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Abstract

The surface charge of nanomaterials determines their stability in solution and in-

teraction with other molecules and surfaces, yet experimental determination of surface

charge of complex nanomaterials is not straightforward. We propose a hybrid ap-

proach that iteratively integrates explicit solvent molecular dynamics simulations and

a multi-conformer continuum electrostatic model (MCCE) to efficiently sample the

configurational and titration spaces of surface ligands of nanomaterials. Test calcula-

tions of model systems indicate that the iterative approach converges rapidly even for

systems that contain hundreds of titratable sites, making the approach complementary
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to more elaborate methods such as explicit solvent-based constant pH molecular dy-

namics. The hybrid method is applied to analyze the pKa distribution of alkyl amines

attached to a carbon-based nanoparticle as a function of ligand density, nanoparticle

surface curvature and ligand heterogeneity. The results indicate that functionalization

strategies can modulate the pKa of surface ligands, and therefore charge properties of

nanomaterials (e.g., surface charge, charge capacitance). The hybrid computational

approach makes a major step towards guiding the design of nanomaterials with desired

charge properties.
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1 Introduction

Nanotechnology is playing increasingly prominent roles in the society. With well-controlled

size, shape and composition, nanomaterials can have unique physical and chemical properties

that make them well suited in a broad range of applications such as energy storage,1 wa-

ter treatment,2–4 imaging,5–7 drug delivery and diagnostics8–11 and electronic displays.12,13

On the other hand, the small size, large surface area and possibly high chemical reactiv-

ity of nanomaterials raise concern about their potential to cause deleterious environmental

and health impacts. Therefore, significant efforts have been made to determine the envi-

ronmental behavior and toxicity of nanomaterials.14–18 Due to the complexity of nano/bio

interfaces, however, it is often not straightforward to understand the molecular-level mecha-

nisms that underlie the observed toxicities.19–21 Along this line, a tight integration between

multi-faceted experimental studies and computational analyses is required to determine the

causal relationships between physicochemical properties of nanomaterials and their impacts

on the environment and biological systems.22,23

One of the key physicochemical properties in this context is the surface charge distribu-

tion of nanomaterials, which strongly influences how nanomaterials interact with each other

and with surrounding (bio)molecules, such as proteins and lipid membrane.24–28 For example,

several studies have indicated that positively charged nanoparticles are more toxic than neg-

atively charged nanoparticles to organisms such as bacteria29 and Daphnia magna.30 Thus

it is important to be able to control and determine the amount of surface charge of nanoma-

terials. A quantitative determination of surface charge, however, is far from straightforward.

First, nanomaterials are often functionalized with organic ligands to either enhance suspen-

sion stability or to modulate chemical reactivity, and these ligands often include titratable

groups. When the ligand density is high, the titrable groups are coupled electrostatically and

lead to complex pH dependence of the surface charge.31 Therefore, although ligand density

can be measured experimentally using, for example, X-ray photoelectron spectroscopy,32,33

microscopic charge state information is not readily available. Second, charged nanomateri-
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als interact strongly with other charged moieties in the surrounding environment, such as

electrolyte ions, to form the electrical double layer.34,35 When the surface morphology of the

nanomaterials is rough at the molecular scale, quantitative interpretation of experimental

observables such as ζ potential from electrokinetic measurements36,37 and surface potential

measured by second harmonic generation38–40 is not straightforward.

Theory and molecular simulations can potentially provide important insights in this re-

gard. With relatively simple models for the nanomaterials (e.g., a homogeneous sphere) and

ligands, one can analyze the surface charge distribution as a function of pH, salt concentra-

tion and nanoparticle size (or curvature) using either a semi-analytical model41 or Monte

Carlo simulations.42,43 For many applications, atomically detailed models for the nanoma-

terials, ligands and the surrounding environment are desirable. In such cases, a simulation

method is needed that is able to cope with the characteristics of functionalized nanomateri-

als. For example, for biophysical applications, the same issue of understanding the titration

behavior of proteins and nucleic acids as a functions of pH has led to the development

of computational techniques44 that range from implicit solvent models45–48 to generalized

ensemble-based explicit solvent free energy methods.49–53 Among them, the constant pH

molecular dynamics approach has recently been applied to study the microscopic titration

behavior of a small gold nanoparticle (with a diameter of ∼2.2 nm) functionalized with p-

mercaptobenzoic acid;54 good agreement was found between the predicted amount of ionized

ligands and values measured using infrared spectroscopy. The constant pH molecular dy-

namics approach, however, requires an extensive sampling of the expanded ensemble that

includes the titration variables; therefore, for applications that involve a large number (e.g.,

hundreds) of titratable groups, which are often encountered in functionalized nanomaterials

(see examples below), achieving convergence poses a serious challenge. The presence of a

large number of charged ligands also leads to other technical difficulties, such as dealing with

net-charge fluctuations using Particle-Mesh-Ewald summations55–57 and finite size effects as-

sociated with the need to include a large number of ions to properly represent a specific bulk
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salt concentration.

Motivated by these considerations, we propose to adopt a simple hybrid scheme that

integrates molecular dynamics (MD) and Monte Carlo simulations, which samples the con-

figuration and titration space using explicit solvent and continuum electrostatics models,

respectively. The approach is similar in spirit to previous studies of protein,58,59 polyelec-

trolyte60 and lipid membranes,61,62 although, to our knowledge, the specific continuum elec-

trostatics model (Multi-Configuration-Continuum-Electrostatics, MCCE48,63) has not been

integrated with MD sampling in the same way. Our approach also serves to extend the

application of MCCE, which was developed to study proteins, to complex nanomaterials.

