
Curriculum Learning for Heterogeneous Star Network
Embedding via Deep Reinforcement Learning

Meng Qu
University of Illinois
at Urbana-Champaign
mengqu2@illinois.edu

Jian Tang
HEC Montreal & Montreal

Institute for Learning Algorithms
tangjianpku@gmail.com

Jiawei Han
University of Illinois
at Urbana-Champaign
hanj@illinois.edu

ABSTRACT

Learning node representations for networks has attracted much

attention recently due to its effectiveness in a variety of appli-

cations. This paper focuses on learning node representations for

heterogeneous star networks, which have a center node type linked

with multiple attribute node types through different types of edges.

In heterogeneous star networks, we observe that the training or-

der of different types of edges affects the learning performance

significantly. Therefore we study learning curricula for node rep-

resentation learning in heterogeneous star networks, i.e., learning

an optimal sequence of edges of different types for the node repre-

sentation learning process. We formulate the problem as a Markov

decision process, with the action as selecting a specific type of edges

for learning or terminating the training process, and the state as

the sequence of edge types selected so far. The reward is calculated

as the performance on external tasks with node representations

as features, and the goal is to take a series of actions to maximize

the cumulative rewards. We propose an approach based on deep

reinforcement learning for this problem. Our approach leverages

LSTM models to encode states and further estimate the expected

cumulative reward of each state-action pair, which essentially mea-

sures the long-term performance of different actions at each state.

Experimental results on real-world heterogeneous star networks

demonstrate the effectiveness and efficiency of our approach over

competitive baseline approaches.

ACM Reference Format:

Meng Qu, Jian Tang, and Jiawei Han. 2018. Curriculum Learning for Het-

erogeneous Star Network Embedding via Deep Reinforcement Learning. In

WSDM 2018: WSDM 2018: The Eleventh ACM International Conference onWeb

Search and Data Mining , February 5–9, 2018, Marina Del Rey, CA, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3159652.3159711

1 INTRODUCTION

Heterogeneous networks, which encode the relationships between

different types of objects, are ubiquitous in the real world. Mining

heterogeneous networks has been attracting growing attention

in recent years. Among all heterogeneous networks, the star net-

work [33] is popular and important. A star network has a center

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159711

Papers

Authors Venues

Keywords References

Heterogeneous Star Network

Curriculum

Paper-Author Paper-Venue Paper-Keyword Paper-Reference

Figure 1: An example of heterogeneous star networks. Pa-

pers are the center nodes. Authors, venues, keywords, refer-

ences are the attribute nodes, which connect to the papers

through four types of edges. Our goal is to learn a sequence

of edge types for node representation learning.

node type and multiple attribute node types, which link to the cen-

ter nodes through different types of edges. Figure 1 presents an

example of the bibliography star network. The center nodes are pa-

pers, linked with authors, venues, keywords and references through

four types of edges. Analyzing star networks is an important prob-

lem in data mining, since a variety of real-world applications can

be formulated as certain problems on star networks, such as author

identification [5], predictive text embedding [37] and user attribute

prediction [18].

To mine heterogeneous star networks more effectively, it is

helpful to learn meaningful node representations. Traditionally,

nodes are represented as bag-of-neighbors, which are both high-

dimensional and sparse. Recently, there is a growing trend to embed

networks into low-dimensional spaces [11, 27, 38], in which each

node is represented as a low-dimensional vector. The learned node

representations capture the proximities between nodes, which can

benefit various applications, such as node classification [27], link

prediction [11] and node visualization [36]. The essential idea for

node representation learning is to capture the node proximities

encoded in edges. In practice, existing approaches usually sample a

set of edges as training data at each learning step. To learn node

representations for heterogeneous star networks, a natural solution

could be applying these approaches and sampling edges of different

types as training data.

Towards the goal of sampling edges in heterogeneous star net-

works, existing studies usually leverage the random sampling [12,

37] or weighted sampling [5, 18] strategy, without considering the

relative order of edges of different types. However, each type of

edges encodes a specific kind of knowledge, which may benefit the

representation learning process at different training stages. In other

https://doi.org/10.1145/3159652.3159711
https://doi.org/10.1145/3159652.3159711

words, the training order of edge types matters during training. For
example, in Figure 1, consider learning paper representations that
preserve paper semantic meanings. The venue of each paper re�ects
its coarse semantic domains, whereas the keywords and references
capture more concrete semantic meanings. Inspired by the human
learning process, the coarse meanings are easier to understand, and
may bene�t the learning of more concrete semantics. Based on the
observation, a more reasonable strategy compared with random or
weighted sampling could be �rst learning from the paper-venue
edges, and then moving to the paper-keyword and paper-reference
edges. Therefore, the training order of di�erent edge types is likely
to a�ect the representation learning performance signi�cantly.

Indeed, in the machine learning literature, the order of training
data has been proved to be an important factor in many applications.
Learning a meaningful order of the training data (a.k.a., curriculum
learning) can bene�t various tasks such as shape recognition [4],
handwritten text line recognition [19], word representation learn-
ing [41], sequence prediction [3] and many others. The basic idea
is to start small [6], that is, selecting easier examples to learn at
�rst, and then gradually increasing the di�culty. Though curricu-
lum learning is widely studied, how to learn a meaningful order of
training data remains unexplored for learning node representations
in heterogeneous star networks.

This motivated us to study a new problem: curriculum learning
for node representation learning in heterogeneous star networks, aim-
ing to learn an optimal curriculum for node representation learning,
in which a curriculum is de�ned as a sequence of edge types used for
training (Figure 1). The problem is essentially a sequential decision
making task, and we formulate it as a Markov decision process [2].
At each step, our action is to select a certain type of edges for node
representation learning, or terminate the training process, and the
state is de�ned as the sequence of edge types selected so far. After
taking an action at a state, we will move to another state and receive
a scalar reward. The goal is to learn a sequence of edge types that
maximizes the total sum of the rewards. Despite its practical impor-
tance, the task is nontrivial, as the search space is exponential to
the sequence length. Therefore, we are seeking an approach which
can learn an e�ective curriculum e�ciently.

