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ABSTRACT: Changes to nanoparticle surface charge, colloidal stability, and hydrodynamic 10 

properties induced by interaction with natural organic matter (NOM) warrant consideration in 11 

assessing the potential for these materials to adversely impact organisms in the environment. 12 

Here we show that acquisition of a coating, or “corona”, of NOM alters the hydrodynamic and 13 

electrokinetic properties of diamond nanoparticles (DNPs) functionalized with the polycation 14 

poly(allylamine HCl) in a manner that depends on the NOM-to-DNP concentration ratio. The 15 

NOM-induced changes to DNP properties alter subsequent interactions with model biological 16 

membranes and the Gram-negative bacterium Shewanella oneidensis MR-1. Suwannee River 17 

NOM induces changes to DNP hydrodynamic diameter and apparent ζ-potential in a 18 

concentration-dependent manner. At low NOM-to-DNP ratios, DNPs aggregate to a limited 19 

extent but retain a positive ζ-potential apparently due to non-uniform adsorption of NOM 20 

molecules leading to attractive electrostatic interactions between oppositely charged regions on 21 

adjacent DNP surfaces. Diamond nanoparticles at low NOM-to-DNP ratios attach to model 22 

membranes to a larger extent than in the absence of NOM (including those incorporating 23 
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lipopolysaccharide, a major bacterial outer membrane component) and induce a comparable 24 

degree of membrane damage and toxicity to S. oneidensis. At higher NOM-to-DNP ratios, DNP 25 

charge is reversed, and DNP aggregates remain stable in suspension. This charge reversal 26 

eliminates DNP attachment to model membranes containing the highest LPS contents studied 27 

due to electrostatic repulsion and abolishes membrane damage to S. oneidensis. Our results 28 

demonstrate that the effects of NOM coronas on nanoparticle properties and interactions with 29 

biological surfaces can depend on the relative amounts of NOM and nanoparticles.  30 

INTRODUCTION 31 

Rapid growth in the production and use of engineered nanomaterials has been 32 

accompanied by an increase in the potential for these materials to be released into the 33 

environment and for organisms to be exposed to them.
1-2

 The large surface-to-volume ratio of 34 

nanomaterials as well as their high surface energy promotes the acquisition of a coating or 35 

“corona” of natural organic matter (NOM)
3-5

 upon entry into wastewater treatment plants, natural 36 

waters, aquatic sediments, and soils. Natural organic matter is comprised of a complex mixture 37 

of relatively low molecular mass organic compounds resulting primarily from microbial 38 

degradation of vegetation, algae, and bacterial biomass.
6
 Natural organic matter is found in 39 

natural waters at organic carbon (oc) concentrations ranging from ~0.5 mgoc·L
-1

 in seawater and 40 

groundwater to over 30 mgoc·L
-1

 in wetlands.
7
 Over the pH range typical for environmental 41 

systems (4 to 9), NOM bears a net negative charge due to the deprotonation of carboxyl and 42 

phenolic groups.
8-9

 Acquisition of a NOM “corona” alters the physical and chemical properties 43 

of nanomaterials and impacts their transport and fate in the environment.
10-13

 Interaction with 44 

NOM can stabilize nanoparticle suspensions electrostatically or through a combination of 45 

electrostatic and steric interactions.
13

 Natural organic matter can induce aggregation of 46 
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nanoparticles in the presence of elevated concentrations of divalent metal cations and when 47 

neutralizing nanoparticle charge.
14-16

 Such nanoparticle aggregation in the presence of NOM 48 

depends on the nanoparticle coating,
14,17

 NOM properties (e.g., polarity fraction,
18-21

 molecular 49 

mass
22-25

), and NOM concentration.
16,26-27

 Natural organic matter-induced changes to 50 

nanoparticle surface charge, colloidal stability, and hydrodynamic properties warrant 51 

consideration in assessing the potential for these materials to adversely impact organisms in the 52 

environment. 53 

The initial point of contact between nanoparticles and cells is often a lipid membrane, yet 54 

the impact of NOM on nanoparticle interactions with cell membranes has received little study. 55 

One previous study showed that humic acid decreased fullerene accumulation in zwitterionic and 56 

negatively charged solid-supported lipid membranes and reduced uptake by Caco-2 cells.
28

 The 57 

reduction in cellular uptake was attributed to electrostatic repulsion between the negatively 58 

charged humic acid-coated fullerene surface and the negatively charged Caco-2 cytoplasmic 59 

membrane.
28

 Similarly, NOM prevented adhesion of nanoscale zero-valent iron to the outer 60 

membrane of Escherichia coli through electrostatic and steric repulsion, decreasing toxicity.
29

 61 

These studies demonstrate that NOM coatings can modulate the interaction of nanoparticles with 62 

cellular membranes.  63 

 Solid-supported lipid bilayers are often used as model systems to understand the 64 

complex interactions that occur between nanomaterials and cellular membranes.
30-36

 The 65 

majority of these studies have employed bilayers composed of a single phospholipid or binary 66 

mixtures of phospholipids. Such bilayers do not include cell surface components expected to be 67 

important for the interaction of nanoparticles with bacteria. For example, the outer membrane of 68 

Gram-negative bacteria is complex and its outer leaflet contains up to 75% lipopolysaccharides 69 
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(LPS), a class of glycolipids.
37

 The construction of model membranes incorporating LPS has 70 

been recently reported.
33,38

 Nanoparticle interactions with model membranes incorporating LPS 71 

are expected to correspond more closely to results obtained using bacteria than are those with 72 

bilayers lacking these important cell-surface molecules.
33

 Identification of the impacts of NOM 73 

on nanoparticle hydrodynamic and electrokinetic properties as well as on their interactions with 74 

model and actual bacterial membranes is needed to better elucidate the role NOM plays in 75 

interactions between nanomaterials and bacteria.  76 

The objectives of this study were to investigate the impact of NOM-to-nanoparticle 77 

concentration ratio on the interaction of cationic nanoparticles with model cell membranes, 78 

including those incorporating LPS, and with the Gram-negative bacterium Shewanella 79 

oneidensis MR-1. To achieve these objectives, we used diamond nanoparticles (DNPs) 80 

functionalized with the polycation poly(allylamine HCl) (PAH) and Suwannee River NOM as 81 