In the following, we first present the hybrid MD/MCCE protocol, including a brief re-

view of the MCCE approach and the required parameters. Next, we apply the MD/MCCE

protocol to study the titration behavior of several model systems to illustrate the versatility

of the methodology; we explore how ligand density, nanoparticle surface curvature and lig-

and heterogeneity impact the titration behavior of surface ligands and therefore the surface

charge distribution of the nanoparticle. We conclude with a few remarks.

2 Method and Computational Setup

Conceptually, the hybrid MD/MCCE approach is straightforward: explicit solvent MD is

used to sample the configurations of the nanomaterial and its surface ligands, and the MCCE

approach is employed to sample the microscopic protonation states of titratable groups; iter-

ation between the MD and MCCE calculations leads to self-consistency between distributions

in the configuration space and protonation states. In the following, we first provide a brief

review for the MCCE approach and its adaptation to functionalized nanomaterials; then, we

specify a number of technical details of the hybrid MD/MCCE protocol.
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2.1 Brief Review of Multi-Conformer Continuum Electrostatics

(MCCE)

MCCE is a well-established technique for computing pKa and reduction potential for residues

in proteins.48,63 It targets pKa and reduction potential shifts for residues in a protein relative

to the relevant reference compounds in solution, and it is based on the approximation that

such shifts are dominated by the difference in electrostatic free energy of the residues in

different environments. In addition, for each titratable group of interest, MCCE also con-

siders multiple conformational degrees of freedom based on a rotamer library search, local

minimizations and a pruning process based on rotamer packing and conformer clustering.

The selected conformers are subjected to Metropolis Monte Carlo sampling64 to generate

the Boltzmann distribution; in addition to configurational sampling, the Monte Carlo moves

also consider changing the ionization state (or redox state) of titratable residues. The free

energy used in the Monte Carlo sampling over the microstates (one conformer of each residue

makes up a microstate x) is given by,

∆Gx =
M∑
i=1

δx,i{[2.3mikBT (pH − pKsol,i) + niF (Eh − Em sol,i)]

+ (∆∆Grxn,i + ∆GCE
bkbn,i + ∆GLJ

bkbn + ∆Gtorsion,i + ∆∆GSAS,i)

+
M∑

j=i+1

δx,j[∆G
CE
ij + ∆GLJ

ij ]}.

(1)

Here M is the total number of conformations; δx,i/j is 1 if conformer i/j is present in the

microstate x and 0 otherwise; mi is 1 for bases, -1 for acids and 0 for neutral conformers;

ni is the number of electrons transferred to a redox-active ligand; kBT and F are the stan-

dard thermal energy and Faraday’s constant, respectively. pH and Eh specifies the solution

acidity and electrode potential, respectively. The pKsol,i and Em sol,i are the solution pKa

and mid-potential for the relevant reference compounds, respectively, and therefore do not

depend on the conformers. The second line of Eq.1 describes the conformer self-energies and
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contain reaction field or solvation free energy (∆∆Grxn,i), electrostatic and Lennard-Jones

interactions with protein backbones (∆GCE
bkbn,i, ∆GLJ

bkbn), torsional energy (∆Gtorsion,i) and a

surface-area term (∆∆GSAS,i). The third line of Eq. 1 contains the pairwise electrostatic

and Lennard-Jones interactions among conformers present in the microstate x.

Using this free energy expression, MCCE conducts Monte Carlo sampling in both pro-

tonation and conformer spaces over different solution (pH, and when redox processes are

involved, also Eh) conditions. Upon convergence, the pH-dependent population of each

titratable site in the ionized (charged) state is fit to the Henderson-Hasselbalch equation to

obtain the pKa value:

〈Pionized〉 =
10−mn(pH−pKa)

1 + 10−mn(pH−pKa)
, (2)

where m is -1 for acid and +1 for base, and n is the Hill coefficient. As discussed thoroughly in

Ref.,31 such defined pKa values do not rigorously reflect well-defined equilibrium constants;

i.e., they do not correspond to either microscopic, or macroscopic, or quasisite pKa values,

which have clear statistical mechanics definitions for polyprotic acids that feature strongly

coupled sites. Nevertheless, for a nanoparticle that features hundreds of titratable sites that

are not easily distinguishable from each other (as opposed to the situation in a protein), such

mean-field like pK values are perhaps most straightforward to characterize the tendency

for the ligands to be protonated; alternatively, one may directly monitor the number of

protonated sites at each pH, as we also show below. For additional discussion of technical

details, see the original MCCE papers.48,63

For nanomaterials applications, we can readily adopt Eq.1 for MCCE calculations if we

identify the proper solution reference compounds, and have a set of force field parameters for

the computation of electrostatic and Lennard-Jones interactions, as well as for the solvation

(reaction field) free energies. The terms related to “protein backbones” (∆GCE
bkbn,i; ∆GLJ

bkbn) are

replaced by interactions between titratable ligands and nanomaterials. For the solvation free

energy (∆∆Grxn,i) calculations, Poisson-Boltzmann equations34,65 are solved, which requires

the specification of the dielectric map for the various regions of the solvated system; the
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dielectric constant appropriate for the nanomaterials can be rather different from that for a

protein.66 We note that although the ligand density in some systems studied here reaches

9 molecules/nm2, the charge density for conditions of interest is substantially lower (see

below), thus the Poisson-Boltzmann model remains valid in our applications; we do not

observe major differences between linear and non-linear Poisson-Boltzmann results for cases

of interest.

2.2 A Hybrid Molecular Dynamics/MCCE Approach

The rotamer sampling makes MCCE more robust for pKa/reduction potential calculations

than those based on a single or a few protein conformation(s).67,68 Nevertheless, the de-

gree of sampling in MCCE is still rather limited; for proteins, for example, the backbone

structure is usually frozen, which prevents global conformational transitions coupled to the

titration process. For nanomaterials applications, more extensive conformational sampling

of the ligands (and possibly nanomaterials, if not rigid) is also desirable to ensure accurate

prediction of pKa and redox potential values; this is particularly important, for example,

when the titratable ligands are part of a polymer anchored to the nanomaterials’ surface

through non-covalent interactions.