In this paper, we propose such an approach based on deep rein-
forcement learning. Our approach learns the optimal curriculum by
estimating the Q value of each state-action pair, which is de�ned
as the expected cumulative reward after taking the action from the
state. Once the Q values are learned, the optimal curriculum can
be determined by sequentially selecting the action with the maxi-
mum Q value at each step. In our approach, we learn the Q value
from two sources, i.e., a planning module and a learning module.
Given a state, the planning module calculates Q by looking ahead,
which explores some subsequent actions through simulations and
approximatesQ with the simulated rewards. On the other hand, the
learning module estimatesQ by looking back on the past experience.
Speci�cally, it employs a deep neural network (LSTM models [13])
to learn from the past experience and further make predictions.
With both modules, our approach can estimate the Q value with
high accuracy and low time costs. Therefore, we are able to learn a
meaningful curriculum both e�ectively and e�ciently.

We conduct experiments on several real-world heterogeneous
star networks under the task of node classi�cation. Experimental

results in both unsupervised and semi-supervised settings prove
the e�ectiveness and e�ciency of our proposed approach.

To summarize,we make the following contributions:
• We de�ne a new problem of curriculum learning for node repre-
sentation learning in heterogeneous star networks, aiming to learn
a sequence of edge types for node representation learning.
• We formulate the problem as a Markov decision process, and
propose an approach based on deep reinforcement learning.
• We conduct experiments on real-world star networks, which
prove the e�ectiveness and e�ciency of our proposed approach.

2 PROBLEM DEFINITION
Heterogeneous networks encode the relationships between dif-
ferent types of objects, which are widely studied recently. In this
paper, we focus on a special type of heterogeneous networks, the
heterogeneous star network, which is formally de�ned below:

De�nition 2.1. (Heterogeneous Star Network.) A Heteroge-
neous Star Network G = (V0 [{Vk }Kk=1, {Ek }

K
k=1) contains a set

of center nodes V0 and di�erent types of attribute nodes {Vk }Kk=1,
which connect to the center nodesV0 through di�erent types of edges
Ek = (V0,Vk). Each edge is associated with a weightw > 0, indicat-
ing the strength of the relationship between the linked nodes.

An example of heterogeneous star networks is the bibliography
star network (Figure 1), in which the center nodes are papers, with
the attribute nodes as authors, venues, keywords and references.
There are four types of edges in the network: paper-author, paper-
venue, paper-keyword and paper-reference.

For many problems of heterogeneous star network analysis, it
is critical to learn meaningful node representations. To learn such
representations, we can directly apply existing node representation
learning algorithms [11, 27, 38] by sampling a set of edges of di�er-
ent types as training data. In practice, we observe that the order of
the sampled edges a�ects the representation learning performance
signi�cantly. Therefore we study learning curricula for node repre-
sentation learning in heterogeneous star networks. In other words,
we aim at learning a meaningful order of di�erent types of edges
for the given node representation learning algorithm.

The problem is essentially a sequential decision making task,
which can be naturally formulated as a Markov decision process.
At each step, the action is to select a certain edge type and lever-
age edges of that type for node representation learning (denoted
as a = �t where �t 2 {1, 2...K } represents an edge type), or ter-
minate the training process (denoted as a = STOP). The state is
de�ned as the sequence of edge types selected so far (denoted as
s = (�1,�2...�t�1)). After taking an action at a state, we will move
to another state and receive a reward, which is calculated by a
given reward function (denoted as R (s,a) where s is the current
state and a is the action we take). For di�erent tasks, we may select
di�erent reward functions. For example, in the node classi�cation
task, we can de�ne the reward as the accuracy gain after taking an
action at a state, with the accuracy calculated on a held-out dataset.
Given the above de�nition, our goal is to take a series of actions
to maximize the cumulative rewards. In other words, we aim at
learning an optimal sequence of edge types for node representation
learning. Formally, we de�ne our problem as follows:

Action RewardState

State

Learning Module
Past Experience Deep Neural Network

Planning Module
Monte Carlo Tree Search Rewards

Node Representation
Learning Algorithm Action

Edge Types:

Figure 2: Framework overview.We learn curricula by sequentially selecting actions with themaximumQ values. Given a state,

the action Q values are estimated from two modules. The planning module looks ahead, which simulates some actions and

approximates Q with the simulated rewards, whereas the learning module looks back on the past experience for prediction.

Definition 2.2. (Problem Definition.) Given a heterogeneous

star network G = (V0 ∪ {Vk }Kk=1, {Ek }Kk=1) and a reward function

R (s,a) for each state-action pair (s,a), we aim at taking a series of

actions to maximize the total cumulative rewards. In other words, our

goal is to learn a sequence of edge types for training.

3 PRELIMINARY

In this section, we introduce LINE [38], which is a representative

node representation learning algorithm. Given a network, LINE

samples a number of edges from the network as training data for

node representation learning.

Specifically, LINE defines the probability of a node u generated

by another node v as follows:

p (u |v) = exp(vT u)∑
u′ ∈V exp(vT u′)

, (1)

where x is the representation of each node x , and V is the node set.