model systems. Nanodiamond is used as a polishing material,
39

 an additive in rubbers
40

 and 82 

lubricants,
39

 and in drug delivery and bioimaging.
41

 Use of DNPs in the present study was 83 

motivated by their chemical stability and the ease with which they can be functionalized, 84 

allowing us to probe interactions with NOM and model and actual bacterial surfaces without 85 

complications arising from dissolution of the nanoparticle core material.
42

 We chose the PAH 86 

polymer to functionalize the DNPs to investigate the impact of NOM on a capping agent 87 

previously shown to be toxic to bacteria and the microcrustacean Daphnia magna when mounted 88 

on nanogold.
43-44

 We used quartz crystal microbalance with dissipation monitoring (QCM-D) to 89 

investigate nanoparticle interaction with model membranes lacking or incorporating LPS. We 90 

further examined the impact of NOM on membrane damage and toxicity to S. oneidensis induced 91 
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by PAH-DNP. The results presented here provide new insights into how NOM affects the 92 

interaction of nanomaterials with bacterial membranes. 93 

MATERIALS AND METHODS 94 

Functionalization of diamond nanoparticles. Diamond nanoparticles 95 

(Monocrystalline Synthetic Diamond, MSY 0-0.03 µm) were obtained from Microdiamant 96 

(Legwil, Switzerland). As-received DNPs were oxidized by reflux in a 3:1 (v/v) mixture of 97 

concentrated H2SO4 and HNO3 for 3 d (Caution: extremely caustic). After oxidation the 98 

nanodiamond was diluted (10×) in ultrapure water (18.2 MΩ·cm resistivity, MilliQ-Advantage 99 

A10, Millipore) and centrifuged (5 min, 4696g) to sediment the particles. After an additional 100 

wash (centrifugation and resuspension in ultrapure water), the pellet was resuspended in 3:1 (v/v) 101 

H2SO4:HNO3 and refluxed for another 3 d. The resulting nanoparticle suspension was diluted, 102 

centrifuged (5 min, 4696g), and resuspended repeatedly until the pH was neutral and the particles 103 

did not sediment. The dispersed particles were electrostatically wrapped with PAH polymer (15 104 

kDa, Sigma Aldrich) by mixing particles (1 mg·mL
-1

 as determined by gravimetric analysis) with 105 

polymer solution (1 mg·mL
-1

 in 0.001 M NaCl) at a 1:1 ratio overnight. Particles were dialyzed 106 

(Spectrum Labs, nominal molecular weight cut-off 50 kDa) against 4 L of ultrapure water three 107 

times (4 h the first time and 24 hr each for the two subsequent times) to remove excess polymer.  108 

Natural organic matter. Suwannee River NOM was obtained from the International 109 

Humic Substances Society (1R101N, St. Paul, MN). Stock solutions of NOM (200 mgoc·L
-1

) 110 

were prepared in ultrapure water (18.2 MΩ·cm resistivity, Barnstead GenPure Pro) adjusted to 111 

pH 10 with 6 M NaOH. The solution was allowed to stir overnight in the dark, filtered through a 112 

0.22 µm Teflon® filter, and stored at 4 °C. The total organic content in the stock solution was 113 

determined after filtration using the UV/persulfate oxidation method with membrane 114 

Page 5 of 33

ACS Paragon Plus Environment

Environmental Science & Technology



 6

conductometric detection of CO2 (GE Instruments/Sievers Model 900 TOC analyzer, 186 ± 13 115 

mgoc·L
-1

). Prior to use in experiments, NOM solutions were buffered to pH 7.4 with 0.002 M 4-116 

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Fisher Scientific) and the ionic 117 

strength was adjusted to 0.025 M with NaCl.  118 

Hydrodynamic and electrokinetic characterization. We determined diffusivities 119 

and electrophoretic mobilities of PAH-DNPs over a range of NOM-to-DNP concentration ratios, 120 

by dynamic light scattering and laser Doppler microelectrophoresis (75 V; Malvern ΖetaSizer 121 

Nano ZS, Worcestershire, UK). Unless otherwise noted, experiments were conducted at a 1 nM 122 

number concentration of PAH-DNP in 0.025 M NaCl buffered to pH 7.4 with 0.002 M HEPES 123 

(ionic strength and pH values within the ranges encountered in natural freshwater systems).
45

 124 

After addition of PAH-DNP to a buffered NOM solution, the mixture was vortexed and analyzed 125 

immediately. (Experiments were conducted to evaluate the effect of contact time on DLS and ζ 126 

potential measurements, and we saw no significant differences between immediate analysis and 127 

analysis after 1 h of contact time, here we report findings for the case where the particles were 128 

mixed and immediately analyzed). Diffusivity and electrophoretic mobility measurements 129 

represent averages of five measurements. We calculated intensity-averaged hydrodynamic 130 

diameters from the particle diffusivities using the Stokes−Einstein equation. Hydrodynamic 131 

diameter (dh) number distributions were estimated from the intensity measurements using Mie 132 

theory.
46

 We estimated DNP ζ-potentials from the electrophoretic mobility using the 133 

Smoluchowski approximation.
47-48

 The Smoluchowski approximation assumes the particle is a 134 

hard sphere; however, the polyelectrolyte coatings on the nanodiamond used here renders a 135 

relatively soft, ion-penetrable shell on a hard particle core, making the ζ-potential derived from 136 

the Smoluchowski approximation an apparent value.
48

 137 
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Quantification of free NOM in solution. Ultraviolet-visible (UV-Vis) absorption 138 

spectroscopy was used to determine the amount of chromophoric NOM bound to the surface of 139 

the PAH-DNPs (Shimadzu UV-2401PC). Samples varying in NOM-to-DNP ratio were prepared 140 

as described for DLS measurements and then centrifuged (90 min, 25,000g, 25 °C) to produce a 141 

pellet of either PAH-DNP or NOM/PAH-DNP. Supernatant was removed, and the chromophoric 142 

NOM remaining in the supernatant was quantified by comparing the absorbance at 320 nm to a 143 

calibration curve made from a stock NOM solution (Figure S1). 144 

Preparation and characterization of phospholipid vesicles. We prepared small 145 

unilamellar vesicles (SUVs) composed of solely 1-palmitoyl-2-oleoyl-sn-glycero-3-146 

phosphocholine (POPC, 16:0-18:1 PC; Avanti Polar Lipids) or with 0.46 mol% rough LPS 147 

