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SUMMARY

Understanding reliable signal transmission repre-
sents a notable challenge for cortical systems, which
display a wide range of weights of feedforward and
feedback connections among heterogeneous areas.
We re-examine the question of signal transmission
across the cortex in a network model based on
mesoscopic directed and weighted inter-areal con-
nectivity data of the macaque cortex. Our findings
reveal that, in contrast to purely feedforward propa-
gationmodels, the presence of long-range excitatory
feedback projections could compromise stable
signal propagation. Using population rate models
as well as a spiking network model, we find that
effective signal propagation can be accomplished
by balanced amplification across cortical areas while
ensuring dynamical stability. Moreover, the activa-
tion of prefrontal cortex in our model requires the
input strength to exceed a threshold, which is
consistent with the ignition model of conscious pro-
cessing. These findings demonstrate our model as
an anatomically realistic platform for investigations
of global primate cortex dynamics.

INTRODUCTION

In computational neuroscience, there is a lack of knowledge

about multi-regional brain circuits. New questions that are not

crucial for understanding local circuits arise when we investigate

how a large-scale brain system works. In particular, reliable

signal propagation is a prerequisite for information processing

in a hierarchically organized cortical system. A number of studies

have been devoted to signal propagation from area to area in the

mammalian cortex (Perkel and Bullock, 1968; Kumar et al., 2010;
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van Rossum et al., 2002; Shadlen and Newsome, 1998; Die-

smann et al., 1999; Kumar et al., 2008; Marsálek et al., 1997). It

was found that a major challenge is to ensure stable transmis-

sion, with the signal undergoing neither successive attenuation

nor amplification as it travels acrossmultiple areas in a hierarchy.

In spite of the insights these studies provided, virtually all previ-

ous works did not incorporate data-constrained cortical connec-

tivity and made unrealistic assumptions—for instance, areas

are considered identical, network architecture is strictly feedfor-

ward, and connection weights are the same at all stages of the

hierarchy. Here we argue that achieving stable signal propaga-

tion becomes even more challenging with the inclusion of more

realistic network architecture and connectivity. Mechanisms

that improve signal propagation in simpler models may no longer

work for more biological models.

Inter-areal cortical networks are highly recurrent and are abun-

dant with feedback loops (Markov et al., 2014a). These rich feed-

back connections pose the risk of destabilizing the system

through reverberation as the signal is transmitted across areas.

Additionally, local cortical circuits are strongly recurrently con-

nected (Markov et al., 2011), further contributing to system insta-

bility. Therefore, mechanisms that improve signal propagation

in feedforward networks may quickly lead to instability in a

brain-like network. Building such a model requires quantitative

anatomical data. Recently, detailed mesoscopic connectivity

data has become available for both macaque monkey (Markov

et al., 2011, 2014a; Wang and Kennedy, 2016) and mouse (Oh

et al., 2014; Zingg et al., 2014). This data delineates a complex

inter-areal cortical network with connection weights spanning

several orders of magnitude. Some areas receive strong inter-

areal connections, while some other areas appear more discon-

nected from the rest of the cortex. It is particularly challenging to

facilitate signal propagation to the weakly connected areas while

maintaining stability for the more strongly connected core areas

(Markov et al., 2013). Recent work employs directed and

weighted inter-areal connectivity data to build biologically

realistic, large-scale dynamical models of the primate cortex

(Chaudhuri et al., 2015; Mejias et al., 2016) with both local and
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C Figure 1. Balanced Amplification in an Inhibi-

tion-Stabilized Local Circuit

(A) Model scheme with strong recurrent excitation

balanced by strong lateral inhibition.

(B) Local Balanced Amplification (LBA) results in a

transient amplification of the excitatory firing rate

prior to decay in response to a brief input that sets

the initial rate to 1.

(C) Peak response of the excitatory firing rate

as a function of recurrent excitation (local E-to-E

connection) and lateral inhibition (local I-to-E

connection). The gray region on the lower right in-

dicates instability. The green and purple crosses

correspond to the parameter values used in (B).
long-range recurrent connections. This connectivity data spans

29 widely distributed cortical areas across the occipital, tempo-

ral, parietal, and frontal lobes (Markov et al., 2014a). These

anatomically calibrated models thus provide a useful framework

for re-examining signal propagation in the cortex.

We propose a novel, biologically plausible mechanism based

on transient signal amplification to improve reliable cortical

signal transmission. Our mechanism is inspired by the balanced

amplification mechanism (Murphy and Miller, 2009), extending

its central idea from the local circuit to a large-scale system.

Balanced amplification was originally studied in local inhibition-

stabilized network models (Ozeki et al., 2009; Murphy andMiller,

2009). These networks are characterized by a strong recurrent

excitation, which drives the neural activity toward instability, fol-

lowed by a strong lateral inhibition that stabilizes neural activity

(Figure 1A). These two factors combined result in a transient

amplification of the excitatory firing rate in response to a brief

input prior to stabilization, a phenomenon referred to as

balanced amplification (Murphy and Miller, 2009) (Figure 1B),

or Local Balanced Amplification (LBA) for a local network.

Increasing LBA can evoke a stronger transient excitatory

response prior to decay (Figures 1B and 1C), which leads to a

transient amplification of activity in the local circuit (Murphy

and Miller, 2009). Our proposed signal transmission mechanism

is a form of balanced amplification in which inter-areal excitatory

connection strengths are increased together with increased

intra-areal lateral inhibition.

We test our mechanism in a range of large-scale models of the

primate cortex, including in recent population-rate models with

heterogeneity across areas (Chaudhuri et al., 2015) and with a

cortical laminar structure (Mejias et al., 2016). The inter-areal

connectivity in these models is set according to a connectivity

dataset of the macaque cortex, in which the directed and

weighted connectivity matrix was obtained using tract-tracing

techniques (Markov et al., 2014a; see STAR Methods). Briefly,

a retrograde tracer was injected into a given (target) area, label-

ing presynaptic neurons in source areas that connect to the

target area. The relative weight of a directed connection was

measured as the number of labeled neurons in a source area

divided by the total number of labeled neurons in all source

areas, called the Fraction of Labeled Neurons (FLN) (Markov

et al., 2014a). These rate models (Chaudhuri et al., 2015; Mejias

et al., 2016) also incorporate heterogeneity across cortical

areas (Chaudhuri et al., 2015), assuming the number of spines
per pyramidal cell as a proxy of the strength of excitatory

inputs that varies from area to area (Elston, 2007). Here, we

demonstrate our mechanism in these population-rate models

(Chaudhuri et al., 2015;Mejias et al., 2016) by changing the excit-

atory and inhibitory connection strengths based on our exten-

sion of balanced amplification, thereby facilitating improved

propagation.

In order to examine synchronous (Diesmann et al., 1999; Ku-

mar et al., 2008) and asynchronous (Shadlen and Newsome,

1998; van Rossum et al., 2002; Vogels and Abbott, 2009; Brunel,

2000a) transmission, which cannot be properly captured with

firing ratemodels, we build a large-scale cortical spiking network

model. We find that our mechanism always improves signal

transmission in all areas for each model—by as much as

100-fold in some areas. Furthermore, our large-scale spiking

model displays several key features of subliminal, preconscious,

and conscious processing (Dehaene et al., 2006; King et al.,

2016). Taken together, the findings demonstrate that our

network models offer a valuable platform to study a wide range

of dynamical questions that involve long-range interactions

between cortical areas.

RESULTS

Transmission in a Realistic Large-Scale Cortical
Network
Here we demonstrate the challenge of reliable signal transmis-

sion through a large-scale network consisting of population

rate models (Chaudhuri et al., 2015). On investigating signal

transmission in this dynamical model of the macaque cortex

(Chaudhuri et al., 2015), we find that inter-areal excitatory loops

between cortical areas make reliable signal transmission espe-

cially difficult. In Figure 2A, an input is applied to V1, which is

the lowest in the cortical hierarchy (Markov et al., 2014b; Chaud-

huri et al., 2015; see STAR Methods), and the maximum firing

rate is shown for V1 and area 24c at the top of the hierarchy.

Inter-areal connections in the model are governed by two

global coupling parameters, mEE and mIE , corresponding to the

long-range excitatory-to-excitatory and excitatory-to-inhibitory

coupling, respectively. A small increase in mEE can result in the

system behavior switching from strong attenuation to instability,

as shown in Figure 2B. Amore systematic characterization of the

model’s behavior reveals that a gradual increase in mEE leads to a

sharp transition from a regime characterized by strong signal
Neuron 98, 222–234, April 4, 2018 223
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Figure 2. Signal Propagation in a Large-Scale Network with

Recurrent Excitatory Loops Leads to Either Strong Attenuation or

Instability

(A) Network model of the 29 cortical areas with the strongest inter-areal pro-

jection strengths (FLN values >0:005). Input is injected to the excitatory pop-

ulation in area V1 at the lowest position in the cortical hierarchy, and the peak

firing rate in area 24c at the top of the hierarchy is recorded.

(B) The response of the excitatory populations in areas V1 and 24c to a current

pulse of 250 ms to V1, using two close values of the excitatory global coupling

parameter mEE . Response (left) in 24c shows an attenuation of four orders of

magnitudewhen mEE = 34.With mEE = 36 (right), excitatory firing rates in V1 and

24c exponentially grow, and the system becomes unstable.

