

Natural Organic Matter Concentration Impacts the Interaction of Functionalized Diamond Nanoparticles with Model and Actual Bacterial Membranes

Arielle C. Mensch, Rodrigo Tapia Hernandez, Joshua E. Kuether, Marco D. Torelli, Z. Vivian Feng, Robert J Hamers, and Joel A. Pedersen

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.7b02823 • Publication Date (Web): 17 Aug 2017

Downloaded from <http://pubs.acs.org> on August 28, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Publications

Environmental Science & Technology is published by the American Chemical Society.

1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 Natural Organic Matter Concentration Impacts the Interaction of Functionalized Diamond

2 Nanoparticles with Model and Actual Bacterial Membranes

3 Arielle C. Mensch¹, Rodrigo Tapia Hernandez², Joshua E. Kuether², Marco D. Torelli^{1,a}, Z.
4 Vivian Feng², Robert J. Hamers¹, and Joel A. Pedersen^{*,1,3,4}

5 ¹Department of Chemistry, University of Wisconsin, Madison, WI 53706, United States

6 ²Chemistry Department, Augsburg College, Minneapolis, MN 55454, United States

⁷ ³Department of Soil Science, University of Wisconsin, Madison, WI 53706, United States

⁴ Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706, United States

10 **ABSTRACT:** Changes to nanoparticle surface charge, colloidal stability, and hydrodynamic
11 properties induced by interaction with natural organic matter (NOM) warrant consideration in
12 assessing the potential for these materials to adversely impact organisms in the environment.
13 Here we show that acquisition of a coating, or “corona”, of NOM alters the hydrodynamic and
14 electrokinetic properties of diamond nanoparticles (DNPs) functionalized with the polycation
15 poly(allylamine HCl) in a manner that depends on the NOM-to-DNP concentration ratio. The
16 NOM-induced changes to DNP properties alter subsequent interactions with model biological
17 membranes and the Gram-negative bacterium *Shewanella oneidensis* MR-1. Suwannee River
18 NOM induces changes to DNP hydrodynamic diameter and apparent ζ -potential in a
19 concentration-dependent manner. At low NOM-to-DNP ratios, DNPs aggregate to a limited
20 extent but retain a positive ζ -potential apparently due to non-uniform adsorption of NOM
21 molecules leading to attractive electrostatic interactions between oppositely charged regions on
22 adjacent DNP surfaces. Diamond nanoparticles at low NOM-to-DNP ratios attach to model
23 membranes to a larger extent than in the absence of NOM (including those incorporating

24 lipopolysaccharide, a major bacterial outer membrane component) and induce a comparable
25 degree of membrane damage and toxicity to *S. oneidensis*. At higher NOM-to-DNP ratios, DNP
26 charge is reversed, and DNP aggregates remain stable in suspension. This charge reversal
27 eliminates DNP attachment to model membranes containing the highest LPS contents studied
28 due to electrostatic repulsion and abolishes membrane damage to *S. oneidensis*. Our results
29 demonstrate that the effects of NOM coronas on nanoparticle properties and interactions with
30 biological surfaces can depend on the relative amounts of NOM and nanoparticles.

31 INTRODUCTION

32 Rapid growth in the production and use of engineered nanomaterials has been
33 accompanied by an increase in the potential for these materials to be released into the
34 environment and for organisms to be exposed to them.¹⁻² The large surface-to-volume ratio of
35 nanomaterials as well as their high surface energy promotes the acquisition of a coating or
36 “corona” of natural organic matter (NOM)³⁻⁵ upon entry into wastewater treatment plants, natural
37 waters, aquatic sediments, and soils. Natural organic matter is comprised of a complex mixture
38 of relatively low molecular mass organic compounds resulting primarily from microbial
39 degradation of vegetation, algae, and bacterial biomass.⁶ Natural organic matter is found in
40 natural waters at organic carbon (oc) concentrations ranging from ~0.5 mg_{oc}·L⁻¹ in seawater and
41 groundwater to over 30 mg_{oc}·L⁻¹ in wetlands.⁷ Over the pH range typical for environmental
42 systems (4 to 9), NOM bears a net negative charge due to the deprotonation of carboxyl and
43 phenolic groups.⁸⁻⁹ Acquisition of a NOM “corona” alters the physical and chemical properties
44 of nanomaterials and impacts their transport and fate in the environment.¹⁰⁻¹³ Interaction with
45 NOM can stabilize nanoparticle suspensions electrostatically or through a combination of
46 electrostatic and steric interactions.¹³ Natural organic matter can induce aggregation of

47 nanoparticles in the presence of elevated concentrations of divalent metal cations and when
48 neutralizing nanoparticle charge.¹⁴⁻¹⁶ Such nanoparticle aggregation in the presence of NOM
49 depends on the nanoparticle coating,^{14,17} NOM properties (e.g., polarity fraction,¹⁸⁻²¹ molecular
50 mass²²⁻²⁵), and NOM concentration.^{16,26-27} Natural organic matter-induced changes to
51 nanoparticle surface charge, colloidal stability, and hydrodynamic properties warrant
52 consideration in assessing the potential for these materials to adversely impact organisms in the
53 environment.

54 The initial point of contact between nanoparticles and cells is often a lipid membrane, yet
55 the impact of NOM on nanoparticle interactions with cell membranes has received little study.
56 One previous study showed that humic acid decreased fullerene accumulation in zwitterionic and
57 negatively charged solid-supported lipid membranes and reduced uptake by Caco-2 cells.²⁸ The
58 reduction in cellular uptake was attributed to electrostatic repulsion between the negatively
59 charged humic acid-coated fullerene surface and the negatively charged Caco-2 cytoplasmic
60 membrane.²⁸ Similarly, NOM prevented adhesion of nanoscale zero-valent iron to the outer
61 membrane of *Escherichia coli* through electrostatic and steric repulsion, decreasing toxicity.²⁹
62 These studies demonstrate that NOM coatings can modulate the interaction of nanoparticles with
63 cellular membranes.

64 Solid-supported lipid bilayers are often used as model systems to understand the
65 complex interactions that occur between nanomaterials and cellular membranes.³⁰⁻³⁶ The
66 majority of these studies have employed bilayers composed of a single phospholipid or binary
67 mixtures of phospholipids. Such bilayers do not include cell surface components expected to be
68 important for the interaction of nanoparticles with bacteria. For example, the outer membrane of
69 Gram-negative bacteria is complex and its outer leaflet contains up to 75% lipopolysaccharides

70 (LPS), a class of glycolipids.³⁷ The construction of model membranes incorporating LPS has
71 been recently reported.^{33,38} Nanoparticle interactions with model membranes incorporating LPS
72 are expected to correspond more closely to results obtained using bacteria than are those with
73 bilayers lacking these important cell-surface molecules.³³ Identification of the impacts of NOM
74 on nanoparticle hydrodynamic and electrokinetic properties as well as on their interactions with
75 model and actual bacterial membranes is needed to better elucidate the role NOM plays in
76 interactions between nanomaterials and bacteria.

77 The objectives of this study were to investigate the impact of NOM-to-nanoparticle
78 concentration ratio on the interaction of cationic nanoparticles with model cell membranes,
79 including those incorporating LPS, and with the Gram-negative bacterium *Shewanella*
80 *oneidensis* MR-1. To achieve these objectives, we used diamond nanoparticles (DNPs)
81 functionalized with the polycation poly(allylamine HCl) (PAH) and Suwannee River NOM as
82 model systems. Nanodiamond is used as a polishing material,³⁹ an additive in rubbers⁴⁰ and
83 lubricants,³⁹ and in drug delivery and bioimaging.⁴¹ Use of DNPs in the present study was
84 motivated by their chemical stability and the ease with which they can be functionalized,
85 allowing us to probe interactions with NOM and model and actual bacterial surfaces without
86 complications arising from dissolution of the nanoparticle core material.⁴² We chose the PAH
87 polymer to functionalize the DNPs to investigate the impact of NOM on a capping agent
88 previously shown to be toxic to bacteria and the microcrustacean *Daphnia magna* when mounted
89 on nanogold.⁴³⁻⁴⁴ We used quartz crystal microbalance with dissipation monitoring (QCM-D) to
90 investigate nanoparticle interaction with model membranes lacking or incorporating LPS. We
91 further examined the impact of NOM on membrane damage and toxicity to *S. oneidensis* induced

92 by PAH-DNP. The results presented here provide new insights into how NOM affects the
93 interaction of nanomaterials with bacterial membranes.

94 **MATERIALS AND METHODS**

95 **Functionalization of diamond nanoparticles.** Diamond nanoparticles
96 (Monocrystalline Synthetic Diamond, MSY 0-0.03 μm) were obtained from Microdiamant
97 (Legwil, Switzerland). As-received DNP s were oxidized by reflux in a 3:1 (v/v) mixture of
98 concentrated H_2SO_4 and HNO_3 for 3 d (Caution: extremely caustic). After oxidation the
99 nanodiamond was diluted (10 \times) in ultrapure water (18.2 $\text{M}\Omega\cdot\text{cm}$ resistivity, MilliQ-Advantage
100 A10, Millipore) and centrifuged (5 min, 4696g) to sediment the particles. After an additional
101 wash (centrifugation and resuspension in ultrapure water), the pellet was resuspended in 3:1 (v/v)
102 $\text{H}_2\text{SO}_4:\text{HNO}_3$ and refluxed for another 3 d. The resulting nanoparticle suspension was diluted,
103 centrifuged (5 min, 4696g), and resuspended repeatedly until the pH was neutral and the particles
104 did not sediment. The dispersed particles were electrostatically wrapped with PAH polymer (15
105 kDa, Sigma Aldrich) by mixing particles (1 $\text{mg}\cdot\text{mL}^{-1}$ as determined by gravimetric analysis) with
106 polymer solution (1 $\text{mg}\cdot\text{mL}^{-1}$ in 0.001 M NaCl) at a 1:1 ratio overnight. Particles were dialyzed
107 (Spectrum Labs, nominal molecular weight cut-off 50 kDa) against 4 L of ultrapure water three
108 times (4 h the first time and 24 hr each for the two subsequent times) to remove excess polymer.

109 **Natural organic matter.** Suwannee River NOM was obtained from the International
110 Humic Substances Society (1R101N, St. Paul, MN). Stock solutions of NOM (200 $\text{mg}_{\text{oc}}\cdot\text{L}^{-1}$)
111 were prepared in ultrapure water (18.2 $\text{M}\Omega\cdot\text{cm}$ resistivity, Barnstead GenPure Pro) adjusted to
112 pH 10 with 6 M NaOH. The solution was allowed to stir overnight in the dark, filtered through a
113 0.22 μm Teflon® filter, and stored at 4 °C. The total organic content in the stock solution was
114 determined after filtration using the UV/persulfate oxidation method with membrane

115 conductometric detection of CO₂ (GE Instruments/Sievers Model 900 TOC analyzer, 186 ± 13
116 mg_{OC}·L⁻¹). Prior to use in experiments, NOM solutions were buffered to pH 7.4 with 0.002 M 4-
117 (2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Fisher Scientific) and the ionic
118 strength was adjusted to 0.025 M with NaCl.