(rLPS) or smooth LPS (sLPS) or 6.4 mol% rLPS as recently described.
33

 Rough and smooth LPS 148 

were from Salmonella enterica serotype minnesota Re 595 (the so-called deep rough mutant) and 149 

serotype minnesota, respectively (Sigma Aldrich). Further details on preparation and 150 

characterization of these vesicles, as well as the generic structure of LPS are presented in the 151 

Supporting Information (Figures S2 and S3). 152 

Interaction of diamond nanoparticles with supported lipid bilayers. We used 153 

QCM-D to monitor the formation of supported lipid bilayers and their interactions with 154 

nanoparticles in real time and without the use of labels. The QCM-D technique measures the 155 

changes in resonance frequency (∆ƒ) and energy dissipation (∆D) for an AT-cut quartz crystal as 156 

an analyte interacts with the sensor surface. Changes in frequency are related to changes in the 157 

mass coupled to the sensor surface, which includes the mass of both the analyte and of any 158 

dynamically coupled solvent. The dissipation factor, D, represents the fractional energy loss per 159 

radian at the oscillation frequency and provides information on the viscoelastic properties of 160 
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laterally homogeneous adlayers or the stiffness of particle–surface contacts for films of discrete 161 

nanosized objects.
49

 Rigidly adsorbed films have a fractional energy loss per radian of oscillation 162 

that is small relative to the change in frequency of a given harmonic (n), defined –∆Dn/(∆ƒn/n) 163 

<< 2/(ƒn) (equal to 4 × 10
-7

 Hz
-1

 for the 4.96 MHz crystals used here),
49

 where n is the harmonic 164 

number. For such films, the adsorbed surface mass density (∆ΓQCM-D) is linearly related to the 165 

change in frequency, as described by the Sauerbrey equation:
50

 166 

          (2) 167 

where C is the mass sensitivity constant (equal to 18.0 ng·Hz
-1

·cm
-2

 for a 4.96 MHz crystal). In 168 

the PAH-DNP experiments presented, –∆Dn/(∆ƒn/n) < 4 × 10
-7

 Hz
-1

 (Table S7), and the 169 

Sauerbrey equation was used to estimate acoustic surface mass density. The fundamental and 170 

odd harmonics (n = 3-11) were measured simultaneously. Data from odd harmonics 3 through 11 171 

were equivalent;
51

 we present data from the 5
th

 harmonic (~25 MHz) for all studies. Initial rates 172 

of PAH-DNP deposition (rd) were calculated as the first derivative of the change in acoustic 173 

surface mass density with respect to time over the first 30 seconds of attachment:
52-54

 174 

          (3) 175 

 Prior to QCM-D experiments, SiO2-coated sensor crystals (QSX303, Biolin Scientific, 176 

Stockholm, Sweden) were cleaned by sonicating in a 2% sodium dodecyl sulfate solution (10 177 

min), rinsing alternatively with ultrapure water and ethanol three times, drying with N2 gas, and 178 

exposed to ultraviolet light (185 nm and 254 nm) from a low-pressure mercury lamp (20 min) to 179 

remove any trace organic compounds (Bioforce Nanosciences UV/Ozone Procleaner). 180 

We formed supported lipid bilayers on SiO2-coated quartz crystal microbalance sensors 181 

from SUVs composed of POPC with or without LPS via the vesicle fusion method
33,38,55

 using a 182 

∆Γ
QCM-D

= −
C

n
∆f

n

r
d
=

dΓ
QCM-D

dt
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Q-Sense E4 instrument (Biolin Scientific). The sensors were first equilibrated in 0.150 M NaCl 183 

buffered to pH 7.4 with 0.002 M HEPES (pH and buffer concentration used throughout unless 184 

otherwise noted). Vesicles (0.125 mg·mL
-1

) in a solution of the same composition were flowed 185 

(0.100 mL·min
-1

) over the surface until the critical surface vesicle concentration (evidenced as 186 

the time at which the maximum frequency change is observed)
56

 was attained and the vesicles 187 

ruptured and fused to form a bilayer. After frequency and dissipation values stabilized, vesicle-188 

free solution was flowed over the sensor to remove any loosely adsorbed vesicles. The ionic 189 

strength was lowered by exchanging the 0.150 M NaCl solution with 0.025 M NaCl solution 190 

until a stable baseline was reached. Figure S4 shows a representative frequency trace.  191 

Suspensions of PAH-DNP with or without NOM (5 or 30 mgoc·L
-1

) or NOM alone (5 or 192 

30 mgoc·L
-1

) in 0.025 M NaCl were flowed over the supported lipid bilayers, and attachment was 193 

monitored for 20 min. (For samples including NOM and PAH-DNPs, PAH-DNPs were exposed 194 

to NOM for up to 20 min before introduction to the QCM-D as no further aggregation of the 195 

particles was observed by DLS in this time frame.) After 20 min, bilayers were rinsed with 196 

nanoparticle-free solution to examine the reversibility of attachment. In a subset of experiments, 197 

the bilayer was equilibrated with 4.7 mg·L
-1

 PAH polymer prior to the introduction of PAH-DNP 198 

(with or without NOM) to examine the influence of adsorbed polymer on nanoparticle 199 

attachment to the bilayers (Table S9). Attachment experiments were conducted in at least 200 

triplicate at 25.0 ± 0.5 °C. 201 

Shewanella oneidensis viability and membrane damage. Shewanella 202 

oneidensis was grown from colonies on an agar plate in Difco
TM

 Luria-Bertani (LB) Broth 203 

overnight in a shaker incubator (30 °C, 275 rpm). Cells were sedimented (2000g, 10 min) and 204 

resuspended in Dulbecco's phosphate-buffered saline (D-PBS), and sedimented and resuspended 205 
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again in fresh 0.025 M NaCl buffered to pH 7.4 with 0.002 M HEPES before exposure to 206 

nanoparticles.  207 

We evaluated the toxicity of PAH-DNP to S. oneidensis using a growth-based viability 208 

assay to quantify actively metabolizing cells.
57

 The time for a cell culture to reach log phase 209 

depends on initial cell density: the longer the delay (lag phase), the lower the initial viable cell 210 

density (measured in colony forming units, CFU). A calibration curve of S. oneidensis was 211 

constructed using serially diluted cell culture where 10
7
 CFU·mL

-1
 was defined as 100% viable. 212 

A S. oneidensis culture at 10
7
 CFU·mL

-1
 was incubated (10 min) with NOM alone or with 213 

NOM+DNP at ratios ranging from 0 to 6.67 mgoc·mgPAH-DNP
-1, then diluted in fresh LB medium in 214 

a 96-well plate. Optical density at 600 nm was monitored at 20-min intervals for 20 h 215 