To preserve the relationships between nodes, LINEminimizes the

KL-divergence between the estimated neighborhood distribution

p (·|v) and the empirical neighborhood distribution p̂ (·|v) for every
node v . The empirical distribution is defined as p̂ (u |v) = wuv/dv ,
wherewuv is the weight of the edge (u,v) and dv is the degree of

v . The final objective function of LINE can be simplified as:

Ol ine = −
∑

(u,v)∈E
wuv logp (u |v). (2)

Directly optimizing the above objective is computationally ex-

pensive because it involves traversing all nodes when computing

the softmax function. Therefore LINE adopts the negative sam-

pling techniques [20, 21], which modify the conditional probability

p (u |v) in Eqn. 2 as follows:

logσ (uT v) +
N∑
n=1

Ev ′∼Pneд (v)[logσ (−uT v′)], (3)

where σ (x) = 1/(1 + exp(−x)) is the sigmoid function. The first

term tries to maximize the probabilities of some observed edges

(u,v), and the second term tries to minimize the probabilities of

N noisy edges (u,v ′), with v ′ sampled from a noisy distribution

Pneд (v) ∝ d3/4v and dv is the degree of node v in the network.

The objective function can be efficiently optimized with edge

sampling [38]. In each iteration, the algorithm randomly samples

an observed edge with N noisy edges, and then maximizes Eqn. 3.

Next, we take LINE as an example to introduce our approach.

4 METHODOLOGY

In this section, we introduce a deep reinforcement learning ap-

proach to the proposed curriculum learning problem. Given a het-

erogeneous star network, our action at each step is to select an edge

type for representation learning or terminate the training process,

and the state is the sequence of edge types selected so far. The

reward of each action is calculated on an external task, and our goal

is to take a series of actions to maximize the cumulative rewards. In

other words, we aim at learning the optimal sequence of edge types

for training. As the number of possible sequences is exponentially

large, learning an effective sequence efficiently is very challenging.

We learn such sequence by estimating the Q value Q (s,a) of
each state-action pair (s,a), which is defined as the expected cumu-

lative reward after taking action a from state s . Once the Q value is

learned, the optimal series of actions can be easily determined by

sequentially selecting the action with the maximum Q value.

Our approach predicts Q from two sources, i.e., a planning mod-

ule and a learning module, and we denote the values calculated by

them as Qp and Ql respectively. After Qp and Ql are learned, we

further combine them as a more precise estimation ̂Q . To learn Q
values, given an edge type sequence as state, the planning module

will simulate some actions, which either select a type of edges as

training data or stop the training process, then the obtained rewards

are leveraged to estimate Qp . Different from the planning module,

the learning module learns from the previous simulation results,

and infers Ql based on these past experience. With both modules,

our approach can effectively predict the Q value (see Figure 7(a)).

Moreover, by carefully utilizing the past experience with the learn-

ing module, we can also calculate the Q value very efficiently (see

Figure 7(b)).

Even though our approach can learn a curriculum both effec-

tively and efficiently, in practice, we may still have different em-

phasis on effectiveness and efficiency. To allow flexible trade-off

between them, our approach tries to penalize each action. Specifi-

cally, when calculating the reward for an action, we will subtract a

constant penalty from the original reward calculated by the reward

function R (s,a). A small penalty encourages our approach to learn

a longer curriculum, which has better performance but is less effi-

cient; whereas a large penalty leads to a shorter curriculum, with

worse performance but less time costs. Overall, the two factors can

be well balanced by choosing different penalties (see Figure 8).

The overall framework is summarized in Figure 2. Next, we in-

troduce the details of our approach and analyze its time complexity.

Node Representation
Learning Algorithm

Reward
Function

Edge Types:

Figure 3: Illustration of the simulation. Given a state (the

leftmost one), we simulate a series of actions (actions along

the black path) until we reach an unvisited state (the yellow

one). Then the rewards are calculated to approximate Qt .

4.1 Planning Module

The planning module of our approach estimates Qp by looking

ahead and simulating some subsequent actions starting from the

given state. In each simulation, we first choose a series of actions to

explore, which either select a type of edges for training or terminate

the training process. Then we simulate the actions with the node

representation learning algorithm and calculate the rewards, which

are further utilized to approximate the expected cumulative reward

Qp . Figure 3 presents an illustration of the workflow.

Specifically, in the planning module, the Qp (s,a) value of each
state-action pair (s,a) is calculated with a look-up table. Following

existing studies on Monte-Carlo tree search [1, 8, 14], given a state

s , in each simulation we will recursively select some actions to

explore (e.g., actions along the black path in Figure 3), until we

reach an unvisited state (e.g., the yellow state in Figure 3). Inspired

by the UCT algorithm [8], at each state s , we select the following
action a to explore:

a = argmax
a
{Qp (s,a)N (s,a)

N (s,a) + 1
+

Ql (s,a)

N (s,a) + 1
+λ

√
lnN (s)

N (s,a) + 1
}. (4)

For each state-action pair (s,a), Qp (s,a) and Ql (s,a) are the Q
values calculated by the planning and learningmodules respectively,

N (s,a) is the visit count and N (s) =
∑
a N (s,a) is the total visit

count of the state s .
Such selection rule is quite intuitive. The first term is the Q

value calculated by the planning module; while the second term

is calculated by the learning module, which serves as priors and

decays with repeated visits. Both terms encourage the model to

exploit actions with largerQ values in the past, as these actions are

more likely to be the optimal ones. For the third term, it favors those

actions with less visit counts, as such actions can eventually become

superior than others in some cases. To balance the exploitation of

the promising actions with the exploration of others, we introduce

a parameter λ. A small λ will encourage the exploitation while a

large one will encourage the exploration.

After reaching an unvisited state, we will simulate the selected

actions with the node representation learning algorithm, that is,

leveraging the corresponding types of edges to update the node

representations or stop the training process. Then the rewards are

calculated by applying the reward function on the learned node

representations. Suppose the sequence of the visited states and the

selected actions is (st ,at , ..., st+l ,at+l , su), and the corresponding

reward sequence is (rt , ..., rt+l) where ri = R (si ,ai). Then we

LSTM

Embedding

Embedding

State Action

Figure 4: The network structure for the learning module.

update Qp based on the temporal difference learning method [35]:

Qp (si ,ai) = Qp (si ,ai) + α[ri +Qp (si+1,ai+1) −Qp (si ,ai)], (5)

where α = 1
N (si ,ai)

is the learning rate. Basically, ri is the imme-

diate reward after taking ai at si and Qp (si+1,ai+1) estimates the

long-term reward, and we will use their sum to approximate the

expected total rewardQp (si ,ai) from state si after taking action ai .