(C) The peak excitatory population response in 24c as a function of mEE ,

dynamical instability corresponds to capped firing rate at 500 Hz. The

224 Neuron 98, 222–234, April 4, 2018
attenuation to a regime indicating instability (Figure 2C). Neither

regime allows for a realistic propagation of the signal across

cortical areas.

To answer the question of whether this sharp transition is due

to the inter-areal excitatory loops, we examine the model’s

behavior when feedback projections are removed from the

network. This reveals a smooth transition from the regime with

weak propagation to a regime with improved propagation (Fig-

ure 2D), suggesting that removing feedback projections, and

therefore the presence of inter-areal excitatory loops, alleviates

the problem of effective transmission. Around half of the inter-

areal projections present in the anatomical connectivity data,

however, correspond to feedback projections, with strengths

comparable to those of feedforward projections (Markov et al.,

2014a; Figure S1); this suggests that feedback projections

cannot be ignored. The question of signal propagation, there-

fore, becomes especially pertinent in a biologically realistic

cortical model endowed with feedback connections.

Extending Balanced Amplification beyond the Local
Circuit
Increasing balanced amplification has been demonstrated to

allow for transient amplification in local circuits that are charac-

terized by strong recurrent excitation stabilized by inhibition

(Murphy and Miller, 2009; Figures 1A–1C). It can be analytically

shown, using a phase diagram of the network activity as a func-

tion of connectivity parameters, that moving along the stability

boundary in the direction of increasing LBA (Figure 1C) leads

to a progressive increase in the steady-state excitatory firing

rate (see STAR Methods). This can be used to intuitively under-

stand the transient amplification achieved with stronger LBA.

A key idea of the present work is an extension of this mechanism

from local circuits to large-scale models (Figure 3A) to boost in-

ter-areal signal transmission while maintaining system stability.

To this end, we replace the increase in local recurrent excita-

tion with an increase in the global excitatory coupling mEE , and

we stabilize the system with stronger lateral inhibition, as in

the case of LBA. This principle of strong long-range excitation

stabilized by strong local inhibition constitutes an extension of

the balanced amplification mechanism for large-scale systems,

which we name Global Balanced Amplification (GBA). From

now on, we refer to increasing global excitatory coupling and

stabilizing the system with stronger lateral inhibition—while

keeping other model parameters the same—as increasing GBA.

To quantify how increasing GBA affects propagation in the

large-scale network model (Chaudhuri et al., 2015), we measure

the quality of signal transmission by comparing the peak value of

the excitatory firing rate in area 24c with the same peak value in

area V1; the ratio between both peaks is defined as the ‘‘propa-

gation ratio.’’ The response of the different cortical areas to a

pulse input in V1, as the signal propagates along the hierarchy,

shows a strong attenuation of �10,000 fold from area V1 to
particular parameter values corresponding to weak propagation and instability

in (B) are indicated by a cross and a circle respectively.

(D) Similar to (C), but mEE is varied in the absence of feedback projections. See

also Figure S1.
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Figure 3. Global Balanced Amplification

in the Large-Scale Model Improves Signal

Propagation

(A) Model scheme with weak GBA.

(B) With weak GBA, there is 10,000-fold attenua-

tion of signals from V1 to area 24c (top to bottom).

(C) Model scheme with strong GBA.

(D) With strong GBA, signal propagation is

enhanced by 100-fold (purple), overlaid on the

green curve from (B). With weak GBA, there is

10,000-fold attenuation of signals from V1 to area

24c (top to bottom).

(E) The maximum firing rate across areas as the

response to the pulse input to V1 propagates

along the hierarchy for weak (green) and strong

(purple) GBA.

(F) Peak firing rate response in area 24c with

strong GBA (black) overlaid on the curve corre-

sponding to a sole increase in global excitatory

coupling (blue curve, Figure 2C), demonstrating

that network instability is prevented by GBA. See

also Figures S2 and S3.
area 24c (Chaudhuri et al., 2015; Figure 3B). Interestingly, by

increasing GBA (Figure 3C), the propagation ratio is improved

by around two orders of magnitude (Figure 3D). More precisely,

a substantial improvement is observed across most of the

cortical areas (Figures 3D and 3E). More systematic simulations

show that, as opposed to simply increasing the global excitatory

coupling (Figure 2C), increasing GBA leads to a smooth transi-

tion from the weak to the improved propagation regime (Fig-

ure 3F). A consistent improvement in propagation ratio is re-

vealed through a parametric analysis balancing strong global

excitatory coupling with increased lateral inhibition (Figure S2A).

From a mathematical point of view, balanced amplification in

inhibition-stabilized networks results from the non-normality of

the underlying connectivity matrix (Murphy and Miller, 2009)

(a non-normal matrix is one in which its eigenvectors are not

mutually orthogonal). Non-normality can be examined through

Schur decomposition, by expressing the effective connectivity

across network basis patterns through self-connections and

feedforward connections. An improvement in signal propagation

in the model correlates with an increase in the non-normality

measure (Henrici, 1962) of the anatomical connectivity matrix

underlying the large-scale dynamics (Figure S2B).

Our mechanism is robust either when feedback projections

are removed from the large-scale network or in the absence of

heterogeneity across areas (Figures S3A and S3B). Moreover,

we test our mechanism after symmetrizing the anatomical con-
nectivity matrix and either partially (Fig-

ure S3C) or completely (Figure S3D)

removing the hierarchical organization.

Removal of the hierarchical organization

weakens propagation, but incorporating

the mechanism continues to show an

improvement in propagation.

Inspired by the ‘‘small-world’’ property

characterized by high clustering coeffi-

cients and short path lengths, we assess
the effect of removing weak anatomical connections with a para-

metric threshold of connection strength (Ercsey-Ravasz et al.,

2013; Figure S3E). The mechanism consistently reveals a signif-

icant improvement in propagation with stronger GBA.

We also examine (Figure S3F) the robustness of our mecha-

nism upon incorporating into our model recent data on structural

asymmetries in the recruitment of inhibition and excitation

(D’Souza et al., 2016), wherein a gradual scaling down of the in-

hibition:excitation ratio is observed from themost feedforward to

the most feedback pathway. Monitoring the propagation ratio on

varying the scaling parameter governing the strength of long-

range excitatory to inhibitory connections based on hierarchy

reveals a consistent improvement in propagation (Figure S3F).

Incorporating a Cortical Laminar Structure
Does our signal propagation mechanism still hold in a cortical

system where feedforward and feedback projections are wired

in a layer-dependent manner (Felleman and Van Essen, 1991;

Barbas and Rempel-Clower, 1997; Markov et al., 2014b)? We

further test efficient signal propagation using a recent model

which incorporates laminar structure in the cortical areas

(Mejias et al., 2016; Figure 4A). Increasing GBA improves signal

transmission in this model as well (Figure 4B), suggesting that

our mechanism is also valid for models equipped with more

detailed laminar-specific projection patterns (Mejias et al.,

2016). Improved propagation is accompanied by a small change
Neuron 98, 222–234, April 4, 2018 225
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Figure 4. Increasing Global Balanced Amplification Also Improves

Signal Propagation in a Large-Scale Model Endowed with a Laminar

Structure

(A) Circuit diagram (upper) showing the intra- and inter-areal connectivity in the

large-scalemodel with a superficial layer and a deep layer in each local area. In

addition to the connections shown, the E-I circuit in each layer of every area

has local connectivity as in Figure 2A. Sample oscillatory activity (lower) for the

local circuit in the superficial layer (top) and deep layer (bottom) in response to

a brief input of 300 ms given to the excitatory population in the superficial layer

of V1.

(B) Peak firing rate (upper) across areas as the response to a pulse input to V1

propagates along successive areas in the hierarchy, for weak (green) and

strong (purple) GBA. Gamma power (lower) across cortical areas (except for

early areas) is slightly reduced from the weak (green) to strong (purple) GBA

regime.
in gamma power across areas (Figure 4B), stemming from the

stronger lateral inhibition associated with improved GBA. The

moderate gamma power is in good agreement with experimental

observations, which show the presence of a weakly coherent

gamma rhythm during cortical interactions and its importance

in local and long-distance interactions (Kopell et al., 2000; Bas-

tos et al., 2015; Wang, 2010).

Two (Asynchronous and Synchronous) Regimes of
Transmission in a Large-Scale Spiking Network Model
Signal transmission in neural systems is mediated through

spiking activity; therefore, it is crucial to assess our mechanism

in a more realistic spiking neural network model. We thereby
226 Neuron 98, 222–234, April 4, 2018
extend our investigation by building a large-scale spiking

network model (Figure 5A; see STAR Methods). Inter-areal

connectivity is based on the same anatomical data used above

(Markov et al., 2014a), and the inter-areal delays are introduced

by considering the corresponding inter-areal wiring distances

(Markov et al., 2014a) and assuming a constant axonal conduc-

tion velocity. Propagation of spiking activity has been previously

studied in the context of asynchronous firing rates (Shadlen and

Newsome, 1998; van Rossum et al., 2002; Vogels and Abbott,

2009) and synchronous activity (Diesmann et al., 1999; Kumar

et al., 2008), both of which have been observed experimentally

(Romo et al., 1999; Reyes, 2003; DeMarse et al., 2016; Vaadia

et al., 1995).