119 **Hydrodynamic and electrokinetic characterization.** We determined diffusivities
120 and electrophoretic mobilities of PAH-DNPs over a range of NOM-to-DNP concentration ratios,
121 by dynamic light scattering and laser Doppler microelectrophoresis (75 V; Malvern ZetaSizer
122 Nano ZS, Worcestershire, UK). Unless otherwise noted, experiments were conducted at a 1 nM
123 number concentration of PAH-DNP in 0.025 M NaCl buffered to pH 7.4 with 0.002 M HEPES
124 (ionic strength and pH values within the ranges encountered in natural freshwater systems).⁴⁵
125 After addition of PAH-DNP to a buffered NOM solution, the mixture was vortexed and analyzed
126 immediately. (Experiments were conducted to evaluate the effect of contact time on DLS and ζ
127 potential measurements, and we saw no significant differences between immediate analysis and
128 analysis after 1 h of contact time, here we report findings for the case where the particles were
129 mixed and immediately analyzed). Diffusivity and electrophoretic mobility measurements
130 represent averages of five measurements. We calculated intensity-averaged hydrodynamic
131 diameters from the particle diffusivities using the Stokes–Einstein equation. Hydrodynamic
132 diameter (d_h) number distributions were estimated from the intensity measurements using Mie
133 theory.⁴⁶ We estimated DNP ζ -potentials from the electrophoretic mobility using the
134 Smoluchowski approximation.^{47–48} The Smoluchowski approximation assumes the particle is a
135 hard sphere; however, the polyelectrolyte coatings on the nanodiamond used here renders a
136 relatively soft, ion-penetrable shell on a hard particle core, making the ζ -potential derived from
137 the Smoluchowski approximation an apparent value.⁴⁸

138 **Quantification of free NOM in solution.** Ultraviolet-visible (UV-Vis) absorption
139 spectroscopy was used to determine the amount of chromophoric NOM bound to the surface of
140 the PAH-DNPs (Shimadzu UV-2401PC). Samples varying in NOM-to-DNP ratio were prepared
141 as described for DLS measurements and then centrifuged (90 min, 25,000g, 25 °C) to produce a
142 pellet of either PAH-DNP or NOM/PAH-DNP. Supernatant was removed, and the chromophoric
143 NOM remaining in the supernatant was quantified by comparing the absorbance at 320 nm to a
144 calibration curve made from a stock NOM solution (Figure S1).

145 **Preparation and characterization of phospholipid vesicles.** We prepared small
146 unilamellar vesicles (SUVs) composed of solely 1-palmitoyl-2-oleoyl-*sn*-glycero-3-
147 phosphocholine (POPC, 16:0-18:1 PC; Avanti Polar Lipids) or with 0.46 mol% rough LPS
148 (rLPS) or smooth LPS (sLPS) or 6.4 mol% rLPS as recently described.³³ Rough and smooth LPS
149 were from *Salmonella enterica* serotype minnesota Re 595 (the so-called deep rough mutant) and
150 serotype minnesota, respectively (Sigma Aldrich). Further details on preparation and
151 characterization of these vesicles, as well as the generic structure of LPS are presented in the
152 Supporting Information (Figures S2 and S3).

153 **Interaction of diamond nanoparticles with supported lipid bilayers.** We used
154 QCM-D to monitor the formation of supported lipid bilayers and their interactions with
155 nanoparticles in real time and without the use of labels. The QCM-D technique measures the
156 changes in resonance frequency (Δf) and energy dissipation (ΔD) for an AT-cut quartz crystal as
157 an analyte interacts with the sensor surface. Changes in frequency are related to changes in the
158 mass coupled to the sensor surface, which includes the mass of both the analyte and of any
159 dynamically coupled solvent. The dissipation factor, D , represents the fractional energy loss per
160 radian at the oscillation frequency and provides information on the viscoelastic properties of

161 laterally homogeneous adlayers or the stiffness of particle–surface contacts for films of discrete
162 nanosized objects.⁴⁹ Rigidly adsorbed films have a fractional energy loss per radian of oscillation
163 that is small relative to the change in frequency of a given harmonic (n), defined $-\Delta D_n/(\Delta f_n/n)$
164 $\ll 2/(f_n)$ (equal to 4×10^{-7} Hz⁻¹ for the 4.96 MHz crystals used here),⁴⁹ where n is the harmonic
165 number. For such films, the adsorbed surface mass density ($\Delta\Gamma_{\text{QCM-D}}$) is linearly related to the
166 change in frequency, as described by the Sauerbrey equation:⁵⁰

$$167 \Delta\Gamma_{\text{QCM-D}} = -\frac{C}{n} \Delta f_n \quad (2)$$

168 where C is the mass sensitivity constant (equal to 18.0 ng·Hz⁻¹·cm⁻² for a 4.96 MHz crystal). In
169 the PAH-DNP experiments presented, $-\Delta D_n/(\Delta f_n/n) < 4 \times 10^{-7}$ Hz⁻¹ (Table S7), and the
170 Sauerbrey equation was used to estimate acoustic surface mass density. The fundamental and
171 odd harmonics ($n = 3-11$) were measured simultaneously. Data from odd harmonics 3 through 11
172 were equivalent;⁵¹ we present data from the 5th harmonic (~25 MHz) for all studies. Initial rates
173 of PAH-DNP deposition (r_d) were calculated as the first derivative of the change in acoustic
174 surface mass density with respect to time over the first 30 seconds of attachment:⁵²⁻⁵⁴

$$175 r_d = \frac{d\Gamma_{\text{QCM-D}}}{dt} \quad (3)$$

176 Prior to QCM-D experiments, SiO₂-coated sensor crystals (QSX303, Biolin Scientific,
177 Stockholm, Sweden) were cleaned by sonicating in a 2% sodium dodecyl sulfate solution (10
178 min), rinsing alternatively with ultrapure water and ethanol three times, drying with N₂ gas, and
179 exposed to ultraviolet light (185 nm and 254 nm) from a low-pressure mercury lamp (20 min) to
180 remove any trace organic compounds (Bioforce Nanosciences UV/Ozone Procleaner).

181 We formed supported lipid bilayers on SiO₂-coated quartz crystal microbalance sensors
182 from SUVs composed of POPC with or without LPS via the vesicle fusion method^{33,38,55} using a

183 Q-Sense E4 instrument (Biolin Scientific). The sensors were first equilibrated in 0.150 M NaCl
184 buffered to pH 7.4 with 0.002 M HEPES (pH and buffer concentration used throughout unless
185 otherwise noted). Vesicles ($0.125 \text{ mg}\cdot\text{mL}^{-1}$) in a solution of the same composition were flowed
186 ($0.100 \text{ mL}\cdot\text{min}^{-1}$) over the surface until the critical surface vesicle concentration (evidenced as
187 the time at which the maximum frequency change is observed)⁵⁶ was attained and the vesicles
188 ruptured and fused to form a bilayer. After frequency and dissipation values stabilized, vesicle-
189 free solution was flowed over the sensor to remove any loosely adsorbed vesicles. The ionic
190 strength was lowered by exchanging the 0.150 M NaCl solution with 0.025 M NaCl solution
191 until a stable baseline was reached. Figure S4 shows a representative frequency trace.

192 Suspensions of PAH-DNP with or without NOM (5 or 30 $\text{mg}_{\text{oc}}\cdot\text{L}^{-1}$) or NOM alone (5 or
193 30 $\text{mg}_{\text{oc}}\cdot\text{L}^{-1}$) in 0.025 M NaCl were flowed over the supported lipid bilayers, and attachment was
194 monitored for 20 min. (For samples including NOM and PAH-DNPs, PAH-DNPs were exposed
195 to NOM for up to 20 min before introduction to the QCM-D as no further aggregation of the
196 particles was observed by DLS in this time frame.) After 20 min, bilayers were rinsed with
197 nanoparticle-free solution to examine the reversibility of attachment. In a subset of experiments,
198 the bilayer was equilibrated with 4.7 $\text{mg}\cdot\text{L}^{-1}$ PAH polymer prior to the introduction of PAH-DNP
199 (with or without NOM) to examine the influence of adsorbed polymer on nanoparticle
200 attachment to the bilayers (Table S9). Attachment experiments were conducted in at least
201 triplicate at $25.0 \pm 0.5 \text{ }^{\circ}\text{C}$.

202 ***Shewanella oneidensis* viability and membrane damage.** *Shewanella*
203 *oneidensis* was grown from colonies on an agar plate in *Difco*TM Luria-Bertani (LB) Broth
204 overnight in a shaker incubator (30 °C, 275 rpm). Cells were sedimented (2000g, 10 min) and
205 resuspended in Dulbecco's phosphate-buffered saline (D-PBS), and sedimented and resuspended

206 again in fresh 0.025 M NaCl buffered to pH 7.4 with 0.002 M HEPES before exposure to
207 nanoparticles.

208 We evaluated the toxicity of PAH-DNP to *S. oneidensis* using a growth-based viability
209 assay to quantify actively metabolizing cells.⁵⁷ The time for a cell culture to reach log phase
210 depends on initial cell density: the longer the delay (lag phase), the lower the initial viable cell
211 density (measured in colony forming units, CFU). A calibration curve of *S. oneidensis* was
212 constructed using serially diluted cell culture where $10^7 \text{ CFU} \cdot \text{mL}^{-1}$ was defined as 100% viable.
213 A *S. oneidensis* culture at $10^7 \text{ CFU} \cdot \text{mL}^{-1}$ was incubated (10 min) with NOM alone or with
214 NOM+DNP at ratios ranging from 0 to $6.67 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$, then diluted in fresh LB medium in
215 a 96-well plate. Optical density at 600 nm was monitored at 20-min intervals for 20 h
216 (SpectraMax Plate Reader) at 30 °C with agitation between readings to track cell growth. The
217 time to reach log phase for each exposure condition was compared to the calibration curve to
218 determine any change in viability.

