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SUMMARY

Animals acquire behaviors through instrumental
conditioning. Brain-machine interfaces have used
instrumental conditioning to reinforce patterns of
neural activity directly, especially in frontal and motor
cortices, which are a rich source of signals for volun-
tary action. However, evidence suggests that activity
in primary sensory cortices may also reflect internally
driven processes, instead of purely encoding ante-
cedent stimuli. Here, we show that rats and mice
can learn to produce arbitrary patterns of neural ac-
tivity in their primary visual cortex to control an audi-
tory cursor and obtain reward. Furthermore, learning
was prevented when neurons in the dorsomedial
striatum (DMS), which receives input from visual
cortex, were optogenetically inhibited, but not during
inhibition of nearby neurons in the dorsolateral
striatum. After learning, DMS inhibition did not affect
production of the rewarded patterns. These data
demonstrate that cortico-basal ganglia circuits play
a general role in learning to produce cortical activity
that leads to desirable outcomes.

INTRODUCTION

Behavioral flexibility is essential for survival in changing and un-
certain environments. Task-relevant modification or enhance-
ment of sensory representations can be important to improve
behavioral outcomes: for example, attentional resources can
be used to amplify activity related to salient stimuli while ignoring
distractors. Many sensory areas of the cortex, including primary
sensory areas, display activity that reflects task parameters,
changing behavioral contexts, and shifts of attention, suggesting
that computations in these regions are influenced by ongoing in-
ternal processes (Keller et al., 2012; Martinez et al., 1999; Niell
and Stryker, 2010; Shuler and Bear, 2006; Steinmetz et al.,
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2000; Zhang et al., 2014). These task-relevant modulations
of ongoing sensory representations can emerge and evolve
following repeated training or association with a salient stimulus
(Makino and Komiyama, 2015). An important question is how
modulatory inputs to functionally diverse cortical circuits are
tuned such that their outputs contribute positively to the behav-
ioral outcomes of an individual. The basal ganglia, through the
striatum, receives input from most cortical areas (Hintiryan
et al.,, 2016; Kemp and Powell, 1970; McGeorge and Faull,
1989; Webster, 1965), feeds back to the cortex via multiple
recurrent pathways (Redgrave et al., 2010), and dynamically en-
codes action-outcome contingencies (Samejima et al., 2005; Tri-
comi et al., 2004), making this structure a likely candidate to
shape cortical activity based on behavioral experience (Barnes
et al., 2005; Graybiel, 2008; Hinterberger et al., 2005; Swanson,
2000). Previous work has demonstrated the importance of the
striatum for voluntary behavior and instrumental learning (Hiko-
saka et al., 1999; Yin et al., 2005, 2006, 2009). Similarly, we
have shown that a brain-machine interface controlled by neu-
rons in the primary motor cortex also requires cortico-striatal
plasticity in order for animals to learn a novel neuroprosthetic ac-
tion (Koralek et al., 2012, 2013). However, in addition to overt
motor behaviors driven by motor cortices, cortico-striatal cir-
cuits have been theorized to also support abstract forms of
learning, such as cognitive associations (Graybiel, 1997; Middle-
ton and Strick, 1994). Furthermore, damage to basal ganglia
structures in human patients, either through stroke or in diseases
like Parkinson’s, have been associated with deficits in sensory
perception and the control of visual attention (Brown et al.,
1997; Husain et al., 1997; Mercuri et al., 1997; Wright et al.,
1990; Yamaguchi and Kobayashi, 1998). These data suggest
that basal ganglia circuits may be involved in learning modula-
tory signals that influence many forms of cortical processing
based on experience. However, observing and measuring these
influences can be difficult, especially when their contributions to
overt behavior may not be immediately apparent.

One strategy to overcome this difficulty is to use brain-ma-
chine interfaces (BMls) that directly map a subject’s internally
generated neural activity to the movement of an artificial effector.
By explicitly defining the behavioral relevance of observable
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patterns of neural activity, BMI can be an important tool for
studying how these patterns are generated. In clinical applica-
tions, the activity of cortical neurons in humans and non-human
primates has been decoded as a proof-of-principle control
signal to replace lost motor function by controlling prosthetic de-
vices (Aflalo et al., 2015; Bouton et al., 2016; Collinger et al.,
2013; Gilja et al., 2015; Hochberg et al., 2012). However, an
important observation is that populations of cortical neurons
whose activity is remapped to the movement of an artificial
effector can undergo marked learning-related changes, and
observing this learning process provides a unique window into
how learning proceeds in the cortex (Arduin et al., 2013; Ganguly
and Carmena, 2009; Ganguly et al., 2011; Hwang et al., 2013;
Jarosiewicz et al., 2008; Prsa et al., 2017; Sadtler et al., 2014).
In order to better facilitate such observations, BMI studies can
thus be designed to observe the acquisition and evolution of voli-
tional control signals, rather than to optimize the performance
and control of a complex effector.

Here, we asked whether neurons in the primary visual cortex,
an area involved in processing low-level visual features, could
be instrumentally conditioned to produce arbitrary modulations
of ongoing spike activity, and whether this abstract form of
learning was dependent on the basal ganglia. To address this
question, we trained rats and mice to perform a neuropros-
thetic task that virtually re-routed spike activity from the pri-
mary visual cortex (V1) into the frequency of an auditory cursor.
This allowed us to facilitate and observe learned modulations of
V1 activity with a known relationship to behavior. Animals
trained on the task successfully learned to produce this novel
action by voluntarily modulating spike activity in V1. Then, us-
ing the red-shifted inhibitory opsin Jaws (Chuong et al., 2014)
to inactivate striatal neurons on a trial-by-trial basis, we then
investigated to what degree this instrumental learning process
in V1 was also dependent on activity in dorsomedial and dorso-
lateral striatum.

RESULTS

A V1-Driven Closed-Loop Brain-Machine Interface

We adapted our previously developed neuroprosthetic task for
rodents (Koralek et al., 2012) in order to directly study abstract
reinforcement learning in V1 (Figure 1A). Briefly, 10 rats (and 12
mice, see later) were implanted chronically with microwire elec-
trode arrays positioned in V1 layer 5 (L5), allowing us to isolate
and record individual units (Figure 1A; Figures S1A and S1B).
In addition to V1, 8 rats were also implanted with electrode arrays
in the dorsomedial striatum (DMS) near the projection target of
V1 (Hintiryan et al., 2016; Khibnik et al., 2014; McGeorge and
Faull, 1989) (Figures S4A and S4B). During the course of the
experiment, animals were placed in a totally dark or lighted
behavioral chamber and allowed to move freely while listening
to auditory feedback that reported their neural state in real
time. Each day, two neural ensembles, consisting of two well-
isolated units each, were randomly chosen to directly control
the continuous auditory cursor (direct units), while the remaining
units recorded in V1 had no defined relationship to cursor control
(indirect units, Figure S1B). Activity of the two direct-unit ensem-
bles had an opposing relationship, such that spikes produced by

ensemble 1 (E1) moved the cursor closer to the rewarded
frequency, while spikes in ensemble 2 (E2) moved the cursor
away from the rewarded frequency and toward the unrewarded
frequency (Figures 1A-1C; Movie S1). The highest and lowest
possible tones were randomly assigned to be rewarded or unre-
warded for each animal, and this association remained constant
for the duration of training. Prior the start of every session, a
baseline distribution of neural states (binned E1-E2 spike counts)
was used to initialize the target values such that the chance rate
of attaining each target (rewarded and unrewarded) within a trial
period was approximately 30% (Figures S1C and S1D; see STAR
Methods). Animals were given 30 s to reach either target; other-
wise the trial was considered a miss and animals received a
white noise burst followed by a time out.