4.2 Learning Module

Different from the planning module, the learning module of our

approach estimates Ql by looking back on the past experience,

without look-ahead search. More specifically, we train a deep neural

network to memorize the historical data, that is, the previously

explored state-action pairs together with the simulated rewards.

Then we infer Ql based on the neural network.

Formally, the value Ql (s,a) of each state-action pair (s,a) is
calculated by a deep neural network. In the deep neural network,

we represent each edge type y ∈ {1, 2...K } and action a ∈ {1, 2...K }
with an embedding vector. Then for a state s = (y1,y2...yt), we
encode it using an LSTM layer [13]. After that, we concatenate the

encoding vectors of state s and action a, and leverage two fully

connected layers to calculate Ql (s,a). Figure 4 shows the structure
of the neural network. By leveraging LSTM layers to encode states,

we can effectively capture the correlations of different states, which

enables us to effectively infer the Ql values of new state-action

pairs based on their similarities with the previously explored pairs.

To learn the parameters of the deep neural network, we treat

the state-action pairs and the corresponding rewards explored by

the planning module as training data. Formally, suppose the state-

action sequence obtained in a simulation is (st ,at , ..., st+l ,at+l , su),
and the corresponding reward sequence is (rt , ..., rt+l), then we

update the parameters based on the temporal difference learning

method [35] as follows:

wl = wl + α[ri +Ql (si+1,ai+1) −Ql (si ,ai)] �wl
Ql (si ,ai), (6)

wherewl is the parameter set of the neural network, α is the learn-

ing rate, which is updated with the RMSProp algorithm [40] and the

initial value is set as 0.001. Basically, the immediate rewards ri and
the long-term reward Ql (si+1,ai+1) are leveraged to approximate

the cumulative reward Ql (si ,ai) of the state-action pair (si ,ai).

4.3 Integrating Both Modules

Finally in each step, Qp and Ql are integrated as ̂Q , which gives a

more precise estimation of theQ value. Then we decide the optimal

action with the integrated value.

Speci�cally, given the current state s , we calculate DQ (s,a) for
each action a as follows:

DQ (s,a) = {
Qp (s,a)N (s,a)

N (s,a) + 1
+

Ql (s,a)

N (s,a) + 1
}, (7)

where Qp (s,a) is calculated by the planning module, Ql (s,a) is
calculated by the learning module, and N (s,a) is the visit count.
We see that DQ is a weighted average ofQp andQl . AsQp is estimated
with look-ahead search, which is more precise, we will assign larger
weight to this term. For Ql , it is learned from the past experience,
which serves as priors and we will continuously decrease its weight
with repeated visits.

The DQ value estimates the expected future rewards after taking
a at s , and the action a⇤ with the maximum DQ value should be the
optimal selection at the current step. Therefore, we will take action
a⇤, that is, either selecting a type of edges for node representation
learning or terminating the training process.

The overall node representation learning process with our cur-
riculum learning approach is summarized in Algorithm 1.

Algorithm 1 Representation learning with our approach.
Input: Star network G , reward function R , the number of simulations S .
Output: Node representations.
1: for each step do
2: � Update the learning module:
3: Collect past experience as training data for the learning module.
4: Update the learning module according to Eqn. (6).
5: � Update the planning module:
6: while simulation  S do
7: Select a series actions according to Eqn. (4).
8: Simulate the actions with the embedding algorithm (Eqn. (2)).
9: Calculate the rewards with the reward function R .
10: Update the planning module according to Eqn. (5).
11: end while
12: � Integrating both modules:
13: Calculate DQ value for each action according to Eqn. (7).
14: Select the optimal action a⇤ based on DQ .
15: if a⇤ is STOP then
16: Terminate the training process.
17: end if
18: Use the corresponding type of edges for training based on Eqn. (2).
19: Move to the next state based on the selected action a⇤.
20: end for

4.4 Time Complexity
Finally, we analyze the time complexity of the node representation
learning process with our approach. In each step, we will simulate
a series of actions, update both modules and decide the optimal
action. The time costs mainly come from the simulation process.
Suppose we conduct S simulations in each step, and we randomly
sample Es edges for training if an edge type is selected in an ac-
tion. Then the overall time complexity is O (ISEs), where I is the
number of training steps. Compared with single edge type based
approaches (e.g., DeepWalk, LINE, node2vec), the time complexity
of our approach (O (ISEs)) is S time larger than theirs (O (IEs)). In
the experiment part, we will show that our approach requires very
limited simulations S to achieve satisfactory results (see Figure 7).
We will also show that our approach is quite e�cient compared
with several baseline approaches (see Figure 6).

5 EXPERIMENT
In this section, we evaluate our approach on several real-world
heterogeneous star networks. We compare di�erent approaches on
the center node classi�cation task in both the unsupervised and
semi-supervised settings.

Speci�cally, for each compared algorithm, we treat the learned
center node representations as features and train one-vs-rest linear
classi�ers using the LibLinear package [7] 1 for classi�cation. In
the unsupervised setting, we treat all center nodes in the training
set as the held-out data, and the reward of an action is de�ned
as the classi�cation accuracy gain on the held-out dataset after
taking that action. Note that in the unsupervised setting, the labeled
center nodes are only used for reward calculation. In some cases,
we also expect to improve node representations with the labeling
information. Therefore, in the semi-supervised setting, we treat
labels as an additional type of attribute nodes to guide the learning
process. We use 70% center nodes in the training set to construct
edges between center nodes and labels, and treat the remaining
30% as the held-out data. The reward of an action is de�ned as the
classi�cation accuracy gain on the held-out dataset after taking that
action. The classi�cation performance is evaluated using the Macro-
F1 and Micro-F1 scores. Note that Micro-F1 is equal to accuracy in
our setting since each node has only one label.