Therefore, we propose an iterative, hybrid MD/MCCE approach. As illustrated in the

scheme in Fig. 1, starting with an initial guess of protonation/redox pattern, explicit solvent

molecular dynamics calculations are conducted to sample the ligand configurations. Follow-

ing the MD simulation, explicit water and ions are removed and MCCE is used to compute

the pKa/reduction potential values of the ligands; the results are used to assign a new set

of charge pattern under the solution condition of interest; e.g., the computed pKa values

determine the total number of protonated sites (nH+ =
∑

i〈Pi,ionized〉) at a specific pH value,

we then randomly select nH+ titratable sites to be protonated. After adjusting the explicit

solvent simulation setup based on the updated protonation pattern, the system is subject

to another round of MD simulation, which in turn is followed by another round of MCCE

8
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Is	the	number	
of	protonated	

sites	converged?

Generate	initial	configuration	
Assign	protonation	states	

according	to	MCCE	calculations

Solvate	and	equilibrate	the	
system

Conduct	MD	simulations	
Extract	snapshots	for	MCCE	

calculations	

Perform	MCCE	calculations
Compute	titration	curves	and	the	
number	of	protonated	sites	for	

next	iteration

StartNo

Done
Yes

Figure 1: A scheme that illustrates the iterative protocol that integrates explicit solvent
molecular dynamics and multi-conformer continuum electrostatics (MCCE) model to effi-
ciently sample the configurational space and titration states of functionalized nanomaterials.
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calculation. This process is iterated until the computed pKa /reduction potential values

reach convergence.

Compared to constant pH MD simulations,49–52,59 our hybrid approach is more approx-

imate since the key free energy quantities (Eq. 1) are computed based on a continuum

electrostatic and implicit solvent framework; in this regard, we note that MCCE has been

extensively benchmarked with protein pKa and reduction potential calculations and there-

fore is considered to be one of the most reliable continuum electrostatic models.63 The gain

is clearly in the computational efficiency; as shown below, the MCCE approach is readily

applicable even when a large number (e.g., >400) of titratable sites are present. The in-

tegration of MD and MCCE also further enhances the degree of conformational sampling

relative to these methods alone. Without the need to change the total charge of the system

in each MD simulation, we also avoid complications associated with Particle-Mesh-Ewald

calculations for systems with a large net charge. We choose to employ explicit solvent/ions

MD simulations rather than implicit solvent models because the latter require specifically

parameterized ion models in the same framework.

In realistic applications, important practical issues include whether the hybrid MD/MCCE

calculations reach proper convergence and what factors control the speed of convergence; for

example, should one conduct long MD simulations following each round of MCCE computa-

tion or short MD simulations are more appropriate? Long MD simulations appear necessary

to fully relax ligand configurations following a change of protonation pattern. On the other

hand, short MD simulations connected by changes in protonation pattern better resemble

constant pH simulations. Therefore, convergence needs to be carefully monitored in practical

applications (see example and discussion in Sect.3).

2.3 Computational Setup

To test the hybrid MD/MCCE approach, we study the titration behaviors of a group of alkyl

amines attached to a model carbon nanoparticle solvated in water; the model nanoparticle
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contains 446 carbon atoms evenly distributed on the surface of a sphere of 4 nm diameter.

The model is not meant to explicitly mimic a realistic carbon dot or nanodiamond since our

goal is to explore the convergence behavior of the hybrid MD/MCCE protocol and qualitative

trends in the titration behavior of surface ligands. The internal structure of the nanoparticle

is frozen during MD simulations. To explore the effect of nanoparticle surface curvature, we

study ligands attached to carbon sheets with a specific set of radii of curvature. Each carbon

sheet contains 100 carbon atoms initially arranged in a square lattice; the positions of the

carbon atoms on a curved sheet are then determined by projecting the planar model onto a

sphere of the corresponding radius of curvature.

For the MD simulations, the carbon sphere/sheet is described using a set of charge-neutral

Lennard-Jones particles; the parameters are taken from the CHARMM36-cgenff69 force field

for propene; parameters for the ligands (alkyl amines) are constructed based on the lysine

sidechain (in both protonated and deprotonated states) in the CHARMM36 force field for

proteins.70 Water is described using a modified TIP3P model;71,72 ions are introduced to

neutralize the total charge of the system and they are described using the CHARMM36

force field. For the MD simulations, the NVT ensemble is used and the temperature is set to

300 K using the Nose-Hoover thermostat;73,74 NPT ensemble might be more preferable when

directly comparing to experimental measurements, so that change in system density due to

different charge states of the nanoparticle is explicitly considered. Periodic boundary condi-

tions are used and the cubic cell has the dimension of 80 Å for the carbon nanoparticle and 40

Å for the nanosheet. Electrostatic interactions are treated with Particle-Mesh-Ewald75 with

a grid size of ∼1 Å; van der Waals interactions are treated with a 12 Å cutoff and a sigmoidal

switching function between 10 and 12 Å. Bonds involving hydrogen are constrained using

SHAKE,76 which allows an integration time step of 2 fs. The typical sampling time for each

iteration of MD simulation is about 10 ns, which is sufficient for the key structural properties

and MCCE pKa predictions to converge (see Supporting Information). To avoid very

high charges on the functionalized nanoparticle, MD simulations are conducted at the pH
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value of 9; this is convenient for the current purpose of exploring the applicability of the

hybrid scheme, while in realistic applications it is preferable to conduct the MD simulations

at the pH of interest.31,77 The simulations for the nanosheet is carried out with CHARMM