219 The LIVE/DEAD BacLight™ kit (ThermoFisher Scientific) was used to assess bacterial
220 membrane damage by PAH-DNP in the presence and absence of NOM. We exposed *S.*
221 *oneidensis* to 1 nM PAH-DNP at NOM-to-DNP ratios ranging from 0 to $6.67 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ for
222 10 min, and the cells were distributed in a 96-well plate in triplicate. The LIVE/DEAD stain
223 mixture was used according to manufacturer recommendations. Analyses were conducted using a
224 fluorescence plate reader using an excitation wavelength of 485 nm. Fluorescence intensity was
225 measured at 528 nm and 635 nm for SYTO9 and propidium iodide (PI), respectively. SYTO9-to-
226 PI fluorescence intensity ratios were determined for each exposure and normalized to that of a
227 control bacterial sample not exposed to either PAH-DNP or NOM.

228 **Statistical analyses.** Comparisons across bilayer types and particle conditions were
229 made using a two-way ANOVA with a Tukey correction for multiple comparisons at the $\alpha =$
230 0.05 level of significance (Prism 6.0).

231 **RESULTS AND DISCUSSION**

232 **NOM alters nanoparticle hydrodynamic and electrokinetic properties.** We
233 determined the hydrodynamic diameter (d_h) and ζ -potential of the PAH-DNPs over a range of
234 NOM concentrations (0 to 30 $\text{mg}_{\text{oc}} \cdot \text{L}^{-1}$) representing NOM-to-PAH-DNP ratios of 0 to 8 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$. Interaction with NOM induced changes to PAH-DNP d_h (Figure 1a) and ζ -potential
235 (Figure 1b). In the absence of NOM at an ionic strength of 0.025 M and a pH of 7.4 (0.002 M
236 HEPES), PAH-DNPs were present in suspension primarily as single positively charged
237 nanoparticles ($d_h = 17 \pm 6 \text{ nm}$, equivalent to the nominal core size of the nanoparticles, $\sim 15 \text{ nm}$;
238 ζ -potential = $+21 \pm 3 \text{ mV}$). At a NOM-to-DNP ratio of 1.33 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$, the d_h of PAH-DNP
239 increased to $42 \pm 9 \text{ nm}$, indicating a modest degree of aggregation, but the ζ -potential remained
240 unchanged ($+22.3 \pm 0.6 \text{ mV}$). Measurement of the NOM in solution that was not bound to PAH-
241 DNPs at this NOM-to-DNP ratio was thwarted by the inability to sediment these particles from
242 suspension even at centrifugal forces up to 649,555g for 120 min. The PAH-DNPs were more
243 stable with respect to sedimentation at 1.33 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ than when no NOM was present.
244 Increasing the NOM-to-DNP ratio to 2.67 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ resulted in further particle aggregation
245 and a reversal of ζ -potential to $-13.0 \pm 0.4 \text{ mV}$. At NOM-to-DNP ratios of 4 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$
246 and higher, the d_h and ζ -potentials of the PAH-DNP remained relatively constant, near 40 nm
247 and -30 mV , respectively. Sedimentation of aggregates formed at NOM-to-DNP ratios of 2.67
248 and 8 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ from suspension by centrifugation (90 min, 25,000g) and determination of

250 the amount of NOM remaining in the supernatant (Figure S1), suggested that $2.1 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ bound to the surface of the DNP ($0.011 \text{ mg}_{\text{oc}} \cdot \text{nm}^{-2}$).

252 We attribute the decrease in PAH-DNP ζ -potential with increasing NOM-to-DNP
253 concentration ratio primarily to electrostatic interaction of deprotonated carboxyl groups of
254 NOM with the positively charged pendant primary amines on the PAH polymers. At low NOM-
255 to-DNP ratios ($\leq 1.33 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$), interaction with NOM molecules induces a small degree
256 of aggregation, but the NOM molecules are not present at high enough concentration to
257 neutralize the overall charge of the PAH-DNPs or displace the PAH polymer wrapping. At this
258 low NOM-to-DNP ratio, aggregation may be due to NOM adsorption leading to uneven charge
259 distribution and a concomitant attractive contribution to the interaction energy.⁵⁸⁻⁵⁹ Aggregation
260 induced by oppositely charged patches on nanoparticle surfaces is not satisfactorily represented
261 by classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory.⁶⁰ As the NOM-to-DNP ratio
262 increased, electrostatic interaction with NOM molecules neutralized and then reversed the
263 positive charge on the DNPs; when the magnitude of the ζ -potential was small, attractive van der
264 Waals forces overcame electrostatic repulsion between particles and destabilized the particle
265 suspensions. Alternatively, aggregation rates may have risen as the probability of favorable
266 interactions increased between oppositely charged regions on the DNP surfaces (a function of
267 surface coverage and charge density of both the PAH and the adsorbing NOM molecules)
268 leading to maximum aggregation rates at non-zero net surface charge.⁵⁸⁻⁵⁹ At yet higher NOM-
269 to-DNP ratios ($\geq 4 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$), the NOM-coated particles possessed strongly negative ζ -
270 potentials (-30 mV) and yielded stable suspensions of DNP aggregates with comparable d_h (one-
271 way ANOVA, $p = 0.2334$). The observed charge reversal indicated that NOM molecules either
272 overcoat the positively charged polymer on the nanodiamond surface, forming a “NOM corona”

273 around the particles, or displaced the electrostatically wrapped PAH polymer. Charge reversal of
274 positively charged bare zinc oxide,⁶¹⁻⁶² hematite,¹⁵ and titanium dioxide¹⁶ due to interaction with
275 NOM has been reported previously. Furthermore, increasing the concentration ratio of NOM to
276 gold nanoparticles functionalized with positively charged branched polyethylenimine or
277 aminated polyethylene glycol led to charge neutralization and ultimately charge reversal much
278 like we observed with PAH-DNPs.¹⁷ Our findings are consistent with these results and
279 demonstrate the same phenomenon for particles differing in core material and initial organic
280 coating.

281 **Nanodiamond attachment to zwitterionic phospholipid bilayers.** We next
282 investigated the impact of the NOM-induced changes to PAH-DNP properties on their
283 interaction with model membranes composed of the zwitterionic phospholipid POPC. We
284 examined the influence of NOM on initial attachment rates to and acoustic surface mass densities
285 attained on POPC bilayers of PAH-DNPs at NOM-to-DNP ratios of 0, 1.33, and 8 mg_{OC}·mg_{PAH-}
286 _{DNP}⁻¹ by QCM-D (Figure 2). Consistent with expectations, electrostatic attraction between the
287 positively charged PAH-DNP and the negative potential of the supported zwitterionic POPC
288 bilayer^{34,63} led to attachment in the absence of NOM (Figure 2). We calculated the efficiency of
289 PAH-DNP attachment to lipid bilayers to quantify the kinetics of initial attachment:⁶⁴

$$\alpha_D = \frac{\left(d\Gamma_{\text{QCM-D}}/dt \right)_{\text{lipid bilayer}}}{\left(d\Gamma_{\text{QCM-D}}/dt \right)_{\text{fav}}} \quad (5)$$

290 where $d\Gamma_{\text{QCM-D}}/dt$ is the change in adsorbed surface mass density per unit time and the subscript
291 fav on the term in the denominator refers to the change in adsorbed surface mass density under
292 favorable deposition conditions (absence of an energy barrier to deposition). In the present study,
293 we approximated favorable deposition conditions for the positively charged PAH-DNPs using

295 the strongly negatively charged SiO_2 surface.⁶³ To do this, we empirically determined initial
296 rates of attachment to SiO_2 under the same conditions used for the bilayers. We found all
297 attachment efficiencies for PAH-DNPs to be near unity (Table S2), consistent with previous
298 findings of favorable interaction between cationic nanoparticles and zwitterionic lipid
299 bilayers.^{33,65-66} We hypothesize that the amine groups on the PAH polymer on the nanodiamond
300 interacted with the phosphate group in the phosphatidylcholine headgroup of the POPC lipids.⁶⁷⁻
301⁶⁸ The surface mass density of PAH-DNPs attained after 20 min was higher on the POPC bilayer
302 than on SiO_2 by a factor of ~ 3.6 (Figure 2b, Table S8). Lateral repulsion between positively
303 charged PAH-DNP appears to limit the extent of attachment on the SiO_2 surface. Lateral
304 repulsion seems to be diminished on the POPC bilayer, likely due to phospholipid extraction,^{35,67}
305 allowing higher surface densities to be reached. Rinsing with nanoparticle-free solution produced
306 small ($9 \pm 2 \text{ ng}\cdot\text{cm}^{-2}$) decreases in acoustic mass consistent with removal of a small population of
307 loosely adhered PAH-DNPs. The attachment of the remaining PAH-DNPs was irreversible on
308 the timescale of our experiments.

309 At the low NOM-to-DNP ratio of $1.33 \text{ mg}_{\text{oc}}\cdot\text{mg}_{\text{PAH-DNP}}^{-1}$, the PAH-DNP aggregated to a
310 moderate extent ($d_h = 42 \pm 9 \text{ nm}$) and retained a positive ζ -potential ($+22.3 \pm 0.6 \text{ mV}$). The initial
311 rate of PAH-DNP attachment to POPC bilayers at this low NOM-to-DNP ratio did not differ
312 significantly from that for PAH-DNP in the absence of NOM ($p > 0.05$; Figure 2a and Table S1),
313 and attachment efficiencies were close to unity (Table S2). This result is not attributable to the
314 deposition of NOM itself to the bilayer. Control experiments showed the initial rate of NOM
315 attachment to POPC to be nearly zero at a concentration of $5 \text{ mg}_{\text{oc}}\cdot\text{L}^{-1}$ (the total NOM
316 concentration in the $1.33 \text{ mg}_{\text{oc}}\cdot\text{mg}_{\text{PAH-DNP}}^{-1}$ NOM-to-DNP suspensions; Table S1). Furthermore,
317 exposure of POPC bilayers to $5 \text{ mg}_{\text{oc}}\cdot\text{L}^{-1}$ NOM prior to introduction of PAH-DNP did not alter

318 the initial attachment rate ($-1.8 \pm 0.2 \text{ ng}\cdot\text{cm}^{-2}\cdot\text{s}^{-1}$; $p > 0.05$). We expect transport of the
319 aggregates formed in the presence of $5 \text{ mg}_{\text{oc}}\cdot\text{L}^{-1}$ NOM to the model membrane surface to be
320 slower than that of the individual PAH-DNPs. Using a Lévêque solution for convective-diffusive
321 transport modified to account for the curvilinear flow in the QCM-D flow chamber,⁶⁹ we
322 estimate that in the presence of $5 \text{ mg}_{\text{oc}}\cdot\text{L}^{-1}$ NOM the spatially averaged mass-transport limited
323 attachment rate constant is smaller by a factor of 0.56 ± 0.15 relative to the case without NOM
324 (for details of this analysis see the Supporting Information). The equivalence of the initial
325 attachment rates in the absence and presence of $5 \text{ mg}_{\text{oc}}\cdot\text{L}^{-1}$ NOM implies that the average
326 effective mass of the aggregates (mass of PAH-DNPs, NOM and internal water) attaching to the
327 model membrane during the initial attachment period is roughly twice that of the individual
328 PAH-DNPs.

