vial/|Vowl; (d) the downstream
rest-frame density in units of the initial density in the upstream,
flgown/Mo; and (e) the width of the reconnection region at a
distance of 430 ¢/wy,. from the center of the layer. Blue, green,
and red points denote simulations with upstream temperature
ratios T, /T; = 0.1, 0.3, and 1, respectively.

As described in Section 3.3.2, the quantities we extract are
time-averaged, typically over (0.3 Alfvénic crossing times,
corresponding to ~4500 w;,el. The points in Figure 9 represent
the time averages, with vertical error bars indicating one standard
deviation. At low §;, the inflow velocity is |vi|/va ~ 0.08,
independent of the upstream temperature ratio (panel (a)). In the
high-3; case, the inflow speed is smaller, |viy|/va =~ 0.04, and

shows a weak dependence on the temperature ratio, with higher
temperature ratios attaining lower values of |vi|/va.

The outflow velocity (panel (b)) nearly saturates the Alfvén
limit at low g; (the Alfvén limit is indicated with the horizontal
dashed black line), whereas for high 3; it is sub-Alfvénic,
[Vourl/¥a == 0.75. For low values of 3;, ie., 5 < 0.1, the
outflow velocity is nearly independent of the temperature ratio,
whereas at high §; it shows a weak dependence on T, /7;, with
higher temperature ratios corresponding to greater outflow
speeds.

The dependence of the reconnection rate |v;y|/[Vou| on G; and
1. /T;(panel (¢)) follows from the variations in inflow speed and
outflow velocity that we have just discussed. At low 3;, the
reconnection rate is [Vi|/|Wu] & 0.08 regardless of the
temperature ratio, whereas at high 3, and specifically for
B; = 2, the reconnection rate at 7. /T, = 118 |vin|/|Vou| = 0.04,
only half that of the 7 /T, = 0.1 case. So, in the high-3; regime
reconnection proceeds slower for hotter upstream electrons.

As (3; increases, the plasma is less prone to be compressed
during the reconnection process. As shown in Figure 9(d),
the downstream-to-upstream density ratio decreases as J;
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Figure 6. 2D structure at t = 11250 w;el 22 0.75 15 from a representative high-g; simulation (A[4] in Table 1) with 8; = 2, o, = 0.1, . /T, = 0.1, and m; /m, = 25
(i.e., apart from S;, with the same parameters as in Figure 5). The panels show the same quantities as in Figure 5. As shown in panel (a), the density is roughly
n/ng ~ 1.2 in the bulk of the outflow, which is only slightly larger than the upstream density. In the primary island, the density reaches n/ng ~ 4. The electron
temperature (panel (b)) is nearly uniform in the reconnection exhausts (i.e., within a distance of ~700 ¢/wy. from the central X-point), with 0, ~ 0.6. Within the
primary island, the temperature reaches 6, == 0.8. In panel (c), we present the logarithm of magnetic energy fraction £, showing that the reconnection layer is weakly
magnetized (¢g < 0.01). Panel (d) shows that the inflow velocity is nearly uniform in the upstream, with a typical value |viy|/va = 0.04. Panel (e) shows that the
outflow velocity in the reconnection exhausts is [Voul/va == 0.6. At the center of the primary island, x /2 £2200c/wpe, the plasma from the reconnection outflows

comes to rest, [Vou|/va == 0.

increases. The value of yoy, /7y 18 nearly independent of the
upstream temperature ratio. Though the ratio yown /"o
approaches unity at high g;, this does not necessarily imply
that the fractional contribution of adiabatic heating to total
heating is negligible at high g; (we demonstrate this in
Section 4.3).

Lastly, in panel (e) we show the 3; dependence of the
reconnection layer width .., in units of the electron skin depth
¢/ wpe- We measure the width across the reconnection layer, as
identified by Equation (7), at a distance ~430 c/w,. down-
stream of the central X-point. The width shows strong
variability in time at low 3;, as secondary islands pass through
the region employed for our measurements (note the large
error bars). Despite the uncertainty in the measurement, panel
(e) shows a consistent trend of increasing reconnection layer
width &, with 3;. The measured values of 6 lie in the range
25—50 ¢ /wye, which is apparently close to the chosen current
sheet thickness at initialization, A = 40 C/wpe. However, we
demonstrate in Appendix F that the measured reconnection
layer width is independent of our choice of the initial sheet
thickness. It follows that our measurement leads to a reliable

assessment of the opening angle of the reconnection out-
flow, ~Grec /(430 ¢ fewpe) ~ 0.1

10
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4.3. Dependence of Particle Heating on 3; and T, /T;

In Figure 10, we show the 3; and T,/T, dependence of
electron (panel (a)) and proton (panel (b)) dimensionless
temperature and the ratio of proton-to-electron skin depth
(panel (c); see Equation (5)). In each panel, solid and dashed
lines indicate downstream and upstream quantities, respec-
tively. As in Figure 9, blue, green, and red points refer to
electron-to-proton temperature ratios 7, /7, = 0.1, 0.3, and 1,
respectively. The upstream electron dimensionless tempera-
tures lie in the range 1072 to 10, as in Table 1; for protons, the
dimensionless temperature in the upstream ranges from
4 x 107" to 0.4.

The range of temperatures in the downstream is smaller than
in the upstream (compare the solid and dashed lines in
Figures 10(a) and (b)). At low (3;, the available magnetic energy
is large compared to the particle thermal content in the
upstream, so dissipation of the magnetic field leads to electron
and proton temperatures in the downstream that are nearly
independent of ;. At high 3;, the energy transferred from the
fields to the particles is much smaller than the initial particle
thermal content, giving a minor increase of temperature from
upstream to downstream. Even if the fractional increase in
temperature is extremely small at high g;, the fraction of
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Figure 7. Comparison between a low-g;(left column, with 5; = 0.0078, A[0] in Table 1) and a high-g;(right column, with 8; = 0.5, A[3] in Table 1) simulation, at
time t = 9225 w;el 22 0.65 5. In both cases, g, = 0.1, T./T; = 0.1, and m; /m, = 25. (a, d) 1D profiles along x (averaged along y within the reconnection
downstream, as identified by Equation (7)) of proton (red) and electron (blue) outflow velocity in units of the Alfvén speed, vou /va; (b, €) 1D profiles along x of the
upstream (magenta) and downstream (green) dimensionless electron temperature, 0. (the two slabs in between the vertical dotted lines indicate the regions we use to
calculate the downstream and upstream temperatures); (c, f) 2D plots of log(6.). In both the low- and high-g; cases, the spatial profiles of outflow velocity and electron

temperature show that the downstream region reaches a quasi-steady state.

available magnetic energy being converted into particle heating
might still be as large as at low g;. The rest of the section
addresses this question.

We show the plasma-3; and temperature ratio T./T,
dependence of electron and proton heating in Figure 11. The
simulations presented here are those referenced in Table 1, for
which m;/m., =25 and o,, = 0.1. We indicate the total,
adiabatic, and irreversible heating by Mr. 1 (Equation (16)),
Mz o, and Mr. i, (Equations (23)) for electrons and by Mr; (o
(Equation (18)), My .4, and Mr; i, (Equations (25)) for protons.
Blue, green, and red points indicate simulations with upstream
electron-to-proton temperature ratios of 0.1, 0.3, and 1,
respectively. As in Section 4.2, filled points are the time-
averaged results of our simulations, and vertical error bars
indicate one standard deviation from the mean. The top,
middle, and bottom rows show heating fractions of electrons,
protons, and the overall fluid, respectively, which we now
discuss in turn.

In Figure 11(a), we show the dependence of the total electron
heating efficiency My, on 3; and T, /T;. Although the initial
plasma 3; spans more than two orders of magnitude, and the
initial temperature ratio an order of magnitude, even the most
extreme values of My, (o differ by no more than a factor of ~4.
The value of My, in our 5; < 0.5 simulations, for which
electrons stay nonrelativistic both in the upstream and in the
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downstream, is ~0.04, which is consistent with the results of
nonrelativistic reconnection by Shay et al. (2014) for mass ratio
m; /me = 257 As shown by Shay et al. (2014), the electron
heating efficiency in nonrelativistic reconnection is expected to
decrease with increasing mass ratio; in Sections 4.4 and 4.6, we
present the dependence of the electron and proton heating
fractions in transrelativistic reconnection on n1; /m,, up to the
physical value.