39a1,78 while those for the nanoparticle is done with NAMD2.10.79

From each MD trajectory, snapshots are extracted every 0.2 ns to obtain 50 snapshots; for

each snapshot, MCCE calculation is performed and the reported pKa results are averaged

over the 50 independent calculations. In each MCCE calculation, the alkyl amines are

treated as titratable residues. Six rotamers are generated for each bond rotation in the alkyl

amine, and rotamers with large steric interactions or a large solvent accessible surface are

removed; afterwards, repacking is performed to further prune the rotamers. In the continuum

electrostatic calculations, the solute dielectric constant is set to 8.0 as recommended for

MCCE calculations for proteins; using a value of 4.0 does not change the results to any

significant degree (<2%); the solvent dielectric constant is 80.0, and the solvent probe radius

is 1.4 Å. The salt concentration in the Poisson-Boltzmann calculations is set to be the same as

in the explicit solvent MD simulations; the partial charges and atomic radii for the Poisson-

Boltzmann calculations are also taken from the explicit MD simulations. For the titration

calculations, pH is varied from -10 to 14 at an interval of 1 pH unit. At each pH value, one

first conducts (1,000× # of conformers) steps of annealing, which is followed by (5,000×

# of conformers) steps of Monte Carlo equilibration. Then five independent sets of Monte

Carlo simulations are performed, with each sampling (20,000× # of conformers) steps. The

results are averaged to compute the occupancy of each titratable site. The pH dependent

occupancy is then used to determine the microscopic pKa values using Eq. 2.

3 Result and Discussion

In this section, we first test the convergence behavior of the hybrid MD/MCCE approach,

and then apply it to study the titration behaviors of a group of alkyl amines attached to a
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solvated model carbon nanoparticle; we analyze the effect of ligand density, surface curvature

and ligand heterogeneity on the pKa values of the alkyl amines.

3.1 Convergence of the hybrid MD/MCCE approach

To test the convergence of the hybrid MD/MCCE approach, we first focus on the case with

a ligand density of 4.5 molecules/nm2 (Fig. 2b), which is a moderate density of function-

alization.32 Although the simulation starts with all (∼ 240) amines in the charge neutral

state, we see (Fig. 3a) that the predicted fraction of charged amines at pH 9 increases to

∼0.2 after the first round of MCCE calculation. With a MD sampling time of 10 ns, the

value continues to change significantly in the following iterations, suggesting that the snap-

shots collected from the MD simulations significantly impact the MCCE results. After five

iterations, however, the predicted number of protonated sites has reached a plateau value of

∼111, which corresponds to a protonation fraction of 0.47. For other ligand densities (Fig.

2a, c), the convergence of the MD/MCCE iteration is even faster (Fig.3a); this is rather

encouraging considering that the high density case involves more than 400 titratable sites.

We have also tested calculations with very short (20 ps) MD samplings for the case of

low ligand density (2.3 molecules/nm2). As shown in the Supporting Information, the

convergence with respect to the number of iteration cycles is slower than that observed for

the longer samplings, which again highlights the advantage of conducting adequate sampling

to relax the ligand conformations. After 16 iterations of short sampling (i.e., cumulative

sampling of merely 300 ps), the fraction of protonated sites at pH 9 approaches 0.8, which

differs somewhat from the value of 0.85 obtained after 8 cycles of 10 ns MD sampling; the

computed titration curves also differ somewhat for the intermediate pH values. Considering

the significantly different degrees of sampling (300 ps vs. 80 ns), the observed minor differ-

ences in the computed titration properties do not indicate divergence of results. For realistic

applications, we recommend long MD sampling to fully relax the ligands between iterations

of MCCE calculations.
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(a) (b) (c)

Figure 2: The three model carbon nanoparticles studied in this work. The nanoparticles
are functionalized with n-butyl amines at a density of 9.0, 4.5 and 2.3 molecules per nm2,
respectively; these are referred to as high, moderate and low density, respectively, in the
discussions.

To further evaluate the convergence behavior, we have examined how sensitive the re-

sults are to the choice of protonation pattern following MCCE pKa calculations. Following

iteration 3 of the moderate density case, we generate five configurations with different pro-

tonation patterns by randomly choosing ligands to be protonated, with the total number

of protonated ligands fixed to the value predicted by the pKa results (i.e.,
∑

i〈Pi,ionized〉).

Starting with each configuration, the hybrid MD/MCCE calculations are carried out for an-

other iteration, and the resulting pKa distributions are shown in Fig. 3b. Evidently, all five

configurations lead to very similar pKa distributions with the number of protonated ligands

predicted to range from 108.7 to 109.1.

3.2 Ligands on a sphere - impact of ligand density

Having understood the convergence behavior of the hybrid MD/MCCE approach, we now

focus on the impact of ligand density on the computed ligand pKa values and surface charge.

The examined ligand densities are 9.0 molecules/nm2, 4.5 molecules/nm2 and 2.3 molecules/nm2,

which are comparable with nanoparticles synthesized in experimental studies.32 The con-
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Figure 3: Convergence behaviors of the hybrid MD/MCCE protocol. (a) The fraction of
predicted protonated amine sites as a function of the iteration number for different ligand
densities (d). Simulations start with all amines in the deprotonated state; thus “iteration 0”
is after the first cycle of MCCE calculation. (b) The distribution of computed pKa values
after one round of MD/MCCE calculation starting with five independent initial assignments
of protonation pattern after iteration 3 for the moderate density case (d=4.5 molecules/nm2).