329 The acoustic surface mass density ($\Gamma_{\text{QCM-D}}$) of PAH-DNP on POPC bilayers after 20 min
330 exposure under flowing conditions was substantially larger at a NOM-to-DNP ratio of $1.33 \text{ mg}_{\text{oc}}\cdot\text{mg}_{\text{PAH-DNP}}^{-1}$
331 than in the absence of NOM ($p < 0.0001$; Figure 2b, Table S8) and was
332 accompanied by larger energy dissipation than in the absence of NOM (Table S6) and more
333 pronounced dispersion in $\Delta f_n/n$ indicating that the NOM/PAH-DNP aggregates were less rigidly
334 coupled to the oscillating sensor than in the absence of NOM. Rinsing with PAH-DNP- and
335 NOM-free solution resulted in no net change in acoustic mass indicating that NOM/PAH-DNP
336 attachment to POPC bilayers was irreversible over experimental time scales. The much larger
337 $\Gamma_{\text{QCM-D}}$ was not attributable to adsorption of NOM alone; exposure of POPC bilayers to $5 \text{ mg}_{\text{oc}}\cdot\text{L}^{-1}$
338 NOM in the absence of PAH-DNP resulted in $\Gamma_{\text{QCM-D}}$ values far too small (Table S8) to account
339 for the large difference observed in PAH-DNP attachment in the presence and absence of this
340 concentration of NOM. Furthermore, $\Gamma_{\text{QCM-D}}$ for attachment to POPC bilayers was statistically

341 indistinguishable whether or not the bilayers had been first exposed to $5 \text{ mg}_{\text{oc}} \cdot \text{L}^{-1}$ NOM for 20
342 min prior to interaction with PAH-DNP. We therefore attributed the higher $\Gamma_{\text{QCM-D}}$ at the 1.33
343 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ NOM-to-DNP ratio relative to that in the absence of NOM to NOM-induced
344 changes to PAH-DNP properties. As noted above, adsorption of NOM molecules may lead to
345 electrostatic attraction between oppositely charged regions on adjacent DNP s and thereby a
346 moderate degree of aggregation at NOM concentrations insufficient to induce rapid aggregation
347 while the ζ -potential remains positive. The effective mass of these aggregates (mass of PAH-
348 DNP s, NOM and internal water) is higher than that of single PAH-DNP s. We therefore attributed
349 the higher $\Gamma_{\text{QCM-D}}$ at a NOM-to-DNP ratio of 1.33 $\text{mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ to the larger effective mass of
350 the aggregated particles delivered to the sensor surface.

351 At a NOM-to-DNP ratio of $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$, NOM molecules induced a modest degree
352 of aggregation ($d_h = 34 \pm 13 \text{ nm}$) and coated the PAH-DNP s to the extent that the surface charge
353 was reversed and the ζ -potential was strongly negative ($-33 \pm 1 \text{ mV}$). At this NOM-to-DNP
354 ratio, the initial rate of PAH-DNP deposition was more than an order of magnitude lower than in
355 the absence of NOM ($p < 0.0001$; Figure 2a, Table S1) and $\Gamma_{\text{QCM-D}}$ values at 20 min were much
356 smaller than in the absence of NOM (Figure 2b, Table S8). The NOM concentration remaining
357 in PAH-DNP suspensions at the NOM-to-DNP ratio used here was $\sim 22 \text{ mg}_{\text{oc}} \cdot \text{L}^{-1}$. We examined
358 the initial rate of deposition of $30 \text{ mg}_{\text{oc}} \cdot \text{L}^{-1}$ NOM (the total NOM concentration in the $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ NOM-to-DNP suspensions) and the adsorbed surface mass density at 20 min and
359 found the NOM deposition rate and $\Gamma_{\text{QCM-D}}$ to be comparable to those measured for the $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ NOM-DNP ratio (Figure 2b, Table S1). We therefore attribute the small frequency
360 shifts observed in the NOM-DNP attachment experiments at the high NOM-to-DNP ratio to
361 NOM molecules adsorbing to the bilayer. These results are consistent with following
362
363

364 interpretation: NOM molecules overcoated the PAH-DNP or displaced the electrostatically
365 wrapped PAH polymer on the DNP surface to the extent that the ζ -potential of the aggregates
366 became strongly negative resulting in a significant electrostatic energy barrier to attachment to
367 the negatively charged supported model membranes to which NOM had adsorbed.^{65,70}

368 **Nanodiamond interaction with phospholipid bilayers containing**

369 **lipopolysaccharides.** Full-length, or smooth, LPS is composed of three parts: Lipid A, a core
370 oligosaccharide, and an *O*-polysaccharide (Figure S2).⁷¹⁻⁷³ The presence or absence of an *O*-
371 polysaccharide determines whether a LPS molecule is respectively smooth or rough.⁷¹ Rough
372 LPS (expressed by some bacteria) is a truncated form of LPS, which contains Lipid A and at
373 least part of the core oligosaccharide, but lacks the outer *O*-polysaccharide. The rough LPS
374 produced by deep rough mutant 595 used in the present study is composed of Lipid A and two
375 residues of 2-keto-3-deoxy-D-manno-octonate (Kdo) in the core oligosaccharide. In contrast, the
376 smooth LPS also contained a variable length O-polysaccharide lacking acidic residues and the
377 portion of the core oligosaccharide between the Kdo residues and the O-polysaccharide, which
378 includes two phosphate groups.^{33,74} The core oligosaccharide of the deep rough and smooth LPS
379 thus contained two and four negative charges, respectively.

380 Due to the relevance and abundance of these biomolecules at Gram-negative bacterial
381 surfaces we investigated the effect of including rough or smooth LPS molecules in supported
382 POPC bilayers on PAH-DNP interaction with model membranes in the absence and presence of
383 NOM. To construct bilayers incorporating LPS, we employed the vesicle fusion method using
384 LPS-containing POPC vesicles. Vesicles incorporating LPS exhibited more negative ζ -potentials
385 than did those composed solely of POPC (Figure S3). Smooth LPS is larger and more negatively
386 charged than is deep rough LPS. Electrostatic and steric repulsion limits the maximum amount of

387 smooth LPS that can be incorporated into SiO_2 -supported model membranes via the vesicle
388 fusion method to a lower mol% than can be achieved with rough LPS.^{33,38} To enable direct
389 comparison between the two types of LPS we therefore prepared bilayers from vesicles
390 containing 0.46 mol% rough or smooth LPS. To examine the impact of rough LPS surface
391 density on PAH-DNP attachment, we also formed bilayers from vesicles containing 6.4 mol%
392 rLPS.

393 Initial rates of PAH-DNP attachment to POPC bilayers and those formed from vesicles
394 containing 0.46 mol% rLPS or sLPS were statistically indistinguishable ($p > 0.05$; Figure 2a,
395 Table S1) and attachment efficiencies were close to 1 (Table S2). This is likely attributable to the
396 small amount of LPS incorporated into these membranes. Increasing vesicle rLPS content from
397 0.46 to 6.4 mol% produced a small decrease in the initial rate of PAH-DNP attachment relative
398 to that of POPC ($p < 0.01$, Figure 2a, Table S1). Increasing the incorporation of rough LPS into
399 vesicles by a factor of \sim 14 decreased the ζ -potential of the vesicles from -12.6 ± 3.6 mV to -41.7
400 ± 2.2 mV (Figure S3). We therefore hypothesize that the decrease in r_d was due to the LPS
401 groups sterically hindering accessibility to the negative charges on the phosphatidylcholine
402 groups of the bilayer. Values for $\Gamma_{\text{QCM-D}}$ after 20 min attachment of PAH-DNPs to POPC
403 bilayers and those incorporating rLPS or sLPS were statistically indistinguishable ($p > 0.05$;
404 Figure 2b, Table S8).

405 At a low NOM-to-DNP ratio of $1.33 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$, the initial rates and attachment
406 efficiencies of NOM/PAH-DNPs attachment to bilayers containing 0.46 mol% rough or smooth
407 LPS were equal to those measured in the absence of NOM ($p > 0.05$; Figure 2a, Table S1).
408 Equivalent amounts of NOM at this ratio ($5 \text{ mg}_{\text{oc}} \cdot \text{L}^{-1}$) showed little attachment to 0.46 mol%
409 rLPS and no attachment to 0.46 mol% smooth or 6.4 mol% rough LPS. In the case of 6.4 mol%

410 rLPS, an increase in attachment rate was observed relative to that in the absence of NOM (p
411 <0.0001). Acoustic surface mass densities after 20 min attachment of NOM/PAH-DNPs to all
412 bilayers were higher at a NOM-to-DNP ratio of $1.33 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ relative to those obtained in
413 the absence of NOM ($p < 0.0001$; Figure 2b, Table S8). As noted in the case of POPC, the larger
414 $\Gamma_{\text{QCM-D}}$ values may be attributable to the higher mass associated with the aggregated particles
415 (PAH-DNPs, NOM and internal water) at this NOM-to-DNP ratio.

416 As we observed for POPC bilayers for NOM-to-DNP ratios of $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$,
417 attachment rates to bilayers containing LPS were at least an order of magnitude lower than in the
418 absence of NOM and indistinguishable from one another (Figure 2a, Table S1). The deposition
419 rate of $30 \text{ mg}_{\text{oc}} \cdot \text{L}^{-1}$ NOM with no PAH-DNP (the total NOM concentration in the $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-}}$
420 DNP^{-1} NOM-to-DNP suspensions) was similar to that observed when particles were present to all
421 three bilayer types (Table S1). Furthermore, the acoustic surface mass density of the $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$
422 particles after 20 min attachment was indistinguishable from that of NOM binding
423 to the bilayer (Table S8, $p > 0.05$). Therefore, we attribute the observed attachment rate and
424 attachment for the $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ particles solely to NOM binding to the 0.46 mol% rLPS and
425 0.46 mol% sLPS bilayers. Neither attachment of particles at NOM-to-DNP ratios of $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$
426 nor NOM itself was observed to attach to the 6.4 mol% rLPS bilayer likely due to
427 increased electrostatic repulsion between the NOM and the more negatively charged bilayer
428 relative to the other three studied here (Figure S3).