The total electron heating fraction Mr. (4 is decomposed into
adiabatic and irreversible components in panels (b) and (c). By
comparing the two panels, we see that most of the heating in
the low-3; regime comes from irreversible processes, i.e., it is
accompanied by a genuine increase in entropy, while heating at
high 3; mostly results from adiabatic compression.

The electron adiabatic heating efficiency increases with the
inflow temperature ratio 7. /7, (Figure 11(b)). The dependence
is most apparent at high [;, where adiabatic heating represents a
significant contribution to the total heating. The dependence of
adiabatic heating on temperature ratio can be simply under-
stood through the adiabatic law 7/77~! = const. As electrons
get compressed from upstream to downstream, the adiabatic

4 In Shay et al. (2014), the magnetization was gy, ~ 0.004 — 0.1. However, as

long as o, < 1 and all the species stay at nonrelativistic temperatures, we
expect the reconnection physics to be independent of the flow magnetization.
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Figure 8. Time evolution of total (Mr. io1; black solid), irreversible (Mr ir; red
dashed), and adiabatic (Mreaq; blue dashed) heating efficiency, for a low-3;
simulation (top panel, with 8; = 0.0078) and a high-3; case (bottom panel,
with 3 = 2). In both cases, oy, = 0.1, I, /T, = 0.1, and m; /m, = 25. The
heating efficiencies are measured starting at ¢ == 5000 wljel, at which point the
two reconnection wavefronts recede past the location of the downstream region
used for our computations (shown in Figure 3 with the green contours). For the
low-(3; case, the total heating efficiency oscillates around Myp, ~= 0.04, and it is
dominated by genuine/irreversible heating (panel (a)). For high 3, the total
heating efficiency saturates at a smaller value, Mr. ~ 0.016. Here, adiabatic
heating and irreversible heating equally contribute (panel (b)).

heating fraction can be written as’

5,—1

1 Te Mdown e
Mypeog = 822 Bdown | = _ 1], 27
Tead = 2 T( ) 27

i 7o

As shown in Figure 9(d), the ratio of downstream to initial
upstream density 7gown/7o 18 nearly independent of the
upstream temperature ratio, so that My, .q o< 1 /T; at fixed 3.
Equation (27) also provides insight into the 3; dependence of
adiabatic heating. It shows that, for a given temperature ratio,
the adiabatic heating efficiency would scale linearly with g;, if
the compression ratio g, /7o were to be fixed. As shown in
Figure 9(d), the downstream-to-upstream density ratio
decreases with 3;, approaching unity at high g;. However, the
decrease of Mayyn /Mo With 3; is quite shallow, and insufficient
to counteract the linear dependence on 3; in Equation (27). It

2 Equation (27) assumes that the adiabatic index is constant as electrons pass
from upstream to downstream, which is a good approximation when electrons
are ultrarelativistic in both regions (so, for high g; and large T, /T;); still, in all
the simulations used in Figure 11, we find that the electron adiabatic index
changes by no more than 4, ,, — % gown =~ 0.1. In any case, Equation (27) is
presented only for illustrative purposes, and we properly account for the effect
of a variable adiabatic index in our calculation of the heating fractions.
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Figure 9. For temperature ratios T, /7; = 0.1 (blue), 0.3 (green), and 1 (red), 3;
dependence of (a) inflow velocity |viy|/va; (b) outflow velocity [voul/va; (€)
reconnection rate |vip|/|Vou|; (d) downstream density in units of initial density
in the upstream gy /70; and (e) width of reconnection layer 6rec. Error bars
represent one standard deviation from the mean. The inflow velocity is
averaged over a region of length L, /3 ~ 1440c/wye in x and width 20 ¢ /wy in
¥, located | y| ~ 100 ¢/wy, upstream of the central X-point. We have checked
that the saturation value is insensitive to the choice of averaging region. The
outflow velocity is computed as an average over the 20 cells with the largest
[v - %] located along the central region of the outflow (y| < 4 ¢/wpe). We have
tested that the resulting outflow velocity is nearly insensitive to our averaging
procedure. The regions used for measuring density in the upstream and
downstream are described in Section 3.2. The width of the reconnection layer is
measured at a distance ~430 c/wp. downstream of the central X-point. All
quantities are time-averaged over ~0.3 fy ~= 4500 w;el Both inflow and
outflow velocities tend to decrease with (i, with weak dependence on
1. /T, (noticeable only at high 3;). The density compression decreases with 3;.
The width 6, of the layer increases with 5;, yet with large error bars.

follows that at low g; the effect of adiabatic heating is
negligible, while at high 3; the role of adiabatic heating can be
more important than that of irreversible heating.

This statement can be further justified by considering electron
energization in the diffusion region as the main source of
irreversible electron heating, following Le et al. (2016). In the
diffusion region, the electron energy will increase by eE . Z.,
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1072

where E...~ 0.10p/c)By is the reconnection electric field
(assuming a reconnection inflow rate of ~0.131/c; see
Figure 9(a)) and /. is the distance traveled by electrons along
the electric field (along z, in our geometry). For the sake of
simplicity, let us now assume that 3; is sufficiently small that
w ~ ngm;c? and so oy, ~ o (this is the case for 3; < 0.1, at our

reference magnetization o,, = 0.1). The corresponding irrever-
sible heating efficiency can be written in the case g, ~ o; < 1 as

te

C/wpi |

MTe,irr ~ 0.1 (28)

which does not depend explicitly on ;. It follows that, as long
as £, is a weak function of j3;, the adiabatic heating efficiency
in Equation (27), which scales linearly with 3;, will be
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unimportant at low (;, whereas it will dominate over
irreversible heating at high 3;.

We remark that Equation (28) does not capture a number of
important effects. First, by tracking individual particle orbits,
we have found that the in-plane components of the electric
field, which we have neglected above, can provide a significant
contribution to the total electron energization (a comprehensive
discussion of the physics of electron heating will be presented
elsewhere). Second, we have neglected the 3; dependence of
the reconnection rate. Third, we have assumed w ~ ngm;c2,
which is incorrect at high g;. Fourth, we do not have a direct
measure of £,, which would assess its dependence on the flow
conditions. For these reasons, it is likely that the electron
irreversible heating will be dependent on 3;.

In fact, the irreversible electron heating efficiency (shown in
Figure 11(c)) systematically decreases with 3;, and the trend is
largely independent of the initial temperature ratio, apart from
the case with g; = 2 (rightmost points in Figure 11(c)). Here,
the irreversible heating fraction reaches Mr.;, ~ 0.03 for
1./T; = 1, a factor of ~3 larger than for the 3; = 2 cases with
lower temperature ratios, 7, /7, = 0.1 and 0.3. We attribute
the peculiar behavior of this case to the fact that, among
the m;/m. = 25 simulations presented in Figure 11, the
0i=2,1./T, =1 case is the only one for which the scale
separation (¢/wy;) /(¢/wpe.) between protons and electrons
approaches unity (see Figure 10(c)). For the case
Gi=2,T./T = 1 in Figure 11, this statement holds true for
both the upstream and the downstream scale separation, since
the reconnection process at high [3; does not appreciably
change the plasma thermal content. However, as we further
discuss in the next two subsections, where we investigate the
dependence of our results on the mass ratio and the
magnetization, we find that the necessary and sufficient
condition for the electron and proton heating efficiencies to
be comparable is that the downstream scale separation
approaches unity. In retrospect, this is not surprising, since if
(¢/wpi) [(¢/wpe) — 1 in the downstream, the fluid effectively
behaves like an electron-positron plasma.