Figure 4: Dependence of computed pKa distribution and total surface charge on the ligand
density at the nanoparticle surface. (a) pKa distributions; (b) total surface charge from
the ligands as a function of pH. The error bars are estimated based on the average over 50
independent MCCE runs for snapshots taken from the last MD cycle.
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verged pKa distributions for the three cases are shown in Fig.4a, which exhibit significant

differences. At low ligand density, we observe a sharp peak of distribution near the pKa of 10,

which is close to the value (10.6) for a free butylamine in aqueous solution;80 i.e., the buty-

lamine at the nanoparticle surface experiences little difference from solution. As the ligand

density increases, the average pKa value shifts away from the reference value, and the pKa

distribution becomes broader. In the case of the highest ligand density (9.0 molecules/nm2),

the average pKa value shifts about 5-6 pK units from the solution reference, and the pKa

distribution reaches negative values, which indicate that some ligands remain deprotonated

even at low pH. Clearly, the electrostatic interactions between neighboring ligands strongly

impact the propensity of ligands to become protonated.

From the computed pKa values, we can predict the amount of ligand charge on the

nanoparticle as a function of pH. As shown in Fig. 4b, an interesting trend is that the

amount of surface charge is not directly correlated with the ligand density. Under the

neutral pH condition, the amount of ligand charge is in fact the highest with a moderate

ligand density. At basic solution condition (pH ∼ 9), even the surface charge for the low-

density case (2.3 molecules/nm2) is higher than the system that has four times higher ligand

density (9.0 molecules/nm2)! Clearly, this is because high ligand density causes large pKa

shifts and therefore leads to a large number of ligands adopting the charge-neutral state.

Therefore, to optimize the amount of surface charge, it is important to realize that the

dependence on ligand density can be non-monotonic. Another interesting quantity in this

context is the charge capacitance81 (C), which is defined as equilibrium charge fluctuations

of a solute and is related to the derivative of the average amount of (surface) charge (Q)

with respect to pH, as an example of fluctuation-dissipation relation:82

C = 〈δ2Q〉 = − 1

ln10

∂〈Q〉
∂pH

; (3)

note that both Q and C are defined here as dimensionless quantities.81 A large charge ca-
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pacitance means that the charge state of the system is sensitive to pH and external electric

potentials. As seen from Fig. 4b, under the neutral pH condition, the charge capacitances of

the moderate and low density systems are rather low, indicating that their surface charges

remain stable with respect to perturbations in solution pH. By contrast, the high-density

case has a very large charge capacitance near pH 7 (∼ 17.3), suggesting that the amount of

surface charge depends sensitively on pH. Depending on application, it is conceivable that

either a high or a low charge capacitance is desirable and our analysis indicates that its value

can be tuned by varying the ligand density. For example, correlated charge fluctuations may

lead to attractive interactions between nanoparticles of similar charge, as discussed in the

polyelectrolye literature;83 whether this effect is significant for nanometer-sized particles is

an interesting topic for future studies.

Figure 5: Factors that correlate with the computed pKa values. (a) pKa vs. dN,CNP ,
the distance between the titratable site (amine N) and the center of the nanoparticle; (b)
correlation between pKa values of neighboring residues (the eight nearest residues measured
based on the amine nitrogen atoms).

To provide further insights into factors that dictate the pKa values, we examine the

correlation between computed pKa values with a number of variables. As shown in Fig.5a, the

pKa values are highly correlated with dN,CNP , the distance of titratable site (amine nitrogen)

to the center of the nanoparticle. Indeed, a low dN,CNP value indicates that the titratable site
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is positioned to be spatially close to the nanoparticle surface and therefore likely surrounded

by the alkyl chains of neighboring ligands rather than by solvent; desolvation leads to low

pKa values. Moreover, as shown in Fig.5b, significantly shifted pKa values tend to be anti-

correlated with the pKa values of neighboring ligands, due largely to electrostatic coupling

among neighboring sites. For a fairly broad pKa ranges (0-8), however, there appears to be

a homogeneous degree of positive correlation among neighboring pKa values. Such broad

range of correlation indicates that most titratable sites are influenced evenly by other ligands,

leading to a homogeneous shift of pKa values compared to the solution reference.

The protonated ligands are surrounded by counter ions (Cl−), as shown by a snapshot in

Fig. 6a for the example of a system of moderate ligand density (4.5 molecules/nm2). The

radial distribution function of Cl− (Fig. 6b) can be fitted to the expected Debye-Hückel

form34 (Ae−Br/r + C) for r ≥ 3.2 nm, suggesting that the diffuse ion sphere starts about 1

nm away from the nanoparticle surface, as often approximated in the literature.36,40,84 The

integrated radial charges in Fig. 6c further show that the water contribution peaks around

the same location, reflecting preferred orientation of water molecules due to the charged

ligands. The computed radial electrostatic potential (Fig. 6d) varies rather rapidly in the

region of the interface, including mild oscillations that leads to a slightly negative potential

around r ∼ 2.7 nm, reminiscent of the phenomenon of charge inversion85 although there is

only monovalent ions in the system. The negative electrostatic potential was not seen in

previous simulations of a gold nanoparticle functionalized by amines,84 likely because the

previous work included only a minimal amount of Cl− ions to neutralize the positive charge

of the nanoparticle. The subtle features of the electrostatic potential makes it difficult to

compare unambiguously to experimental ζ potential, which will be further investigated in

future studies.
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(a) (b)

(c) (d)

Figure 6: Distribution of charges and electrostatic potential (based on explicit solvent/ion
MD simulations) around a carbon nanoparticle functionalized with n-butyl amines at a mod-
erate surface density (4.5 molecules/nm2). (a) A snapshot that illustrates the distribution
of counter ions (Cl−) around the positively charged nanoparticle. (b) Radial distribution
of Cl− ions around the nanoparticle; the dashed line indicates a fit to the Debye-Hückel
model. (c) Integrated amount of charge for different components as a function of distance
from the center of the nanoparticle. (d) Spherically averaged electrostatic potential around
the nanoparticle computed by integrating over the field due to the total charges up to a
given distance (Qr): φ(r) = −

∫ r
0
E(r′)dr′ = −

∫ r
0

Qr′
4πε0r′2

dr′, with the potential in the bulk
set to zero. The comparison of results from 10 ns and 200 ns simulations indicates that the
computed electrostatic potential has properly converged.