Rodents Learn to Control V1 Activity Patterns

Over the course of 7-12 training sessions (average 9.11 ses-
sions), rats learned to perform the task well above chance level
(Figures 1F and 1G). Animals in the late phase of learning,
considered here the final 3 training sessions, exhibited signifi-
cant improvements in the percentage of rewarded targets
compared to their performance in the early phase (during the first
three sessions of training) (Figure 1G). Additionally, over this
same interval, latencies to rewarded targets decreased signifi-
cantly, while changes in latencies to unrewarded targets were
non-significant (Figure S2A). We observed that simply pairing
particular auditory tones with reward was not sufficient to drive
V1 activity. After 5 days of performance above chance level,
we decoupled auditory tones from neural activity mid-session
by playing back the sequence of tones generated in the first
part of the session. Although reward was still delivered in tandem
with the rewarded tone, modulation of the direct unit ensembles
was markedly decreased when animals’ neural activity was not
driving the cursor (Figures 1D and 1E). This suggests that the
learning that we observed was not an effect of classical condi-
tioning and instead resulted from an intentional modulation of
V1 activity. Because the chance rate for each target was reset
at the start of each session to approximately 30%, increases
in performance seen as animals progressed from early to late
phases reflected greater improvements within single training
sessions across days. We quantified this by comparing perfor-
mance in the first 10 min of a session (first trials) and the last
10 min (last trials) (Figure 2A). This suggests that the learned abil-
ity to control V1 activity was retained between training sessions,
even though animals needed to perform some de novo learning
to adjust to the initial parameters of the transform in any given
day. We observed that in late learning, over the course of single
training sessions, animals acquired a strong preference for the
rewarded target relative to the unrewarded target (Figures 2C
and 2D). This was reflected in the shift of the distribution of audi-
tory cursor values in the direction corresponding to the rewarded
target tone (Figure 2B). Additionally, we observed that auditory
feedback was necessary for learning: sessions in which the
feedback tones were muted resulted in no significant difference
between the number of rewarded and unrewarded targets
(p=0.738, Figures S2B and 2C), even though these no-feedback
sessions were conducted after several days of successful
normal training. These data demonstrate that closed-loop
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Figure 1. Learning to Operantly Control
Activity in Primary Visual Cortex Using a
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(A) Schematic of V1-BMI paradigm. Activity of well-
isolated V1 units (top left) were used to generate
auditory tones using a differential transform (top
right). Animals were rewarded for producing a
target tone (red). A second tone (black) at the
opposite end of the frequency range terminated

Target
tone

ﬁeward for

target tone

C D

—~ .. Rewarded target 6 Unrewarded target

6

Ensemble 1
—Ensemble 2
— Indirect V1

Auditory
Feedback

5 Tone playback

Firing rate (Z-score

the trial but was not rewarded. For more detail
on the calculation of the transform, see Figures
S1B-S1D.

(B) Average Z scored firing rates of V1 neurons
arbitrarily assigned to ensemble 1 (green),
ensemble 2 (blue), or unassigned (indirect; black),
time locked to rewarded targets. Shaded areas
show SEM.

(C) Same as in (B) but time locked to the unre-
warded target. Increased activity in ensemble 1
units moved the tone frequency in the opposite
direction as increased activity in ensemble 2 units.
(D) Ensemble 1 (green) and ensemble 2 (blue)
modulations during passive playback of tones
decoupled from ongoing neural activity, time
locked to the rewarded target tone. Shaded areas
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(E) Modulation depth of ensemble 1 and ensemble
2 during online control compared to tone playback.
Mean modulation depth online control = 4.341;
* mean tone playback = 1.739; p = 0.000348 (paired
t test). Black bars show mean and SEM. Lines
show data from individual animals.

(F) Time course of learning across training days.
Bold line shows the mean and SEM across 9 rats;
gray lines show learning curves for animals indi-
vidually. One animal only completed 4 sessions;
data for this animal have been excluded from this
plot. Dashed lines bound the range of chance
performance levels. Orange highlighted region
shows data range classified as the early learning
phase for all animals; red region shows range for
late learning phase.

(G) Comparison of performance between early
learning phases and late learning phases (N = 9

n=6 0
Online Tone 1

control playback Training Day

neurofeedback-based reinforcement training can be used to
condition the activity of neurons in the primary visual cortex.

V1 Modulation Is Sensitive to Task Contingency

We next investigated the sensitivity of performance to changing
task conditions. In late learning, animals were able to quickly shift
their neural activity to produce the rewarded tone frequency once
the auditory feedback began (Figures 2C and 2D). We asked
whether animals’ behavior was habitual, and therefore insensitive
to changes in action-reward contingencies, or goal-directed, in
which performance remains sensitive to changing task contin-
gencies (Dias-Ferreira et al., 2009). To test whether performance
of the V1-controlled task fit either of these regimes, we degraded
the task contingency so that animals received randomly timed re-
wards irrespective of target hits but at a similar rate. Similar to our

1358 Neuron 97, 1356-1368, March 21, 2018

First 3

animals, mean for the first 3 days = 39.6%
rewarded; mean for the last 3 days 67.2%;
p = 0.00162 [paired t test]). Black bars show mean
and SEM, lines show data from individual animals.

Last 3

observations of abstract skill learning in M1 (Koralek et al., 2012),
task performance during degradation dropped significantly (Fig-
ure 2E) but returned to pre-manipulation levels once the reward
contingency was reinstated. These results suggest that modula-
tion of V1 activity was intentional and goal directed. To test whether
the association between neural activity and rewarded cursor
movement could be flexibly adapted to a new task contingency,
we reversed the transform after animals had achieved saturating
performance. This manipulation caused the cursor to move in
the opposite direction for a given spike rate modulation than
what animals had initially learned. Although this manipulation
caused an initial decrease in performance, animals were able to
learn the reversed behavior when given sufficient training time (Fig-
ure 2F; Figure S2E), showing that animals could dynamically adapt
to changes in the relationship between neural patterns and reward.
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Figure 2. Operant Modulation of V1 Activity
Is Sensitive to Changes in Contingency

(A) Comparison of within-session improvements
during the early learning period (first 3 days) of
training relative to the late learning period (last
3 days) for each animal (N = 9 animals), expressed
as the ratio of rewarded to unrewarded targets.
Data to compute the ratio for first trials (shaded in
cyan) were averaged over the first 10 min of each
session, while data for the last trials (shaded in
blue) were averaged over the last 10 min. During
the early learning period, the mean rewarded/un-
rewarded ratio for first trials was 1.12, last trials
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session = 3.848; p = 0.275 (paired t test). For the
late period, mean ratio early in session = 1.195,
mean late in session = 11.667; p = 0.00130 (paired t
test). Black bars show mean and SEM, lines show
data from individual animals.

(B) Mean distribution of cursor values for all ani-
mals for the first trials (first 10 min) compared to the
last trials (last 10 min) of sessions during the late
period. Cyan bars show the initial distribution,
based on baseline activity, used to set the task
parameters, while blue bars show the distribution
at the end of the training session for the last trials.
Dashed lines show the thresholds corresponding
to the rewarded and unrewarded targets.

(C) Time course of mean within-session task
learning during the late period (last 3 sessions) of
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training for all animals. Shaded areas represent
SEM. Chance rates for rewarded and unrewarded
targets were set at approximately 30% at the start
of each training session. Comparisons in perfor-
mance were made during over first 10 min of each
session (first trials, cyan bar) and over the last
10 min (last trials, blue bar) of each session. N =10
animals, mean of 3 sessions per animal.