In Figure 11 (second row of panels), we also explore the j3;
dependence of (d) total, (e) adiabatic, and (f) irreversible proton
heating. As before, blue, green, and red points correspond to
simulations with upstream 7. /T; of 0.1, 0.3, and 1, respectively
(we change the temperature ratio by varying the electron
temperature, while the proton temperature at a given 3; is kept
fixed). While the initial dimensionless electron temperature in
our simulations ranges from nonrelativistic to ultrarelativistic
values, protons always stay at nonrelativistic or transrelativistic
energies, 0; = 0.0004-0.5 (this is true in both upstream and
downstream cases). At low (3;, protons are heated more
efficiently than electrons, typically by a factor of 2-3 at mass
ratio m; /m, = 25 (compare panels (a) and (d), My, o1 =~ 0.05
while Mp; o &~ 0.13). At larger values of m;/me., the ratio of
proton to electron heating is even larger, as we discuss in
Sections 4.4 and 4.6. Once again, the notable exception is the
high-G; case with 3; = 2 and 7, /T; = 1, where the electron and
proton heating fractions are comparable, My x = 0.06 and
Mr; ot =~ 0.08. Similar to electrons, the irreversible component
of proton heating decreases with 3; and shows only weak

% We have extensively checked this result, finding that it holds regardless of

the simulation boundary conditions (periodic or outflow in the x direction, or
double periodic; see Appendix B) and the number of computational particles
per cell.
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Figure 11. For upstream temperature ratios 7, /7; = 0.1 (blue), 0.3 (green), and 1 (red), 5; dependence of heating efficiencies: (a) electron total, Mre tot; (b) electron
adiabatic, Mre aqd; (c) electron irreversible, Mreir; (d) proton total, Mr; 1 () proton adiabatic, Mr;iaq; (f) proton irreversible, Mriir: (g) electron and proton total,
Mre 1ot + Mrior; (h) electron and proton adiabatic, Mre aa + Mri aq; (i) electron and proton irreversible, Mre iy + Mri irr. The simulations shown here use a mass ratio
my /me = 25 and magnetization oy, = 0.1. Error bars, mostly smaller than the plotted symbols, represent one standard deviation from the mean. The decomposition of
total heating into irreversible and adiabatic components shows that electron and proton heating at low j; is accompanied by an increase in entropy, while heating in the

high-3; regime tends to be dominated by adiabatic compression.

dependence on the upstream temperature ratio T, /7, (panel (f)).
As shown in panel (e), the fractional contribution of adiabatic
heating to the total proton heating increases with 3;, as for
electrons.

Finally, we show the total particle (i.e., sum of electron and
proton) heating, as well as the corresponding adiabatic and
irreversible components, in Figures 11(g)-(i). Given that
protons are heated more efficiently than electrons, the trends
in the bottom row of Figure 11 are primarily controlled by
protons (again, with the exception of the case =2,
1./T, = 1). Panel (g) shows that the total particle heating
efficiency is ~0.15 across all simulations, with a weakly
declining trend with increasing J;. Panels (h) and (i) show that,
as discussed for electrons and protons individually, heating in
the low-{; regime is associated with an increase in entropy,
while at high §; it is dominated by adiabatic compression.

While we cast the heating fractions in Figure 11 in terms of
temperature differences between upstream and downstream,
they may be expressed, alternatively, via differences in internal
energy per particle; see Appendix G.

4.4. Dependence of Particle Heating on m; /i,

We have extended our results up to the physical mass ratio
m;/m, = 1836, and in this section we focus on the case with
1./T = 1 (runs with ¢, = 0.1 and unequal temperature ratios
are presented in Section 4.6). The separation between the
electron scale ¢/wyp. and the proton scale c/wy; is regulated by

Equation (5). For nonrelativistic particles, the ratio of proton to
electron skin depth is 4/m1;/m. ~ 40, so that a large simulation
domain is required to properly capture the proton physics.
However, in the transrelativistic regime of our simulations, the
particles can approach (or exceed, in the case of electrons)
relativistic temperatures. Here, the effective increase in electron
inertia can bring the ratio of proton to electron skin depth close
to unity (see Equation (5)). This condition holds, for example,
in simulations C[3], C[4], and B[4], when the mass ratio is
increased to m; /m, = 1836 at fixed ¢, and 3;.

We show in Figure 12 the dependence of (a) total, (b)
adiabatic, and (c) irreversible electron heating on 3;, for mass
ratios m;/m. = 10, 25, and 1836. We fix the magnetization
o, = 0.1 and the temperature ratio T, /T; = 1, the legend is
shown in the upper part of panel (b). The points are colored
according to the dimensionless temperature of upstream
electrons (the corresponding color bar is to the right of panel
(c)), ranging from nonrelativistic (6, ~ 10~*) to ultrarelativistic
@, ~ 10°) values. In agreement with earlier studies of
nonrelativistic reconnection by Dahlin et al. (2014) and Le
et al. (2016), we find that the total electron heating efficiency at
low B is a decreasing function of mass ratio. For the realistic
mass ratio, at low J; the total heating fraction My, ior ~ 0.016
is in good agreement with the observed value in the
magnetopause, Mr. i« = 0.017 (Phan et al. 2013). At §; = 2,
the electron heating efficiency is remarkably insensitive to the
mass ratio, with Mr. o+ =~ 0.06. As we have anticipated above,
in this case the upstream and downstream skin depths of
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Figure 12. Mass ratio m; /m. dependence of heating efficiencies: (a) electron total, Mre o1; (b) electron adiabatic, Mre a4; (¢) electron irreversible, Mre irr; (d) proton

total, Mri 1o1; (€) proton adiabatic, Mr; 54; and (f) proton irreversible, My i, for T, /T, = 1 simulations with mass ratios m; /m.

10 (dotted), 25 (dashed), and 1836

(solid). The legend is located in the upper part of panel (b). Points in panels (a)—(c) are colored according to electron dimensionless temperature in the upstream (color
bar is to the right of panel (c)), and points in panels (d)—(f) are colored according to proton dimensionless temperature in the upstream (color bar is to the right of panel
(f)). The irreversible heating is remarkably independent of mass ratio at high 3;(=2), while at low j;, the irreversible electron heating efficiency decreases with

increasing mass ratio.

protons and electrons are comparable (once we account for the
effects of relativistic inertia), so the physics should resemble
that of an electron-positron plasma, regardless of the mass
ratio. The adiabatic heating efficiency (panel (b)) shows only a
weak dependence on mass ratio, in agreement with
Equation (27). For realistic mass ratios, electron heating is
governed by irreversible processes at low (;, adiabatic heating
dominates at intermediate [3; ~ 0.1 — 1, while the two
components equally contribute at high g; ~ 2.

We show the 3; dependence of the proton heating fractions
M7 tot» Mriaq, and Mriy, in panels (d)—(f). The points are
colored according to the upstream dimensionless proton
temperature, ¢; (the scale is to the right of panel (f)). The
upstream proton temperatures are nonrelativistic or transrela-
tivistic, with 8; < 0.5. At fixed o, and §;, the initial proton
temperature stays the same, when we vary the mass ratio (as
opposed to the electron temperature, which increases with mass
ratio). So, the proton heating efficiencies are expected to
remain unchanged, as long as the box size L, is sufficiently
large (in units of the proton skin depth c/wpi) to capture the
physics of proton heating. In the bottom row of Figure 12, the
proton heating fractions Mr; o, Mriaq, and My, are nearly
independent of the mass ratio, which demonstrates that even for
the realistic mass ratio the box used here is sufficiently large to
capture the physics of proton heating (and even more so, of
electron heating). The results discussed in Section 4.3 for
mi/m, = 25 and T, /T, = 1 are therefore still valid here: proton
heating is dominated by irreversible processes at low g,
whereas irreversible and adiabatic components equally con-
tribute at high 3;; the irreversible heating efficiency of protons
is a decreasing function of J;; protons are heated more
efficiently than electrons (although the total proton-to-electron
heating ratio for m; /m, = 1836 is ~7 at low §;, larger than the
value measured for m;/m, = 25, since the electron heating
efficiency decreases with mass ratio); and the heating fractions
of the two species approach comparable values at 3; = 2, with
MTi,tot ~ 0.08 and MTe,tot ~ 0.06.
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In Figure 13(a), we directly compare the 3; dependence of
electron and proton heating fractions Mr. 1o (solid blue), My i
(dashed blue), Mg (solid red), and Mr; i, (dashed red) for
mi/me = 1836, 0, = 0.1, and T./T =1 As anticipated
above, the proton and electron total and irreversible heating
fractions differ roughly by a factor of ~7 at low §;, but they
approach a similar value at 3; = 2 (=0.03 for the irreversible
component and ~0.06 for the total). In Figure 13(b), we show
the ; dependence of the ratio of electron to overall total
heating ratio (solid blue),

MTe,tot

—_— (29
Mre ot + Mri ot

QTe,tot =

and similarly, the ratio of electron to overall irreversible
heating ratio (dashed blue),

MTe,irr
Mre e + M7 i

QTe,irr - (30)
At low g, the electron-to-overall total heating ratio is
Qreror = 0.14, and it increases with 3; up to gr. , = 0.45 at
B = 2. The corresponding ratio of the irreversible components
Qrer 18 comparable to gp, ., at both low 5; (where adiabatic
heating is negligible) and 3, =2 (where adiabatic and
irreversible contributions are similar), but for intermediate (3;
we find that g, ;. can be as low as 0.07, smaller than g, ., by
up to a factor of ~3.