We first evaluate the performance of our mechanism in the

asynchronous regime (Figure 5), and later in the synchronous

regime (Figure 6). To examine asynchronous propagation, we

stimulate V1with a long (150-ms) pulse input. The corresponding

raster plot for weak GBA (Figure 5B) shows a strong response

activity only in early visual areas. Weak activity is observed in a

part of the frontal eye fields (area 8l), but is conspicuously absent

from the dorsolateral prefrontal cortex (dlPFC), which has been

associated with working memory and decision making (Histed

et al., 2009). Increasing GBA facilitates signal propagation to

higher cortical areas (Figure 5C). Stronger response activity is

observed in the higher areas, including those in the dLFPC

(area 46d, 9/46d), the frontopolar cortex (area 10), the parietal

area 7 (7A and 7B, 7 m) in the dorsal stream, and the frontal

eye fields (area 8l, 8 m) as indicated by the peak firing rate

responses across areas (Figures 5D and 5E). For weak GBA,

signals propagate mainly along the ventral visual stream

(V1, V2, V4, TEO, and TEpd) (Figure 5B). This is presumably

due to the much stronger anatomical projection weights

between these areas compared to the overall connectivity

(with a significant difference between their average projection

strengths, p = 0.015) (Figures 5F and 5G). These stronger

weights enable propagation along ventral areas through recur-

rent excitatory loops, while the signal fails to reach higher areas

due to relatively weak connections.

Even with strong GBA, many areas do not show noticeable re-

sponses to an input to V1. These previously silent areas can,

however, be activated when the input is directed to a different

sensory area. For example, an input to the primary somatosen-

sory cortex (area 2) uncovers a new set of areas showing prop-

agation (Figure S4) with the same connectivity parameter values

used in Figures 5B and 5C. Propagation was observed largely in

the somatosensory areas of the parietal lobe, and it extended to

prefrontal areas for strong GBA.

Our model displays a second mode of transmission in the

synchronous regime. Following previous works on synchronous

propagation (Diesmann et al., 1999; Moldakarimov et al., 2015),

we stimulated V1 with a brief (10-ms) input pulse rather than a

long-lasting stimulus. Connectivity is set stronger as compared

to the asynchronous propagation case (see STAR Methods) to

allow for a quick buildup of network activity, since stronger

connectivity leads to a higher degree of population synchrony

(Figure S5). For weak GBA, signal propagates in the visual

areas, but it does not reach higher cognitive areas in prefrontal

cortex (Figure 6A), as in the case of the asynchronous model



Figure 5. Reliable Signal Propagation in the Asynchronous Regime in a Spiking Network Model

(A) Circuit diagram for local-circuit connectivity for the spiking network model. Each cortical area contains 1,600 excitatory and 400 inhibitory neurons.

(B) Response to a 150ms pulse input to V1 as it propagates along the hierarchy. The areas along the ventral stream showing strong response activity are indicated

with orange labels.

(C) Similar to (B), but with strong GBA.

(D) Spatial activity pattern across the macaque cortical surface corresponding to parameters in (B) and (C).

(E) Peak firing rate across areas as the response to a pulse input to V1 propagates along the hierarchy for weak (green) and strong (purple) GBA.

(F) FLN strengths of long-range connectivity across areas span five orders of magnitude.

(G) FLN strengths along the ventral visual stream areas are stronger than the average, leading tomore effective signal propagation along the ventral pathway than

the dorsal pathway. See also Figures S4 and S5.
(Figure 5B). Increasing GBA enables successful signal propaga-

tion to several higher areas, including those in the dlPFC (areas

46d, 9/46d) and the frontal eye fields (areas 8l, 8 m) (Figures

6B–6D).

Early response onset occurs along the ventral stream (Fig-

ure 6B); the signal then propagates to higher cognitive areas

and eventually to the superior temporal polysensory (STP) areas

involved in multisensory integration, which form part of a cluster

that shapes functional connectivity (Chaudhuri et al., 2015).

After testing multiple hypotheses (Figure S6), we found that the

observed response onset times in our large-scale network are

best predicted by a shortest-path toy model (Figure 6E). In this

toy model, we first ignore projections whose strength falls below

a certain threshold value, and we then assume that the signal,

starting from V1, follows the shortest possible path to reach

any given area. The shortest path is determined based on the

anatomical inter-areal wiring distances (Markov et al., 2014a),

and a constant conduction velocity is assumed (see STAR

Methods).

Threshold Crossing for Signal Propagation and
Conscious Perception
The emergence of activity across several cortical areas in Fig-

ures 5C and 6B is reminiscent of the ‘‘global ignition’’ observed

during conscious perception (Dehaene et al., 2006; Del Cul
et al., 2007; Dehaene and Changeux, 2011; King et al., 2016).

Global ignition is characterized by a distributed cerebral activa-

tion pattern, contingent on the strong parieto-frontal network

activation that emerges when the bottom-up input exceeds a

certain threshold (Dehaene et al., 2006). To examine these phe-

nomena, wemonitor the activity across different cortical lobes in

our asynchronous propagation model (Figure 5C) on succes-

sively increasing the input current strength arriving at V1. From

our original simulations on the large-scale spiking model with

improved propagation (Figures 5C and 5E), we estimate that

the signal from V1 reaches around 16 cortical areas; we will refer

to these here as ‘‘active areas’’ (see STAR Methods). On varying

the input strength, the normalized peak response across these

areas (Figure 7A) reveals a clear separation across the four

cortical lobes. Low input (Figure 7A) shows increased activity

in the occipital lobe compared to the other lobes, similar to sub-

liminal processing (Dehaene et al., 2006) associated with weak

stimulus strength. As we increase the input, activity starts to

emerge in the temporal lobe, including areas in the ventral

stream, and is followed by parietal activation including area 7,

which is involved in visuo-motor coordination. Activity across

areas in the prefrontal cortex, a necessary requirement for

conscious processing (Dehaene et al., 2006), emerges at simi-

larly high values of input current (Dehaene et al., 2006; Fig-

ure 7A). Simultaneous emergence (as in Dehaene et al., 2014)
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A Figure 6. Reliable Signal Propagation in the

Synchronous Regime in a Spiking Network

Model

(A) Response to a brief input to V1 as it propagates

along the hierarchy. The areas along the ventral

stream showing strong response activity are indi-

cated with orange labels.

(B) Similar to (A) but with strong GBA.

(C) Spatial activity pattern across the macaque

cortical surface corresponding to parameters in

(A) and (B).

(D) Peak firing rate across areas as the response to

the pulse input to V1 propagates along the hier-

archy for weak (green) and strong (purple) GBA.

(E) Predicted and observed response onset

times (left) across areas as the signal propagates

along the hierarchy. Area F2 which fails to show

response activity is indicated in red. Predicted and

observed onset times (right) from (B) where each

dot indicates an area. The line indicates the diag-

onal y = x: See also Figures S5 and S6.
is observed across several prefrontal areas, including dlPFC,

frontopolar cortex, and frontal eye fields (Figure 7A). These

areas lie in the set of cliques comprising the densely con-

nected cortical core (Markov et al., 2013). A more careful quan-

tification of the global ignition phenomenon observed in our

model (Figure S7) reveals a sudden jump in the number of

activated areas on increasing input current strength beyond a

certain threshold.

When feedback projections are removed from the large-scale

network (Figure 7B), we observe that the signal fails to reach

prefrontal areas even for strong input current. Activity becomes

restricted largely to the occipito-temporal region in the early

visual areas and along the ventral stream. This activity pattern

in the absence of feedback projections is similar to that of pre-
228 Neuron 98, 222–234, April 4, 2018
conscious processing, which is associ-

ated with the absence of top-down atten-

tion (Dehaene et al., 2006).

Finally, we tested whether the quanti-

tative anatomical connectivity structure

has a key role in determining the

activity pattern across the cortical lobes

observed in our model (Figure 7A). To

do so, we randomly rewired the anatom-

ical projection strengths (only for those

projections with non-zero connection

weights) while maintaining the network

topology. With scrambled quantitative

connectivity, the response curve as a

function of input strength becomes

similar across the temporal, parietal,

and frontal lobes (Figure 7C), and the

threshold effect disappears. This finding

indicates that the quantitative connectiv-

ity structure has a critical role in the

emergence of lobe-specific activity and

the higher input threshold for prefrontal

activity; the heterogeneity across areas
and the network topology are not enough, by themselves, to

explain these phenomena.

DISCUSSION

Transmission of signals is essential for neural coding of external

stimuli, and it represents amajor topic about the dynamical oper-

ation of a multi-regional cortical system (Perkel and Bullock,

1968; Kumar et al., 2010). However, most previous models for

signal propagation used a purely feedforward network architec-

ture, in contrast to the recent report that about half of inter-areal

cortical connectivity consists of feedback projections (Markov

et al., 2014a; Figure S1). We re-examine the long-standing prob-

lem of signal transmission in large-scale circuit models that
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Figure 7. Threshold Crossing of Input

Strength Is Required to Engage the Parietal

and Frontal Lobes, in Support of the Global

Ignition Model of Consciousness

(A) Normalized peak population activity (lower) in

the active areas across cortical lobes, as a func-

tion the input current strength, using the parame-

ters corresponding to Figure 5C. The light colored

lines correspond to individual areas. The thick

lines show the mean activity across all the active

areas in each cortical lobe, revealing that activa-

tion of the temporal lobe (blue), parietal lobe

(green), and frontal lobe (red) requires threshold

crossing of input strength. Spatial activity (upper;

indicated by color) across the macaque cortical

surface, for the current strength of 90, 100, 110 pA

respectively.