(SpectraMax Plate Reader) at 30 °C with agitation between readings to track cell growth. The 216 

time to reach log phase for each exposure condition was compared to the calibration curve to 217 

determine any change in viability.  218 

 The LIVE/DEAD BacLight
TM

 kit (ThermoFisher Scientific) was used to assess bacterial 219 

membrane damage by PAH-DNP in the presence and absence of NOM. We exposed S. 220 

oneidensis to 1 nM PAH-DNP at NOM-to-DNP ratios ranging from 0 to 6.67 mgoc·mgPAH-DNP
-1 for 221 

10 min, and the cells were distributed in a 96-well plate in triplicate. The LIVE/DEAD stain 222 

mixture was used according to manufacturer recommendations. Analyses were conducted using a 223 

fluorescence plate reader using an excitation wavelength of 485 nm. Fluorescence intensity was 224 

measured at 528 nm and 635 nm for SYTO9 and propidium iodide (PI), respectively. SYTO9-to-225 

PI fluorescence intensity ratios were determined for each exposure and normalized to that of a 226 

control bacterial sample not exposed to either PAH-DNP or NOM.  227 
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Statistical analyses. Comparisons across bilayer types and particle conditions were 228 

made using a two-way ANOVA with a Tukey correction for multiple comparisons at the α = 229 

0.05 level of significance (Prism 6.0).  230 

RESULTS AND DISCUSSION 231 

NOM alters nanoparticle hydrodynamic and electrokinetic properties. We 232 

determined the hydrodynamic diameter (dh) and ζ-potential of the PAH-DNPs over a range of 233 

NOM concentrations (0 to 30 mgoc·L
-1

) representing NOM-to-PAH-DNP ratios of 0 to 8 mg-234 

oc·mgPAH-DNP
-1. Interaction with NOM induced changes to PAH-DNP dh (Figure 1a) and ζ-potential 235 

(Figure 1b). In the absence of NOM at an ionic strength of 0.025 M and a pH of 7.4 (0.002 M 236 

HEPES), PAH-DNPs were present in suspension primarily as single positively charged 237 

nanoparticles (dh = 17 ± 6 nm, equivalent to the nominal core size of the nanoparticles, ~15 nm; 238 

ζ-potential = +21 ± 3 mV). At a NOM-to-DNP ratio of 1.33 mgoc·mgPAH-DNP
-1, the dh of PAH-DNP 239 

increased to 42 ± 9 nm, indicating a modest degree of aggregation, but the ζ-potential remained 240 

unchanged (+22.3 ± 0.6 mV). Measurement of the NOM in solution that was not bound to PAH-241 

DNPs at this NOM-to-DNP ratio was thwarted by the inability to sediment these particles from 242 

suspension even at centrifugal forces up to 649,555g for 120 min. The PAH-DNPs were more 243 

stable with respect to sedimentation at 1.33 mgoc·mgPAH-DNP
-1 than when no NOM was present. 244 

Increasing the NOM-to-DNP ratio to 2.67 mgoc·mgPAH-DNP
-1 resulted in further particle aggregation 245 

and a reversal of ζ-potential to –13.0 ± 0.4 mV. At NOM-to-DNP ratios of 4 mgoc·mgPAH-DNP
-1

 246 

and higher, the dh and ζ-potentials of the PAH-DNP remained relatively constant, near 40 nm 247 

and –30 mV, respectively. Sedimentation of aggregates formed at NOM-to-DNP ratios of 2.67 248 

and 8 mgoc·mgPAH-DNP
-1 from suspension by centrifugation (90 min, 25,000g) and determination of 249 
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the amount of NOM remaining in the supernatant (Figure S1), suggested that 2.1 mgoc·mgPAH-250 

DNP
-1

 bound to the surface of the DNP (0.011 mgoc·nm
-2

).  251 

We attribute the decrease in PAH-DNP ζ-potential with increasing NOM-to-DNP 252 

concentration ratio primarily to electrostatic interaction of deprotonated carboxyl groups of 253 

NOM with the positively charged pendant primary amines on the PAH polymers. At low NOM-254 

to-DNP ratios (≤ 1.33 mgoc·mgPAH-DNP
-1), interaction with NOM molecules induces a small degree 255 

of aggregation, but the NOM molecules are not present at high enough concentration to 256 

neutralize the overall charge of the PAH-DNPs or displace the PAH polymer wrapping. At this 257 

low NOM-to-DNP ratio, aggregation may be due to NOM adsorption leading to uneven charge 258 

distribution and a concomitant attractive contribution to the interaction energy.
58-59

 Aggregation 259 

induced by oppositely charged patches on nanoparticle surfaces is not satisfactorily represented 260 

by classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory.
60

 As the NOM-to-DNP ratio 261 

increased, electrostatic interaction with NOM molecules neutralized and then reversed the 262 

positive charge on the DNPs; when the magnitude of the ζ-potential was small, attractive van der 263 