4.5. Dependence of Particle Heating on Magnetization

In the previous sections, we have focused on the case
o, = 0.1; in Figure 14, we show the [; dependence of the
heating efficiencies for a suite of simulations with

7 The error bars in Figure 13(a) are larger for protons than electrons (for
electrons, they are smaller than the size of the plot symbols), but the fractional
error is the same. Additionally, the error bars are larger at low 5;. As described
in 4.2, this results from the frequent formation of secondary islands at low g;.
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Figure 13. (a) 5; dependence of electron total heating Mr. o (solid blue), electron irreversible heating My iy (dashed blue), proton total heating Mr; 1o (solid red), and
proton irreversible heating Mr; iy (dashed red); (b) 8; dependence of electron-to-overall total heating ratio gz, 4 (solid blue) and electron-to-overall irreversible heating
ratio gr, i, (dashed blue), as defined in Equations (29) and (30). Here, 0, = 0.1, T./T; = 1, and m;/m. = 1836.

o,=0.1,03,1,3, and 102 We fix the temperature ratio
1./T7, = 1 and the mass ratio m; /m, = 1836. The panels are
similar to those in Figure 12: (a)—(c) show the electron heating
fractions My tor, Mread» and Mre s (d)—(f) show the proton
heating fractions Mr; o1, Mri.d, and Mr; ;.. The legend is in
panel (b): green, purple, brown, magenta, and black curves
connect the points having ¢, = 0.1,0.3, 1,3, and 10,
respectively, to guide the eye. The points of panels (a)—(c)
are colored according to the upstream dimensionless electron
temperature 0., as indicated by the color bar to the right of
panel (c). Similarly, in panels (d)—(f) the points are colored
according to the upstream dimensionless proton temperature 0;,
as indicated by the color bar to the right of panel (f). For fixed
B8i, T./T;, and m; /m., an increase in magnetization leads to an
increase in the upstream dimensionless temperature of both
electrons and protons, which can be seen by comparing the
colors of data points in panel (a) or panel (d) at fixed g;.

We note that the data points in Figure 14 extend up to a
maximum value of 3; that depends on ¢,. For our choice of
defining the magnetization using the enthalpy density, rather
than the rest-mass energy density, the ion [3; cannot exceed
Bimax ~ 1/40,. For each value of o,, the points with the
highest value of 3; are also those for which the proton-
to-electron scale separation ratio (¢ /wp;) /(¢ /wpe) is the smallest
(see Figure 15). We find that in the limit §; — 5imax, the
total electron heating efficiency shows a characteristic upturn
(panel (a)), with a typical value My ox =~ 0.05 that is nearly
independent of o,,. In the low-3; regime, the electron total
heating efficiency approaches a o,,-dependent plateau, with
higher o,, yielding larger electron efficiencies (panel (a)). The
opposite holds for protons: higher magnetizations give smaller
proton heating efficiencies (panel (d)). Indeed, for o,, = 10 the
electron and proton efficiencies are comparable in the whole
range of 3; we have explored, in agreement with the results by
Sironi et al. (2015).

As anticipated in Section 4.3, we find that the necessary and
sufficient condition for having comparable electron and proton
heating efficiencies is that the separation between the electron

8 At high oy, the rate of secondary island production is enhanced (Sironi
et al. 2016). In the simulations with oy, = 1, 3, 10, we employ outflow
boundary conditions in order to evolve the system to longer times. This allows
us to average the downstream quantities in the reconnection exhausts over a
longer time span and obtain more reliable estimates.
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and proton scales in the downstream be of order unity (or
equivalently, that the two species be relativistically hot, with
comparable temperatures). As shown in Figure 15, this can be
achieved in two ways: (i) at high ¢,, regardless of 5, the
reconnection process transfers so much magnetic energy to the
particles that both species become relativistically hot, with
comparable temperatures; (ii) at low o, and in the limit
Bi — Bimax, both electrons and protons already start relativis-
tically hot in the upstream region (and more so, will be
relativistically hot in the downstream).

Most of the o, dependences that we have now presented for
the total heating efficiencies Mr. (o« and Mr; (o also apply to the
irreversible components Mr. i, and My i, since the adiabatic
contribution is independent of the magnetization, at fixed 3;(see
Equation (27)). However, since the magnetization affects the
efficiency of irreversible heating at fixed 3;, while the adiabatic
component remains the same, this can lead to a significant
change in the relative contributions of irreversible and adiabatic
heating. This can be seen, for example, at 3; =~ 0.5. For
oy = 0.1, Mre inr/Mre 1ot =~ 0.1, whereas at o, = 0.3, we find
MTe,irr/MTe,tot ~ 0.5.

To connect with the recent work of Werner et al. (2016), we
show in Figure 16 the dependence of electron and proton
heating on the magnetization o;, defined with the rest-mass
energy density (see Equation (2)). We fix temperature ratio
T./T; = 1, mass ratio m; /m. = 1836, and 3; ~ 0.03 (which is
close to the upstream plasma 3; employed in Werner et al.
(2016), B; = 0.01). In panel (a), we show the o; dependence of
the electron total (solid blue), electron irreversible (dashed
blue), proton total (solid red), and proton irreversible (dashed
red) heating fractions, phrased in terms of internal energy as in
Wermer et al. (2016), Mye o, Myeirrs Muyitor, and My (See
Equations (15) and (17)). As o; increases, the downstream scale
separation between protons and electrons gets reduced (see
Figure 15), and the two species approach comparable heating
efficiencies (whereas the two differ by a factor of ~3 at low
magnetization). This holds for both the total efficiencies M, (ot
and M, and the irreversible components M, i, and M, i,
since the amount of adiabatic heating at fixed (5; does not
depend on o¢,. This is further illustrated in Figure 16(b),
where we show the o; dependence of the electron-to-overall
total heating fraction, phrased in terms of internal energy
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(solid blue),
M ue,tot

—_—, (31)
Mue,tot + Mui,tot

Qu e, tot =

and the electron-to-overall irreversible heating ratio (dashed
blue),

Mue,irr
Mue,irr + Mui,irr

QMe,irr -

(32)

Blue circles show the results of our simulations, and the black
dotted line indicates the empirical formula suggested by
Wemer et al. (2016),

1 a/5
ueem:_1+ = . 7=
Biepog 4( \/2+m/5)

We find reasonable agreement between this empirical formula
and our simulations, for 3; ~ 0.03. For low values of the

(33)
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magnetization, ¢, ~ e ~ 0.25, but as o increases
toward the ultrarelativistic limit, ¢,.,, and g, ;. approach
~0.5, i.e., electrons and protons are heated with comparable
efficiencies. However, Figure 14 shows that, at fixed
magnetization, the heating efficiencies depend on i, a trend
that cannot be properly captured by the empirical formula of
Wemer et al. (2016).