(B) Similar to (A) (left) with the deletion of all feed-

back projections in the model. Spatial activity

pattern (inset) of the macaque cortical surface at

input strength of 110 pA, to be compared with the

intact model (top right in A).

(C) Similar to (A) with scrambling the long-range

inter-areal connectivity while maintaining the

network topology. In both (B) and (C) the input

threshold crossing for activation of association

areas is no longer present, indicating the impor-

tance of the inter-areal cortical connectomics of

macaque monkey including feedback loops for

this phenomenon. See also Figure S7.
incorporate heterogeneity across areas and mesoscopic inter-

areal connectivity data (Markov et al., 2014a). The central idea

of this paper is a generalized, balanced amplificationmechanism

in which strong long-range excitatory coupling produces a tran-

sient amplification of signals balanced by enhanced local inhib-

itory-to-excitatory strength to ensure network stability. General-

ized, balanced amplification provides a solution to the tradeoff

between the need for sufficiently strong excitation for reliable

signal transmission and the risk that inter-areal recurrent excita-

tion potentially destabilizes the entire system. We found that this

mechanism improves signal propagation by up to 100-fold in

large-scale network models of population firing rates with (Me-

jias et al., 2016) and without (Chaudhuri et al., 2015) a cortical

laminar structure, as well as a network model of spiking neurons.

Furthermore, inter-areal connection strengths along the ventral

visual stream areas are stronger than the overall long-distance
connection strengths; this underlies

more effective signal propagation along

the ventral pathway than the dorsal

pathway—a prediction that can be tested

experimentally. Finally, surprisingly, our

model reproduces signature dynamics

of ‘‘global ignition’’ associated with

conscious report of a sensory stimulus.

Propagation of spiking activity in

feedforward networks has been exten-

sively examined theoretically, in terms of

the propagation of both asynchronous

(Shadlen and Newsome, 1998; van Ros-
sum et al., 2002; Vogels and Abbott, 2009; Cortes and van

Vreeswijk, 2015), and synchronous (Diesmann et al., 1999; Ku-

mar et al., 2008) spiking activity. Synchronous propagation in a

feedforward chain can be analyzed in detail in terms of temporal

jitter (Marsálek et al., 1997), refractoriness (Kistler and Gerstner,

2002), and the distribution of synaptic strengths (Yazdanbakhsh

et al., 2002). In addition, feedback from a higher area to the inhib-

itory interneurons in a lower area has been proposed to improve

synchronous propagation in a multilayer network (Moldakarimov

et al., 2015). From a more general point of view, Kumar and col-

laborators (Kumar et al., 2008) studied synchronous and asyn-

chronous propagation in a feedforward network embedded in

a recurrent network. Gating mechanisms to control propagation

of asynchronous (Vogels and Abbott, 2009) and synchronous

(Kremkow et al., 2010) activity have been proposed, based on

the balance (Vogels and Abbott, 2009) and latency (Kremkow
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et al., 2010) between excitation and inhibition and on other bio-

physical properties (Mejias and Longtin, 2014). The asynchro-

nous and synchronous modes of propagation have been inte-

grated in a recent study on feedforward propagation (Kumar

et al., 2010), which argues that the two modes represent two ex-

tremes of a continuum parametrized by the model parameters.

While previous theoretical works largely investigate either syn-

chronous or asynchronous propagation, our propagation mech-

anism is effective for both the modes (Figures 5 and 6).

Another important insight from this work is to elucidate how

signal propagation depends on the degree of non-normality of

the underlying network connectivity. Signals in a dynamical sys-

tem by a normal connection matrix will inevitably attenuate or

grow exponentially, leading to instability. However, as pointed

out in previous work (Murphy and Miller, 2009), connection

matrices of biological neural circuits are always non-normal

due to Dale’s law. When connectivity is governed by strong

recurrent excitation balanced by strong inhibition, biological cir-

cuits can transiently amplify incoming signals. This phenome-

non, termed balanced amplification (Murphy and Miller, 2009),

is proposed to ubiquitously contribute to neural dynamics across

the brain (Murphy and Miller, 2009). For example, transient

amplification of specific activity states based on a general form

of this phenomenon has recently been employed to explain com-

plex dynamics in the motor cortex (Hennequin et al., 2014). The

corresponding network architecture uses control-theoretic opti-

mization to balance strong excitatory recurrence with inhibition

and is referred to as a stability-optimized circuit. The amplifica-

tion enabled by this circuit facilitates generation of complex

muscle movements. Balanced amplification has also recently

been shown to improve memory replay through signal amplifica-

tion in a hippocampus model (Chenkov et al., 2017). Our work

extends this basic dynamical motif of balanced amplification

characterized by an inhibition-stabilized network (Murphy and

Miller, 2009) from a local circuit to a multi-regional large-scale

system to explain reliable cortical signal transmission.

Future Extension of our Cortical Circuit Model
In this work, simulations have been limited to one sensory mo-

dality at a time. This can be easily extended by considering mul-

tiple input modalities simultaneously presented to the model in

order to study how signals from different sensory modalities

may interact and aid one another. Other mechanisms besides

GBA that improve propagation should also be examined. For

example, increasing the local recurrent inhibition and balancing

it with local excitatory-to-inhibitory strength is expected to

have a similar effect. This is because an increase in the excit-

atory-to-inhibitory connection strength would have a stronger ef-

fect along the hierarchy following from the scaling of excitatory

projections. This would consequently scale the suppression of

inhibition, resulting in a higher disinhibition along the hierarchy

and, ultimately, to a relative increase of excitation in higher

cortical areas.

While the anatomical projection strengths used in our model

(Markov et al., 2014a) span five orders of magnitude (Figure S1),

the role of weak connections in propagation remains unclear. For

instance, in a phenomenological network model using the same

dataset (Ercsey-Ravasz et al., 2013), the authors found that their
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measure of information transfer was robust to the removal of a

significant fraction of the weakest connections and depended

largely on the stronger connections. Similarly, we observe a mi-

nor change in the propagation ratio after removing the weakest

connections in the rate model (Figure S3E), even as the network

density is reduced to 50% of its original value. We also observe

that the response latencies for synchronous propagation (Fig-

ure 6B) can be predicted by thresholding the anatomical connec-

tion weights to include only the strongest projections (Figure 6E).

Weaker inter-areal projections can, however, be functionally

important if they target a small neural population that has a

strong impact in the local circuit. More data on cell-type-specific

cortical connectivity is needed to shed light on this issue.

While our results provide reasonable response onset latencies

in general, the signal propagation along the ventral pathway

is faster than the dorsal pathway, which is inconsistent with pre-

vious experimental findings (Bullier, 2001; Bullier et al., 2004;

Schmolesky et al., 1998; Schroeder et al., 1998). This discrep-

ancy can be explained by several factors: (1) axons along

the dorsal pathway have larger diameters, hence a higher action

potential conduction velocity (Nowak and Bullier, 1997), a

feature not included in our model. (2) Our model does not contain

different types of cells within an area; however, magnocellular

cells in lateral geniculate nucleus (LGN), which project mainly

to the dorsal pathway, already have shorter latencies compared

to parvocellular cells (Schmolesky et al., 1998; Bullier, 2001;

Nowak and Bullier, 1997). (3) Our model does not account for

the high degree of myelination resulting in faster conduction

speeds in many areas of the dorsal stream (Bullier, 2001).

(4) The structural connectivity data, on which our model is based

(Markov et al., 2014a), does not contain areasMST and LIP along

the dorsal pathway. Incorporating these areas could strengthen

the dorsal pathway and reduce its response latency.

Our large-scale model, like most previous models that study

signal propagation, does not perform complex information trans-

formation on its inputs. It is important to study whether our pro-

posed mechanism can help signal propagation in a large-scale

system that performs complex computation as well. A good

candidate framework for this would be artificial neural networks,

which have proven useful to investigate neural mechanisms

behind sensory processing and cognitive tasks (Mante et al.,

2013; Song et al., 2016, 2017; Yamins et al., 2014). Deep feed-

forward neural networks suffer from a similar problem of signal

propagation to the one described here, and a popular remedy

for this problem is to normalize the neural activity at each

network layer (Ioffe and Szegedy, 2015). However, the absolute

strength of a signal is largely or entirely lost after normalization.

Our proposed mechanism allows for transient propagation of

input signals while maintaining its overall strength, therefore

avoiding the need for normalization in these models. Existing

artificial neural networks typically do not differentiate between

excitatory and inhibitory neurons, so our mechanism does

not directly apply to these models, but extensions have

already been proposed (Song et al., 2016). We suggest that

future large-scale, excitatory-inhibitory information-processing

network models may benefit from our mechanism if they have

homeostatic plasticity that balances strong long-range excit-

atory inputs with strong local inhibitory connections.