(D) Quantification of rewarded and unrewarded
target hits for the first trials compared to the last
trials; data same as (C). N = 10 animals, mean of the
late period (last 3 sessions) for each animal. Paired t
test between first trials and last trials for rewarded
targets: p = 0.00055; mean early = 36.9%, mean
late = 59.1%. Paired t test between first trials and
last trials for unrewarded targets: p = 0.00145;
mean early = 33.0%, mean late = 20.6%. Red and
blue indicate the rewarded and unrewarded tar-
gets, respectively (**p < 0.001). Black lines show

(E) Percentage of rewarded trials for contingency degradation sessions. Bars show means, lines show individual animals. N = 8 animals, mean of 2 sessions per
animal. P, pre-degradation, mean = 64.5%. CD, peri-degradation (reward decoupled from cursor), mean = 43.1%. R, reinstatement of reward, mean = 61.4%.
Paired t test between pre- (P) and peri- (CD) degradation, p = 0.0038. Paired t test between CD and reinstatement (R), p = 0.0283. Paired t test between pre-

degradation (P) and reinstatement (R), p = 0.289. Error bars show SEM.

(F) Quantification of performance in contingency reversal sessions; N = 7 animals; average of 1.57 sessions per animal (range 1-2). P, pre-reversal
(mean = 85.8%); Rev, peri-reversal (mean = 47.8%); R, recovery of performance with the decoder still reversed (mean = 81.2%). Paired t test between P and Rev,
p = 0.0435; paired t test between Rev and R, p = 0.447; paired t test between P and R, p = 0.689. For a time course of reversal, see Figure S2E. Error bars show

SEM, lines show data for individual animals.

Changes in Visual Context Affect Performance of a V1-
Driven Task

Neurons in the primary visual cortex are known to respond to
visual stimuli. The observation that animals can learn to success-
fully modulate V1 neurons in total darkness indicates that this
activity is at least partially independent of visual input. One
possibility is that over the course of learning, E1 and E2 units

become decoupled from bottom-up sources of visual input, for
example, visually driven activity from the lateral geniculate nu-
cleus of the thalamus. If this were true, then we can expect
trained animals to be able to perform the task under any light
condition. To test this, we trained animals both in light and total
dark conditions. Interestingly, no significant difference was
observed in performance at the end of a training session (last
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Figure 3. Operant Control of V1 Activity Is
Sensitive to Changes in Visual Context

(A) Time course showing the mean percentage of
rewarded trials within all sessions under lighted
conditions (yellow) compared to dark conditions
(black). Shaded areas represent SEM.

(B) Quantification of data in (A), using the first trials
and last trials in a session. Train light: N = 4 ani-
mals; average of 7.5 sessions per animal (range =5
to 10 sessions). Paired t test between first trials
and last trials: p = 0.0113; mean first trials = 37.8%;
mean last trials = 74.0%. Train dark: N = 6 animals;
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8 sessions per animal. Paired t test between first

trials and last trials: p = 0.00167; mean early =
* 0.396; mean late = 0.635. Unpaired t test between
last trials for light sessions and last trials for dark
sessions: p = 0.205 (*p < 0.05; black crosses show
mean and SEM). Colored lines show data from
individual animals.
(C) Time course showing the mean percentage of
rewarded trials when animals learned a decoder
under dark conditions and were switched to a
lighted condition mid-session (“train dark, test
light”). Shaded areas represent SEM.
(D) Mean percentage of rewarded trials when ani-
mals were trained in dark, and then tested in the
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light (same data as C). N = 5 animals, mean of 1.8
sessions per animal (range 1-2). Data taken from
last 10 min of dark training and first 10 min of light
testing. Mean train dark: 87.4%, mean test light

Train
Light

42.6%; p = 0.0309 (paired t test). Error bars show SEM; horizontal lines show mean (*p < 0.05).
(E) Mean percentage of rewarded trials when animals were trained in the light and tested in the dark. N = 4 animals, mean of 1.5 sessions per animal (range 1-2).
Mean train light: 77.9%. Mean test dark: 35.4%. p = 0.043 (paired t test). For a time course, see Figure S2H. Error bars show SEM.

trials) for sessions performed entirely in the dark compared to in
the light (train light = 74.0%, train dark = 63.5%, p = 0.205, Fig-
ures 3A and 3B), suggesting that learning can occur both in the
presence and absence of visual stimuli. However, changing the
context within a training session, i.e., from dark to light after
the animals had learned the task in darkness, or vice versa,
had a significant negative impact on performance (Figures
3C-3E; Figures S2H-S2J). Changing the light conditions
affected the mean spike rates of all V1 neurons (Figure S2G;
mean rate in dark = 4.13 Hz; mean rate in light 6.18 Hz). These
results suggest that a modulatory input can learn to generate re-
warded patterns of activity in direct units under stable network
conditions but that changing the state of the network (for
example, by adding or removing visually evoked activity) is
disruptive and requires compensatory re-learning.

Learning to Modulate V1 Neurons Is Associated with
Changes in Neural Dynamics

Next, we chose to examine the neural dynamics associated with
learning goal-directed modulations in V1. Correlations between
E1 units, whose combined positive activity modulations moved
the cursor in the rewarded direction, significantly increased
over the course of the session, suggesting that training resulted
in increased coordination between these units. No such change
was observed between E2 units or between E1 and E2 units (Fig-
ures 4A and 4B). In 72 out of 102 sessions, the relationship
between performance and the E1 unit correlation was positive
(mean Pearson correlation coefficient = 0.187). Of these ses-
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sions, 55.72% exhibited a significant (p < 0.05) correlation. An
example session is shown in Figure 4C. We also observed that
the correlation between E1 units was significantly greater in a
1 s window prior to rewarded target hits, relative to unrewarded
targets or timeouts (Figure 4D). These data suggest that coordi-
nation between E1 units was important for success.
Interestingly, in the late learning phase, we observed an in-
crease in LFP power in V1 prior to rewarded target hits (Fig-
ure 4E). Similar changes in ongoing oscillatory activity have
previously been associated with top-down processing in visual
cortices (Engel et al., 2001), which is one potential mechanism
by which animals may be performing the task. To further explore
this possibility, we then calculated the coherence between
spikes in direct (combined E1 and E2) units and local field poten-
tials (LFP) in V1, time locked to rewarded targets. Previous re-
ports have found that attention alters alpha-band (approximately
5-15 Hz) coherence in the deep layers of visual cortex (Buffalo
etal., 2011). We found that the alpha-band spike-field coherence
(SFC) of direct units increased from early to late phases of
learning (Figures 4G and 4H). This effect was stronger for E1
than for E2 units (Figures S3G-S3l). This increase was only
observed during task performance but not when animals
were engaged in passive behavior (Figure 4F). Indirect neurons
did not show this effect (Figure 4G), suggesting that these
learning-related dynamics were specific to units directly involved
in cursor control. However, a relatively constant fraction of indi-
rect neurons in each training session did show predictive power
for target choice (Figures S3E and S3F), suggesting that there is
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Figure 4. Evolving Neural Dynamics during V1-BMI Learning

(A) Mean pairwise correlations between units within ensemble 1 (green) or within ensemble 2 (blue) during training. Correlations were calculated using 1 ms bins.
Shaded areas show SEM.

(B) Change in normalized correlation coefficients (cc) from the first trials to the last trials within sessions. CC calculated between units within ensemble 1
(mean change = 4.418; p = 0.0417; paired t test), within ensemble 2 (mean change = 0.942; p = 0.775; paired t test), or between units in ensembles 1 and 2
(mean change = 1.361; p = 0.491; paired t test). N = 10 rats; mean of 4.4 sessions per rat (range 3-6). Error bars show SEM.

(C) Example data from one session showing the relationship between changes in correlation of ensemble 1 units (green) and task performance (percent of correct
trials, black).