We then propose the following formula, which captures the
dependence of the electron-to-overall heating ratio g, on
both magnetization ¢,, and proton [3;:

where 0 < Bimsx = 1/40,. The formula in Equation (34) has
two desirable, and physically motivated, features. First, for
Bi — Bimax. the electron-to-overall heating ratio approaches
0.5, independently of the magnetization. Second, for
ow > 1, G = 0.5, regardless of 3;. In both these limits,
the scale separation between electrons and protons in the
downstream will be of order unity (as we have discussed
above), which we have demonstrated is a necessary and
sufficient condition for comparable heating efficiencies
between electrons and protons.

In Figure 17, we compare Equation (34) to the results of
simulations with m;/m, = 1836 and T./T = 1 (this is the
same set of simulations presented earlier in this section, as well
as in Section 4.4). In Figure 17(a), we show the 3; dependence
of the electron-to-overall heating ratio g, for a range of o,
(see the legend). The simulation results are shown by filled
circles, while solid lines are based on Equation (34). The curves
are plotted up to to the maximum allowed value of 3;, namely,
Bimax = 1/40,,. The black dotted line at g, ., = 0.5 shows the
limit of comparable heating efficiencies for electrons and
protons, which will be reached as 3; — §; m.x, independently
of o,,. We find that both the simulation data and the fitting
formula in Equation (34) asymptote to a constant value for
Bi € Bimax, With smaller heating ratios at lower ¢,. In the

(1 - ﬁ/ﬁlmax) 3
14+120%

QMe,fit e p [ (34)
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and m; /m. = 1836.
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Figure 17. Comparison of the electron-to-overall heating ratio g,, ,,, between
our simulations with m;/m, = 1836 and T,/T, = 1 (filled circles with error
bars) and the best-fitting formula in Equation (34) (solid curves). We show the
dependence on (a) plasma-g; and (b) magnetization oy,. In panel (a), the
different colors represent magnetizations ¢, = 0.1 (green), 0.3 (purple), 1
(brown), 3 (magenta), and 10 (black). In panel (b), the color coding of the
curves is indicated in the legend (from cyan to red for increasing G;), while
the color of the filled points refers to the color bar on the right. In both panels,
the black dotted line at ¢,y = 0.5 shows the limit of comparable heating
efficiencies between electrons and protons, expected when G — Bimax
(regardless of o) or oy, >> 1 (independently of ;).

nonrelativistic limit o, <« 1, our formula prescribes that
Qe — 0.18, not very different from the value g, 5, ~ 0.22
obtained for o,, = 0.1. This is consistent with the expectation
that in the nonrelativistic regime o, < 1, the heating
efficiencies will be independent from the magnetization.
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In Figure 17(b), we show the dependence of the electron-to-
overall heating ratio on the magnetization o,,, for a range of 3;.
The simulation results are shown by filled solid circles, which
are colored according to the value of 3; in the upstream (the
color scale is located to the right of Figure 17(b)). We select a
few representative values of 3; and plot the corresponding
predictions based on Equation (34) with the solid curves (see
the legend in the plot). The curves are plotted up to oy max,
which for a fixed §; is given by 0y max ~ 1/45i. In summary,
Figures 17(a) and (b) show that our proposed formula
(Equation (34)) properly captures the magnetization and
plasma 3; dependence of the electron-to-overall heating ratio
over the whole range of ¢, and [3; explored in this work.

4.6. Dependence of Particle Heating on T, /T;
for m;/m, = 1836

In Figure 18, we present the dependence of electron and
proton heating efficiencies on the proton beta J; and the
temperature ratio 7. /T, for the realistic mass ratio m;/m. =
1836 (the figure layout is the same as in Figure 11, where we
had employed a reduced mass ratio m;/m, = 25). We fix
o, = 0.1. Even at the realistic mass ratio, the conclusions
drawn in the reduced mass ratio case m;/m, =25 (see
Section 4.3) still hold: electron and proton heating at low 3,
is dominated by irreversible processes, while heating in the
high-3; regime is mostly a result of adiabatic compression; the
irreversible component of electron heating is independent of
T./T; at 5; < 1 (Figure 18(c)); the proton irreversible heating
shows only a weak dependence on temperature ratio
(Figure 18(f)); and protons are heated more efficiently than
electrons (compare the top and middle rows).

For both electrons and protons, the adiabatic heating
efficiencies for m;/m. = 1836 (Figures 18(b) and (e)) are
similar to those of the reduced mass ratio case. In fact,
according to Equation (27), the adiabatic heating efficiency is
independent of mass ratio.” For protons, the adiabatic heating
efficiency decreases at 8; > 2; this is largely an effect of the
decrease in the adiabatic index, as the protons transition from
nonrelativistic to relativistic temperatures.

° While Equation (27) is written for electrons, an analogous equation holds
for the adiabatic heating of protons, if we replace G I./T; — i and 4, — %.
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Figure 18. For mass ratio m; /m. = 1836, magnetization o,, = 0.1, and upstream temperature ratios 7, /7, = 0.1 (blue), 0.3 (green), and 1 (red), we present the 3;
dependence of heating efficiencies: (a) electron total, Mre oi; (b) electron adiabatic, Mreaq; (c) electron irreversible, Mreir; (d) proton total, Mr; o (e) proton
adiabatic, Mri .q; (f) proton irreversible, Mrir; (g) electron and proton total, Mre 1o + Mriwor; (h) electron and proton adiabatic, Mre aq + Mriaa; (i) electron and

proton irreversible, Mre ir + Mri i

For m;/m. = 1836, the irreversible heating of protons at
low 3; is a factor of ~5-7 greater than that of electrons; in the
m;/m, = 25 case, the ratio of proton-to-electron irreversible
heating was smaller, ~2-3. As in the reduced mass ratio case,
the simulation with 3, =2 and 7,/7, = 1 shows a sharp
increase in irreversible electron heating as compared to the
decreasing trend observed at lower gj(Figure 18(c)), and the
heating efficiencies of the two species become comparable. As
we argued in Section 4.5, the electron and proton heating
efficiencies are about equal if and only if the downstream scale
separation is of order unity. Even for the highest values of 3;
that we can explore (=3.9 for 7./7, = 0.1, and ~4.6 for
TI./T, = 0.3.), this condition is not realized for smaller
temperature ratios ((c/wpi)/(c/wpe) 2 3.2 for T./T; = 0.1,
and (c/wpi)/(c/wpe) 2 1.8 for T. /T, = 0.3), which explains
why—despite the upturn in electron heating efficiency at high
G;(Figure 18(c))—the ratio of irreversible proton to electron
heating for 7, /7, = 0.1 and 0.3 remains larger than unity.

5. Summary and Discussion

In this work, we have presented the results of a series of 2D
fully kinetic PIC simulations to explore electron and proton
heating by magnetic reconnection in the transrelativistic
regime. Here, protons are typically nonrelativistic, yet electrons
can be moderately relativistic or even ultrarelativistic. We vary
the flow magnetization o,,, the proton §;, and the electron-to-
proton temperature ratio T; /T;, extending our results up to the
physical mass ratio m; /m. = 1836.

We show that heating in the high-3; regime is primarily
dominated by adiabatic compression, while for low 3; the
heating is genuine, in the sense that it is associated with an
increase in entropy. At our fiducial o,, = 0.1, we find that for
0; S 1 the irreversible heating efficiency is independent of
1. /T; (which we vary from 0.1 up to 1), for both electrons and
protons. For T./T, = 1, the fraction of inflowing magnetic
energy converted to electron irreversible heating at realistic
mass ratios decreases from ~1.6% down to ~0.2% as 3; ranges
from G; ~ 1072 up to 3; ~ 0.5, but then it increases up to ~3%
as 3; approaches ~2. Protons are heated much more efficiently
than electrons at low and moderate 3; (by a factor of ~7),
whereas the electron and proton heating efficiencies become
comparable at 3; ~ 2 if T, /T, = 1. We find that comparable
heating efficiencies between electrons and protons are achieved
when the scale separation between the two species in the
reconnection exhaust approaches unity, so that the electron—
proton plasma effectively resembles an electron-positron fluid.
This occurs at high 8; for low magnetizations, or regardless of
B; at high magnetizations (i.e., in the regime o, > 1 of
ultrarelativistic reconnection). We propose a fitting formula
(Equation (34)) that captures the magnetization and plasma-3;
dependence of the electron-to-overall heating ratio over the
whole range of ¢, and §; explored in this work.