5.1 Experiment Setup
5.1.1 Datasets.

• DBLP: A bibliography star network constructed from the DBLP
dataset [39]2. The papers are the center nodes and the authors,
citations, words in the titles are treated as the attribute nodes.
The weights of all edges are set as 1. For the center nodes (i.e.,
papers), we select eight diverse research �elds as labels including
“machine learning”, “natural language processing”, “program-
ming language”, “data mining”, “database”, “system technology”,
“hardware and theory”. For each research domain, several repre-
sentative conferences are selected, and only papers published in
these conferences are collected to construct the networks.
• Yelp: A business network constructed from the Yelp dataset 3,
with business as the center node type, and user, word in busi-
ness names, word in business reviews as attribute nodes. The
weight of the edge between a business and a user is the number
of reviews written by the user for the business. The weight of
the edge between a business and a word is the frequency of the
word in the business name/reviews. We select six categories in-
cluding “Restaurants”, “Hotels”, “Shopping”, “Health & Medical”,
“Beauty & Spas”, “Arts & Entertainment” as labels. Businesses
with multiple labels are excluded from the labeled set.
• IMDB: A movie network constructed from the IMDB dataset 4.
We treat the movies as the center nodes and other entities as
the attribute nodes, including users, movies, keywords, actors,
actresses, directors, writers. For each (movie, user) pair, the edge
weight is set as 1 if the user once rated the movie. For each (movie,
movie) pair, the weight is de�ned as the number of users who

1https://www.csie.ntu.edu.tw/~cjlin/liblinear/
2 https://aminer.org/AMinerNetwork
3 https://www.yelp.com/dataset_challenge
4 http://�les.grouplens.org/datasets/movielens/ml-10m-README.html

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://aminer.org/AMinerNetwork
https://www.yelp.com/dataset_challenge
http://files.grouplens.org/datasets/movielens/ml-10m-README.html

Table 1: Statistics of the Datasets.
Dataset DBLP Yelp IMDB

Center Nodes 107,833 77,445 10,692
Attribute Type Citation Author Word Review Name User User Movie Keyword Actor Actress Director Writer

Attribute Nodes 107,833 46,297 23,818 127,203 29,791 552,339 69,878 10,676 58,952 54,171 104,473 3,127 8,164
Edges 655,030 117,415 346,100 20,858,371 218,034 2,225,213 10,000,054 5,318,912 564,019 90,027 206,290 6,698 15,917

Training Nodes 13,643 17,468 1,006
Test Nodes 30,000 30,000 3,000

watch one movie immediately after watching the other one. We
treat the movie genres as classi�cation labels and movies with
more than one genre are excluded from the labeled set.

5.1.2 Compared algorithms.
• LINE: A node representation learning algorithm for networks
with a single type of edges [38]. We report the best results of LINE
with each single type of edges (LINE). Besides, we also apply
LINE to multiple types of edges by assigning di�erent sampling
weights to di�erent edge types, with the weights learned by
grid search on the held-out dataset (LINE-Weight). Such weight
selection strategy is widely adopted by existing methods [5, 18].
• node2vec: Another node representation learning approach for a
single edge type [11]. Similarly, the best results on a single type
of edges (node2vec) and the results on multiple types of edges
through weight learning (node2vec-Weight) are reported.
• Rand: Randomly select a type of edges at each training step, and
use LINE for node representation learning [37]. The number of
training steps is set as 300 in all datasets to ensure convergence.
• Greedy: Greedily select the action (i.e., selecting an edge type
or terminating training) with the maximum immediate reward
at each step, and learn node representations with LINE.
• DRL: Learn curricula with our Deep Reinforcement Learning
approach, and learn node representations with LINE.
• DRL-Shuf: Shu�e the curriculum learned by our approach, and
learn node representations with LINE.
• DRL-P: Learn curricula with only the planning module, and keep
Ql calculated by the learning module as 0.
• DRL-L: Learn curricula with only the learning module, and keep
Qp calculated by the planning module as 0.

5.1.3 Parameter Se�ings. For all approaches, we set the dimen-
sion of the node representations as 100. For node2vec, we set the
window size as 10, the walk length as 40, as suggested in [27]. The
parameters p and q for controlling the random walk process are
selected on the held-out dataset. For LINE, the number of negative
samples is set as 5, and the learning rate is set as 0.015. For all the
curriculum learning based approaches, if an action is to select an
edge type for training, we will randomly sample 1M edges of that
type as training data to update the node representations. For the
learning module of our approach, the dimensions of the embedding
layer and the hidden layer are set as 10. For the planning module of
our approach, the parameter � for balancing the exploitation and
exploration is set as 0.2, and the penalty of each action is set as
10�4 by default. The number of simulations at each step is set as 12
for the DBLP and Yelp datasets, and 20 for the IMDB dataset.

5.2 Quantitative Results
In this section, we report the quantitative results on the center
node classi�cation task in both the unsupervised setting and the
semi-supervised setting.

5.2.1 Unsupervised Se�ing. Table 2 presents the results in the
unsupervised setting. We see that considering multiple types of
edges achieves much better results compared with single type based
approaches (single type). For di�erent strategies combining multi-
ple edge types, we observe that learning their orders (curriculum
learning) consistently outperforms learning the sampling weights
(weight learning), which demonstrates that curriculum learning
is a more e�ective strategy for the node representation learning
problem in star networks. For di�erent curriculum learning ap-
proaches, the performance of random sampling (Rand) is the worst.
The approach of greedily selecting the action with the maximum
immediate reward (Greedy) performs much better.