Role of Subcortical Structures
Although our model takes into account cortical connectivity

data, which forms a large part of the input to cortical areas (Mar-

kov et al., 2011), the role of subcortical structures remains to be

explored, and emerging subcortical connectivity data should be

incorporated. For instance, cortico-thalamo-cortical interactions

have been shown to drive robust activity in the higher-order so-

matosensory cortex (Theyel et al., 2010). Experimental studies

have also shown that the pulvinar synchronizes activity (Saal-

mann et al., 2012) between interconnected cortical areas, indi-

cating its role in regulating information transmission across the

visual cortex. Recent work (Cortes and van Vreeswijk, 2015)

studies asynchronous cortical transmission through two multi-

layered feedforward networks and explores the role of long-

range inhibitory pulvinar connections in linking multiple cortical

stages to boost propagation. While our large-scale models

only employ anatomical connectivity from macaque cortex,

novel thalamocortical connectivity data from the mouse (Oh

et al., 2014) could be used to examine our mechanism in a

large-scale corticothalamic model of the mouse brain.

Ignition Theory
Recent work suggests that the emergence of parieto-frontal ac-

tivity could be viewed as a precursor to conscious perception

(Dehaene et al., 2014). Such an event would follow from the input

exceeding a threshold, leading to a reverberating neuronal as-

sembly (Dehaene et al., 2006); note, however, that reverberation

could be in the form of transients rather than a steady-state at-

tractor (Baria et al., 2017). In this sense, subliminal, precon-

scious, and conscious processing would be associated with

different levels of top-down attention and bottom-up stimulus

strength (Dehaene et al., 2006). Our large-scale model, which

is able to propagate signals efficiently (Figure 5), can be used

as a framework for a computational examination of these

phenomena. Subliminal processing, characterized by weak bot-

tom-up activation insufficient to trigger large-scale reverbera-

tion (Dehaene et al., 2006), resembles the weak input case in

Figure 7A. Preconscious processing is characterized by the

absence of top-down attention (Dehaene et al., 2006). Corre-

spondingly, we observe a disruption of global reverberation after

removing top-down feedback projections (Figure 7B) that mostly

originate from the strongly connected core of prefrontal and as-

sociation areas (Markov et al., 2013). Besides their role in atten-

tion, feedback signals have been proposed to play a major role

in discerning intrinsically ambiguous sensory input (Gilbert and

Sigman, 2007; Scocchia et al., 2014). For example, top-down

input is known to influence perception of visually ambiguous

stimuli during binocular rivalry (Paffen and Alais, 2011; Wang

et al., 2013a), hence reinforcing the idea suggested by our results

that feedback input is crucial for conscious perception. Another

important role of feedback has been proposed in the context of

predictive coding, where top-down influences may be seen as

‘‘predictions’’ aimed to match the incoming bottom-up sensory

stimuli (Rao and Ballard, 1999; Bastos et al., 2012). A mismatch

in those top-down predictions would lead to a ‘‘prediction error’’

signal moving downstream of the hierarchy toward association

areas. One could expect that, in the presence of top-down pre-

diction signals, partial mismatches with the incoming sensory
input could be fairly common, leading to relatively small predic-

tion errors. Although our modeling framework does not have the

level of structural detail needed to explain this complexmatching

process between different signal streams, it could in principle

provide a mechanism for these small signals to efficiently prop-

agate across the cortical hierarchy by means of the GBA princi-

ple. In some experiments on conscious processing (Dehaene

et al., 2006; Del Cul et al., 2007; Dehaene and Changeux,

2011; Dehaene et al., 2014), the input strength can be adjusted

such that the stimulus is detected stochastically 50% of the

time. Further research is needed to test whether spiking stochas-

ticity in our system could lead the model to such switching for a

fixed input strength.

Although both conscious perception and attention involve an

interplay between bottom-up and top-down signaling, attention

and consciousness are dissociable (Li et al., 2002; Koch and

Tsuchiya, 2007; Wyart and Tallon-Baudry, 2008). In the intact

network model, strong input elicits activity across several pre-

frontal and parietal areas (Figure 7A). However, presently it is

still a matter of debate whether conscious report necessarily re-

quires the engagement of the prefrontal cortex (Tsuchiya et al.,

2015; Boly et al., 2017). Regardless, a complete characteriza-

tion of the observed neural activity related to conscious percep-

tion is beyond the scope of this work; future extensions of our

network model would constitute a powerful tool to understand

this phenomenon. In particular, NMDA receptors may be more

prominent at synapses of top-down projections than those of

bottom-up projections (Self et al., 2012). Implementing NMDA

dynamics in the spiking network model could provide insight

on the nature of the top-down amplification of posterior

areas following prefrontal activation, as observed in conscious

perception tasks (Dehaene et al., 2006). In addition, NMDA

synapses could contribute to a stronger sigmoidal-shaped

activation of frontal areas during the ignition phenomenon

described in Figure 7A, given the important role of NMDA recep-

tors in persistent activity in frontal areas (Wang et al., 2013b;

Wang, 1999).

We are ushering in a new era of understanding large-scale

brain systems beyond local circuits. Whereas brain connectom-

ics is essential, structural connectivity is insufficient to predict

dynamical behavior of recurrent neural circuits. Our work on reli-

able signal propagation offers another demonstration of this

principle and represents an important step in our investigations

of cognitive processes in a large-scale brain circuit.
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METHOD DETAILS

The rate model
Themodel examined in Figures 2, 3, based on a recently published large-scale model of themacaque cortex (Chaudhuri et al., 2015),

is described below. The dynamics of each area is described as a threshold linear recurrent network, with interacting excitatory and

inhibitory populations, as follows

tE
dnE
dt

= � nE + bE ½IE �+

Anatomical Connectivity data Markov et al. (2014a) Cereb. Cortex http://core-nets.org/
tI
dnI
dt

= � nI + bI½II�+
where ½IE �+ = maxðIE ;0Þ. nE ; nI denote the firing rates of the excitatory and inhibitory populations respectively, and tE ; tI are the

corresponding intrinsic time constants. bE ; bI are the slopes of the f-I curves. The local-microcircuit is qualitatively the same across

areas, with quantitative inter-areal differences as stated below.

Heterogeneity across areas
The laminar pattern of inter-areal projections is used to assign a hierarchical position to each area (Barone et al., 2000; Markov et al.,

2014b; Chaudhuri et al., 2015). This is based on the notion that feedforward projections tend to originate from the superficial cortical

layer, and feedback projections from the deep layer (Barbas and Rempel-Clower, 1997). Thus the hierarchical distance between a

source and target area is computed based on the fraction of projections originating in the superficial layer of the source area (Chaud-

huri et al., 2015). An area’s hierarchical position is found to be strongly correlated with the number of basal-dendritic spines of layer 3

pyramidal neurons in that area (Chaudhuri et al., 2015; Elston, 2007). The pyramidal-cell spine count increases with the hierarchical

position of the cortical area by a factor of 6�7 (Elston, 2007; Chaudhuri et al., 2015), and it is used as a proxy for the total excitatory

drive. Thereby, heterogeneity across areas is introduced in the form of a gradient of excitatory connection strengths along the hier-

archy (Chaudhuri et al., 2015).

Inter-areal projection strength is based on a recently published anatomical connectivity dataset from the macaque cortex (Markov

et al., 2014a). The datameasures the number of neurons labeled by a retrograde tracer injected in 29widely distributed cortical areas.

To control for the injection size, the neuron counts are normalized by the net number of neurons labeled by the injection, resulting in an

FLN (Fraction of Labeled Neurons) across two areas. Thus, given areas i;j, the FLNij is the number of neurons projecting from area j to

area i weighted by the net number of neurons projecting to area i from all the areas. The net incoming current is given by

IiE = ð1+ hhiÞ
�
wEEn

i
E + Iilr;E

�
�wEIn

i
I + Iiext;E
IiI = ð1+ hhiÞ
�
wIEn

i
E + Iilr;I

�
�wIIn

i
I + Iiext;I

where IiE , I
i
I denote the input currents to the excitatory and inhibitory populations respectively for area i and wij denotes the local-

circuit connection strength from the population type j to the population type i. Iilr;E ; I
i
lr;I correspond to the long-range input currents,
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assumed to be purely excitatory. Iiext;E ; I
i
ext;I correspond to the external inputs. The hierarchical position hi is normalized to lie between

0 and 1. h scales the excitatory connection strengths based on the hierarchical position of the area.We set h to 0.68 (Chaudhuri et al.,

2015). The background firing rate, is set to an excitatory rate of 10Hz, and an inhibitory rate of 35Hz (Chaudhuri et al., 2015). The back-

ground rate is subtracted when monitoring the response activity in Figures 2 and 3 and Figure S3. The parameter values are set as

tE = 20; tI = 10 (inms), bE = 0:066;bI = 0:351 (Chaudhuri et al., 2015; Binzegger et al., 2009). The long-range input currents are given by,

Iilr;E =mEE

XN
j = 1

FLNijn
j
E

Iilr;I =mIE

XN
j = 1

FLNijn
j
E :

Thus, the inter-areal connectivity depends on the corresponding FLNs and is scaled by the global scaling parameters mEE and mIE

corresponding to long-range E to E and long-range E to I coupling respectively. The connectivity parameters are set as

mIE = 25:3;wEE = 24:3;wIE = 12:2;wII = 12:5 (in pA/Hz) (Chaudhuri et al., 2015). The connectivity parameters corresponding to the

local I to E connection strength and the global excitatory coupling are (in pA/Hz) wEI = 19:7;mEE = 33:7 for weak GBA and

wEI = 25:2;mEE = 51:5 for strong GBA (Figure 3).