(D) Mean correlation between ensemble 1 units during a 2 s window prior to target hits or timeouts. Mean cc prior to rewarded targets = 0.0285; mean cc prior to
unrewarded targets = 0.0241 (p = 0.00167; paired t test). Mean cc prior to timeouts = 0.0240. Comparison between rewarded targets and timeouts: p = 0.0362;
comparison between unrewarded targets and timeouts: p = 0.549. Error bars show SEM.

(E) Mean spectrogram of V1 LFP time-locked to rewarded target hits.

(F) Spike-field coherence between direct units and V1 LFP for late learning periods during task performance (red) compared to non-engaged passive behavior
(blue). Shaded area represents SEM.

(G) Spike-field coherograms showing the evolution of coherence over time for LFPs in V1 and spikes from direct (combined ensemble 1 and ensemble 2) units in
during early training periods (days 1-3; top plot), late training periods (last 3 days, middle plot), and indirect units (no direct relationship to cursor control) for late
periods (bottom plot) time locked to rewarded targets. See Figures S3G-S3| for a separate analysis of E1 and E2 units.

(H) Coherence between direct units and V1-LFP in the 10-25 Hz band for early training compared to late training. Solid lines show the mean for 10 animals and

shaded areas represent SEM.

a broader network of neurons in V1 that may have supported
learning in the direct units.

Striatal Activity Becomes Task Relevant with Learning

To address whether the dorsomedial striatum (DMS) plays a role
in V1-based reinforcement learning, we next examined whether
activity in an area of DMS that receives input from V1 changed
with learning. Electrical stimulation of V1 produced a reliable
spike response in both putative DMS output neurons and inter-
neurons (see STAR Methods) with a delay of approximately
6 ms, suggesting a direct projection as shown in previous reports
(Allen Institute for Brain Science, 2015; Faull et al., 1986; Hin-
tiryan et al., 2016; Khibnik et al., 2014; McGeorge and Faull,
1989) (Figures 5A and 5B; Figures S4D and S4E). Conversely,
stimulation of DMS while recording in V1 did not produce an
observable response in most (but not all) units (Figure S4C). In

late learning, DMS output neurons exhibited a strong modulation
time locked to the rewarded target that was not present in the
early phase. This response was characterized by an increase
in activity that emerged approximately 4 s prior to target hit, fol-
lowed by a sharp decline during the reward period (Figures 5C
and 5D). Units classified as interneurons exhibited the opposite
profile (Figures S4G and S4H). This was accompanied by
increases in beta and gamma LFP power within the same time
interval (Figure 5F). We next asked whether learning was accom-
panied by changes in the dependent relationship between direct
unit activity and activity of the recorded population in DMS.
Alinear regression analysis using data from DMS units (including
both classified output neurons and interneurons) revealed that
over the course of training days, population activity of recorded
DMS units increasingly co-varied with V1 direct unit activity in a
500 ms window prior to target hits, such that a greater proportion
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Figure 5. Dorsomedial Striatum Activity Becomes Engaged with V1 Ensembles during Learning
(A) Raster plot of an example putative DMS output neuron time-locked to V1 ICMS. For data from interneurons, see Figures S4D and S4E.
(B) Histogram of evoked spike counts from unit shown in (A) bin counts are total counts over 1,000 trials of ICMS.

(C) Mean Z scored firing rate of classified output units recorded in the dorsal medial striatum (DMS) time locked to rewarded targets for early compared to late
learning. For data from interneurons, see Figures S4G and S4H. Shaded areas show SEM.

(D) Modulation depth of output DMS units in a 1 s window surrounding rewarded target hits. Mean for early periods = 2.132; mean for late periods = 3.711;
p = 0.049. Error bars show SEM, dots show data for individual animals.

(E) Proportion of variance (R2) of direct unit spikes in V1 explained by DMS unit spikes (all units) in a 500 ms window prior to rewarded target hits, computed using
a linear regression analysis on individual training days. Solid black lines show mean and SEM; gray lines show data for individual animals. Mean of first 2 days =
0.0788; mean of last 2 days = 0.276; p = 0.0196 (paired t test).

(F) Mean spectrogram of DMS LFP time locked to rewarded target hits for all animals during the early period (sessions 1-3, left), compared to the late period

(last 3 sessions, right).

(G) Field-field coherograms between V1 LFP and DMS LFP for early (left) compared to late (right) training sessions time locked to rewarded targets.
(H) Field-field coherence between V1 and DMS in the 0-5 Hz band in for early and late training, time locked to rewarded targets. Solid lines show mean for all

animals; shaded areas represent SEM.

of variance of direct unit activity could be explained by activity in
DMS (Figure 5E, Figure S4F). This result suggests that extended
training of V1 activity increasingly recruited the striatum. In
accordance with this observation, field-field coherence between
V1 LFP and DMS LFP was also increased in late learning around
the time of target achievement (Figures 5G and 5H), suggesting a
possible role for the striatum in learning to produce rewarded
modulations in V1.

Dorsomedial, but Not Dorsolateral Striatal Activity Is
Critical for Learning to Modulate V1 Activity

Next, we asked whether DMS activity was necessary for learning
to volitionally modulate V1 neural activity. Mice were injected
bilaterally with the red-shifted inhibitory opsin Jaws (rAAV8/
CamKII-Jaws-KGC-GFP-ER2; Chuong et al., 2014) into the
area of DMS that receives input from V1 and implanted chroni-
cally with optical fibers targeting DMS and with recording elec-
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trodes in L5 of V1 (Figures 6A and 6B). Red light stimulation
through the optical fiber decreased activity in optogentically
identified DMS units (Figure 6B; Figures S5C, S5D, S5G, and
S5H) but had no effect on spike rates in V1 (Figure S5I). Mice
were trained on the same task as rats as described above
and in Figure 1. During the first 7 days of training, Jaws-injected
mice and GFP-injected controls randomly received red light
stimulation on 50% of trials for the whole duration of the trial
(see STAR Methods; LED 50, Figure 6A, bottom). Control GFP
animals were able to learn the task and improved significantly
with several days of training, while Jaws animals did not (Figures
6C and 6D). This appeared to be a deficit in acquisition of the
task and not just poor performance in LED on trials, as no differ-
ence in success rate was observed between performance during
LED on trials compared to LED off trials in any of these sessions
(Figure S5A). However, Jaws animals were able to learn the task
and improve over the course of 5 subsequent training days if no
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Figure 6. Optogenetic Inhibition of DMS in Mice Impairs Learning, but Not Performance, of V1-BMI

(A) Schematic showing the replication of rat experiments in Jaws-injected mice. Left: mice were injected bilaterally with rAAV8/CamKII-Jaws-KGC-GFP-ER2.
Middle: after Jaws expression stabilized, mice were implanted unilaterally with an electrode array in V1 L5 and bilaterally in DMS or DLS. Right: animals were
trained on the same task as rats (see Figure 1A) with the addition of optogenetic inhibition. Bottom: time course of experiments. LED 50% indicates that Jaws was
activated via red LED light in 50% of trials.

(B) Jaws-mediated inhibition of DMS neurons. Inset shows a coronal section stained for neuronal cell bodies (blue) and Jaws expression (red). Scale bar, 1 mm.
Zoomed inset shows a magnification with labeling apparent on single neurons (white arrows). Arrow edge, 10 um. Histogram plot shows suppression of spike
activity in one example putative DMS output neuron during Jaws-mediated inhibition (red bar). For an example interneuron, see Figure S5D.

(C) Percentage of rewarded trials for animals expressing Jaws in DMS (red) or DLS (orange) compared to control GFP (green) mice over the course of several days
of training. Red bar indicates sessions where the LED was active on 50% of trials for both groups (LED 50). Error bars show SEM, and thin lines show data from
individual animals.