429 **Natural organic matter modulates PAH-DNP impact on *Shewanella***
430 ***oneidensis*.** We examined the influence of NOM on the effect of PAH-DNP on the Gram-
431 negative bacterium *Shewanella oneidensis*. A significantly higher coverage of LPS was expected
432 on bacterial surfaces (up to 75%) than was modeled in the membrane studies; nonetheless, we

433 anticipated a similar trend in surface attachment to bacterial cells to be observed. We note that
434 under the growth conditions in this study (30 °C), *S. oneidensis* elaborates only rough LPS.³³

435 We employed the LIVE/DEAD assay to quantify membrane damage. This fluorescence-
436 based method uses two fluorescent dyes that bind to nucleic acid: green-fluorescent SYTO 9 and
437 red-fluorescent PI. Cell-permeant SYTO 9 stains all live cells; the non-permeant PI stains nucleic
438 acids only in the cells with damaged membranes. In the absence of NOM, exposure to 1 nM
439 PAH-DNP resulted in membrane damage to >60% of the cells (Figure 3a). As the NOM-to-DNP
440 ratio increased, the proportion of cells with membrane damage remained unchanged at ratios up
441 to $0.8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$. A sharp increase in the proportion of cells with intact membranes was
442 observed at ratios between 0.8 and $1.1 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$, with no observable damage above a ratio
443 of $1.1 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$.

444 The impact of NOM on the toxicity to *S. oneidensis* induced by exposure to PAH-DNP
445 exhibited a similar trend (Figure 3b). The toxicity of 1 nM PAH-DNP was completely
446 ameliorated at NOM-to-DNP ratios $\geq 1.3 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$. The strong correspondence between
447 the membrane damage and bacterial viability results displayed in Figure 3 was expected. Earlier
448 studies have indicated that the toxicity of cationic polymer-wrapped nanoparticles arises largely
449 from attachment of the positively charged particles to negatively charged bacterial surfaces
450 leading to membrane damage.⁴⁴ The reduced toxicity and membrane damage at higher NOM-to-
451 DNP ratios are consistent with the drastically reduced attachment of PAH-DNP to supported
452 bilayers containing 6.4% rough LPS at NOM-to-DNP ratios of $8 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ (Figure 2b).
453 The discrepancy between the results obtained at $1.3 \text{ mg}_{\text{oc}} \cdot \text{mg}_{\text{PAH-DNP}}^{-1}$ in the whole cell and 6.4%
454 rLPS-POPC studies may be attributable to the much higher LPS content on cell surfaces. The
455 higher density of rLPS on the bacterial surface may have sterically hindered nanoparticle

456 disruption of the outer membrane. We also note that the critical NOM-to-DNP ratio that resulted
457 in amelioration in toxicity and membrane damage by PAH-DNP occurred at a slightly lower
458 NOM-to-DNP ratio than that of charge reversal of the nanoparticle by NOM (Figure 1b). An
459 earlier study examining the attachment to and uptake by HeLa cells of an array of Au
460 nanoparticles spanning a range of ζ -potentials found a threshold of effective surface charge
461 density below which minimal binding occurred even when the particles exhibited positive ζ -
462 potentials.⁷⁵ Our observations likely reflect such a threshold in effective charge density as
463 modulated by adsorbed NOM molecules.

464 **Environmental implications.** We have demonstrated that hydrodynamic and
465 electrokinetic properties of DNPs wrapped with the polycation PAH are altered upon interaction
466 with NOM and that NOM influences the interaction of these nanoparticles with model cell
467 membranes and with intact bacterial cells. As the NOM-to-DNP ratio increased the following
468 sequence of events occurred. Initial adsorption of NOM molecules to PAH-DNP surfaces
469 resulted in uneven charge distributions and induced attractive interactions between oppositely
470 charged regions on adjacent particles leading to a moderate degree of aggregation. As further
471 NOM molecules adsorbed to DNP surfaces, the probability of favorable interactions between
472 oppositely charged regions on the DNP surfaces increased leading to higher aggregation rates.
473 Concurrently, adsorbing NOM molecules progressively neutralized and eventually reversed the
474 positive potential of the particles. Aggregation was promoted at NOM-to-DNP ratios producing
475 low ζ -potentials because the electrostatic energy barrier had been lowered sufficiently to allow
476 attractive van der Waals interactions to cause aggregation. At still higher NOM-to-DNP ratios,
477 the amount of NOM on the particles increased and electrostatic repulsion prevented further
478 aggregation of PAH-DNPs. The changes to PAH-DNP hydrodynamic and electrokinetic

479 properties influenced the attachment of these particles to model membranes and their toxicity
480 toward a Gram-negative bacterium. Our results lead to the expectation that the influence of
481 NOM on nanoparticle-induced effects depends on the NOM-to-nanoparticle ratio (as well as the
482 affinity of NOM for the nanoparticle surface).

483 In the experiments described here, a finite amount of NOM was available to bind to the
484 PAH-DNP. This is particularly important for the low NOM-to-DNP ratios studied because this
485 imposes a limit on the extent of overcoating/displacement of PAH polymer in the experimental
486 system. In the environment, the amount (mass) of NOM ultimately available would be large
487 enough to eventually overcoat/displace the PAH polymer entirely, even at low NOM
488 concentration. The concentration ratios of NOM to PAH-DNP studied here varied from 1.33 (for
489 5 mg_{oc}·L⁻¹ NOM) to 8.0 (for 30 mg_{oc}·L⁻¹ NOM). In typical freshwater environments the ratio of
490 NOM to engineered nanoparticle is expected to be much larger due to the expected low
491 concentrations of engineered nanoparticles.¹⁷ Overcoating/displacement would occur, but more
492 slowly at low NOM concentrations. Differences in kinetics of overcoating/displacement could
493 have biological consequences, similar to those demonstrated here at different NOM
494 concentrations, depending on how rapidly the nanoparticles come in contact with organismal
495 surfaces.

496 The present study represents an initial demonstration of the complex influence that NOM
497 can have on nanomaterial interactions with bacterial surfaces. The present study focused on a
498 single type of nanoparticle (diamond) functionalized with a single capping agent (the cationic
499 polymer poly(allylamine HCl)). In the specific system investigated, at low NOM-to-PAH-DNP
500 ratios PAH-DNP bound to model membranes and elicited membrane damage in the bacteria.
501 Higher ratios, which caused reversal of the charge of the polymer-wrapped nanodiamond,

502 reduced attachment to the model membranes and damage to bacterial membranes. Effects similar
503 to those we observed at high NOM concentrations have been reported for nanoscale zero-valent
504 iron to *Escherichia coli*,²⁹ although the mechanism of toxicity likely differed. We expect our
505 results to be most directly transferable to positively charged natural colloids and engineered
506 nanoparticles functionalized with cationic polymers^{17,35} and ligands^{14,35,76-77}. We hypothesize that
507 NOM overcoating/replacement of ligands occurs at the high NOM-to-nanoparticle ratios
508 expected in the environment; in environments with low NOM concentrations, this would occur at
509 slower rates than observed in the present study. Future studies are needed to understand the
510 influence of NOM properties and divalent cations on nanomaterial interactions with cell surfaces
511 in the presence of NOM.

512 **ASSOCIATED CONTENT**

513 **Supporting Information**

514 Quantification of NOM; chemical structures of POPC, LPS, and PAH polymer; hydrodynamic
515 and electrokinetic properties of vesicles; supplemental tables and materials and methods. This
516 material is available free of charge via the Internet at <http://pubs.acs.org>.

517 **AUTHOR INFORMATION**

518 **Corresponding Author**

519 *Phone: 608-263-4971; e-mail: joelpedersen@wisc.edu

520 **Present Addresses**

521 ^a Adamás Nanotechnologies, Inc., PO Box 90696, Raleigh, NC 27675

522 **Notes**

523 The authors declare no competing financial interest.

524 **ACKNOWLEDGMENTS**

525 This work was supported by the NSF under the Center for Sustainable Nanotechnology, CHE-
526 1503408. JK acknowledges financial support from the Lindstrom Fund through Augsburg
527 College. We thank Tian (Autumn) Qiu for measuring the concentration of free PAH in solution,
528 Joseph Buchman for collecting TEM images, and Rachel Abbott for assistance with DLS and
529 laser Doppler electrophoresis measurements. The constructive comments of three anonymous
530 reviewers are gratefully acknowledged.

531 **REFERENCES**

- 532 1. Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. *Science*,
533 **2006**, *311*, 622-627.
- 534 2. Maurer-Jones, M. A.; Gunsolus, I. L.; Murphy, C. J.; Haynes, C. L. Toxicity of
535 engineered nanoparticles in the environment. *Anal. Chem.*, **2013**, *85*, 3036-3049.
- 536 3. Mudunkotuwa, I. A.; Grassian, V. H. The devil is in the details (or the surface): Impact of
537 surface structure and surface energetics on understanding the behavior of nanomaterials in the
538 environment. *J. Environ. Monit.*, **2011**, *13*, 1135-1144.
- 539 4. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle
540 size and surface properties determine the protein corona with possible implications for biological
541 impacts. *Proc. Natl. Acad. Sci. U.S.A.*, **2008**, *105*, 14265-14270.
- 542 5. Sani-Kast, N.; Labille, J.; Ollivier, P.; Slomberg, D.; Hungerbuhler, K.; Scheringer, M. A
543 network perspective reveals decreasing material diversity in studies on nanoparticle interactions
544 with dissolved organic matter. *Proc. Natl. Acad. Sci. U.S.A.*, **2017**, *114*, 1756.
- 545 6. Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The new view.
546 *Environ. Sci. Technol.*, **2005**, *29*, 9009-9015.
- 547 7. Thurman, E. M., *Organic geochemistry of natural waters*. Martinus Nijhoff/Dr. W. Junk
548 Publishers: Dordrecht, 1985.
- 549 8. Jones, M. N.; Bryan, N. D. Colloidal properties of humic substances. *Adv. Colloid
550 Interface Sci.*, **1998**, *78*, 1-48.
- 551 9. Ritchie, J. D.; Perdue, E. M. Proton-binding study of standard and reference fulvic acids,
552 humic acids, and natural organic matter. *Geochim. Cosmochim. Acta*, **2003**, *67*, 85-96.
- 553 10. Louie, S. M.; Tilton, R. D.; Lowry, G. V. Critical review: Impacts of macromolecular
554 coatings on critical physicochemical processes controlling environmental fate of nanomaterials.
555 *Environ. Sci.: Nano*, **2016**, *3*, 283-310.
- 556 11. Peijnenburg, W. J. G. M.; Baalousha, M.; Chen, J.; Chaudry, Q.; Von der kammer, F.;
557 Kuhlbusch, T. A. J.; Lead, J.; Nickel, C.; Quik, J. T. K.; Renker, M.; Wang, Z.; Koelmans, A. A.
558 A review of the properties and processes determining the fate of engineered nanomaterials in the
559 aquatic environment. *Crit. Rev. Env. Sci. Technol.*, **2015**, *45*, 2084-2134.