19

Page 19 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(a) (b) (c)

(d)

Figure 7: Dependence of pKa on the radius of curvature of the nanosheet. (a-c) Three
systems studied with radii of curvature of 87.5, 52.5 and 17.5 Å, respectively. (d) The
average pKa values for the four center ligands as functions of the radius of curvature. dlig
is the average distance between ligands; the value of 3 and 6 Å corresponds to the ligand
density of 9.0 and 2.3 molecules per nm2, respectively. The error bars are estimated based
on the average over 50 independent MCCE runs for snapshots taken from the last MD cycle.
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3.3 Ligands on a sheet - impact of surface curvature

Next, we explore how surface curvature, which is related to nanoparticle size and shape,

influences the pKa values of ligands and surface charge. To minimize computational cost,

we construct a series of carbon sheets with the radius of curvature ranging from 17.5 Å to

a very large value (i.e., a flat sheet); representative snapshots are shown in Fig. 7a-c. We

study two ligand densities that correspond to the low and high densities studied in the last

subsection; due to the finite size of the sheet, we focus on the pKa values of the four ligands

in the center.

As shown in Fig.7d, the average pKa values depend monotonically on the radius of

curvature, and the dependence is stronger at a higher ligand density; at the two limiting

radii of curvature values studied here (17.5 Å and∞), the average pKa differ by ∼1 and ∼2

pK units at low and high ligand density, respectively. This trend is in qualitative agreement

with the previous analysis of Wang et al.,86 who observed that for a gold nanoparticle

functionalized with MUA (11-mercaptoundecanoic acid) ligands, changing the nanoparticle

core diameter from 7.2 nm to 4.1 nm led to a pKa shift of ∼ 1 pK unit. The higher pKa

values at surfaces of higher curvature (thus a smaller radius of curvature) is due mainly to

the fact that ligands avoid each other more readily at highly curved surfaces, leading to

reduced electrostatic repulsion between positively charged amines.

3.4 Ligand heterogeneity

As a last example, we analyze the impact of ligand heterogeneity on their pKa values and

surface charge of the nanoparticle. For this purpose, we introduce four types of amines (with

equal numbers) with different lengths of alkyl chains (butylamine, heptylamine, octylamine

and decylamine); the ligands are distributed randomly on the surface of the same nanopar-

ticle discussed above, and the amine density corresponds to the high density case studied

above (see Fig. 8 for a snapshot, in which different alkyl amines are colored differently).

The computed pKa distributions for the different types of ligands are shown in Fig. 9a;
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Figure 8: A snapshot of a model carbon nanoparticle functionalized with four types of alkyl
amines (equal numbers of butylamine, heptylamine, octylamine and decylamine, shown in
different colors); the amine density is ∼9 per nm2, which corresponds to the high density
case in Fig.2a.

compared to the homogeneous ligand case with the same ligand density (Fig. 4a), the pKa

distributions are very different and vary greatly among different amines. The decylamine

ligands, which have the longest alkyl chain, have pKa values peak at 9.5, which is a modest

shift relative to the solution reference value of 10.6. On the other extreme, the shortest

butylamine ligands exhibit a much broader distribution with a peak value of only ∼4, which

is lower than the peak value (∼7) for the homogeneous ligand system at the same high

ligand density (see Fig. 4a). The pKa distributions for the two intermediate-length ligands

are bound by those for the decylamine and butylamine ligands.

These pKa distributions indicate that the charge state of the ligands are also affected by

their chain length; longer ligands have a higher degree of conformational flexibility that allows

them to avoid electrostatic repulsion from the neighboring charged groups and therefore

experience lower pKa shifts. Shorter ligands, by contrast, are more likely to be influenced by

electrostatic repulsion from the nearby ligands. Moreover, titratable groups in short ligands

are likely to be shielded from the solvent by nearby longer ligands, resulting in further

pKa shifts; histograms for the number of water molecules within 4 Å of the titratable site

are shown for different ligands in Fig. 9b and support this hypothesis. In Fig. 9c-d, we

examine the correlation between pKa values and (i) the distance of the titratable site to the
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Figure 9: Properties computed for the functionalized nanoparticle shown in Fig. 8 (i.e., at
a high amine density of ∼9 per nm2). (a) pKa distributions for the amines with different
lengths of alkyl chains; (b) Distribution of the number of water molecules in the first solvation
shell of the amines, computed using 50 snapshots from the last cycle of MD sampling; (c)
correlation between pKa and dN,CNP (compare to Fig. 5a); (d) correlation between pKa and
the number of water in the first solvation shell of the amines.
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nanoparticle center dN,CNP and (ii) the number of water molecules in the first solvation shell

of each titratable site. For decylamine, the correlation between pKa and dN,CNP is fairly

strong, while the correlation is much weaker (if at all) for the shorter ligands; thus unlike the

case with homogeneous ligands (Fig. 5a), the location of the titratable site relative to the

surface, by itself, is generally not a good predictor of pKa values. The correlation between

pKa values and the local level of hydration (Fig. 9d) is stronger by comparison, highlighting

the role of solvent in stabilizing the charge state of the ligand.

(a) (b)

Figure 10: Charge and structural properties of nanoparticles functionalized with homoge-
neous and heterogeneous amine ligands. (a) Comparison of the total amount of surface
charge as a function of pH for the carbon nanoparticle functionalized with homogeneous and
heterogeneous sets of alkyl amines at moderate (4.5 per nm2) and high (9.0 per nm2) amine
densities. The error bars are estimated based on the average over 50 independent MCCE
runs for snapshots taken from the last MD cycle. (b) Comparison of radial distribution func-
tions for the cationic amine nitrogens (gN+,N+) for homogeneous and heterogeneous amine
cases at the high amine density.