Waals forces overcame electrostatic repulsion between particles and destabilized the particle 264 

suspensions. Alternatively, aggregation rates may have risen as the probability of favorable 265 

interactions increased between oppositely charged regions on the DNP surfaces (a function of 266 

surface coverage and charge density of both the PAH and the adsorbing NOM molecules) 267 

leading to maximum aggregation rates at non‐zero net surface charge.
58-59

 At yet higher NOM-268 

to-DNP ratios (≥4 mgoc·mgPAH-DNP
-1), the NOM-coated particles possessed strongly negative ζ-269 

potentials (–30 mV) and yielded stable suspensions of DNP aggregates with comparable dh (one-270 

way ANOVA, p = 0.2334). The observed charge reversal indicated that NOM molecules either 271 

overcoat the positively charged polymer on the nanodiamond surface, forming a “NOM corona” 272 
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around the particles, or displaced the electrostatically wrapped PAH polymer. Charge reversal of 273 

positively charged bare zinc oxide,
61-62

 hematite,
15

 and titanium dioxide
16

 due to interaction with 274 

NOM has been reported previously. Furthermore, increasing the concentration ratio of NOM to 275 

gold nanoparticles functionalized with positively charged branched polyethylenimine or 276 

aminated polyethylene glycol led to charge neutralization and ultimately charge reversal much 277 

like we observed with PAH-DNPs.
17

 Our findings are consistent with these results and 278 

demonstrate the same phenomenon for particles differing in core material and initial organic 279 

coating.  280 

Nanodiamond attachment to zwitterionic phospholipid bilayers. We next 281 

investigated the impact of the NOM-induced changes to PAH-DNP properties on their 282 

interaction with model membranes composed of the zwitterionic phospholipid POPC. We 283 

examined the influence of NOM on initial attachment rates to and acoustic surface mass densities 284 

attained on POPC bilayers of PAH-DNPs at NOM-to-DNP ratios of 0, 1.33, and 8 mgoc·mgPAH-285 

DNP
-1 by QCM-D (Figure 2). Consistent with expectations, electrostatic attraction between the 286 

positively charged PAH-DNP and the negative potential of the supported zwitterionic POPC 287 

bilayer
34,63

 led to attachment in the absence of NOM (Figure 2). We calculated the efficiency of 288 

PAH-DNP attachment to lipid bilayers to quantify the kinetics of initial attachment:
64

 289 

 (5) 290 

where dΓQCM-D/dt is the change in adsorbed surface mass density per unit time and the subscript 291 

fav on the term in the denominator refers to the change in adsorbed surface mass density under 292 

favorable deposition conditions (absence of an energy barrier to deposition). In the present study, 293 

we approximated favorable deposition conditions for the positively charged PAH-DNPs using 294 

α
D
=

dΓ
QCM-D

dt( )
lipid bilayer

dΓ
QCM-D

dt( )
fav
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the strongly negatively charged SiO2 surface.
63

 To do this, we empirically determined initial 295 

rates of attachment to SiO2 under the same conditions used for the bilayers. We found all 296 

attachment efficiencies for PAH-DNPs to be near unity (Table S2), consistent with previous 297 

findings of favorable interaction between cationic nanoparticles and zwitterionic lipid 298 

bilayers.
33,65-66

 We hypothesize that the amine groups on the PAH polymer on the nanodiamond 299 

interacted with the phosphate group in the phosphatidylcholine headgroup of the POPC lipids.
67-

300 

68
 The surface mass density of PAH-DNPs attained after 20 min was higher on the POPC bilayer 301 

than on SiO2 by a factor of ~3.6 (Figure 2b, Table S8). Lateral repulsion between positively 302 

charged PAH-DNP appears to limit the extent of attachment on the SiO2 surface. Lateral 303 

repulsion seems to be diminished on the POPC bilayer, likely due to phospholipid extraction,
35,67

 304 

allowing higher surface densities to be reached. Rinsing with nanoparticle-free solution produced 305 

small (9 ± 2 ng·cm
-2

) decreases in acoustic mass consistent with removal of a small population of 306 

loosely adhered PAH-DNPs. The attachment of the remaining PAH-DNPs was irreversible on 307 

the timescale of our experiments. 308 

At the low NOM-to-DNP ratio of 1.33 mgoc·mgPAH-DNP
-1, the PAH-DNP aggregated to a 309 

moderate extent (dh = 42 ± 9 nm) and retained a positive ζ-potential (+22.3 ± 0.6 mV). The initial 310 

rate of PAH-DNP attachment to POPC bilayers at this low NOM-to-DNP ratio did not differ 311 

significantly from that for PAH-DNP in the absence of NOM (p > 0.05; Figure 2a and Table S1), 312 

and attachment efficiencies were close to unity (Table S2). This result is not attributable to the 313 

deposition of NOM itself to the bilayer. Control experiments showed the initial rate of NOM 314 

attachment to POPC to be nearly zero at a concentration of 5 mgoc·L
-1

 (the total NOM 315 

concentration in the 1.33 mgoc·mgPAH-DNP
-1 NOM-to-DNP suspensions; Table S1). Furthermore, 316 

exposure of POPC bilayers to 5 mgoc·L
-1

 NOM prior to introduction of PAH-DNP did not alter 317 
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the initial attachment rate (–1.8 ± 0.2 ng·cm
-2

·s
-1

; p > 0.05). We expect transport of the 318 

aggregates formed in the presence of 5 mgoc·L
-1

 NOM to the model membrane surface to be 319 

slower than that of the individual PAH-DNPs. Using a Lévêque solution for convective-diffusive 320 

transport modified to account for the curvilinear flow in the QCM-D flow chamber,
69

 we 321 

estimate that in the presence of 5 mgoc·L
-1

 NOM the spatially averaged mass-transport limited 322 

attachment rate constant is smaller by a factor of 0.56 ± 0.15 relative to the case without NOM 323 

(for details of this analysis see the Supporting Information). The equivalence of the initial 324 

attachment rates in the absence and presence of 5 mgoc·L
-1

 NOM implies that the average 325 

effective mass of the aggregates (mass of PAH-DNPs, NOM and internal water) attaching to the 326 

model membrane during the initial attachment period is roughly twice that of the individual 327 

PAH-DNPs.  328 

The acoustic surface mass density (ΓQCM-D) of PAH-DNP on POPC bilayers after 20 min 329 

exposure under flowing conditions was substantially larger at a NOM-to-DNP ratio of 1.33 mg-330 

oc·mgPAH-DNP
-1 than in the absence of NOM (p < 0.0001; Figure 2b, Table S8) and was 331 

accompanied by larger energy dissipation than in the absence of NOM (Table S6) and more 332 

pronounced dispersion in ∆fn/n indicating that the NOM/PAH-DNP aggregates were less rigidly 333 

coupled to the oscillating sensor than in the absence of NOM. Rinsing with PAH-DNP- and 334 

NOM-free solution resulted in no net change in acoustic mass indicating that NOM/PAH-DNP 335 

attachment to POPC bilayers was irreversible over experimental time scales. The much larger 336 

ΓQCM-D was not attributable to adsorption of NOM alone; exposure of POPC bilayers to 5 mgoc·L
-