The low- and high-3; cases differ with respect to secondary
island formation. The formation of secondary islands is
suppressed at high 0;, which leads to a homogeneous
reconnection outflow. Secondary islands occur frequently at
low 8; and high magnetizations.
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Figure 19. Comparison between domain sizes Ly ~ 2000c/wpe (green circles) and Ly ~ 4000c/wpe (blue triangles) of the following heating fractions: (a) electron
total, Mr. o1; (b) electron adiabatic, Mre ,4; (c) electron irreversible, Mre irr; (d) proton total, Mr; 1i; (e) proton adiabatic, Mr; 4q: (f) proton irreversible, Mr; j. We
present a low-3; case with g; = 0.0078, T, /T; = 0.1 and a high-3; case with g; = 2, T, /T, = 1; in both cases, the mass ratio is m; /m, = 25 and ¢, = 0.1.

We also measure the inflow speed for our fiducial
magnetization o,, = 0.1, finding that it decreases from
Vin/Va = 0.08 down to 0.04 as 3; ranges from §; ~ 1072 up
to B; ~ 2 (here, v is the Alfvén speed). Similarly, the outflow
speed saturates at the Alfvén velocity for low (3, but it
decreases with increasing 3; down to vy, /s ~ 0.7 at 8; ~ 2.
The inflow (outflow) speed is independent of T, /T; at low 3;,
with only a minor tendency for lower (higher) speeds at larger
1. /T, in the high-3; regime.

This investigation provides important insights into the
physics of low-luminosity accretion flows, such as the
accretion disk of Sgr A* Collisionless accretion flows are
often assumed to be two-temperature, and our results indeed
show that in the transrelativistic regime relevant to hot
accretion flows and accretion disk coronae, magnetic reconnec-
tion preferentially heats protons more than electrons. Our
results—and in particular, our fitting formula in Equation (34)
——can be used to provide general relativistic MHD simulations
of accretion flows with the subgrid physics of energy partition
between electrons and protons (Ressler et al. 2015, 2017,
Siddowski et al. 2017). This ingredient is of fundamental
importance in producing emission models that can be compared
with the forthcoming observations by the Event Horizon
Telescope (Doeleman et al. 2008).

To conclude, we note a few lines of investigation that have
not been considered in the current work. First, we limited our
focus to the case of symmetric, antiparallel reconnection. The
more general case of guide-field reconnection will be a topic of
future investigation. Second, while we have provided a
quantitative description of energy partition between electrons
and protons, we have not addressed the question of the
underlying heating mechanism. A detailed study of the heating
mechanism is deferred to future work. Lastly, we have focused
on thermal heating, as opposed to nonthermal acceleration. The
dependence of nonthermal acceleration efficiency on magne-
tization is the focus of Wemer et al. (2016), though the
dependence on 3; and T, /T; remains unexplored.
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Appendix A
Convergence with Respect to Domain Size

For most of the simulations presented in the main body of
this work, we employ a domain size of L, ~ 4000c/wye.
However, as we demonstrate in this appendix, the heating
efficiencies are insensitive to the domain size. While we have
extensively checked for convergence with boxes ranging in size
from L, /2 500 ¢/wpe up to Ly /2 5000 ¢ /wy,., we focus here on
a low-g; case and a high-3; case and compare domains of size
Ly ~= 2000 ¢ /wye and Ly ~= 4000 ¢ fwp,.

We show in Figure 19 the electron heating fractions
Mretot» Mre ad» Mreire (panels (a)—(c)) and proton heating
fractions M7; tot, Mriaq>» Mriye (panels (d)—(f)). Green circles
indicate simulations with L, ~ 2000c¢/wy., and blue triangles
L, ~ 4000¢ /wpe. The comparison is performed for two cases:
G; = 0.0078, I./T. = 0.1 and B; = 2, T./T. = 1. For both the
low- and high-3; simulations, ¢,, = 0.1 and m;/m. = 25. For
each pair of simulations (at low and high 3;), the downstream
and upstream dimensionless temperatures that enter into the
heating fractions are measured at the same physical distance
(in units of the electron skin depth) downstream of the central
X-point. The electron and proton heating fractions show
minimal dependence on the box size.

In Figure 20, we show—for box sizes L, ~ 2000¢/wy,
(green) and L, == 4000¢/wy. (blue)—the spatial profiles along
the outflow direction (i.e., along x, and averaged along y in the
cells identified by Equation (7) as belonging to the reconnec-
tion downstream) of (a) dimensionless electron temperature 6,
for 8, = 0.0078, 1. /T, = 0.1; (b) dimensionless proton temp-
erature 0; for B; = 0.0078, T./T, = 0.1; (¢) dimensionless
electron temperature 6, for 5, =2, 7,/T, = 1; and (d)
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Figure 20. Spatial profiles along the reconnection outflow of (a) dimensionless electron temperature 6, for g; = 0.0078, T, /T, = 0.1; (b) dimensionless proton
temperature ¢; for 8; = 0.0078, I, /T, = 0.1; (c¢) dimensionless electron temperature 6, for g; = 2, T, /T, = 1; and (d) dimensionless proton temperature 6; for
Bi = 2, I./T; = 1. The mass ratio is m;/m. = 25 and &, = 0.1. The spatial profiles are extracted from simulations with domain size Ly /= 2000c/wpe (green) and
Ly 7 4000¢ /wpe (blue). These spatial profiles are from the same simulations shown in Figure 19, at time 7 ~ 115.

dimensionless proton temperature ¢; for 8, = 2, T, /T, = 1. The
simulations shown in Figure 20 correspond to the same
simulations presented in Figure 19. The dimensionless
temperature profiles are shown at 7 = 1 fy; this corresponds
to t ~ 6900 w;el for L, ~ 2000¢/wpe, and to ¢ ~ 14000 w;,el
for L.~ 4000c/wp. The horizontal axes range from
x =~ =700 ¢/wpe to +700 ¢/wye, which accounts for most of
the smaller box, but only a fraction of the larger one. For low
3;, the region used for our measurements is located at
X ~ £630 ¢ fwpe, whereas it is at x ~= 2350 ¢/wy,. for high
(;; in each case, the chosen distance is far enough from the
central X-point that the temperature profiles attain a quasi-
uniform value, and far enough from the domain boundaries to
be unaffected by the primary island (Section 3).

In Figures 20(a) and (b), which correspond to the low-g;
case, the dimensionless temperature profiles show similar
spatial dependence within x ~ £630 ¢/wy, and for the high-3;
profiles shown in (c) and (d), the temperatures agree within
X = £350 ¢ wpe. For the high-3; case, the large and small
boxes show some discrepancy beyond x ~ £400 ¢ fw., which
is an effect of the large primary island extending from the
domain boundary into the outflow region.

Appendix B
Outflow versus Periodic Boundary Conditions

We have compared the results of our main simulations,
which are periodic in x, to a second set that employs outflow
boundary conditions, similar to what is described in Sironi
et al. (2016). In Figure 21, we show the time evolution of the
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electron heating fractions Mre 1ot, Mre od, and Mre i in a low-3;
simulation (Figures 21(a)-(c)) and a high-3; case
(Figures 21(d)—(f)), for both outflow (blue) and periodic (red)
boundary conditions. For the periodic simulations the domain
size is L, = 4318c/wy, whereas for the outflow runs
L ~ 2600c/wp.. Up to ~1 Alfvénic crossing time, which
corresponds to  ~~ 1.4 x 10% w;,el for the periodic simulations

and f~ 85 x 10 w;el for the outflow runs, we find good
agreement between the periodic and outflow simulations. At
later times, the pileup of particles and magnetic flux in the
primary magnetic island sitting at the boundary leads to the
eventual suppression of reconnection in periodic simulations,
whereas the outflow runs can be evolved for multiple Alfvénic
crossing times.