560 12. Grillo, R.; Rosa, A. H.; Fraceto, L. F. Engineered nanoparticles and organic matter: A
561 review of the state-of-the-art. *Chemosphere*, **2015**, *119*, 608-619.

562 13. Philippe, A.; Schaumann, G. E. Interactions of dissolved organic matter with natural and
563 engineered inorganic colloids: A review. *Environ. Sci. Technol.*, **2014**, *48*, 8946-8962.

564 14. Stankus, D. P.; Lohse, S. E.; Hutchison, J. E.; Nason, J. A. Interactions between natural
565 organic matter and gold nanoparticles stabilized with different organic capping agents. *Environ. Sci. Technol.*, **2011**, *45*, 3238-3244.

566 15. Kretzschmar, R.; Sticher, H. Transport of humic-coated iron oxide colloids in a sandy
567 soil: Influence of Ca^{2+} and trace metals. *Environ. Sci. Technol.*, **1997**, *31*, 3497-3504.

568 16. Loosli, F.; Le Coustumer, P.; Stoll, S. TiO_2 nanoparticles aggregation and disaggregation
569 in presence of alginic and Suwannee River humic acids. pH and concentration effects on
570 nanoparticle stability. *Water Res.*, **2013**, *47*, 6052-6063.

571 17. Surette, M. C.; Nason, J. A. Effects of surface coating character and interactions with
572 natural organic matter on the colloidal stability of gold nanoparticles. *Environ. Sci.: Nano*, **2016**,
573 *3*, 1144-1152.

574 18. Lau, B. L. T.; Hockaday, W. C.; Ikuma, K.; Furman, O.; Decho, A. W. A preliminary
575 assessment of the interactions between the capping agents of silver nanoparticles and
576 environmental organics. *Colloids Surf., A*, **2013**, *435*, 22-27.

577 19. Zhang, W.; Rattanaudompol, U.; Li, H.; Bouchard, D. Effects of humic and fulvic acids
578 on aggregation of aqu/nC₆₀ nanoparticles. *Water Res.*, **2013**, *47*, 1793-1802.

579 20. Erhayem, M.; Sohn, M. Stability studies for titanium dioxide nanoparticles upon
580 adsorption of Suwannee River humic and fulvic acids and natural organic matter. *Sci. Total
581 Environ.*, **2014**, *468-469*, 249-257.

582 21. Furman, O.; Usenko, S.; Lau, B. L. Relative importance of the humic and fulvic fractions
583 of natural organic matter in the aggregation and deposition of silver nanoparticles. *Environ. Sci.
584 Technol.*, **2013**, *47*, 1349-1356.

585 22. Louie, S. M.; Tilton, R. D.; Lowry, G. V. Effects of molecular weight distribution and
586 chemical properties of natural organic matter on gold nanoparticle aggregation. *Environ. Sci.
587 Technol.*, **2013**, *47*, 4245-4254.

588 23. Louie, S. M.; Spielman-Sun, E. R.; Small, M. J.; Tilton, R. D.; Lowry, G. V. Correlation
589 of the physicochemical properties of natural organic matter samples from different sources to
590 their effects on gold nanoparticle aggregation in monovalent electrolyte. *Environ. Sci. Technol.*,
591 **2015**, *49*, 2188-2198.

592 24. Gunsolus, I. L.; Mousavi, M. P.; Hussein, K.; Buhlmann, P.; Haynes, C. L. Effects of
593 humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. *Environ. Sci.
594 Technol.*, **2015**, *49*, 8078-8086.

595 25. Yin, Y.; Shen, M.; Tan, Z.; Yu, S.; Liu, J.; Jiang, G. Particle coating-dependent
596 interaction of molecular weight fractionated natural organic matter: Impacts on the aggregation
597 of silver nanoparticles. *Environ. Sci. Technol.*, **2015**, *49*, 6581-6589.

598 26. Nason, J. A.; McDowell, S. A.; Callahan, T. W. Effects of natural organic matter type
599 and concentration on the aggregation of citrate-stabilized gold nanoparticles. *J. Environ. Monit.*,
600 **2012**, *14*, 1885-1892.

601 27. Liu, J.; Legros, S.; von der Kammer, F.; Hofmann, T. Natural organic matter
602 concentration and hydrochemistry influence aggregation kinetics of functionalized engineered
603 nanoparticles. *Environ. Sci. Technol.*, **2013**, *47*, 4113-4120.

605 28. Ha, Y.; Wang, X.; Liljestrand, H. M.; Maynard, J. A.; Katz, L. E. Bioavailability of
606 fullerene under environmentally relevant conditions: Effects of humic acid and fetal bovine
607 serum on accumulation in lipid bilayers and cellular uptake. *Environ. Sci. Technol.*, **2016**, *50*,
608 6717-6727.

609 29. Li, Z.; Greden, K.; Alvarez, P. J. J.; Gregory, K. B.; Lowry, G. V. Adsorbed polymer and
610 NOM limits adhesion and toxicity of nano scale zerovalent iron to *E. coli*. *Environ. Sci.*
611 *Technol.*, **2010**, *44*, 3462-3467.

612 30. Chen, K. L.; Bothun, G. D. Nanoparticles meet cell membranes: Probing nonspecific
613 interactions using model membranes. *Environ. Sci. Technol.*, **2014**, *48*, 873-880.

614 31. Liu, X.; Chen, K. L. Interactions of graphene oxide with model cell membranes: Probing
615 nanoparticle attachment and lipid bilayer disruption. *Langmuir*, **2015**, *31*, 12076-12086.

616 32. Rascol, E.; Devoisselle, J. M.; Chopineau, J. The relevance of membrane models to
617 understand nanoparticles-cell membrane interactions. *Nanoscale*, **2016**, *8*, 4780-4798.

618 33. Jacobson, K. H.; Gunsolus, I. L.; Kuech, T. R.; Troiano, J. M.; Melby, E. S.; Lohse, S. E.;
619 Hu, D.; Chrisler, W. B.; Murphy, C. J.; Orr, G.; Geiger, F. M.; Haynes, C. L.; Pedersen, J. A.
620 Lipopolysaccharide density and structure govern the extent and distance of nanoparticle
621 interaction with actual and model bacterial outer membranes. *Environ. Sci. Technol.*, **2015**, *49*,
622 10642-10650.

623 34. Troiano, J. M.; Olenick, L. L.; Kuech, T. R.; Melby, E. S.; Hu, D.; Lohse, S. E.; Mensch,
624 A. C.; Dogangun, M.; Vartanian, A. M.; Torelli, M. D.; Ehimiaghe, E.; Walter, S. R.; Fu, L.;
625 Anderton, C. R.; Zhu, Z.; Wang, H.; Orr, G.; Murphy, C. J.; Hamers, R. J.; Pedersen, J. A.;
626 Geiger, F. M. Direct probes of 4 nm diameter gold nanoparticles interacting with supported lipid
627 bilayers. *J. Phys. Chem. C*, **2015**, *119*, 534-546.

628 35. Leroueil, P. R.; Berry, S. A.; Duthie, K.; Han, G.; Rotello, V. M.; McNerny, D. Q.; Jr., J.
629 R. B.; Orr, B. G.; Holl, M. M. B. Wide varieties of cationic nanoparticles induce defects in
630 supported lipid bilayers. *Nano Lett.*, **2008**, *8*, 420-424.

631 36. Melby, E. S.; Mensch, A. C.; Lohse, S. E.; Hu, D.; Orr, G.; Murphy, C. J.; Hamers, R. J.;
632 Pedersen, J. A. Formation of supported lipid bilayers containing phase-segregated domains and
633 their interaction with gold nanoparticles. *Environ. Sci.: Nano*, **2016**, *3*, 45-55.

634 37. Le Brun, A. P.; Clifton, L. A.; Halbert, C. E.; Lin, B.; Meron, M.; Holden, P. J.; Lakey, J.
635 H.; Holt, S. A. Structural characterization of a model Gram-negative bacterial surface using
636 lipopolysaccharides from rough strains of *Escherichia coli*. *Biomacromolecules*, **2013**, *14*, 2014-
637 2022.

638 38. Kaufmann, S.; Ilg, K.; Mashaghi, A.; Textor, M.; Priem, B.; Aebi, M.; Reimhult, E.
639 Supported lipopolysaccharide bilayers. *Langmuir*, **2012**, *28*, 12199-12208.

640 39. Krueger, A. Diamond nanoparticles: Jewels for chemistry and physics. *Adv. Mater.*,
641 **2008**, *20*, 2445-2449.

642 40. Shakun, A.; Vuorinen, J.; Hoikkanen, M.; Poikelispää, M.; Das, A. Hard nanodiamonds
643 in soft rubbers: Past, present and future – a review. *Composites Part A: Applied Science and*
644 *Manufacturing*, **2014**, *64*, 49-69.

645 41. Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of
646 nanodiamonds. *Nat. Nanotechnol.*, **2011**, *7*, 11-23.

647 42. Stavis, C.; Clare, T. L.; Butler, J. E.; Radadia, A. D.; Carr, R.; Zeng, H.; King, W. P.;
648 Carlisle, J. A.; Aksimentiev, A.; Bashir, R.; Hamers, R. J. Surface functionalization of thin-film
649 diamond for highly stable and selective biological interfaces. *Proc. Natl. Acad. Sci. U.S.A.*, **2011**,
650 *108*, 983-988.

651 43. Bozich, J. S.; Lohse, S. E.; Torelli, M. D.; Murphy, C. J.; Hamers, R. J.; Klaper, R. D.
652 Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to *Daphnia*
653 *magna*. *Environ. Sci.: Nano*, **2014**, *1*, 260-270.

654 44. Feng, Z. V.; Gunsolus, I. L.; Qiu, T. A.; Hurley, K. R.; Nyberg, L. H.; Frew, H.; Johnson,
655 K. P.; Vartanian, A. M.; Jacob, L. M.; Lohse, S. E.; Torelli, M. D.; Hamers, R. J.; Murphy, C. J.;
656 Haynes, C. L. Impacts of gold nanoparticle charge and ligand type on surface binding and
657 toxicity to Gram-negative and Gram-positive bacteria. *Chem. Sci.*, **2015**, *6*, 5186-5196.

658 45. Brezonik, P. L.; Arnold, W. A., *Water chemistry: An introduction o the chemistry of*
659 *natural and engineered aquatic systems*. Oxford University Press: New York, 2011.

660 46. Malvern Instruments. *Intensity-volume-number: What size is correct*; Technical Note
661 MRK1357-01.

662 47. Smoluchowski, M. V., Handbuchder elektrizitat und des magnetismus. In *Electrische*
663 *endosmose und stro-mungsstroms*, Greatz, L., Ed. Barth: Leipzig, 1921; Vol. 2, pp 62-366.