With both the learning and planning modules, our deep rein-
forcement learning based approach (DRL) signi�cantly improves
the performance. Comparing our approach with its variants, we see
that ignoring either the planning module or the learning module
(DRL-P and DRL-L) leads to much worse results, which proves that
the two modules can indeed mutually complement to improve the
performance. Besides, if we shu�e the learned curriculum (DRL-
Shuf), the results signi�cantly drop. This shows that the training
order of di�erent edge types can indeed a�ect the performance.
Overall, our approach can learn an e�ective curriculum to improve
the node representation learning process.

5.2.2 Semi-supervised Se�ing. The results in the semi-supervised
setting are presented in Table 3. Similar results are observed as in the
unsupervised setting. The curriculum learning based approaches
still outperform those weight learning based approaches. Besides,
our deep reinforcement learning based approach (DRL) signi�cantly
outperforms other curriculum learning approaches with random
(Rand) or greedy (Greedy) strategies.

Comparing Table 3 with Table 2, we can see that the results of
our approach (DRL) are consistently improved by considering the
labeled nodes during training, which shows that our approach can
also e�ectively integrate the labeled and unlabeled information to
learn more e�ective node representations.

5.3 Convergence Comparison
The quantitative results above show that our curriculum learning
approach is able to learn an e�ective sequence of edge types for
node representation learning. To intuitively understand how such
strategy a�ects the training process, in this part we report the
performance of di�erent approaches at each training step. We take
the DBLP dataset as an example, and the results in both settings are
reported. To ensure the convergence of all approaches, we constrain
the number of training steps as 50.

Figure 5 presents the results. Compared with the weight learn-
ing based approaches (LINE-Weight) and other curriculum learning
based approaches (Rand and Greedy), DRL converges faster and
has better performance. Therefore, our approach can both help ac-
celerate the convergence and improve the learned representations.

Table 2: Quantitative results in the unsupervised setting. Curriculum learning based approaches outperform other approaches.
Our deep reinforcement learning based approach performs the best among all compared algorithms.

Type Algorithm DBLP Yelp IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Single Type LINE 75.59 76.26 80.91 87.63 28.26 72.60
node2vec 78.40 79.79 72.44 81.05 24.28 70.13

Weight Learning LINE-Weight 79.76 80.99 86.78 91.32 30.63 75.60
node2vec-Weight 80.50 81.42 85.42 90.63 26.43 74.03

Curriculum Learning

Rand 76.85 78.37 82.16 88.61 28.35 73.93
Greedy 79.60 80.96 85.89 91.02 28.81 74.57
DRL-P 81.04 81.95 88.87 92.85 29.55 75.93
DRL-L 80.15 81.18 86.43 91.46 29.19 72.70

DRL-Shuf 79.36 80.42 86.28 91.20 28.29 75.37
DRL-MCT 81.33 82.46 89.30 93.31 33.09 78.60

Table 3: Quantitative results in the semi-supervised setting. Our deep reinforcement learning based approach outperforms all
other approaches and achieves better results compared with the results in the unsupervised setting.

Type Algorithm DBLP Yelp IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Single Type LINE 75.59 76.26 80.91 87.63 28.26 72.60
node2vec 78.40 79.79 72.44 81.05 24.28 70.13

Weight Learning LINE-Weight 82.09 82.75 87.41 91.85 31.68 76.73
node2vec-Weight 82.17 83.12 87.05 91.18 27.14 74.57

Curriculum Learning

Rand 79.88 80.23 88.30 89.23 28.79 74.40
Greedy 80.26 81.49 87.42 92.17 30.08 76.33
DRL-P 82.98 83.80 89.09 93.39 31.62 77.13
DRL-L 82.26 83.16 88.07 92.41 29.52 73.87

DRL-Shuf 81.73 82.22 87.06 91.74 31.09 76.07
DRL 83.63 84.49 89.76 93.97 35.51 79.67

●
● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

0 10 20 30 40 50

20
30

40
50

60
70

80

Training Step

M
ic

ro
−F

1

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

● ●
●

● ●

●

● ● ● ● ● ● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

LINE−Weight
Rand
Greedy
DRL

(a) DBLP (unsupervised)

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

0 10 20 30 40 50

20
30

40
50

60
70

80

Training Step

M
ic

ro
−F

1

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ●

● ●
● ●

●

●

●

●

●

●

●
●

●

●
● ● ●

●
●

● ● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

● ●

●

●

●

●

LINE−Weight
Rand
Greedy
DRL

(b) DBLP (semi-supervised)

Figure 5: Performance w.r.t. training steps on the DBLP
dataset. Our approach improves both the convergence and
quality of the learned node representations.

5.4 E�ciency Comparison
In the above sections, we have compared the e�ectiveness of di�er-
ent approaches. Next, we further evaluate their e�ciency. To better
illustrate the e�ciency of our approach, we introduce another base-
line approach Brute-Force, which learns the optimal action at each
step through brute-force search based on the obtained rewards, and
the maximal search depth is set as 3. We take the DBLP and the
IMDB datasets as examples, and report both the performance and
running time of each compared algorithm. The number of train-
ing threads is set as 16 for all approaches. For our approach, the
planning module is trained on CPU with 16 threads, whereas the
learning module is learned using a GPU.

Figure 6 presents the results. Comparing our approach (DRL)
with the approaches based on weight learning (LINE-Weight) and

●

0 500 1000 1500 2000

76
77

78
79

80
81

82

Time (s)

M
ic

ro
−F

1

●

●●

●

●

●

●

●

●

●

●

LINE
LINE−Weight
Rand
Greedy
Brute−Force
DRL

(a) DBLP (unsupervised)

●

0 10000 20000 30000 40000

73
74

75
76

77
78

Time (s)

M
ic

ro
−F

1
●

●●

●

●

●

●

●

●

●

●

LINE
LINE−Weight
Rand
Greedy
Brute−Force
DRL

(b) IMDB (unsupervised)

Figure 6: Performance v.s. the running time. The upper left
indicates the optimal performance. Our approach is both ef-
fective and e�cient.

brute-force search (Brute-Force), we see that our approach achieves
close results but is much more e�cient. On the other hand, our
approach signi�cantly outperforms other curriculum learning ap-
proaches (Rand and Greedy), and the e�ciency is close. Overall,
our approach can help learn more e�ective node representations
with close e�ciency.