In Figure 22, we compare the dependence of the electron
total heating fraction My, on G; and T, /T; for periodic and
outflow simulations with m;/m, =25 and o,, = 0.1. The
periodic simulations are indicated by blue, green, and red
circles, corresponding to upstream temperature ratios of
T./T, = 0.1, 0.3, and 1, respectively. The results of outflow
simulations are shown by dark yellow (7. /T = 0.1), magenta
(1./T, = 0.3), and cyan (I;/T, = 1) triangles. The points
corresponding to periodic runs are connected by solid lines,
whereas the outflow cases are linked by dashed lines. With
regard to the §; and T, /T, dependence of the electron total
heating fraction, Mr. ., the outflow and periodic cases show
good agreement. The agreement for adiabatic and irreversible
heating fractions is also good.



THE ASTROPHYSICAL JOURNAL, 850:29 (26pp), 2017 November 20

Rowan, Sironi, & Narayan

R o007, T/Teo1 § o EO) T pr00078 T/e01 ] o F@  Be0.0078, T/T01 3
0.08 - ' : E 0.08 | : : 0.08 - ' : 3
5 0.06 4 g006F 1 =006F 3
= 0.04 3—@&4 = 0.04F 1 oo W
0.02F — outflow 7 0.02F E 0.02F E
b — periodic ] F
000 : ........ [FET AR T [FENEEEEET IFEREREEE |_ 000 Covaieaniy Lisassiais | FEEERNET | TR RERET 000 _u ........ [FETEEREE T IR EERNN T I ERREN |_
S e 1 M B2, T/T~1
0.08 : E 0.08 | - ! '
g006f— 7 3006} 3 .
< 0.04f 1 £ o04f et ]
0.02f 3 0.02f 3 =
0'00:_|||||||||||||||||||||||||||||||||||||||_: 0'00:_|||||||||||||||||||||||||||||||||||||||_- _-
5000 6000 7000 8000 9000 5000 6000 7000 8000 9000 5000 6000 7000 8000 8000

mpet

O, t

o)pet

Figure 21. Comparison between outflow (blue) and periodic (red) simulations with ¢, = 0.1 and m;/m, = 25. We show the time evolution of (a) electron total
heating fraction, Mre o1, for 5; = 0.0078, T, /T; = 0.1; (b) electron adiabatic heating fraction, Mre a4, for 8; = 0.0078, T, /T; = 0.1; (c) electron irreversible heating
fraction, Mre iy, for i = 0.0078, T, /T; = 0.1; (d) electron total heating fraction, Mre o1, for 8; = 2, I, /T, = 1; (e) electron adiabatic heating fraction, Mre 44, for
6i=2T./ T = 1; (f) electron irreversible heating fraction, My, for 8; = 2, T./T; = 1. The heating fractions are shown in the interval t =5 X 10% w

-9 x 103 u)pe,

which corresponds to ¢ 2= 0.36 £,—0.64 ta for the periodic simulations and ¢ 2 0.6 51 f4 for the outflow ones. The curves have been shifted in time to

account for slightly different onsets of reconnection in periodic vs. outflow cases, due to different initialization of the current sheet.
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Figure 22. Comparison of outflow and periodic simulations (with ¢;, = 0.1 and
mi/me = 25), in terms of the dependence of Mre or on F; and T, /T;. Circles
connected by solid lines show the results of periodic simulations, and inverted
triangles connected by dashed lines indicate outflow simulations. For periodic
runs, blue, green, and red correspond to runs with upstream temperature ratios
1./T; = 0.1, 0.3, and 1; for outflow, dark yellow, magenta, and cyan denote
T./T; = 0.1, 0.3, and 1.

Appendix C
Convergence with Respect to Spatial Resolution

To properly capture the electron physics, adequate spatial
resolution of the electron skin depth ¢/ Wpe, OF, equivalently,
temporal resolution of the inverse electron plasma frequency

pel, is necessary. In most of our simulations, we use ¢/wy, = 4
cells; since we fix ¢ = 0.45 cells/time step, the temporal
resolution in our simulations is Af = 0.1 w;,el. In this appendix,
we show that even at finer spatial (also temporal) resolution,
Le., ¢fwpe = 8 cells =Ar ~ 0.05 wpe , the heating fractions are
essentially unchanged relative to those obtained in simulations
with ¢ /wp = 4 cells.

In Figure 23, we show the heating fractions for electrons
(panels (a)-(c)) and protons (panels (d)—(f)). For the cases
B;=00078, I./T,=1and 3, = 2, T, /T. = 1, we compare a

22

simulation with ¢/w,. = 4 cells (denoted by green circles) to
one with ¢/w,. = 8 cells (indicated by blue triangles). In both
sets of simulations, we employ m; /m. = 1836 and magnetiza-
tion ¢y, = 0.1. To ensure that the simulations with ¢/w,. = §
cells contain the same number of electron skin depths as those
with ¢ /wpe = 4 cells, it is necessary to double the size of the
simulation domain in x (in units of cells). For the simulations
with ¢/wpe =4 cells, we use L.~ 8000 cells, and for
C/wpe = 8 cells, we use L, ~ 1.6 x 10* cells; in both cases,
the physical extent of the domain in x is L, ~ 4318 ¢/wy.. For
both choices of the spatial resolution, the electron heating
fractions (total, adiabatic, and irreversible) show good agree-
ment. The proton heating fractions show good agreement, too.

Appendix D
Control of Numerical Heating

In simulations with high 3; and low temperature ratios,
numerical effects can lead to an artificial increase in the
upstream electron temperature, at the expense of protons. The
rate of numerical heating is proportional to the temperature
difference between the two species; hence, the high-3;
simulations with 7. /7, = 0.1 exhibit the strongest degree of
numerical heating (Melzani et al. 2013). As the temperature
difference between electrons and protons in the upstream and
downstream regions is not necessarily the same, the rate of
numerical heating in the two regions may be different. If not
adequately kept under control, this can affect our measured
heating efficiencies.

In Figure 24, we compare two simulations with
m;/m. =25, 0,=0.1, 6; =2, and T./T, = 0.1, which is
the case where numerical heating is the most serious. One
has Ny = 16 (dashed lines), and the other Ny, = 64
(solid lines). In both cases, the size of the domain is
L, = 4318 ¢/wp. In panel (a), we show the time evolution of
the dimensionless electron temperature in the upstream
(magenta) and downstream (green) for Ny, = 16 (dashed)
and N, = 64 (solid). The vertical black dotted line indicates



THE ASTROPHYSICAL JOURNAL, 850:29 (26pp), 2017 November 20

Rowan, Sironi, & Narayan

0.10 Fror B LA | 0.10 FromT ™ Ty 0.10 FrT bk B | ik

008f@ 1 oosf® 1 oosf® :

5 0.06F g 1 go006f 1 5008 .

= 0.04F 1 = o004f 1 = o004f ]

0.02F & A clo,=8 0.02F = 0.02F & R

000 :_.....I MR | NIRRT | -.’ ‘. ....j 000 :_..:I | | M ....j 000 :_. | | | j

0.20 0.20 ™ T n e 0.20 ™ T )

F (d) ] F (e) ] () ]

015 E 0.15¢ E 0.15¢ E

£ 0.105 % I o.1o§ | £ o.1o§ 3 §

0.05¢ E 0.05F e E 0.05F PY 3

0'00:_.....I MR | METEEE T | L .....j 000:—..:I MR T | MR | L .....j 0'00:_.....I NIRRT | NIRRT | L ......_
102 10" 10° 10’ 102 10" 10° 10' 0% 10" 10° 10'

B, B, B
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Mri a4; (f) proton irreversible, Mri ir;. We present a low-3; case with 3; = 0.0078, I, /T; = 1, and a high-g; case with 8; = 2, T. /T, = 1; in both cases, we employ the

realistic mass ratio m; /m. = 1836 and o, = 0.1.
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Figure 24. Comparison of two simulations with Nypc = 16 (dashed lines) and
Nppe = 64 (solid lines), having the same physical parameters:
8;i=2,T./)JT. =01, 6, = 0.1, and m;/m, =25. We present the time
evolution of (a) dimensionless electron temperature, 6,, in the upstream
(magenta) and downstream (green); and (b) total electron heating fraction,
Mre 1or- The upstream and downstream regions show an increase in electron
temperature as time evolves, caused by numerical heating. The impact of
numerical heating is significantly reduced by employing N, = 64. The
measured value of Mr. ;o is, however, largely unaffected by numerical heating

(panel (b)).

the time at which primary reconnection wavefronts recede past
the region selected for our measurements (see Section 3). The
dimensionless electron temperature in both the upstream
and downstream increases with time; however, the amount
of numerical heating is significantly less with Ny, = 64 than
with N,pc = 16. For example, the former shows a shift in
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downstream temperature (green) from = 4 x 103 w;el to

1.5 x 10*w,! of only Af, ~ 0.02, but for Ny = 16 the
temperature shift is about six times larger. The magenta lines
show the analogous comparison for upstream temperatures. For

both choices of N,,., the initial value of dimensionless electron

ppes
temperature in the upstream is the same, but by
=15 x 10*w,/, they differ by A6, ~ 0.15.