(D) Quantification of performance across days for animals expressing Jaws in DMS (red; N = 4); animals expressing GFP in DMS (green, N = 4); and animals
expressing Jaws in DLS (orange; n = 4). Each time period is a mean over 3 sessions. Mean GFP, first 3 sessions = 39.7%, mean GFP, last 3 sessions = 69.7%;
p = 0.00072 (paired t test). Mean Jaws DMS, first 3 sessions = 29.3%, mean Jaws DMS, last 3 sessions LED 50 = 33.3%; p = 0.183. Mean Jaws DMS, last 3
sessions LED off = 62.1%. Paired t test between Jaws DMS last 3 sessions LED 50 and Jaws DMS LED off: p = 0.00131. Mean Jaws DLS, first 3 sessions = 52.3%,

(legend continued on next page)
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LED activation occurred and activity DMS was unimpaired (Fig-
ures 6C and 6D). Interestingly, V1 LFP power in the gamma band
(25-60 Hz) during sessions with Jaws inhibition was markedly
reduced around the time of target hits, while gamma power dur-
ing LED-off sessions in which animals successfully learned the
task was similar to that observed in rats after learning (Figures
4E and 6E; Figures S5E and S5F). One possible explanation for
these results may be that DMS activity is necessary for learning
to modulate activity in V1. However, a second possibility may be
that Jaws-mediated inhibition of DMS reduced animals’ motiva-
tion to perform the task or that inactivation of these neurons
created a distraction that prevented learning from taking place.
To further control for these other possibilities, we performed
the same experiments in a third cohort of mice in which Jaws
expression was targeted to the dorsolateral striatum (DLS).
The DLS has an established role in motor learning (McHaffie
et al., 2005; Redgrave et al., 2010, 2011) but does not receive
a substantial projection from V1 (Allen Institute for Brain Science,
2015; Faull et al., 1986; Hintiryan et al., 2016; Khibnik et al., 2014;
McGeorge and Faull, 1989). Once expression was stable, DLS-
Jaws mice were trained on the same task as DMS-Jaws mice,
including LED activation to inhibit DLS activity on a randomized
50% of trials. Interestingly, animals were still able to learn the
task in a similar manner to control animals with ongoing DLS
inactivation (Figures 6C and 6D). Together, these results suggest
that inhibition of DMS activity prevents animals from learning
to generate arbitrary patterns of V1 activity in order to obtain a
desirable outcome.

Optogenetic Inhibition of DMS Does Not Impair Learned
Performance

In our task, the parameters used to translate neural activity to
auditory tones were re-calculated each day such that at the start
of every session animals were required to undergo some de novo
learning in order to adapt to the new calibration. Despite this, an-
imals were able to retain some memory of training from previous
days to perform better over the course of each session as
training progressed (Figure 2A; comparison between early and
late phases). Interestingly, we observed that returning Jaws an-
imals to an LED on 50% condition after several successful days
of LED off training impaired their ability to learn during that ses-
sion, even though they performed well above chance during the
previous session and during following session when the LED was
again inactive (Figure 6F). This could suggest that striatal activity

is required for animals to learn or adapt to the initial parameters
set at the beginning of each session; however, it could also indi-
cate that striatal inhibition was interfering with task performance
rather than acquisition. To disambiguate these two possibilities,
we allowed animals to achieve saturating performance on the
task within a single session (Train LED off, Figure 6H) and then
continued to train animals with the LED turned on in every trial
for the remainder of the session (Test LED on, Figure 6H). Inter-
estingly, inhibition of the striatum after within-session learning
had taken place did not impair animals’ ability to perform the
task, and they continued to perform well above chance level (Fig-
ures 6G and 6H) and in an indistinguishable manner from the LED
off trials. These data suggest that striatal inhibition prevents
animals from learning to modulate neural patterns in V1 through
instrumental conditioning, but not from executing these patterns
after learning has taken place.

DISCUSSION

Here we demonstrate that animals can learn to modulate spike
activity in the primary visual cortex in a goal-directed manner us-
ing an abstract virtual task. These data demonstrate that feed-
back-based reinforcement learning can modulate activity on
the scale of a few neurons, even in a primary sensory region
that is strongly driven by external sensory input. Because we
observed that successful performance occurred in both the
presence and absence of light, it would appear that the learned
modulation of V1 units in our task is an internally driven process.
Such internally generated modulatory activity may arise from
cognitive and attention-related control systems in the frontal
cortices, for example, by leveraging circuits that modify sensory
processing in V1 to fit task requirements (Makino and Komiyama,
2015; Zhang et al., 2014). Alternatively, movement and gaze-
related activity is also known to change the activity of V1 neurons
(Duhamel et al., 1992; Keller et al., 2012; Niell and Stryker, 2010),
and it is possible that these mechanisms may still function in the
absence of sensory input. However, the differential nature of
the transform used to drive cursor activity was designed to
discourage a movement-based strategy, and previous work
demonstrated that movements were not used to solve a similar
task, even when control was generated from the primary motor
cortex (Koralek et al., 2012). Additionally, we observed that
changing the light context, which would not be expected to
affect movements, had a negative effect on task performance.

mean Jaws DLS, last 3 sessions = 77.0%; p = 0.00149. Colored lines show data for individual animals, horizontal bars show mean across animals, and error
bars show SEM.

(E) Mean gamma power (25-60 Hz, solid lines) in V1 time locked to rewarded targets during LED-50 versus LED-off sessions in DMS-injected animals. Shaded
areas show SEM. For color plots, see Figures S5E and S5F.

(F) Mean performance of trained DMS Jaws-injected animals after several days of training. Data are plotted in the order that the training sessions occurred. Black
bars indicate sessions without LED activation. Striped red bars indicate sessions where the red LED was active on 50% of trials. N = 4 animals. Mean LED off,
first session = 63.3%; mean LED 50% (second session) = 38.9%; mean LED off, last session = 59.6%. Paired t test between LED off, first session and LED 50%:
p = 0.0122. Paired t test between LED 50% and LED off, last session: p = 0.0259. Paired t test between LED off, first and last sessions: p = 0.502. Error bars
show SEM.

(G) Mean performance within a session for trained Jaws-DMS animals with late-session LED only activation compared to full-session LED 50% sessions. Shaded
areas show SEM.

(H) Quantification of performance when Jaws-DMS animals were trained with LED off and tested with LED on in the same session; data same as in (F). N =4
animals; mean of train LED off = 59.6%; mean of test LED on = 64.4%; p = 0.657 (paired t test). Lines show data from individual animals, horizontal bars show
mean across animals, and error bars show SEM.
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Finally, the lack of any observable learning deficit during DLS in-
hibition, a structure crucial for motor learning (Redgrave et al.,
2010; Yin et al., 2006), would argue against a motor-based strat-
egy. ldentifying the source of the learned modulatory input in V1
is of great interest for future investigations. Taken along with a
body of previous work describing brain-machine interface
learning in other diverse cortical areas (Carmena et al., 2003;
Cerf et al., 2010; Clancy et al., 2014; Fetz, 2007; Musallam
et al., 2004; Prsa et al., 2017; Schafer and Moore, 2011; Shibata
et al., 2011), these results suggest that this type of instrumental
learning ability may be a common feature that tunes the activity
of cortical circuits more generally.

In the realm of motor control, the cortico-basal ganglia circuit
has been hypothesized to perform a selection function in which
competing cortical motor programs are either maintained or
released from inhibitory control (Costa, 2011; Redgrave et al.,
2011). A similar function has also been postulated to operate
in the realm of abstract cognition, by which various cognitive
patterns may be selected that are appropriate for the current
behavioral context, and have previously led to positive out-
comes (Graybiel, 1997). These models propose an inhibitory
feed-forward projection from basal ganglia output nuclei
(globus pallidus internal (GPi) and substantia nigra pars reticu-
lata (SNr) that can activate cortical programs when inhibition is
transiently released from the thalamus. Interestingly, although
basal ganglia outputs are known to target frontal cortical areas
and even higher-order visual areas like area TE in the primate
(Middleton and Strick, 1994, 1996), we are not aware of any
direct projections from the basal ganglia that target V1-projec-
ting thalamic nuclei.