Local balanced amplification
For Figure 1B, recurrent excitation and lateral inhibition values are (6, 6.7) and (4.45, 4.7) for strong LBA and weak LBA respectively.

The excitatory to inhibitory connection strength, and the inhibitory recurrent strength values are fixed at 4.29, 4.71 respectively (Fig-

ures 1B and 1C).

Steady-state excitatory rate along stability boundary in 2 population case
Here we consider the dynamics of a 2 population nonlinear rate model wherein the local circuit lies in an inhibition stabilized regime,

that is, it has strong recurrent excitation balanced by strong lateral inhibition. We show that for this circuit, increasing the recurrent

excitation and balancing the system with stronger inhibition results in a higher steady state excitatory firing rate on moving along the

stability boundary in parameter space. This provides an intuitive understanding of the higher transient amplification following from

stronger local balanced amplification as seen in Figure 1B.

Consider a local circuit lying in an inhibition-stabilized regime (wEE ;wEI > 1, where wij is the connection strength from population

type j to population type i) as in Figure 1A, with excitatory and inhibitory firing rates denoted by E; I respectively. Say the excitatory

population is acted upon by a delta-pulse input, to set the initial firing rate to some E0 > 0while I0 = 0.We henceforth refer to this initial

condition as fE0; I0g.
The dynamics is described by,

t
dE

dt
= � E + ½wEEE �wEII�+

t
dI

dt
= � I+ ½wIEE �wIII�+

(1)

where t denotes the intrinsic time constant and ½x�+ =maxðx;0Þ denotes rectification.

For fixedwIE ;wII, the system stability depends on the local-circuit recurrent excitationwEE and the feedback-inhibition wEI. For our

analysis, we assume thatwIE ;wII are fixed. We define thewEE �wEI stability boundary as the set of points in thewEE �wEI parameter

space for which given the initial condition fE0; I0g, the system evolves to a non-zero steady state. We want to show that,

Given wIE ;wII, the steady state E value corresponding to thewEE �wEI stability boundary (Figure 1C) increases onmoving along the

direction of increasing wEE ;wEI.

Let us compute the solutions for the steady state of the system. Denote steady state excitatory and inhibitory values as Es;

Is respectively. Then besides the trivial steady state, we show that the only other solution is when both ðwIEE �wIIIÞ> 0 and

ðwEEE� wEIIÞ> 0. Say this were not true. Then consider cases

t
dE

dt
= � E; t

dI

dt
= � I+ ½wIEE �wIII�+
t
dE

dt
= � E + ½wEEE �wEII�+ ; t

dI

dt
= � I

But both the above cases would correspond to fEs; Isg = f0; 0g. Thus, besides the trivial solution, any other steady state would

have Es > 0; Is > 0:
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Let us solve for the non-zero steady state. Then fEs; Isg lies in an open set for which wIEE �wIII >0 and wEEE� wEII > 0. Now

t
dE

dt
= � E + ½wEEE �wEII�= 0; t

dI

dt
= � I+ ½wIEE �wIII�= 0

gives Is = EsðwIE=1 + wIIÞ = EsðwEE � 1=wEIÞ. Say c = ð1 + wIIÞ=wIE = wEI=ðwEE � 1Þ. Then c is a constant sincewIE ;wII are fixed.

Let,

A= ð1=tÞ
�
wEE � 1 �wEI

wIE �1�wII

�

We evaluate the behavior around this steady state by finding the eigenvalues of matrix A. The eigenvalue equation is,

l2t2 + ltð2�wEE +wIIÞ+wEIwIE � ðwEE � 1Þð1+wIIÞ= 0

Since c= ð1+wIIÞ=wIE =wEI=ðwEE � 1Þ; the equation reduces to l2t2 + ltð2�wEE +wIIÞ= 0 and thus, l1 = 0; l2 = � ð2�
wEE + wIIÞ=t:
Thus this steady state corresponds to real eigenvalues, one of them being 0, and cannot have a pair of complex conjugate

eigenvalues. The eigenvectors corresponding to l1; l2 will be

v1 =

�
c
1

�
; v2 =

2
4 wEI

1+wII

1

3
5:

We can simply set the second entry of each eigenvector to 1 because wIE and wII are fixed. Thus in some open set around the

steady state, the dynamics are given by,

�
EðtÞ
IðtÞ

�
= a1e

l1tv1 + a2e
l2tv2 = a1

�
c
1

�
+ a2e

l2t

2
4 wEI

1+wII

1

3
5

where a1; a2 depend on the initial condition of the system and l2 = � ð2� wEE + wIIÞ=t:
We now show that when the system has a non-zero steady state, the dynamics of the system for initial condition fE0; I0g evolves

according to the equation above. Thus, the system trajectory does not encounter ‘‘rectification’’ sincewIEE �wIII >0;wEEE �wEII >0

for t > 0: Note that wIEE0 �wIII0 > 0;wEEE0 �wEII0 > 0: Thus, the initial dynamics evolves according to

�
EðtÞ
IðtÞ

�
= a1

�
c
1

�
+ a2e

l2t

2
4 wEI

1+wII

1

3
5=

E0

c� wEI

1+wII

0
@� c

1

�
� el2t

2
4 wEI

1+wII

1

3
5
1
A:

where c= ð1+wIIÞ=wIE =wEI=ðwEE1Þ and l2 = � ð2� wEE + wIIÞ=t. Thus,
�
EðtÞ
IðtÞ

�
=
�E0wIE

l2t

0
@� c

1

�
� el2t

2
4 wEI

1+wII

1

3
5
1
A

Thus,

EðtÞ=�E0wIE

l2t

�
c� el2t

wEI

1+wII

�
=
�E0

l2t

�ð1+wIIÞ � el2tðwEE � 1Þ	

IðtÞ=�E0wIE

l2t

�
1� el2t

	 (2)

To show that rectification is not encountered, we need to show that for t > 0,wIEE �wIII >0 and wEEE�wEII >0, that is, wIEE >wIII

andwEEE >wEII. We show the casewIEE >wIII, first for l2 < 0, then for l2 > 0. Thereafter we show the casewEEE >wEII, first for l2 < 0,

then for l2 > 0. Finally we show cases wIEE >wIII and wEEE >wEII for l2 = 0:

Case wIEE >wIII when l2<0: From Equation (2), it is enough to show,

wIE

�ð1+wIIÞ � el2tðwEE � 1Þ	>wIIwIE

�
1� el2t

	

5
�ð1+wIIÞ � el2tðwEE � 1Þ	>wII

�
1� el2t

	

51� el2tðwEE � 1Þ> �wIIe
l2t
Neuron 98, 222–234.e1–e8, April 4, 2018 e3



But l2 = � ð2� wEE + wIIÞ=t < 0, so ð1 + wIIÞ> ðwEE � 1Þ, so � el2tðwEE � 1Þ> � el2tð1 + wIIÞ, so
1� el2tðwEE � 1Þ> 1� el2tð1+wIIÞ=

�
1� el2t

	�wIIe
l2t > �wIIe

l2t for t >0 as required:

Case wIEE >wIII when l2>0: From Equation (2), it is enough to show,

wIE

�ð1+wIIÞ � el2tðwEE � 1Þ	<wIIwIE

�
1� el2t

	

5
�ð1+wIIÞ � el2tðwEE � 1Þ	<wII

�
1� el2t

	

51� el2tðwEE � 1Þ< �wIIe
l2t

But l2 = � ð2�wEE +wIIÞ=t > 0; so ð1+wIIÞ< ðwEE � 1Þ; so � el2tðwEE � 1Þ< � el2tð1 + wIIÞ, so
1� el2tðwEE � 1Þ< 1� el2tð1+wIIÞ=

�
1� el2t

	�wIIe
l2t<�wIIe

l2t for t >0 as required:

Case wEEE >wEII when l2 < 0: From Eqn. (2), it is enough to show,

wEE

�ð1+wIIÞ � el2tðwEE � 1Þ	>wIEwEI

�
1� el2 t

	

5wEE

�ð1+wIIÞ � el2tðwEE � 1Þ	> ð1+wIIÞðwEE � 1Þ�1� el2 t
	
since c= ð1+wIIÞ



wIE =wEI


ðwEE � 1Þ
5�wEEe
l2tðwEE � 1Þ> � ð1+wIIÞ � el2tð1+wIIÞðwEE � 1Þ
5ð1+wIIÞ>el2tðwEEðwEE � 1Þ � ð1+wIIÞðwEE � 1ÞÞ
5ð1+wIIÞ> el2tðwEE � 1ÞðwEE � 1�wIIÞ
But l2 = � ð2� wEE + wIIÞ=t < 0, so el2t<1 for t > 0;wEE � 1< 1+wII;wEE � 1�wII < 1: Thus,

el2tðwEE � 1ÞðwEE � 1�wIIÞ<ð1+wIIÞ for t >0 as required:

Case wEEE >wEII when l2 > 0: From Eqn. (2), it is enough to show,

wEE

�ð1+wIIÞ � el2tðwEE � 1Þ	<wIEwEI

�
1� el2 t

	

5wEE

�ð1+wIIÞ � el2tðwEE � 1Þ	< ð1+wIIÞðwEE � 1Þ�1� el2 t
	
since c= ð1+wIIÞ



wIE =wEI


ðwEE � 1Þ
5�wEEe
l2tðwEE � 1Þ< � ð1+wIIÞ � el2tð1+wIIÞðwEE � 1Þ
5ð1+wIIÞ<el2tðwEEðwEE � 1Þ � ð1+wIIÞðwEE � 1ÞÞ
5ð1+wIIÞ< el2tðwEE � 1ÞðwEE � 1�wIIÞ
But l2 = � ð2� wEE + wIIÞ=t > 0, so el2t > 1 for t > 0;wEE � 1> 1+wII;wEE � 1�wII > 1: Thus,

el2tðwEE � 1ÞðwEE � 1�wIIÞ> ð1+wIIÞ for t >0 as required:

Nowwe consider the cases when l2 = 0. Then in some open set around the steady state Es > 0;Is > 0, the dynamics corresponding

to Equation (1) are given by �
EðtÞ
IðtÞ

�
= a1

�
c
1

�
+ a2

�
t

�
c
1

�
+

�
r

1

��
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where a1; a2 depend on the initial state of the system and r is such that A

�
r

1

�
=

�
c
1

�
. This gives r = ðt=wIEÞ + c.