337 

1
 NOM in the absence of PAH-DNP resulted in ΓQCM-D values far too small (Table S8) to account 338 

for the large difference observed in PAH-DNP attachment in the presence and absence of this 339 

concentration of NOM. Furthermore, ΓQCM-D for attachment to POPC bilayers was statistically 340 
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indistinguishable whether or not the bilayers had been first exposed to 5 mgoc·L
-1

 NOM for 20 341 

min prior to interaction with PAH-DNP. We therefore attributed the higher ΓQCM-D at the 1.33 342 

mgoc·mgPAH-DNP
-1 NOM-to-DNP ratio relative to that in the absence of NOM to NOM-induced 343 

changes to PAH-DNP properties. As noted above, adsorption of NOM molecules may lead to 344 

electrostatic attraction between oppositely charged regions on adjacent DNPs and thereby a 345 

moderate degree of aggregation at NOM concentrations insufficient to induce rapid aggregation 346 

while the ζ-potential remains positive. The effective mass of these aggregates (mass of PAH-347 

DNPs, NOM and internal water) is higher than that of single PAH-DNPs. We therefore attributed 348 

the higher ΓQCM-D at a NOM-to-DNP ratio of 1.33 mgoc·mgPAH-DNP
-1 to the larger effective mass of 349 

the aggregated particles delivered to the sensor surface.  350 

At a NOM-to-DNP ratio of 8 mgoc·mgPAH-DNP
-1, NOM molecules induced a modest degree 351 

of aggregation (dh = 34 ± 13 nm) and coated the PAH-DNPs to the extent that the surface charge 352 

was reversed and the ζ-potential was strongly negative (–33 ± 1 mV). At this NOM-to-DNP 353 

ratio, the initial rate of PAH-DNP deposition was more than an order of magnitude lower than in 354 

the absence of NOM (p < 0.0001; Figure 2a, Table S1) and ΓQCM-D values at 20 min were much 355 

smaller than in the absence of NOM (Figure 2b, Table S8). The NOM concentration remaining 356 

in PAH-DNP suspensions at the NOM-to-DNP ratio used here was ~22 mgoc·L
-1

. We examined 357 

the initial rate of deposition of 30 mgoc·L
-1

 NOM (the total NOM concentration in the 8 mg-358 

oc·mgPAH-DNP
-1 NOM-to-DNP suspensions) and the adsorbed surface mass density at 20 min and 359 

found the NOM deposition rate and ΓQCM-D to be comparable to those measured for the 8 mg-360 

oc·mgPAH-DNP
-1 NOM-DNP ratio (Figure 2b, Table S1). We therefore attribute the small frequency 361 

shifts observed in the NOM-DNP attachment experiments at the high NOM-to-DNP ratio to 362 

NOM molecules adsorbing to the bilayer. These results are consistent with following 363 
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interpretation: NOM molecules overcoated the PAH-DNP or displaced the electrostatically 364 

wrapped PAH polymer on the DNP surface to the extent that the ζ-potential of the aggregates 365 

became strongly negative resulting in a significant electrostatic energy barrier to attachment to 366 

the negatively charged supported model membranes to which NOM had adsorbed.
65,70

  367 

Nanodiamond interaction with phospholipid bilayers containing 368 

lipopolysaccharides. Full-length, or smooth, LPS is composed of three parts: Lipid A, a core 369 

oligosaccharide, and an O-polysaccharide (Figure S2).
71-73

 The presence or absence of an O-370 

polysaccharide determines whether a LPS molecule is respectively smooth or rough.
71

 Rough 371 

LPS (expressed by some bacteria) is a truncated form of LPS, which contains Lipid A and at 372 

least part of the core oligosaccharide, but lacks the outer O-polysaccharide. The rough LPS 373 

produced by deep rough mutant 595 used in the present study is composed of Lipid A and two 374 

residues of 2-keto-3-deoxy-D-manno-octonate (Kdo) in the core oligosaccharide. In contrast, the 375 

smooth LPS also contained a variable length O-polysaccharide lacking acidic residues and the 376 

portion of the core oligosaccharide between the Kdo residues and the O-polysaccharide, which 377 

includes two phosphate groups.
33,74

 The core oligosaccharide of the deep rough and smooth LPS 378 

thus contained two and four negative charges, respectively.  379 

Due to the relevance and abundance of these biomolecules at Gram-negative bacterial 380 

surfaces we investigated the effect of including rough or smooth LPS molecules in supported 381 

POPC bilayers on PAH-DNP interaction with model membranes in the absence and presence of 382 

NOM. To construct bilayers incorporating LPS, we employed the vesicle fusion method using 383 

LPS-containing POPC vesicles. Vesicles incorporating LPS exhibited more negative ζ-potentials 384 

than did those composed solely of POPC (Figure S3). Smooth LPS is larger and more negatively 385 

charged than is deep rough LPS. Electrostatic and steric repulsion limits the maximum amount of 386 
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smooth LPS that can be incorporated into SiO2-supported model membranes via the vesicle 387 

fusion method to a lower mol% than can be achieved with rough LPS.
33,38

 To enable direct 388 

comparison between the two types of LPS we therefore prepared bilayers from vesicles 389 

containing 0.46 mol% rough or smooth LPS. To examine the impact of rough LPS surface 390 

density on PAH-DNP attachment, we also formed bilayers from vesicles containing 6.4 mol% 391 

rLPS.  392 

Initial rates of PAH-DNP attachment to POPC bilayers and those formed from vesicles 393 

containing 0.46 mol% rLPS or sLPS were statistically indistinguishable (p > 0.05; Figure 2a, 394 

Table S1) and attachment efficiencies were close to 1 (Table S2). This is likely attributable to the 395 

small amount of LPS incorporated into these membranes. Increasing vesicle rLPS content from 396 

0.46 to 6.4 mol% produced a small decrease in the initial rate of PAH-DNP attachment relative 397 

to that of POPC (p < 0.01, Figure 2a, Table S1). Increasing the incorporation of rough LPS into 398 

vesicles by a factor of ~14 decreased the ζ-potential of the vesicles from –12.6 ± 3.6 mV to –41.7 399 

± 2.2 mV(Figure S3). We therefore hypothesize that the decrease in rd was due to the LPS 400 

groups sterically hindering accessibility to the negative charges on the phosphatidylcholine 401 

groups of the bilayer. Values for ΓQCM-D after 20 min attachment of PAH-DNPs to POPC 402 

bilayers and those incorporating rLPS or sLPS were statistically indistinguishable (p > 0.05; 403 