Despite this, we observed that activity in the striatum was
necessary for instrumental learning of neural patterns in the pri-
mary visual cortex. This result may be due to an induced learning
deficit in a cortical region other than V1 whose input modulates
ensemble 1 and ensemble 2 activity in the absence of visual
stimulation. Frontal cortical areas, such as the cingulate cortex
(Cg) in the rodent, are known to powerfully and directly influence
processing in V1 to select and amplify representations of behav-
iorally relevant stimuli (Zhang et al., 2014). Thus, disrupting cor-
tico-basal ganglia circuit function might impair learning of a
top-down modulatory signal that generates rewarded activity
in V1. Perhaps analogously, Parkinson’s patients with abnormal
basal ganglia function have been shown to be impaired in volun-
tary and sustained control of visual attention in the absence of
eye movements (Wright et al., 1990; Yamaguchi and Kobayashi,
1998). Alternatively, the learning process we observed could
have recruited structures upstream of V1, such as the superior
colliculus, that also form connections with the basal ganglia
(McHaffie et al., 2005). Our results do not rule out these or other
possibilities; rather, they simply demonstrate that the basal
ganglia are necessary to learn to modulate activity in V1 and
that the input for this circuit is the striatum.

In our experiments, we observed that animals performed in a
goal-directed manner: performance remained sensitive to
changing task contingencies, even after many days of training
(Figure 2E). The projection of the primary visual cortex to the
striatum lies along the most medial-dorsal aspect, adjacent to
the ventricle wall (Khibnik et al., 2014). This lies well within

the dorsomedial division of the striatum, which is known to
be necessary for and to facilitate goal-directed behaviors (Yin
et al., 2005, 2009), as opposed to the dorsolateral division
that is required for habitual action (Redgrave et al., 2010; Wick-
ens et al., 2007; Yin et al., 2006). One possibility is that segre-
gation of V1 projections in the dorsomedial division of the
striatum favors goal-directed learning and behavior in V1. How-
ever, it is also possible that the daily recalibration of task pa-
rameters or simply insufficient training time prevented behavior
from becoming habitual. Previous work utilizing a similar task
design but controlled by neurons in M1 also observed that an-
imals behaved in a goal-directed manner (Clancy et al., 2014;
Koralek et al., 2012).

From our analyses, we observed that learning-related changes
in neural dynamics, such as changes in correlations and spike-
field coherence (Figure 4), were largely restricted to the direct
population consisting of units from ensemble 1 and ensemble 2.
Absolute modulation depth of indirect (non-E1 or E2) neurons in
V1 remained low relative to direct units (Figures S3A-S3C), sug-
gesting that the learning we observed operated primarily on the
small scale of a few neurons. Furthermore, the modulation depth
of task-irrelevant indirect neurons declined over the course of
training (Figure S3C), echoing similar results observed across
mice and monkeys using calcium imaging and electrophysiology
techniques (Clancy et al., 2014; Ganguly et al., 2011; Prsa et al.,
2017). It has been reported that the activity of single cells in
sensory cortex is sufficient to drive a percept (Houweling and
Brecht, 2008), suggesting that cortical circuits may be optimized
to operate on these microscales. However, a closer analysis of
indirect unit activity showed that many single units as well as
the full population of indirect cells contained activity that was
predictive of target choice (Figures S3E and S3F). These results
suggest a subtle role for this population in the learning and
execution of the task.

It has been reported previously that plasticity in the cortico-
striatal circuit is required for animals to operantly learn to control
patterns of activity in primary motor cortex, as assessed by se-
lective deletion of striatal of NMDA receptors (Koralek et al.,
2012). A complete dissection of the circuit that begins with
changes at the cortico-striatal synapse and returns back to the
task-relevant cortical neurons is a project that we find compel-
ling and may warrant a study using a different set of methods.
However, we can speculate on the mechanism using existing
data. Although early models of cortico-basal ganglia-thalamo-
cortical loops proposed a segregated, parallel model (Alexander
et al., 1986), more recent data suggest that there is a substantial
degree of interconnection and integration in the circuit, both
within the striatum as well as the thalamus (Haber and Calzavara,
2009; Joel and Weiner, 1994). Regions of DMS that are recipient
of V1 activity may increasingly engage frontal cortices through
divergent and non-reciprocal projections to SNr and GPi, or
act by changing synaptic weights in “hot spots” of convergence
within the thalamus. The recruitment of frontal cortices may in
turn increase the influence of top-down inputs to V1, which
has been demonstrated to occur with experience (Makino and
Komiyama, 2015). Precise tuning of the circuit that includes
direct units may then happen locally, through recruitment of neu-
romodulatory systems that are known to influence V1 plasticity
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(Gu, 2002, 2003), or through Hebbian learning mechanisms that
can adjust the tuning of the relevant units to better suit the task at
hand (Legenstein et al., 2009). Future projects will no doubt
involve closer study of how nearby and distal neural populations
support learning in a particular subset of cells.

An important goal of BMI research is often to decode move-
ment parameters with high accuracy in order to translate a sub-
jects’ existing motor control repertoire into the movement of a
complex artificial effector. In these cases, using high channel
count recordings in motor cortices is an effective strategy due
to the rich encoding of movement parameters in areas such as
M1 and PMd. Here, our goal was not to optimize performance
or control of an effector, but rather to develop a task that would
enable us to study learning. It is important to note our task is
different in several respects from BMI paradigms designed
with the goal of maximizing performance and control in a thera-
peutic context—our goal was to use a BMI paradigm as a
method of operantly conditioning neural activity in V1 directly
in order to study the learning process and the neural dynamics
associated with it. This enabled us to define the final output layer
of neurons directly responsible for controlling a virtual action as
well as their relationship to task performance and allowed us to
observe their activity relative to each other, other V1 neurons,
and activity in the dorsomedial striatum.

Although neurons in the primary visual cortex are thought to
represent low-level visual features early in the visual processing
stream, we observed that V1 neurons could learn to produce
rewarded activity patterns that were independent of visual stim-
ulation when spike activity was used as a control signal for a
closed-loop brain-machine interface task. While here we focus
on learning in the primary visual cortex, the dynamics of striatal
activation, cortico-striatal dynamics over the course of learning,
and the necessity of the striatum in the learning process is similar
to what has been observed in a variety of tasks that engage
diverse cortical regions (Barnes et al., 2005; Corbit and Janak,
2010; Koralek et al., 2012; Pasupathy and Miller, 2005; Shohamy
et al., 2004; Yin et al., 2009). These results suggest that cortico-
striatal projections, as part of larger cortico-basal ganglia cir-
cuits, play a generalizable role in shaping cortical activity based
on ongoing experience and behavioral outcomes.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Bacterial and Virus Strains

rAAV8/CamKIl-Jaws-KGC-GFP-ER2

rAAV8/CamKII-GFP

University of North Carolina
University of North Carolina

Addgene plasmid #65015
Addgene plasmid #64545; GenBank: KM000926.1

Experimental Models: Organisms/Strains

Long-Evans rats (Male, between 200 g

and 300 g)

Mice, C57BL, (Male, between 2.5-3.5

months old)

Charles River

Jackson Labs

Crl:LE Strain Code: 006

000664

Software and Algorithms

Python 2.7; Anaconda distribution Anaconda https://www.anaconda.com/download/
Chronux toolbox Chronux http://chronux.org; RRID: SCR_005547
Scikit-learn toolbox Scikit-learn http://www.scikit-learn.org; RRID: SCR_002577
Plexon SortClient Plexon http://plexon.com/products/software;
RRID: SCR_003170
Other
Plexon MAP System Plexon http://plexon.com/products/multichannel-acquisition-