Initial condition fE0; I0g gives a1 = � E0wIE=t; a2 = � a1 so that�
EðtÞ
IðtÞ

�
=
E0wIE

t

��
c
1

�
ðt � 1Þ+

�
r

1

��
where r=

t

wIE

+ c (3)
so that EðtÞ=E0wIE

t

�
ct +

t

wIE

�
; IðtÞ=E0wIEt

t
:

Case wIEE >wIII when l2 = 0: From Equation (3), it is enough to show

wIE

�
ct +

t

wIE

�
>wIIt5ðwIEc�wIIÞt + t > 0:

But c = ð1 + wIIÞ=wIE , so ðwIEc� wIIÞ = ð1 + wII � wIIÞ = 1. Thus for t > 0, wIEE >wIII.

Case wEEE >wEII when l2 = 0: From Equation (3), it is enough to show

wEE

�
ct +

t

wIE

�
>wEIt5ðwEEc�wEIÞt + twEE

wIE

> 0

But c = wEI=ðwEE � 1Þ, so ðwEEc� wEIÞ = cwEE � cðwEE � 1Þ = c>0. Therefore, for t > 0, wEEE >wEII.

Thus we have shown that l1 = 0 for the system to have a non-zero steady state, and in this case, for any real l2, a trajectory starting

from fE0; I0g does not encounter the ‘‘rectification’’ since for t >0,wIEE �wIII >0 andwEEE�wEII >0. Since we want the trajectory to

evolve to the steady state instead of diverging, we now only consider the case l1 = 0; l2 = � ð2�wEE +wIIÞ=t < 0:Note that any point

on the stability boundary would correspond to l1 = 0;l2 < 0:

Let P be a point on the stability boundary corresponding to parameterswP
EE ;w

P
EI. Then at P, from Equation (2), the trajectory starting

from fE0; I0g converges to fEs;Isg = fE0ð1 + wIIÞ=ð2�wP
EE + wIIÞ;E0wIE=ð2�wP

EE + wIIÞg. Note that l2 = � ð2�wEE + wIIÞ=t < 0, so

ð2�wEE +wIIÞ> 0 along the stability boundary. Let EP denote the steady state excitatory response corresponding to P, given initial

condition fE0; I0g. Thus EP = E0ð1 + wIIÞ=ð2� wP
EE + wIIÞ:

Say Q is another point on the stability boundary with parameters wQ
EE ;w

Q
EI such that wQ

EE >wP
EE . Note that c= ð1+wIIÞ=

wIE =wEI=ðwEE � 1Þ is constant along the stability boundary and wEE > 1;wEI > 1 since the system is in the inhibition-

stabilized regime. Thus, wQ
EE >wP

EE implies wQ
EI >wP

EI: Let EQ denote the steady state excitatory response at Q. Then

EQ =E0ð1+wIIÞ=ð2�wQ
EE +wIIÞ>EP since wQ

EE >wP
EE .

Thus, given wIE ;wII, moving along the stability boundary in the direction of increasing recurrent excitation wEE and lateral inhibition

wEI (Figure 1C) shows a progressive increase in the steady state excitatory firing rate. This can be used to intuitively understand the

higher transient amplification prior to decay (Figure 1B) achievable with stronger recurrent excitation balanced by stronger lateral

inhibition.

The laminar model
The model examined in Figure 4 is based on a recently published large-scale rate model of the macaque cortex (Mejias et al., 2016),

which incorporates a cortical laminar structure. The intra-laminar cortical circuit in each area consists of a recurrently connected

excitatory and inhibitory population, with dynamics described by the following Wilson-Cowan equations,

tE
drE
dt

= � rE +f
�
InetE + IextE

	
+

ffiffiffiffiffi
tE

p
xEðtÞ
tI
drI
dt

= � rI +f
�
InetI + IextI

	
+

ffiffiffiffi
tI

p
xIðtÞ

where rE;I denote the dimensionless mean firing rates of the excitatory and inhibitory populations respectively, tE;I denote the cor-

responding time constants, xE;I denote Gaussian white noise termswith strengths sE;I, and fðxÞ= x=ð1� expð�xÞÞ is the transduction
function. The network input, denoted by InetE;I , is the input arriving to the E; I populations respectively from the other populations in the

network, and includes the inputs from the same layer, a different layer, and from different areas. The external input, denoted by IextE;I , is

the input arriving from external sources such as sensory stimuli, thalamic input and other cortical areas not explicitly included in the

model. The network input taking into account only local contributions, that is, on assuming an isolated intra-laminar population, is

given by,
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InetE = JEErE + JEIrI
InetI = JIErE + JIIrI

where Jab denotes the mean synaptic strength from population b to population a. The parameter values for the circuit in the su-

perficial layer are tE = 6 ms, tI = 15 ms, JEE = 1:5; JIE = 3:5; JEI = � 3:25; JII = � 2:5 and sE;I = 0:3. The parameters for the circuit in

the deep layer are the same except for tE = 30 ms, tI = 75 ms, and sE;I = 0:45.

The inter-laminar interactions assume only the strongest connections between the superficial and deep layer, that is, the excitatory

projections from the pyramidal neurons of the superficial layer to the pyramidal neurons of the deep layer, and those from the pyra-

midal neurons of the deep layer to the interneurons of the superficial layer. The long-range connections are assumed to be excitatory.

The inter-areal interactions assume that feedforward projections originate from the superficial layer and target the excitatory

population in the superficial layer across areas. Feedback projections, are assumed to originate from the deep layer and target

both the E and I populations in the superficial and deep layer across areas. The feedforward connections from the excitatory neurons

of the superficial layer to the inhibitory ones (Figure 4A) were added to test our mechanism and are not present in the original model

(Mejias et al., 2016). These connections are assumed to have 20%of the strength of the feedforward connections targeting the excit-

atory populations across areas. For consistency with the other models examined in the present work, we simulate the large-scale

laminar model considering 29 areas as opposed to the 30 areas (Mejias et al., 2016) (i.e., we remove area LIP).

The spiking network model
We build a spiking network model examined in Figures 5, 6, 7. Simulations are performed using a network of leaky integrate-and-fire

neurons, with the local-circuit and long-range connectivity structure similar to the rate model. Each of the 29 areas consists of 2000

neurons, with 1600 excitatory and 400 inhibitory neurons. Connection density, both intra and inter-areal is set at 10%. Themembrane

constant values are tE = 20ms for excitatory, and tI = 10ms for inhibitory neurons. The restingmembrane potential Vr , reset potential

Vreset, and threshold potential Vt are given by Vr = � 70 mV, Vreset = � 60 mV and Vt = � 50 mV respectively, and the absolute refrac-

tory period tref = 2 ms. Background currents are injected to yield firing rates in the 0.75-1.5 Hz range for the excitatory, and 5-6 Hz for

the inhibitory population in the absence of input. We introduce distance-dependent inter-areal synaptic delays by assuming a con-

duction velocity of 3.5 m/sec (Swadlow, 1990; Mejias et al., 2016) and using a distance matrix based on experimentally measured

wiring distances across areas (Markov et al., 2014a). Inter-areal delays are assumed to have a Gaussian distribution withmean based

on the inter-areal wiring distance and variance given by 10% of the mean. Intra-areal delays are set to 2 ms. For neuron i, the depo-

larization voltage at the soma follows

tiVi
_ðtÞ= � ðViðtÞ � VrÞ+RIsyn;iðtÞ+RIext;iðtÞ

where Isyn;iðtÞ is the post-synaptic current and Iext;iðtÞ is the external input. The post-synaptic current corresponds to a summation of

spike-contributions of spikes arriving at different synapses at different time intervals, where the spikes aremodeled as delta functions

(Brunel, 2000a). Thus,

RIsyn;iðtÞ= ti
X
j

Jij
X
k

d
�
t � tkj � D

�

where ti is the membrane constant, D is the transmission delay, tkj is the emission time of the kth spike at the jth synapse, and Jij is

the synaptic strength of the jth synapse to neuron i. We choose R = 50MU; synaptic strengths for the local and global coupling pa-

rameters are chosen in the range 0.01 - 1 mV (Song et al., 2005; Brunel, 2000b). Simulations are performed using the Python library

Brian2 (Goodman and Brette, 2009), using a time-step of 0.1ms. Population firing rate in each case is calculated using sliding time

window with a bin size of 10 ms and the sliding window width of 1 ms. For the spiking model simulations, the parameter h, governing

the gradient of excitatory strengths, is set to 4.