In Fig. 10, we compare the total amount of surface charge as a function of pH for the

carbon nanoparticle functionalized with homogeneous and heterogeneous sets of alkyl amines

at moderate and high amine densities. At the moderate density, introducing heterogeneity

into the ligands does not significantly impact the amount of surface charge at most pH

values of interest. At high amine density, however, introducing heterogeneity into the chain

length has a major impact on the amount of surface charge; at pH 7, for example, the
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difference is almost a factor of 1.63. As discussed above, this is mostly due to the fact that

the longer ligands are able to avoid the charge repulsion among neighboring residues more

effectively than shorter ligands and therefore a larger number of residues are able to adopt the

protonated state at neutral pH; this is confirmed by the radial distribution function for the

cationic amine nitrogens, which has a substantially lower first peak at a longer distance for the

case of heterogeneous ligands (Fig. 10b). Moreover, as shown in Supporting Information,

a 1:1 butylamine and decylamine mixture at the same high amine density leads to a lower

surface charge than the case shown in Fig. 10a, which includes four types of ligands with

different chain lengths; therefore, introducing a high degree of chain-length heterogeneity is

an effective strategy for avoiding electrostatic repulsion among neighboring charged groups.

4 Concluding Remarks

The surface charge of nanomaterials has been shown to be critical to their solution stabil-

ity and interactions in the environment. To design nanomaterials that both form stable

suspensions and are benign to the environment and living organisms, therefore, the abil-

ity to tune the amount of surface charge in a controlled fashion is essential. Toward this

goal, understanding how the size, shape, composition of nanomaterials and their surface

functionalization modulate the surface charge is important. This is not straightforward to

accomplish using experiments alone due to the complexity of nanomaterials/liquid interface,

especially when the interface is rough at the molecular level, which leads to uncertainties

in the interpretation of experimental observables such as ζ potential and second harmonic

generation intensity.

Motivated by these thoughts, we set out to explore a conceptually simple but powerful

approach to computationally determine the surface charge of nanomaterials by calculating

the pKa values of titratable groups of surface ligands; the same methodology is also suited

for computing reduction potentials for redox-active ligands, which may also contribute to
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charge regulation. The approach integrates explicit solvent molecular dynamics simulations

with a continuum electrostatic method (MCCE) to efficiently sample both configuration

and chemical (protonation) spaces. The hybrid MD/MCCE protocol is complementary to

constant pH MD simulations54 for nanomaterials studies because it is able to readily handle

a large number of titratable (and redox) sites, which easily reaches a value of hundreds even

for moderately-sized nanomaterials. The protocol is also complementary to semi-analytical41

and idealized model analysis42,43 because it is, in principle, able to handle nanomaterials of

arbitrary shape, composition and functionalization, provided that relevant parameters for

the MD and MCCE calculations are available.

As an initial illustration, the hybrid method is applied to study the titration behavior

of alkyl amines attached to a carbon-based nanoparticle; we examine the ligand pKa value

distributions as functions of ligand density, surface curvature and ligand heterogeneity, as

well as the convergence behavior of the hybrid MD/MCCE simulations. The results indicate

that the pKa values converge rapidly during the iterative MD/MCCE simulations. When

the ligand density on the surface is high (e.g., ∼9 molecules/nm2), the pKa values are

observed to shift dramatically relative to a free amine in solution; as a result, the amount of

surface charge (due to the ligands) is not a monotonic function of ligand density and actually

decreases when the density is too high. Charge capacitance, which describes the stability of

the surface charge, is also observed to depend on ligand density. The pKa distribution is also

modulated by the surface curvature, although the effect is relatively modest when compared

to the impact of ligand density. Finally, introducing heterogeneity in ligand length is also

seen to considerably alter the pKa distribution relative to the case of homogeneous ligands

at the same density.

Overall, trends in the pKa distributions can be explained by the local level of hydration

(solvent accessibility) and separation from neighboring charged groups. Although these fac-

tors are physically straightforward to understand, the findings here are significant in two

ways. First, the results highlight that the charge state of surface ligands can shift signifi-
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cantly relative to free ligands in solution, thus determining the proper titration state is a

necessary step for any microscopic computational model that aims to probe the properties

of nanomaterials and their interaction with other molecules; this is unfortunately is not rou-

tinely done in nanomaterials simulations,84,87–89 although systematic studies along this line

start to emerge.54 Second, our analyses highlight that the charge properties of nanomaterials

(e.g., ligand charge and charge capacitance) can be modulated in significant ways through

several factors, such as ligand density and heterogeneity. Studies of this type can provide

guidance to experimental design of nanomaterials with desired charge properties.

Finally, we acknowledge that our analysis uses a continuum electrostatic model (MCCE)

that treats ions in solution in an implicit fashion (Poisson-Boltzmann); the ions are included

explicitly in the explicit solvent MD simulations and therefore do contribute to modulate the

configurations of the surface ligands. This is clearly an important approximation compared

to explicit solvent constant pH simulations. Considering the success of the Gouy-Chapman

model,34 which is based on the same Poisson-Boltzmann framework, in interpreting surface

potential of nanomaterials, our approach is likely valid at low ionic strength. On the other

hand, it is possible that adsorption of ions needs to be included through, for example, a Stern

model, at higher ionic strength;34,90 the strongly adsorbed ions can also be included explicitly

in the MCCE step (as was done in previous studies of Cl− binding to proteins91,92), although

this will considerably increase the computational cost. Another possibility is to conduct MD

simulations (e.g., constant pH) with implicit solvent but explicit ions, which may also strike

a balance between computational accuracy and speed; this requires, however, carefully cal-

ibrated models for the ions in the relevant implicit solvent framework. Moreover, we have

used a simple carbon-based nanoparticle model in this study, which can be described as a

simple low-dielectric material. For nanomaterials of complex composition, more advanced

dielectric models93 may be important to employ in the MCCE step. These technical issues

need to be explored in future studies. Ultimately, it is necessary to compare computational

predictions explicitly with experimental observables, such as those in electrokinetic measure-
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ments. Along this line, the microscopic interpretation of ζ potential is not straightforward

for nanomaterials of complex shape and surface roughness, thus it might be preferable to

compute mobility from simulations and compare to experimental measurement.94
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son, M. AcidBase Properties and Surface Charge Distribution of the Water- Soluble

Au102(pMBA)44 Nanocluster. J. Phys. Chem. C 2016, 120, 10041–10050.