Microwire arrays- fixed
Microwire arrays- moveable
Fiber-coupled LED system

OmniPlex system

Operant test chamber

Innovative Neurophysiology
Innovative Neurophysiology
Prizmatix

Plexon

Lafayette Neuroscience

processor-map-data-acquisition-system
http://www.inphysiology.com/fixed-arrays/
http://www.inphysiology.com/movable-arrays/
http://www.prizmatix.com/optogenetics/Prizmatix-in-
vivo-Optogenetics-Toolbox.htm
https://plexon.com/products/omniplex-d-neural-data-
acquisition-system-1/

Model 80004NS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Jose
M. Carmena (jcarmena@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Rats

All rat experiments were performed in compliance with the regulations of the Animal Care and Use Committee at the University of
California, Berkeley. A total of 13 singly housed, male Long-Evans rats on a 12h light/dark cycle weighing roughly 250 g were
used for the experiments. All rats were chronically implanted with microwire arrays in V1, with 8 rats also receiving implants in the
dorsomedial striatum. Each array contained 16 or 32 tungsten microelectrodes (35 um diameter, 250 um electrode spacing, 8x2
or 8x4 configuration; Innovative Neurophysiology, Durham, NC). Stereotactic coordinates relative to bregma and lambda were
used to center the arrays (1 mm anterior of lambda, 3.5 mm lateral from the midline, and 1.25 mm ventral from the cortical surface
for V1; 1.8 mm anterior of bregma, 2 mm lateral of the midline, and 5.5 mm ventral from the cortical surface for DMS). V1 implants
were targeted for layer 5 neurons based on insertion depth, and this was verified histologically at the end of experiments (Fig-
ure S1A,b). Rodents were anesthetized with Ketamine (50 mg/kg) and Xylazine (5 mg/kg) with supplemental isoflurance gas as
needed. Craniectomies were sealed with cyanoacrylate and rats were allowed to recover for ten days after implantation before
behavioral training. Rats were given dexamethasone treatment (0.5 mg/kg) for one week following surgery to minimize tissue damage
around the implant (Zhong and Bellamkonda, 2007).
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Mice

Mouse experiments were performed in accordance with the Champalimaud Centre for the Unknown Ethics Committee guidelines
and approved by the Portuguese Veterinary General Board (Direcgéo Geral de Veterinaria, approval 0421/000/000/2014). A total
of 12 singly housed male C57BL mice of 2.5-3.5 months of age were used (four experimental mice with DMS-targeted Jaws, four
with DLS-targeted Jaws, and four DMS-targeted GFP control mice). Surgeries were performed under isoflurane anesthesia
(1%-3%). All mice with DMS-targeted injections were injected bilaterally with 1 uL of viral solution in the dorsomedial striatum using
coordinates relative to Bregma (0.9 mm AP, = 1.5 mm ML, 2 mm below brain surface). For DLS injections, 0.5 uL was used and the
coordinates used were +0.5 mm AP, +/—2.3 ML, and —2.3 DV. Viral solution was injected through a glass pipette by pressure (Nanojet
Il from Drummond Scientific, 4.6 nL pulses at a rate of 0.2 Hz). For experimental animals, the virus injected was rAAV8/CamKII-Jaws-
KGC-GFP-ER2 (University of North Carolina, titer 5.9x10"2). For control animals, the virus injected was rAAV8/CamKII-GFP (Univer-
sity of North Carolina, titer 2.8x10'2). For delivery of red light, mice were implanted bilaterally with optical fibers (250 um diameter,
NA 0.63). All mice were also implanted with 16-channel movable electrode arrays (electrode diameter 23 um; Innovative Neurophys-
iology, Durham, NC) in the right primary visual cortex using coordinates relative to Lambda (0 mm AP, 0.3 mm ML, 0.6 mm below brain
surface).

METHOD DETAILS

Electrophysiology

Single unit activity and local field potentials were simultaneously recorded with a Multichannel Acquisition Processor (MAP in rats,
OmniPlex in mice; Plexon, Dallas, TX). Activity was sorted using an online sorting application (Plexon, Dallas, TX) prior to each daily
recording session. Only units with a clearly identified waveform and signal-to-noise ratio greater than 2 were used. Sorting templates
were further refined using an offline sorting application (Plexon, Dallas, TX). Behavioral timestamps were sent to the MAP recording
system through custom Python and C++ programs and synchronized to the neural data for later analyses. Recording arrays were
grounded to a screw in the occipital bone, and both arrays were also referenced locally using the online program Ref2 (Plexon,
Dallas, TX) to eliminate effects of volume conduction. For referencing, an electrode on each array was chosen to be subtracted
from all other electrodes on that array. This was done independently for both V1 and DMS.

Behavioral Task

After recovering from surgery, rats were trained on the task in a dark behavioral chamber (Lafayette Instrument Company,
Lafayette, IL) unless otherwise specified. During training, rats only received access to water during the task unless supplemental wa-
ter was needed to maintain their body weight at a healthy level. At the start of each session, two ensembles of 2 well-isolated V1 units
each were chosen for inclusion in the direct population based on SNR, interspike- interval histograms, and refractory periods. No
other selection criteria were used to partition the recorded cells into each ensemble. Although these direct units were consistently
well-isolated, we also ensured that many well-isolated units were included in the indirect population to enable a proper comparison.
The units assigned to the direct population remained relatively constant throughout training using the stability of spike waveforms,
sorting templates, and interspike intervals across sessions as a guide. After sorting and partitioning of direct and indirect units, a
15-minute baseline period was recorded in which animals received a sucrose water reward on a variable-interval schedule. During
this time, spike counts were recorded for each ensemble binned into 100 ms bins, and a distribution of state values was calculated by
subtracting the counts from E1 from E2 in each time bin. From here, the distribution was fit by a Gaussian mixture model (GMM)
comprising between 1 and 10 Gaussian components (the exact number was chosen by finding the Akaike Information Criterion
(AIC) value for each possible number of components, and choosing the number with the lowest AIC value). The probability density
function (PDF) was then computed for the chosen model. By default, the neural state values (E1 — E2 counts for a 100 ms bin) cor-
responding to the low and high targets were set at the points on the computed PDF where the area under the curve was equivalent to
1.5% and 98.5% of the total area, respectively (Figure S1A). However, these target values were iteratively updated by running a simu-
lation using the data recorded in the baseline period until the probability of hitting each target was approximately 30%. Finally, using
the lowest and highest target values as well as the mean of the GMM, in combination with the lowest (1000 Hz), highest (15000 Hz)
and midpoint (7000 Hz) frequencies, a 2-degree polynomial function was fit to these values in order to map neural state to a frequency
value. During online performance, the state value used to compute the instantaneous feedback frequency was smoothed over the
most recent 10 bins, updated every 100 ms. The rodents had to then precisely modulate these neuronal ensembles to move the
cursor to one of two target frequencies, one which was randomly chosen using a coin flip on a per-animal basis to be associated
with a 20% sucrose solution reward (and kept consistent across training sessions). Rodents were free to reach either target, although
the cursor value had to return to the middle value for a new trial to begin. A trial was marked as a miss if neither of these target states
were achieved within 30 s of trial initiation. Recorded neural data were entered in real time to custom routines in Python and C++ that
then translated those activity levels into the appropriate feedback frequency as described above and played the frequency on
speakers mounted above the behavioral chamber. When a target was hit, a Data Acquisition board (National Instruments,
Austin, TX) controlled by a Python script triggered the operant box to supply the appropriate reward to rodents.
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Behavioral Manipulations

After initial training of at least 8 days, a contingency degradation was performed. This took place over two sessions: during the first
session, animals were allowed to achieve stable performance on the task, which took approximately 30 min (pre-degradation). Then,
reward delivery was decoupled from task performance and delivered on a variable-interval schedule that approximated the rate of
reward during training conditions (CD). During this time, animals still received auditory feedback linked to their neural state. The con-
tingency degradation continued for the remainder of the session. The next day, animals were again trained on the task under normal
conditions (reinstatement). Similarly, for contingency reversal sessions, we reversed the contingency approximately 30 min into a
training session. During sessions that involved light manipulation, we again waited for animals to achieve saturating performance
in a single session, and then placed a light into the behavioral chamber in an overhead configuration.