For the asynchronous regime (Figure 5), the synaptic strengths are set to (in mV)wEE ,wIE ,wII, mIE = 0.01, 0.075, 0.075, 0.19/4. The

global excitatory coupling and local I to E strength are set to (in mV) mEE ;wEI = 0:0375;0:0375 for weak GBA, and (in mV)

mEE ;wEI = 0:05; 0:05 for strong GBA (Figure 5). The input current duration is set to 150 ms, based on recent work suggesting that ac-

tivity packets of 50-200 ms duration serve as basic building blocks of global cortical communication (Luczak et al., 2015). The input

current strength is set to 300 pA in Figure 5B and 126 pA in Figure 5C, resulting in a peak firing rate of 82-87 Hz in V1. For weak and

strong GBA in Figure S4, connectivity parameters were used as in Figures 5B and 5C. A pulse input of 150 ms duration is injected to

the excitatory population of area 2. The input current strength is set to 138 pA for weak GBA and 140 pA for strong GBA, each re-

sulting in a peak firing rate of �40-41 Hz in area 2.

For the synchronous regime in the spiking model, we set the synaptic strengths wEE ;wIE ;wII;mIE to be a multiple of the values

used in the asynchronous case, the values are (in mV)wEE ,wIE ,wII, mIE = 0.04, 0.3, 0.3, 0.19. The global excitatory coupling and local

I to E strength are set to (in mV) mEE ;wEI = 0:16;0:56 for weak GBA, and mEE ;wEI = 0:25;0:98 for strong GBA (Figures 6A and 6B). The

input current duration is set to 8 ms, and the input current strength is set to 200 pA, resulting in a peak firing rate of�24 Hz in V1. For
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Figure 5D, wemap the attenuation in Figure 5E logarithmically to a heatmap. For better visualization, we threshold the areas showing

strong propagation and zoom in on the other areas, and plot the values using Caret (Van Essen et al., 2001). For Figure 6C, we map

the attenuation in Figure 6D logarithmically to a heatmap and plot the values using Caret (Van Essen et al., 2001).

QUANTIFICATION AND STATISTICAL ANALYSIS

Non-normality measure
Since inhibition-stabilized networks showing balanced amplification are known to be characterized by strong non-normality of the

underlying connectivity matrix (Murphy and Miller, 2009), we examine the non-normality of the large-scale connectivity matrix on

increasing GBA (Figure S2B) corresponding to the parameters used in Figure 3F. Non-normality can be examined through Schur

decomposition (Murphy andMiller, 2009; Henrici, 1962), which can be used to express the effective connectivity across network ba-

sis patterns through self-connections and feedforward connections. For a given matrix A, the Schur decomposition of A can be ex-

pressed as,A=UTT� whereU is a unitarymatrix, and T is an upper triangular matrix such that T = S + R, whereS is a diagonal matrix

and R is strictly upper triangular. The departure of A from normality can be approximated (Henrici, 1962) as

depFðAÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kA k 2

F � kS k 2
F

q
=

 XN
j = 1

s2
j �

XN
j = 1

��lj �� 2
!1=2

where sj; lj denotes the singular value and the eigenvalue of A respectively, for a given j and k kF denotes the Frobenius norm. For

normal matrices, sj =
��lj �� for each j, thus depFðAÞ = 0. An improvement in propagation is accompanied by an increase in the non-

normality measure of the underlying connectivity matrix governing the large-scale dynamics (Figure S2B).

Incorporating structural asymmetries
Recent work (D’Souza et al., 2016) observes asymmetries in the recruitment of inhibition and excitation by feedforward and feedback

connections, noting a gradual scaling down of the inhibition/excitation ratio from the most feedforward to the most feedback

pathway. Figure S3F examines the robustness of our mechanism on incorporating these structural asymmetries in our model. To

do this, we first compute how feedforward or feedback a long-range connection is. Say, there is a long-range connection from

area X to Y. Say, gYX = hierarchyðreceiving area YÞ � hierarchyðprojecting area XÞ is the feedforward degree of the X-to-Y connec-

tion. Then the long-range excitatory to excitatory connection strength from area X to Y is kept the same, while the long-range excit-

atory to inhibitory connection strength is scaled by ð1+mmaxðgYX ;0ÞÞwhere m is a scaling parameter governing the strength of long-

range excitatory to inhibitory connections based on hierarchy. Thus, if the hierarchical position of the receiving area is lower than that

of the projecting area, then the connection strength is left unchanged. On varying m and computing the propagation ratio, namely the

ratio of the peak response in area 24c, which is highest in the hierarchy, to that in V1, we observe that the mechanism consistently

improves propagation.

Predicted onset times
The response onset time for a given area in Figure 6B is defined as the time at which the response activity starts building up in that

area prior to the peaking of activity. To compute the predicted onset times (Figure 6E), the FLNs are thresholded to 0.02, that is, con-

nections with FLN values below 0.02 are removed, following which the predicted onset time is computed assuming that the signal

follows the shortest possible path to reach a given area. For a positive integer k, a k-step path, given by fA=A0;A1;A2;.;Ak =Bg is
said to exist between areas A and B if there exist anatomical connections from area Am to area Am+ 1 fromm = 0;1;.;k� 1, that is, if

FLNAm+ 1 ;Am
> 0. We use Dijkstra’s algorithm to compute the shortest path from V1 to a given area based on the inter-areal wiring dis-

tances (Markov et al., 2014a); the predicted onset time is computed assuming a constant conduction velocity of 3.5 m/s (Swadlow,

1990;Mejias et al., 2016). LetSA;V1 be the length of the shortest path from V1 to a given areaA, divided by the conduction velocity.We

assume that the signal undergoes local-circuit processing at each step while traveling from V1 to area A, and assume a processing

time of 1 ms in each area. (This is also assumed in Figure S6.) Assuming that the shortest path from V1 to area A is a k-step path, the

predicted onset time (in ms) for the signal to reach area A from V1 is given by SA;V1 + k. While computing the predicted onset times,

we eliminate those areas from our computations wherein the signal does not elicit response activity. In particular, as the background

firing rate for the excitatory population lies in the range 0.75-1.5 Hz, we eliminate those areas with a peak firing rate <1:5 Hz. The only

such area we find is F2 (in the premotor region). For F2, the predicted onset time for visualization purposes (Figure 6E) is set as the

mean of the predicted onset times corresponding to its neighboring areas in the hierarchy.

From the asynchronous to synchronous regime
The degree of population synchrony c, in the network is measured based on the variance of the average population voltage in com-

parison to the variance of the individual neuron voltage. We compute c, which takes a value between 0 and 1, defined (Golomb et al.,

1994) as
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c= sV

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i = 1

s2
Vi

,
N

vuut :

c is computed (Figure S5) on moving from the parameter set in Figure 5B to the parameter set in Figure 6A. The parameter set

comprises of the inter-areal and intra-areal connectivity parameters, the current duration and input current strength. The current

duration corresponding to the parameter set in Figure 6A is set to 100 ms to characterize the fluctuations in the average population

voltage. For each parameter set, the simulation is run using 5 random seeds, to get the mean value and standard deviation of c.

Activity in cortical lobes on varying input
Active areas in Figure 7A are defined as those for which the peak firing rate in Figure 5C is at least 5% that of the corresponding peak

rate in V1. The population activity of these areas is monitored for the input current strength varying from 70 to 120 pA. At each current

value, we subtract the background firing rate for each of the active areas. To compare activation across areas, the normalized activity

for each active area is computed. The normalized peak firing rate for a given current value is computed by dividing the peak firing rate

at that value by themaximumpeak firing rate over all the current values, so that the normalized rate lies between 0 and 1 as the current

strength is varied. Active areas in Figure 7A are occipital areas V1, V2, V4, parietal areas DP, 7A, 7m and 7B, temporal areasMT, TEO

and TEpd and prefrontal areas 8 m, 8l, 46d, 10, 9/46d and 8B. In the absence of feedback in Figure 7B, normalized activity is exam-

ined only in those areas deemed ‘‘active,’’ for which the peak firing rate at current strength 120 pA is at least 1% that of the peak firing

rate in V1. For Figure 7C, on scrambling the anatomical connectivity, the areas which show a strongly non-monotonic change in

normalized activity in response to an increase in current strength, are regarded as not receiving the input signal, and are not plotted.

For each input current value in Figure 7, the simulation is run using 5 random seeds; the curves plotted for each area correspond to the

mean from the 5 simulations. For Figures 7A (upper) and B (inset), we map the difference between the normalized activity of an area

and 1, for the given current value, to a heatmap and plot using Caret (Van Essen et al., 2001).

Figure S7 quantifies global ignition by computing the number of areas for which the activity exceeds 15% of peak activity, as a

function of input current strength. Areas in the occipital and temporal lobes are activated for smaller values of input current strength.

A sudden jump is observed beyond 95 pA, resulting from parietal lobe activation in area 7 (7A, 7 m, 7B), and frontal lobe activation in

the frontal eye fields (8l, 8 m), the dorsolateral prefrontal cortex (area 46d, 9/46d) and the frontopolar cortex (area 10).
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