34

Page 34 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(55) Simonson, T.; Roux, B. Concepts and Protocols for Electrostatic Free Energies. Mol.

Simul. 2016, 42, 1090–1101.

(56) Donnini, S.; Ullmann, R. T.; Groenhof, G.; Grubmuller, H. Charge-neutral Constant

pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer. J. Chem.

Theory Comput. 2016, 12, 1040–1051.

(57) Chen, W.; Shen, J. K. Effects of System Net Charge and Electrostatic Truncation on

All-Atom Constant pH Molecular Dynamics. J. Comput. Chem. 2014, 35, 1986–1996.

(58) Burgi, R.; Kollman, P. A.; W. F. van Gunsteren, Simulating Proteins at Constant pH:

An Approach Combining Molecular Dynamics and Monte Carlo Simulation. Proteins:

Struct. Funct. & Bioinf. 2002, 47, 469–480.

(59) Baptista, A. M.; Teixeira, V. H.; Soares, C. M. Constant-pH Molecular Dynamics Using

Stochastic Titration. J. Chem. Phys. 2002, 117, 4184–4200.

(60) Ziebarth, J. D.; Wang, Y. M. Understanding the Protonation Behavior of Linear

Polyethylenimine in Solutions through Monte Carlo Simulations. Biomacro. 2010, 11,

29–38.

(61) Teixeira, V. H.; Vila-Vicosa, D.; Reis, P. B. P. S.; Machuqueiro, M. pKa Values of

Titrable Amino Acids at the Water/Membrane Interface. J. Chem. Theory Comput.

2016, 12, 930–934.

(62) Santos, H. A. F.; Vila-Vicosa, D.; Teixeira, V. H.; Baptista, A. M.; Machuqueiro, M.

Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers. J. Chem. Theory Com-

put. 2015, 11, 5973–5979.

(63) Song, Y.; Mao, J.; Gunner, M. R. MCCE2: Improving Protein pKa Calculations with

Extensive Side Chain Rotamer Sampling. J. Comput. Chem. 2009, 30, 2231–2247.

35

Page 35 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(64) Landau, D. P.; Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics ;

Cambridge University Press: Cambridge, UK, 2000.

(65) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Electrostatics of

Nanosystems: Application to Microtubules and the Ribosome. Proc. Natl. Acad. Sci.

USA 2001, 98, 10037–10041.

(66) Schutz, C. N.; Warshel, A. What are the Dielectric “Constants” of Proteins and How

to Validate Electrostatic Models? Proteins: Struct. Funct. & Gene. 2001, 44, 400–417.

(67) Archontis, G.; Simonson, T. Dielectric Relaxation in an Enzyme Active Site: Molecu-

lar Dynamics Simulations Interpreted with a Macroscopic Continuum Model. J. Am.

Chem. Soc. 2001, 123, 11047–11056.

(68) Archontis, G.; Simonson, T. Proton Binding to Proteins: A Free-energy Component

Analysis using a Dielectric Continuum Model. Biophys. J. 2005, 88, 3888–3904.

(69) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Dar-

ian, E.; Guvench, O.; Lopes, P.; I. Vorobyov et al., CHARMM General Force Field: A

Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Addi-

tive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690.

(70) Huang, J.; A. D. MacKerell Jr., CHARMM36 All-atom Additive Protein Force Field:

Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013, 34, 2135–

2145.

(71) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.

Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys.

1983, 79, 926–935.

(72) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.;

Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; S. Ha et al., All-Atom Empirical Potential

36

Page 36 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998,

102, 3586–3616.

(73) Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics

Methods. J. Chem. Phys. 1984, 81, 511–519.

(74) Hoover, W. G. Canonical Dynamics: Equilibrium Phase-space Distributions. Phys. Rev.

A 1985, 31, 1695–1697.

(75) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N log (N) Method for

Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092.

(76) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian

Equations of Motion of a System with Constraints: Molecular Dynamics of n-alkanes.

J. Comput. Phys. 1977, 23, 327–341.

(77) Goh, G. B.; Laricheva, E.; C. L. Brooks III, Uncovering pH-Dependent Transient States

of Proteins with Buried Ionizable Residues. J. Am. Chem. Soc. 2014, 136, 8496–8499.

(78) Brooks, B. R.; C. L. Brooks III,; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.;

Won, Y.; Archontis, G.; Bartels, C.; S. Boresch et al., CHARMM: The Biomolecular

Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614.

(79) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.;

Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable Molecular Dynamics with

NAMD. J. Comput. Chem. 2005, 26, 1781–1802.

(80) Lide, D. R., Ed. CRC Handbook Chemistry and Physics, 85th ed.; CRC Press, 2005.

(81) Lund, M.; Jönsson, B. Charge Regulation in Biomolecular Solution. Q. Rev. Biophys.

2013, 46, 265–281.

(82) Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II: Nonequilibrium Statistical

Mechanics ; Springer, 2003.

37

Page 37 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(83) Barrat, J. L.; Joanny, J. F. Theory of Polyelectrolyte Solutions. Adv. Chem. Phys.

1996, 94, 1–66.
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