Optical Inhibition

For optical inhibition experiments, red light was applied to the striatum of both experimental and control groups on 50% of all trials in
a session. Light was applied through a fiber-coupled LED system (Prizmatix, Givat-Shmuel, Israel). Power levels tested through the
system at the optical fiber tip ranged from 4-6 mW. Red light application consisted of a square pulse that lasted the full duration of the
current trial, from trial initiation until either a target or timeout was reached. Both groups were trained in this manner for 7 days. Next,
the experimental animals were trained for 5 additional days in the absence of red light. After this initial training, both groups were
tested to determine the role of striatal circuits in learning versus performance of the task. On day LED 50, red light was applied
on 50% of all trials. On day LED late, no light was applied for the first 45 trials, after which red light was applied on 50% of all remaining
trials.

Data Analysis

Analyses were performed in Python with custom- written routines utilizing publicly available software packages. Unit data were first
binned in 1 ms time bins and digitized. To classify recorded striatal units as either output neurons or interneurons, we used the
method of (Jin and Costa, 2010). Briefly, units with a waveform trough half-width of less than 100 us and a baseline firing rate of
more than 10 Hz were considered to be fast-spiking interneurons, while units that did not meet these criteria were classified as output
neurons. Approximately 91% of the units we recorded were classified as output neurons. Firing rate analyses were performed in rela-
tion to target achievement as indicated in figures. Unless otherwise specified, firing rates were binned into 50 ms bins for all analyses.
Only two-sided statistical tests were used to determine significance. The term “early” indicates that analyses were performed using
data taken from animals during the first 3 days of training (inclusive), while “late” specifies data taken from animals during the final
3 days of training. The “first trials” of a session indicates trials in the first 10 min, while the “last trials” of a session are defined as
occurring in the last 10 min, unless otherwise specified in the text. Modulation depths were computed as the difference between
the maximum and minimum firing rate values in a 2 s window centered around target achievement. Coherence analyses were per-
formed using algorithms translated to Python from the Chronux toolbox (http://chronux.org) in conjunction with custom routines in
Python. A multi-taper method was used to compute spectral estimates of spiking and LFP activity (Jarvis and Mitra, 2001; Thomson,
1982). A total of 5 tapers were used with a time-bandwidth product of 3, and estimates were computed every 50 ms with a window
size of 500 ms. Coherence between spiking in LFP activity was calculated and defined as:

Ry |

Cy=—"T"-F-"—
VIBu [/ |Ry

where Ry and Ry, are the power spectra and R,y is the cross-spectrum. Spectral analyses were calculated relative to the delivery of
reward and averaged across trials and animals.

Coherence estimates can be affected by firing rate(Lepage et al., 2011) and we therefore performed a thinning procedure to equate
firing rates between conditions in which rates differed (Gregoriou et al., 2009). Trial-averaged spike trains in the neuronal populations
were smoothed with a moving average of 10 ms. The difference in firing rate between the populations normalized by the maximum
firing rate at a given time point determined the probability that a spike would need to be removed from the population with a higher
firing rate. Spikes were then removed from the population with a higher firing rate based on this probability in order to eliminate any
possible influence of firing rate on coherence estimates.

The signal-to-noise ratio for each recorded waveform was quantified as:

A

SNR=— ——
2 % SDpoise

where A is the peak-to-peak voltage of the mean waveform and SD s is the standard deviation of the residuals from each waveform
after the mean waveform has been subtracted (Suner et al., 2005). Units included in the analysis had a minimum SNR of 2.

For logistic regression analyses, we used functions from the publicly available python package scikit-learn (http://.scikit-learn.org).
Regression was performed using a window of spike activity 500 ms prior to target hits, binned into 50 ms bins. L2 Regularization was
done using cross-validation to determine the optimum regularization parameter. 3-fold cross validation was performed 5 times using
left out data to compute accuracies, and the average of all 5 results was taken to be the final accuracy value. Chance rates were taken

Neuron 97, 1356-1368.e1-e4, March 21, 2018 e3

CellPress



http://chronux.org
http://.scikit-learn.org

CellPress

as the accuracy of the analyses using shuffled data. To determine significance values, a permutation test was used that compared
the accuracy of the prediction using the original dataset compared to dataset in which target identities for all trials were shuffled.
Neural activity was considered to be significantly predictive of target choice if the accuracy of the prediction using the original dataset
outperformed the accuracy of the shuffled version on 95% of 500 iterations.

The linear regression model was fit for each session as follows. First, a data window was defined for each trial as the 500 ms prior to
target hit. Summed spike counts over this interval were computed for all DMS units at every trial in the session, and arranged to create
amatrix, X, of dimensions (trials * units), where each entry is a spike count. Then for each direct (V1) unit, a similar process was used to
create a vector, y, for that particular unit, with length trials, and each entry the spike count over the interval for that trial. These
matrices were used to fit an ordinary least-squares regression and estimate the coefficients of the regression model, which was
done using the LinearRegression method of the python package scikit-learn (sklearn.org). R-squared (variance explained) was
computed using three-fold cross validation. In order to compute the significance of the model prediction, we used a permutation
test with 10,000 iterations. On each iteration, the vector y was shuffled and the R-squared was computed for the shuffled data.
The prediction was considered significant if the intact dataset resulted in a greater quantity of explained variance than shuffled data-
sets on 95% of iterations. This process was repeated for each direct unit using the same X matrix of DMS unit data. The resulting
R-squared value for each direct unit was then averaged across all direct units to compute the mean R-squared value for that session.

QUANTIFICATION AND STATISTICAL ANALYSIS

In all figures, unless otherwise specified, the bold lines represent the mean of the data, and error bars denote standard error of the
mean (SEM). Translucent lines or dots are used to show data from individual animals, as indicated in the Figure legends. Means, stan-
dard error, and statistical tests were computed across animals. Number of subjects and sessions analyzed for each figure are indi-
cated in the figure legends or in the figure panel. “Percent correct” was calculated by dividing the total number of correct trials in a
given interval by the sum of the total trials completed in that interval, including trials that resulted in a rewarded target hit, an unre-
warded target hit, or a time-out. Many comparisons of learning were done by analyzing performance differences between different
epochs- as indicated in the Results, “early” and “late” refer to the first 3 and last 3 training sessions for each animal, respectively.
Sometimes, we analyzed “first trials” and “last trials,” which refers to the trials completed in the first 10 min of a session and last
10 min of a session, respectively. The epoch that is being analyzed in a given figure is clearly specified in the Results and Fig-
ure legend. Determination of chance performance rates is described above in Method Details, under the subheading Behavioral
task. The statistical test used in each comparison is specified in the Figure legend, along with the resulting p value. Parametric tests
were used to compare performance across training epochs, while permutation tests were used to derive significance levels
for regression models. Significance was considered as p < 0.05. A single asterisk was used to denote significance of at least
p < 0.05, while a double asterisk was used to denote p < 0.001. All statistical tests were performed using custom-written scripts
in Python.
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