5.5 Parameter Sensitivity

Performance w.r.t. the number of simulations. At each train-
ing step, our approach conducts several simulations to evaluate
actions. Next, we study the performance of our approach under
di�erent numbers of simulations. We take the IMDB dataset in the
unsupervised setting as an example. We report the Micro-F1 with

70
72

74
76

78
80

Simulations

M
ic

ro
−

F
1

5 10 20 40 80

DRL−P
DRL−L
DRL

(a) Micro-F1 w.r.t. #simulations

0 500 1000 1500 2000 2500 3000
70

72
74

76
78

80
Time (s)

M
ic

ro
−

F
1

DRL−P
DRL−L
DRL

(b) Curves of Micro-F1 and time

Figure 7: Performance w.r.t. #simulations on the IMDB

dataset. Our approach requires limited simulations to

achieve compelling results (left). Leveraging both modules

improves the effectiveness and efficiency (right).

respect to #simulations in Figure 7(a), and show the curves of Micro-

F1 and running time with different #simulations in Figure 7(b) (5,

10, 20, 40, 80 simulations from left to right).

From Figure 7(a), we see that with both planning and learning

strategies, our approach (DPL) requires very limited simulations

to achieve compelling results, which shows that integrating them

indeed improves the effectiveness. From Figure 7(b), we observe that

compared with either module (DRL-L and DRL-P), our approach

(DRL) achieves close results with lower time costs, demonstrating

that both modules can work together to improve the efficiency.

80
.0

80
.5

81
.0

81
.5

82
.0

82
.5

83
.0

Penalty

M
ic
ro
−
F
1

10^−1 10^−2 10^−3 10^−4 10^−5

DRL

(a) Micro-F1

16
0

18
0

20
0

22
0

24
0

Penalty

T
im

e
(s

)

10^−1 10^−2 10^−3 10^−4 10^−5

DRL

(b) Time

Figure 8: Performancew.r.t. penalty.We can flexibly balance

the effectiveness with efficiency by adjusting penalties.

Performancew.r.t. the penalty. To balance the effectiveness with

efficiency, our approach introduces a penalty for each action when

calculating the rewards. A small penalty emphasizes the effective-

ness while a large penalty emphasizes the efficiency. In this part, we

study the performance under different penalties. We take the DBLP

dataset in the unsupervised setting as an example, and report both

the Micro-F1 and curriculum length (i.e., the number of training

steps in the curriculum) under different penalties.

Figure 8 presents the results. When the penalty is large, we

observe that the performance is quite limited but the whole training

process is very efficient. As we decrease the penalty, the results are

significantly improved, but the training process also takes longer

time. Overall, with proper penalties, we can effectively trade off

between the effectiveness and efficiency.

5.6 Case Study

(a) DBLP (unsupervised) (b) DBLP (semi-supervised)

Figure 9: The learned curriculum on the DBLP dataset.

Finally, we present some intuitive examples to show that the

curriculum learned by our approach is indeed reasonable. Taking

the DBLP dataset as an example, we present the learned curriculum

in Figure 9, in which we constrain the number of training steps as

50 and each color corresponds to a type of edges.

In the unsupervised setting, the edges between papers and title

words are selected at the beginning steps. The reason may be that

the paper titles provide the most general information, which can

benefit the learning of other knowledge. In the semi-supervised

setting, the learned curriculum is very interesting. At the first train-

ing step, the labeled data (i.e., edges between papers and labels)

are selected, which is very intuitive. Overall, both the labeled data

(red) and unlabeled data (other colors) are selected during training,

showing that both information is useful for learning meaningful

node representations, and our approach can effectively integrate

both kinds of information.

6 RELATEDWORK

Our work is related to node representation learning, which learns

low-dimensional vector representations for nodes in networks.

Most existing approaches including DeepWalk [27], LINE [38] and

node2vec [11] aim to preserve the structure information of net-

works, such that nodes with similar neighbors tend to have similar

representations. There are also some studies [5, 12, 16, 18, 28, 37]

focusing on heterogeneous networks, which exploit multiple types

of edges. However, all these approaches ignore the training order

of different types of edges, while in this paper we aim at learning a

meaningful training order of edges of different types to improve

the representation learning performance.

Another category of related work is curriculum learning, which

aims at learning a meaningful order of the training data. Bengio

et al. [4] first proposed the concept of curriculum learning, and

applied the idea to the tasks of shape recognition and language

modeling. The strategy was then successfully applied to various re-

search domains such as computer vision [10, 15, 19, 25] and natural

language processing [3, 31, 41]. The basic idea of these approaches

is to start training with easy examples to first learn some simple

aspects of a given task, and then gradually increase the difficulty

to learn more complex aspects. Our work shares similar intuition

with these studies, but we focus on learning node representations

for heterogeneous star networks, which remains unexplored yet.

Our work is also related to reinforcement learning and planning

approaches, which aim to solve the sequential decision making

problems by either interacting with environments or conducting

simulations. These approaches have achieved impressive results in

a variety of applications, including the GO game [9, 29], real-time

video games [23, 26], image classification [22], dialogue genera-

tion [17] and optimization [24, 42]. All these approaches either

leverage the learning strategy or the planning strategy, whereas we
integrate both of them in our approach. There are also some studies
combining learning and planning strategies [30, 34], which leverage
linear models to approximate Q values. Di�erent from them, we
utilize deep neural networks (LSTM) to calculate Q values, and we
focus on di�erent applications from theirs.

7 CONCLUSION
In this paper, we studied the problem of curriculum learning for
node representation learning in heterogeneous star networks. We
proposed a deep reinforcement learning based approach, which
integrates the learning and planning strategies. Experimental re-
sults proved the e�ectiveness and e�ciency of our approach. In
the future, we plan to apply our framework to general heteroge-
neous networks, in which a curriculum is de�ned as a sequence of
meta-paths [32] or hyper-edges [12].