In panel Figure 24(b), we show the time evolution of the
total electron heating fraction Mr. 1o for Ny, = 64 (solid blue)
and 16 (dashed blue). Although numerical heating can
significantly shift the measured values of dimensionless
temperature in the downstream and upstream (panel (a)), we
find that the heating fractions are much less sensitive to
the value of Ny, with Ny = 16 already giving good results.
The heating fractions we measure are proportional to the
difference between the downstream and upstream temperatures
(or internal energy per particle), and it appears that the
numerical heating in the downstream and upstream regions
nearly cancels out in the difference. Although we use
Nppe = 64 in simulations with 3; = 2, the agreement with the
Nppe = 16 case demonstrates that the impact of numerical
heating is negligible for our measured heating fractions.

We have tested the effect of numerical heating in a small box
(Lx = 1080 ¢fwpe) with up to Ny = 256; however, the
difference (with regard to heating fractions) with respect to
simulations with N,,c = 64, our standard choice for all 3; = 2
simulations, is again negligible.

Appendix E
Anisotropy in the Downstream

We characterize the anisotropy in our simulations with ratios
of the diagonal components of the stress—energy tensor,

Iy = Txx/]zot (35)
ry = ];/y/]zot (36)
1, = Tz /T, (37

as seen in the fluid rest frame; here, Ty = (T + T,y + 1) /3.
As we show below, we typically measure anisotropies on the
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Figure 25. Time evolution of the anisotropy ratios in the reconnection downstream for a range of ;(increasing from top to bottom, as indicated in the legends) and
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reaches a quasi-steady state.

order of 5%-10% in the downstream, i.e., the reconnected
plasma is nearly isotropic.

In Figure 25, we show for ¢,, = 0.1 and m;/m, = 25 the
time evolution of the anisotropy ratios r, (red), r, (green), and
7, (blue), for three temperature ratios 7. /7, = 0.1, 0.3, and 1
and five values of g; = 0.0078, 0.031, 0.13, 0.5, and 2 (5; and
1./T. of the respective simulation are indicated at the top
of each panel). From top to bottom, {; increases; from left to
right, 7./T; increases. The temporal evolution starts from
wpet = 4 X 103, when the downstream region reaches a quasi-
steady state. We find that the downstream pressures along the

24

two directions transverse to the outflow (¥ and Z) are nearly
identical, and slightly smaller than the pressure along the
outflow direction (¥, in our setup), which agrees with the
findings of Shay et al. (2014).

Appendix F
Convergence of the Layer Width When Varying the Initial
Sheet Thickness

In Figure 9(e), we showed the T, /T, and 3; dependence of
the reconnection layer width ... As mentioned in Section 2,



THE ASTROPHYSICAL JOURNAL, 850:29 (26pp), 2017 November 20

Figure 26. Time evolution of the reconnection layer width 6. for a simulation with box size Ly = 2159¢/wye, 6; = 2, I, /T
value of 6 is measured at 215 ¢/wy, from the center. It does not depend on the choice of the initial current sheet thickness, A
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Figure 27. Same as Figure 11, but for the internal energies, 4, u;, instead of temperatures, Tz, 7. Plasma 3; and T, /T; dependence of various heating efficiencies: (a)
electron total, M. 1o: (b) electron adiabatic, M. aq; (¢) electron irreversible, M, irr; (d) proton total, My io1; () proton adiabatic, M, .q; () proton irreversible, My ir:
(g) electron and proton total, Mye 1ot + My wor; () electron and proton adiabatic, M aq + Mii ad; (1) electron and proton irreversible, Mye irr + My irr- The simulations
shown here use a mass ratio m; /m, = 25 and magnetization oy, = 0.1. As in earlier plots, blue, green, and red points correspond to simulations with upstream 7, /T;

ratios of 0.1, 0.3, and 1, respectively.

we set the initial current sheet thickness to be A = 40 ¢ /wpe. A
natural question is whether the measured value of o, is affected by
the sheet thickness at initialization, or by the self-consistent
reconnection physics alone. To demonstrate that the measured
values of 6. do not depend on the initial current sheet thickness
A, we show in Figure 26 the time evolution of §,., for A = 30

25

(red), 40 (green), and 60 c/w,. (blue). Here, the box size is
L, =2159c/wpe, i =2, T./T. =1, 0, = 0.1, and m; /m,
25. The reconnection width is measured at 215 ¢ /wp,. downstream
of the central X-point. The A = 40, 60 ¢ /wpe curves have been
shifted in time to account for the delayed onset of reconnection
caused by the thicker initial current sheet. The time evolution of
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rec 1n Figure 26 is shown starting at t = 5000 w;,el, beyond which
rec Teaches a quasi-steady value. The three simulations converge to
a similar value ... ~ 25 ¢ /wpe, independent of the current sheet
thickness at initialization.

The values in this plot should not be directly compared to
those in panel (e) of Figure 9. Here, we extract O, at a distance
of =215 ¢ /w,. downstream of the central X-point (in order to
avoid the influence of the primary island sitting at the
boundary), whereas in the larger box used in Figure 9, dc
was measured at 430 ¢/w,. from the center. Still, the results
from the two experiments yield the same opening angle for the
reconnection outflow.

Appendix G
Heating Efficiencies in Terms of
Internal Energy per Particle

In the main body of the text, we phrased most of the heating
fractions in terms of differences in temperature between
downstream and upstream, but they can also be expressed in
terms of differences in internal energy per particle. In Figure 27,
which is analogous to Figure 11, we show the T, /T, and 5
dependence of electron heating fractions M tot» Mye ad> My irr
(Panels (a)’ (b), (C)); ion heating fractions Mui,totv Mui,adv Mui,irr
(panels (d), (e), (f)); and total particle heating fractions
Mue,tot + Mui,totv Mue,ad + Mui,adv Mue,irr + Mui,irr (Panels (g),
(h), (1)). As before, blue, green, and red lines denote temperature
ratios T, /T, = 0.1, 0.3, and 1, respectively, and the simulations
have m;/m. = 25 and o, = 0.1. Since the protons here are
nonrelativistic in both the upstream and downstream, the points
in panel (d) of Figures 27 and 11 typically differ by a factor of
% — 1 = 2/3 (excluding the 3; = 2 cases, for which the protons
are mildly relativistic, with 8; ,, ~ 0.4), where 4, = 5/3 is the
adiabatic index for a nonrelativistic gas. The relationship
between the two options for measuring the heating fractions of
electrons, Mre 1ot and M, 1o« in panel (a) of Figures 27 and 11, is
not as simple because the electrons can be non-, trans-, or
ultrarelativistic. For example, at G, =2, T./T, =1, the
upstream and downstream dimensionless electron temperatures
are 0, up =2 O, down ~ 10, and the adiabatic index is 4, ~ 4/3 in
both the upstream and downstream. The ratio of Mre o1 t0 Me 1ot
is then Mre 1o /Mye 1ot = 1/3 = 4, — 1 for 4, = 4/3. However,
at low g;, electrons are less relativistic, and the ratio
Mre tot/Mye 1or 18 typically larger because the adiabatic index
is larger. Still, we remark that all of the conclusions presented
in the paper hold when the heating efficiencies are measured
using the internal energy per particle, rather than the
temperature.
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