Figure 2b, Table S8).  404 

At a low NOM-to-DNP ratio of 1.33 mgoc·mgPAH-DNP
-1, the initial rates and attachment 405 

efficiencies of NOM/PAH-DNPs attachment to bilayers containing 0.46 mol% rough or smooth 406 

LPS were equal to those measured in the absence of NOM (p >0.05; Figure 2a, Table S1). 407 

Equivalent amounts of NOM at this ratio (5 mgoc·L
-1

) showed little attachment to 0.46 mol% 408 

rLPS and no attachment to 0.46 mol% smooth or 6.4 mol% rough LPS. In the case of 6.4 mol% 409 
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rLPS, an increase in attachment rate was observed relative to that in the absence of NOM (p 410 

<0.0001). Acoustic surface mass densities after 20 min attachment of NOM/PAH-DNPs to all 411 

bilayers were higher at a NOM-to-DNP ratio of 1.33 mgoc·mgPAH-DNP
-1 relative to those obtained in 412 

the absence of NOM (p < 0.0001; Figure 2b, Table S8). As noted in the case of POPC, the larger 413 

ΓQCM-D values may be attributable to the higher mass associated with the aggregated particles 414 

(PAH-DNPs, NOM and internal water) at this NOM-to-DNP ratio. 415 

As we observed for POPC bilayers for NOM-to-DNP ratios of 8 mgoc·mgPAH-DNP
-1, 416 

attachment rates to bilayers containing LPS were at least an order of magnitude lower than in the 417 

absence of NOM and indistinguishable from one another (Figure 2a, Table S1). The deposition 418 

rate of 30 mgoc·L
-1 

NOM with no PAH-DNP (the total NOM concentration in the 8 mgoc·mgPAH-419 

DNP
-1 NOM-to-DNP suspensions) was similar to that observed when particles were present to all 420 

three bilayer types (Table S1). Furthermore, the acoustic surface mass density of the 8 mg-421 

oc·mgPAH-DNP
-1

 particles after 20 min attachment was indistinguishable from that of NOM binding 422 

to the bilayer (Table S8, p > 0.05). Therefore, we attribute the observed attachment rate and 423 

attachment for the 8 mgoc·mgPAH-DNP
-1 particles solely to NOM binding to the 0.46 mol% rLPS and 424 

0.46 mol% sLPS bilayers. Neither attachment of particles at NOM-to-DNP ratios of 8 mg-425 

oc·mgPAH-DNP
-1 nor NOM itself was observed to attach to the 6.4 mol% rLPS bilayer likely due to 426 

increased electrostatic repulsion between the NOM and the more negatively charged bilayer 427 

relative to the other three studied here (Figure S3).  428 

Natural organic matter modulates PAH-DNP impact on Shewanella 429 

oneidensis. We examined the influence of NOM on the effect of PAH-DNP on the Gram-430 

negative bacterium Shewanella oneidensis. A significantly higher coverage of LPS was expected 431 

on bacterial surfaces (up to 75%) than was modeled in the membrane studies; nonetheless, we 432 
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anticipated a similar trend in surface attachment to bacterial cells to be observed. We note that 433 

under the growth conditions in this study (30 °C), S. oneidensis elaborates only rough LPS.
33 

434 

We employed the LIVE/DEAD assay to quantify membrane damage. This fluorescence-435 

based method uses two fluorescent dyes that bind to nucleic acid: green-fluorescent SYTO 9 and 436 

red-fluorescent PI. Cell-permeant SYTO 9 stains all live cells; the non-permeant PI stains nucleic 437 

acids only in the cells with damaged membranes. In the absence of NOM, exposure to 1 nM 438 

PAH-DNP resulted in membrane damage to >60% of the cells (Figure 3a). As the NOM-to-DNP 439 

ratio increased, the proportion of cells with membrane damage remained unchanged at ratios up 440 

to 0.8 mgoc·mgPAH-DNP
-1. A sharp increase in the proportion of cells with intact membranes was 441 

observed at ratios between 0.8 and 1.1 mgoc·mgPAH-DNP
-1, with no observable damage above a ratio 442 

of 1.1 mgoc·mgPAH-DNP
-1

.  443 

The impact of NOM on the toxicity to S. oneidensis induced by exposure to PAH-DNP 444 

exhibited a similar trend (Figure 3b). The toxicity of 1 nM PAH-DNP was completely 445 

ameliorated at NOM-to-DNP ratios ≥ 1.3 mgoc·mgPAH-DNP
-1. The strong correspondence between 446 

the membrane damage and bacterial viability results displayed in Figure 3 was expected. Earlier 447 

studies have indicated that the toxicity of cationic polymer-wrapped nanoparticles arises largely 448 

from attachment of the positively charged particles to negatively charged bacterial surfaces 449 

leading to membrane damage.
44

 The reduced toxicity and membrane damage at higher NOM-to-450 

DNP ratios are consistent with the drastically reduced attachment of PAH-DNP to supported 451 

bilayers containing 6.4% rough LPS at NOM-to-DNP ratios of 8 mgoc·mgPAH-DNP
-1 (Figure 2b). 452 

The discrepancy between the results obtained at 1.3 mgoc·mgPAH-DNP
-1 in the whole cell and 6.4% 453 

rLPS-POPC studies may be attributable to the much higher LPS content on cell surfaces. The 454 

higher density of rLPS on the bacterial surface may have sterically hindered nanoparticle 455 
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disruption of the outer membrane. We also note that the critical NOM-to-DNP ratio that resulted 456 

in amelioration in toxicity and membrane damage by PAH-DNP occurred at a slightly lower 457 

NOM-to-DNP ratio than that of charge reversal of the nanoparticle by NOM (Figure 1b). An 458 

earlier study examining the attachment to and uptake by HeLa cells of an array of Au 459 

nanoparticles spanning a range of ζ-potentials found a threshold of effective surface charge 460 

density below which minimal binding occurred even when the particles exhibited positive ζ-461 

potentials.
75

 Our observations likely reflect such a threshold in effective charge density as 462 

modulated by adsorbed NOM molecules.  463 

Environmental implications. We have demonstrated that hydrodynamic and 464 

electrokinetic properties of DNPs wrapped with the polycation PAH are altered upon interaction 465 

with NOM and that NOM influences the interaction of these nanoparticles with model cell 466 

membranes and with intact bacterial cells. As the NOM-to-DNP ratio increased the following 467 

sequence of events occurred. Initial adsorption of NOM molecules to PAH-DNP surfaces 468 

resulted in uneven charge distributions and induced attractive interactions between oppositely 469 

charged regions on adjacent particles leading to a moderate degree of aggregation. As further 470 