ACKNOWLEDGMENTS
Research was sponsored in part by the U.S. Army Research Lab.
under Cooperative Agreement No. W911NF-09-2-0053 (NSCTA),
National Science Foundation IIS-1320617 and IIS 16-18481, and grant
1U54GM114838 awarded by NIGMS through funds provided by the
trans-NIHBigData to Knowledge (BD2K) initiative (www.bd2k.nih.gov).
The views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the
o�cial policies of the U.S. Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine learning, 47(2-3):235–256, 2002.
[2] R. Bellman. A markovian decision process. Technical report, DTIC Document,

1957.
[3] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence

prediction with recurrent neural networks. In Advances in Neural Information
Processing Systems, pages 1171–1179, 2015.

[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages
41–48. ACM, 2009.

[5] T. Chen and Y. Sun. Task-guided and path-augmented heterogeneous network
embedding for author identi�cation. arXiv preprint arXiv:1612.02814, 2016.

[6] J. L. Elman. Learning and development in neural networks: The importance of
starting small. Cognition, 48(1):71–99, 1993.

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A
library for large linear classi�cation. The Journal of Machine Learning Research,
9:1871–1874, 2008.

[8] S. Gelly and D. Silver. Combining online and o�ine knowledge in uct. In
Proceedings of the 24th international conference on Machine learning, pages 273–
280. ACM, 2007.

[9] S. Gelly, Y. Wang, O. Teytaud, M. U. Patterns, and P. Tao. Modi�cation of uct
with patterns in monte-carlo go. 2006.

[10] K. J. Geras and C. Sutton. Scheduled denoising autoencoders. arXiv preprint
arXiv:1406.3269, 2014.

[11] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864. ACM, 2016.

[12] H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han. Large-scale embedding
learning in heterogeneous event data. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on, pages 907–912. IEEE, 2016.

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[14] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293. Springer, 2006.

[15] Y. J. Lee and K. Grauman. Learning the easy things �rst: Self-paced visual category
discovery. In CVPR, pages 1721–1728. IEEE, 2011.

[16] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu. Attributed network embedding
for learning in a dynamic environment. arXiv preprint arXiv:1706.01860, 2017.

[17] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky. Deep reinforcement
learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

[18] J. Li, A. Ritter, and D. Jurafsky. Learning multi-faceted representations of in-
dividuals from heterogeneous evidence using neural networks. arXiv preprint
arXiv:1510.05198, 2015.

[19] J. Louradour and C. Kermorvant. Curriculum learning for handwritten text line
recognition. In Document Analysis Systems (DAS), 2014 11th IAPR International
Workshop on, pages 56–60. IEEE, 2014.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

[21] A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural proba-
bilistic language models. arXiv preprint arXiv:1206.6426, 2012.

[22] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems, pages 2204–2212, 2014.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[24] R. Munos. From bandits to monte-carlo tree search: The optimistic principle
applied to optimization and planning. 2014.

[25] A. Pentina, V. Sharmanska, and C. H. Lampert. Curriculum learning of multiple
tasks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5492–5500, 2015.

[26] T. Pepels, M. H. Winands, and M. Lanctot. Real-time monte carlo tree search in
ms pac-man. IEEE Transactions on Computational Intelligence and AI in Games,
6(3):245–257, 2014.

[27] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[28] M. Qu, J. Tang, J. Shang, X. Ren, M. Zhang, and J. Han. An attention-based
collaboration framework for multi-view network representation learning. arXiv
preprint arXiv:1709.06636, 2017.

[29] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature.

[30] D. Silver, R. S. Sutton, and M. Müller. Sample-based learning and search with
permanent and transient memories. In Proceedings of the 25th international
conference on Machine learning, pages 968–975. ACM, 2008.

[31] V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Baby steps: How “less is more” in
unsupervised dependency parsing. NIPS: Grammar Induction, Representation of
Language and Language Learning, pages 1–10, 2009.

[32] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. Proceedings of the
VLDB Endowment, 4(11):992–1003, 2011.

[33] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous information
networks with star network schema. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 797–806.
ACM, 2009.

[34] R. S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming.

[35] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1.
[36] J. Tang, J. Liu, M. Zhang, and Q.Mei. Visualizing large-scale and high-dimensional

data. In Proceedings of the 25th International Conference on World Wide Web, pages
287–297. International World Wide Web Conferences, 2016.

[37] J. Tang, M. Qu, and Q. Mei. Pte: Predictive text embedding through large-scale
heterogeneous text networks. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 1165–1174.
ACM, 2015.

[38] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale informa-
tion network embedding. In Proceedings of the 24th International Conference on
World Wide Web, pages 1067–1077. International World Wide Web Conferences
Steering Committee, 2015.

[39] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 990–998.
ACM, 2008.

[40] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recentmagnitude. COURSERA: Neural networks formachine learning,
4(2):26–31, 2012.

[41] Y. Tsvetkov, M. Faruqui, W. Ling, and C. Dyer. Learning the curriculum with
bayesian optimization for task-speci�c word representation learning. arXiv
preprint arXiv:1605.03852, 2016.

[42] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

	Abstract
	1 INTRODUCTION
	2 PROBLEM DEFINITION
	3 PRELIMINARY
	4 METHODOLOGY
	4.1 Planning Module
	4.2 Learning Module
	4.3 Integrating Both Modules
	4.4 Time Complexity

	5 EXPERIMENT
	5.1 Experiment Setup
	5.2 Quantitative Results
	5.3 Convergence Comparison
	5.4 Efficiency Comparison
	5.5 Parameter Sensitivity
	5.6 Case Study

	6 RELATED WORK
	7 CONCLUSION
	References