664 48. Ohshima, H. Electrokinetics of soft particles. *Colloid. Polym. Sci.*, **2007**, *285*, 1411-1421.

665 49. Reviakine, I.; Johannsmann, D.; Richter, R. P. Hearing what you cannot see and
666 visualizing what you hear: Interpreting quartz crystal microbalance data from solvated interfaces.
667 *Anal. Chem.*, **2011**, *83*, 8838-8848.

668 50. Sauerbrey, G. Verwendung von schwingquarzen zur wagung dunner schichten und zur
669 mikrowagung. *Zeitschrift Fur Physik*, **1959**, *155*, 206-222.

670 51. Cho, N. J.; Kanazawa, K. K.; Glenn, J. S.; Frank, C. W. Employing two different quartz
671 crystal microbalance models to study changes in viscoelastic behavior upon transformation of
672 lipid vesicles to a bilayer on a gold surface. *Anal. Chem.*, **2007**, *79*, 7027-7035.

673 52. Quevedo, I. R.; Olsson, A. L.; Tufenkji, N. Deposition kinetics of quantum dots and
674 polystyrene latex nanoparticles onto alumina: Role of water chemistry and particle coating.
675 *Environ. Sci. Technol.*, **2013**, *47*, 2212-2220.

676 53. Chen, K. L.; Elimelech, M. Interaction of fullerene (C₆₀) nanoparticles with humic acid
677 and alginate coated silica surfaces: Measurements, mechanisms, and environmental implications.
678 *Environ. Sci. Technol.*, **2008**, *42*, 7607-7614.

679 54. Quevedo, I. R.; Tufenkji, N. Influence of solution chemistry on the deposition and
680 detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance.
681 *Environ. Sci. Technol.*, **2009**, *3176-3182*.

682 55. Richter, R.; Mukhopadhyay, A.; Brisson, A. Pathways of lipid vesicle deposition on solid
683 surfaces: A combined QCM-D and AFM study. *Biophys. J.*, **2003**, *85*, 3035-3047.

684 56. Keller, C. A.; Kasemo, B. Surface specific kinetics of lipid vesicle adsorption measured
685 with a quartz crystal microbalance. *Biophys. J.*, **1998**, *75*, 1397-1402.

686 57. Qiu, T. A.; Nguyen, T. H.; Hudson-Smith, N. V.; Clement, P. L.; Forester, D. C.; Frew,
687 H.; Hang, M. N.; Murphy, C. J.; Hamers, R. J.; Feng, Z. V.; Haynes, C. L. Growth-based
688 bacterial viability assay for interference-free and high-throughput toxicity screening of
689 nanomaterials. *Anal. Chem.*, **2017**, *89*, 2057-2064.

690 58. Gregory, J. Rates of flocculation of latex particles by cationic polymers. *J. Colloid*
691 *Interface Sci.*, **1973**, *42*, 448-456.

692 59. Yu, W. L.; Bouyer, F.; Borkovec, M. Polystyrene sulfate latex particles in the presence of
693 poly(vinylamine): Absolute aggregation rate constants and charging behavior. *J. Colloid*
694 *Interface Sci.*, **2001**, *241*, 392-399.

695 60. Elimelech, M.; Nagai, M.; Ko, C.-H.; Ryan, J. N. Relative insignificance of mineral grain
696 zeta potential to colloid transport in geochemically heterogeneous porous media. *Environ. Sci.*
697 *Technol.*, **2000**, *34*, 2143-2148.

698 61. Jones, E. H.; Su, C. Transport and retention of zinc oxide nanoparticles in porous media:
699 Effects of natural organic matter versus natural organic ligands at circumneutral pH. *J. Hazard.*
700 *Mater.*, **2014**, *275*, 79-88.

701 62. Han, Y.; Kim, D.; Hwang, G.; Lee, B.; Eom, I.; Kim, P. J.; Tong, M.; Kim, H.
702 Aggregation and dissolution of ZnO nanoparticles synthesized by different methods: Influence of
703 ionic strength and humic acid. *Colloids Surf., A*, **2014**, *451*, 7-15.

704 63. Zimmermann, R.; Kuttner, D.; Renner, L.; Kaufmann, M.; Zitzmann, J.; Muller, M.;
705 Werner, C. Charging and structure of zwitterionic supported bilayer lipid membranes studied by
706 streaming current measurements, fluorescence microscopy, and attenuated total reflection
707 Fourier transform infrared spectroscopy. *Biointerphases*, **2009**, *4*, 1-6.

708 64. Chen, K. L.; Elimelech, M. Aggregation and deposition kinetics of fullerene (C₆₀)
709 nanoparticles. *Langmuir*, **2006**, *22*, 10994-11001.

710 65. Zhang, X.; Yang, S. Nonspecific adsorption of charged quantum dots on supported
711 zwitterionic lipid bilayers: Real-time monitoring by quartz crystal microbalance with dissipation.
712 *Langmuir*, **2011**, *27*, 2528-2535.

713 66. Moghadam, B. Y.; Hou, W. C.; Corredor, C.; Westerhoff, P.; Posner, J. D. Role of
714 nanoparticle surface functionality in the disruption of model cell membranes. *Langmuir*, **2012**,
715 *28*, 16318-16326.

716 67. Kuech, T. R. Biological interactions and environmental transformations of nanomaterials.
717 Ph. D. Dissertation, University of Wisconsin-Madison, 2015.

718 68. Troiano, J. M.; Kuech, T. R.; Vartanian, A. M.; Torelli, M. D.; Sen, A.; Jacob, L. M.;
719 Hamers, R. J.; Murphy, C. J.; Pedersen, J. A.; Geiger, F. M. On electronic and charge
720 interference in second harmonic generation responses from gold metal nanoparticles at supported
721 lipid bilayers. *J. Phys. Chem. C*, **2016**, *120*, 20659-20667.

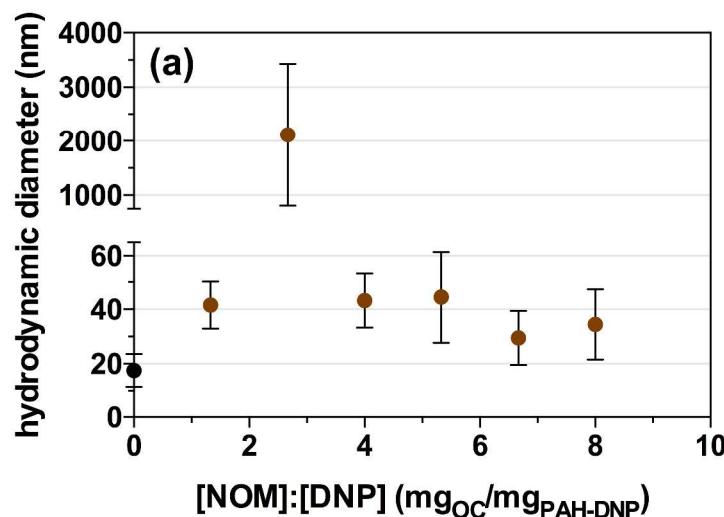
722 69. Zhang, M.; Soto-Rodríguez, J.; Chen, I. C.; Akbulut, M. Adsorption and removal
723 dynamics of polymeric micellar nanocarriers loaded with a therapeutic agent on silica surfaces.
724 *Soft Matter*, **2013**, *9*, 10155.

725 70. Frost, R.; Jonsson, G. E.; Chakarov, D.; Svedhem, S.; Kasemo, B. Graphene oxide and
726 lipid membranes: Interactions and nanocomposite structures. *Nano Lett.*, **2012**, *12*, 3356-3362.

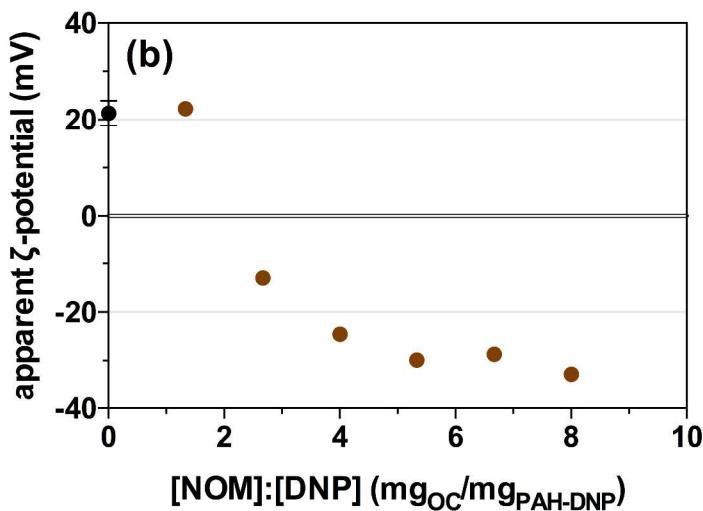
727 71. Kirschner, K. N.; Lins, R. D.; Maass, A.; Soares, T. A. A glycam-based force field for
728 simulations of lipopolysaccharide membranes: Parametrization and validation. *J. Chem. Theory*
729 *Comput.*, **2012**, *8*, 4719-4731.

730 72. Clifton, L. A.; Holt, S. A.; Hughes, A. V.; Daulton, E. L.; Arunmanee, W.; Heinrich, F.;
731 Khalid, S.; Jefferies, D.; Charlton, T. R.; Webster, J. R.; Kinane, C. J.; Lakey, J. H. An accurate
732 *in vitro* model of the *E. coli* envelope. *Angew. Chem. Int. Ed.*, **2015**, *54*, 11952-11955.

733 73. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited.
734 *Microbiology and Molecular Biology Reviews*, **2003**, *67*, 593-656.