NOM molecules adsorbed to DNP surfaces, the probability of favorable interactions between 471 

oppositely charged regions on the DNP surfaces increased leading to higher aggregation rates. 472 

Concurrently, adsorbing NOM molecules progressively neutralized and eventually reversed the 473 

positive potential of the particles. Aggregation was promoted at NOM-to-DNP ratios producing 474 

low ζ-potentials because the electrostatic energy barrier had been lowered sufficiently to allow 475 

attractive van der Waals interactions to cause aggregation. At still higher NOM-to-DNP ratios, 476 

the amount of NOM on the particles increased and electrostatic repulsion prevented further 477 

aggregation of PAH-DNPs. The changes to PAH-DNP hydrodynamic and electrokinetic 478 
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properties influenced the attachment of these particles to model membranes and their toxicity 479 

toward a Gram-negative bacterium. Our results lead to the expectation that the influence of 480 

NOM on nanoparticle-induced effects depends on the NOM-to-nanoparticle ratio (as well as the 481 

affinity of NOM for the nanoparticle surface).  482 

In the experiments described here, a finite amount of NOM was available to bind to the 483 

PAH-DNP. This is particularly important for the low NOM-to-DNP ratios studied because this 484 

imposes a limit on the extent of overcoating/displacement of PAH polymer in the experimental 485 

system. In the environment, the amount (mass) of NOM ultimately available would be large 486 

enough to eventually overcoat/displace the PAH polymer entirely, even at low NOM 487 

concentration. The concentration ratios of NOM to PAH-DNP studied here varied from 1.33 (for 488 

5 mgoc·L
-1

 NOM) to 8.0 (for 30 mgoc·L
-1

 NOM). In typical freshwater environments the ratio of 489 

NOM to engineered nanoparticle is expected to be much larger due to the expected low 490 

concentrations of engineered nanoparticles.
17

 Overcoating/displacement would occur, but more 491 

slowly at low NOM concentrations. Differences in kinetics of overcoating/displacement could 492 

have biological consequences, similar to those demonstrated here at different NOM 493 

concentrations, depending on how rapidly the nanoparticles come in contact with organismal 494 

surfaces.  495 

The present study represents an initial demonstration of the complex influence that NOM 496 

can have on nanomaterial interactions with bacterial surfaces. The present study focused on a 497 

single type of nanoparticle (diamond) functionalized with a single capping agent (the cationic 498 

polymer poly(allylamine HCl)). In the specific system investigated, at low NOM-to-PAH-DNP 499 

ratios PAH-DNP bound to model membranes and elicited membrane damage in the bacteria. 500 

Higher ratios, which caused reversal of the charge of the polymer-wrapped nanodiamond, 501 
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reduced attachment to the model membranes and damage to bacterial membranes. Effects similar 502 

to those we observed at high NOM concentrations have been reported for nanoscale zero-valent 503 

iron to Escherichia coli,
29

 although the mechanism of toxicity likely differed. We expect our 504 

results to be most directly transferable to positively charged natural colloids and engineered 505 

nanoparticles functionalized with cationic polymers
17,35

 and ligands
14,35,76-77

. We hypothesize that 506 

NOM overcoating/replacement of ligands occurs at the high NOM-to-nanoparticle ratios 507 

expected in the environment; in environments with low NOM concentrations, this would occur at 508 

slower rates than observed in the present study. Future studies are needed to understand the 509 

influence of NOM properties and divalent cations on nanomaterial interactions with cell surfaces 510 

in the presence of NOM.  511 
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 748 

749 

 750 

Figure 1. PAH-DNP (a) number-averaged hydrodynamic diameters and (b) apparent ζ-potentials 751 

as a function of Suwannee River NOM-to-nanoparticle concentration ratio in 0.025 M NaCl 752 

buffered to pH 7.4 with 0.002 M HEPES. Error bars represent one standard deviation of five 753 

replicate measurements. In some cases error bars in the apparent ζ-potential plot fall within the 754 

size of the marker.755 
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756 

 757 

Figure 2. Natural organic matter (NOM) influences the attachment of PAH-DNP to supported 758 

lipid bilayers composed of the zwitterionic phospholipid POPC alone or with the indicated 759 

amounts of smooth or rough lipopolysaccharide (LPS). (a) Initial rates of PAH-DNP attachment 760 

to and (b) acoustic surface mass density (ΓQCM-D) at 20 min for the indicated bilayers and SiO2 as 761 

a function of NOM concentration. Attachment rates defined as the first derivative of the change 762 

in acoustic surface mass density with respect to time over the first 30 seconds of attachment. 763 

Dotted lines are to guide the eye. Acoustic surface mass densities calculated from the Sauerbrey 764 

equation
50

 (in all cases ∆Dn/(∆fn/n) < 0.4 × 10
-6

 Hz
-1

)
49

. Symbols represent means of at least 765 

triplicate measurements; error bars denote one standard deviation. Experiments used 1 nM 766 

(number concentration) of PAH-DNPs in 0.025 M NaCl buffered to pH 7.4 with 0.002 M 767 

HEPES with the indicated amount of Suwannee River NOM at 25 °C. Numerical data for initial 768 

attachment rates and ΓQCM-D are presented in Tables S1 and S8, respectively. Abbreviations: 769 

PAH-DNP, diamond nanoparticles functionalized with poly(allylamine HCl); POPC, 1-770 

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; rLPS, rough lipopolysaccharide; sLPS, smooth 771 

lipopolysaccharide. 772 
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 773 

774 

 775 

  776 

Figure 3. The influence of NOM-to-DNP ratio on (a) membrane damage and (b) toxicity to 777 

Shewanella oneidensis by 1 nM PAH-DNP. Experiments were performed in 0.025 M NaCl 778 

buffered with 0.002 M HEPES to pH 7.4. 779 
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