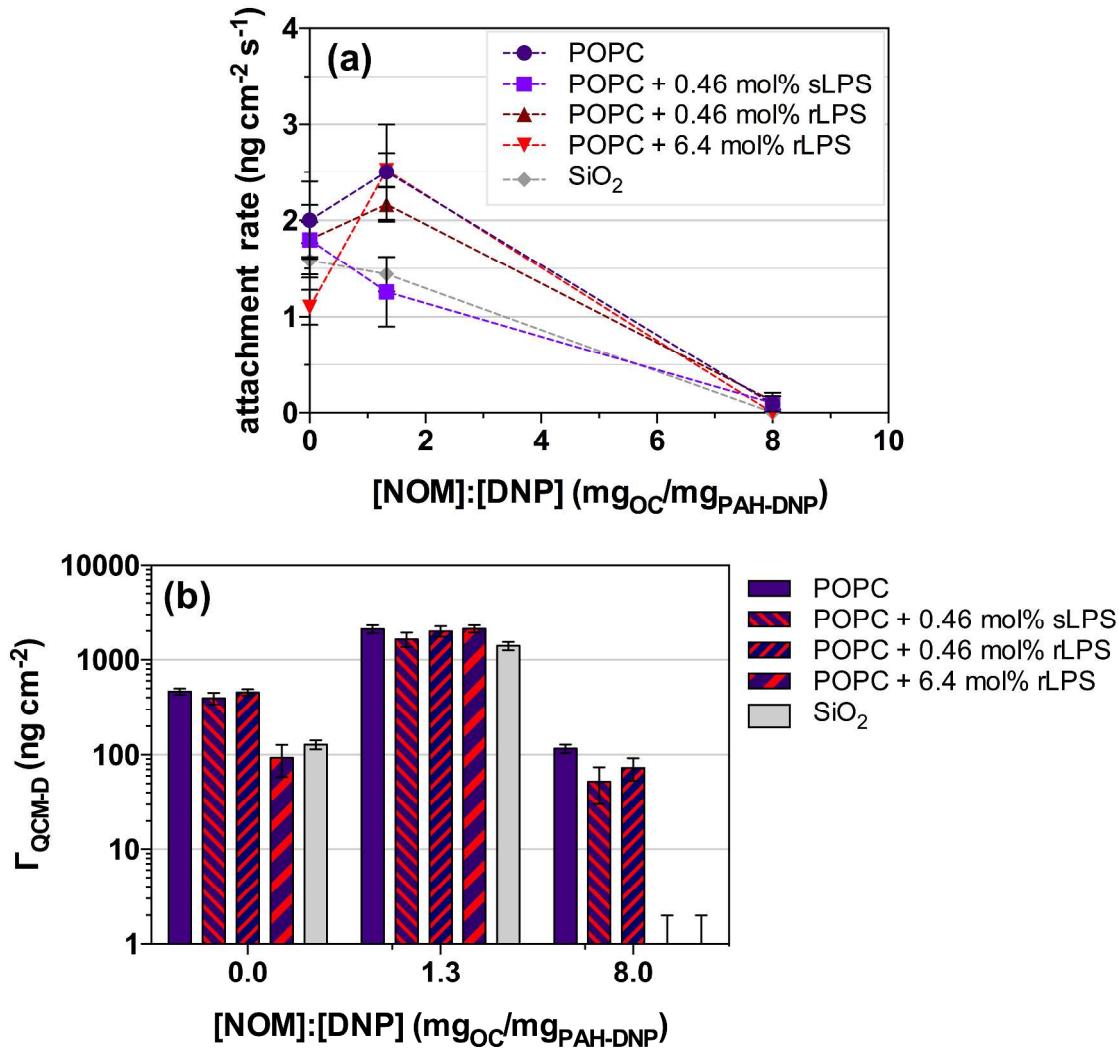

735 74. Liu, B.; Knirel, Y. A.; Feng, L.; Perepelov, A. V.; Senchenkova, S. N.; Reeves, P. R.;
736 Wang, L. Structural diversity in *Salmonella* O antigens and its genetic basis. *FEMS Microbiol.*
737 *Rev.*, **2014**, *38*, 56-89.

738 75. Su, G.; Zhou, H.; Mu, Q.; Zhang, Y.; Li, L.; Jiao, P.; Jiang, G.; Yan, B. Effective surface
739 charge density determines the electrostatic attraction between nanoparticles and cells. *J. Phys.*
740 *Chem. C*, **2012**, *116*, 4993-4998.


741 76. You, C. C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.; Kim, I. B.; Erdogan, B.; Krovi, S.
742 A.; Bunz, U. H.; Rotello, V. M. Detection and identification of proteins using nanoparticle-
743 fluorescent polymer 'chemical nose' sensors. *Nat. Nanotechnol.*, **2007**, *2*, 318-323.
744 77. Goodman, C. M.; McCusker, C. D.; Yilmaz, T.; Rotello, V. M. Toxicity of gold
745 nanoparticles functionalized with cationic and anionic side chains. *Bioconjugate Chem.*, **2004**,
746 *15*, 897-900.

747

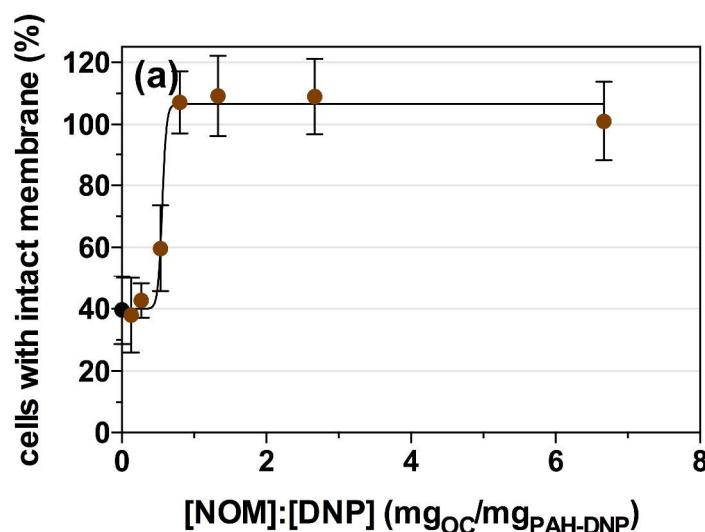
748



749

750

751 **Figure 1.** PAH-DNP (a) number-averaged hydrodynamic diameters and (b) apparent ζ -potentials
752 as a function of Suwannee River NOM-to-nanoparticle concentration ratio in 0.025 M NaCl
753 buffered to pH 7.4 with 0.002 M HEPES. Error bars represent one standard deviation of five
754 replicate measurements. In some cases error bars in the apparent ζ -potential plot fall within the
755 size of the marker.



756

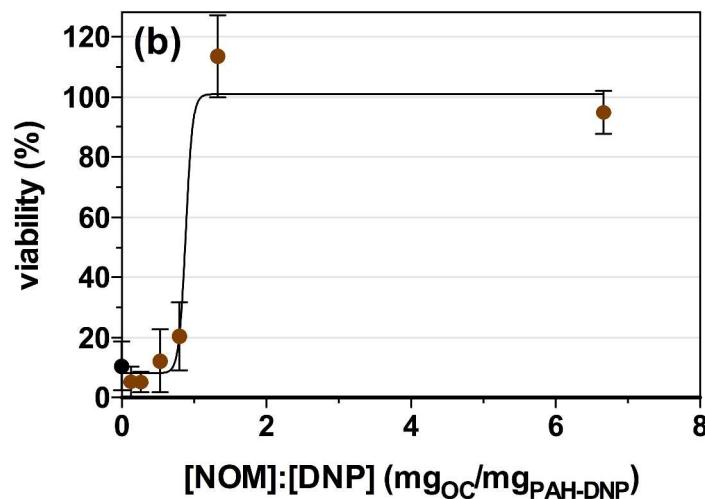
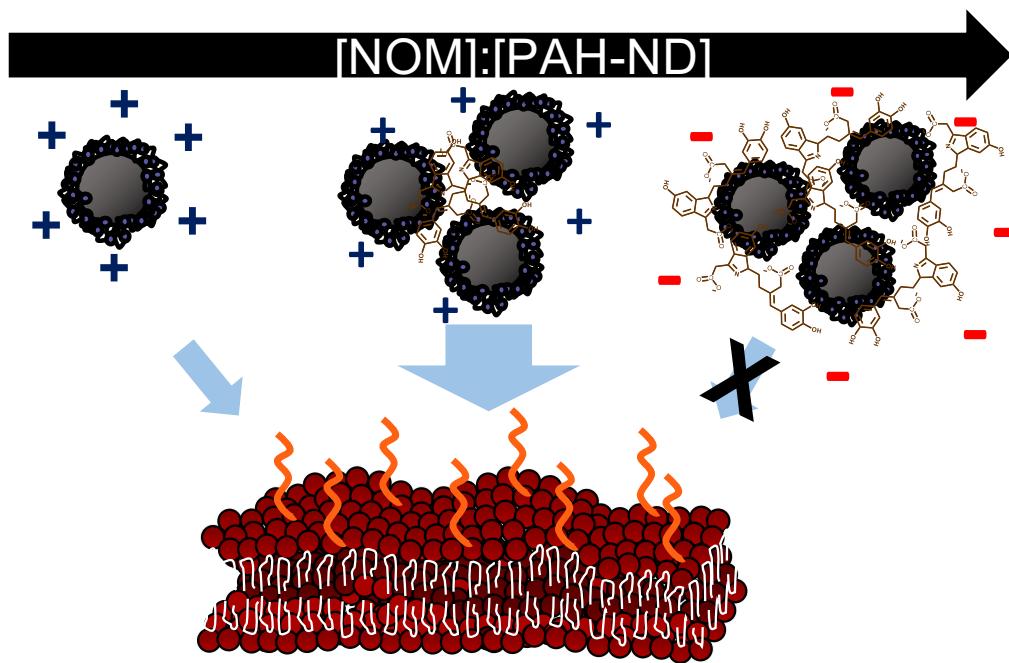

757

Figure 2. Natural organic matter (NOM) influences the attachment of PAH-DNP to supported lipid bilayers composed of the zwitterionic phospholipid POPC alone or with the indicated amounts of smooth or rough lipopolysaccharide (LPS). (a) Initial rates of PAH-DNP attachment to and (b) acoustic surface mass density (Γ_{QCM-D}) at 20 min for the indicated bilayers and SiO_2 as a function of NOM concentration. Attachment rates defined as the first derivative of the change in acoustic surface mass density with respect to time over the first 30 seconds of attachment. Dotted lines are to guide the eye. Acoustic surface mass densities calculated from the Sauerbrey equation⁵⁰ (in all cases $\Delta D_n/(\Delta f_n/n) < 0.4 \times 10^{-6} \text{ Hz}^{-1}$)⁴⁹. Symbols represent means of at least triplicate measurements; error bars denote one standard deviation. Experiments used 1 nM (number concentration) of PAH-DNPs in 0.025 M NaCl buffered to pH 7.4 with 0.002 M HEPES with the indicated amount of Suwannee River NOM at 25 °C. Numerical data for initial attachment rates and Γ_{QCM-D} are presented in Tables S1 and S8, respectively. Abbreviations: PAH-DNP, diamond nanoparticles functionalized with poly(allylamine HCl); POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; rLPS, rough lipopolysaccharide; sLPS, smooth lipopolysaccharide.

773

774



775

776

777 **Figure 3.** The influence of NOM-to-DNP ratio on (a) membrane damage and (b) toxicity to
778 *Shewanella oneidensis* by 1 nM PAH-DNP. Experiments were performed in 0.025 M NaCl
779 buffered with 0.002 M HEPES to pH 7.4.

TOC

