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a b s t r a c t

Simple, accurate, and efficient iterative methods for the solution of a nearly singular
variational problem are described. The systems considered arise, e.g., when seeking to
determine the flux of second order elliptic partial differential equations. Each (outer)
iteration uses a robust and efficient solver, which may be a direct or iterative method, and
only a few (outer) iterations are required to obtain an approximate solution. Reduced rank
extrapolation may be applied to speed up the convergence.
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1. Introduction

This paper describes simple efficient iterative methods for the computation of an accurate approximate solution of
variational problems of the form

(∇ · σ, ∇ · τ) + δ(σ, τ) = F (τ) for all τ ∈ H(div), (1.1)

where δ is a constant with 0 < δ ≪ 1, F (·) is a linear functional, and (·, ·) denotes the standard inner product in L2.
Variational problems of this kind arise in a variety of applications, including in the context of preconditioning in mixed
finite element methods and least-squares finite element methods; see [1,2]. Moreover, the finite element method proposed
in [3] for determining the flux σ for second order elliptic partial differential equations (PDEs) leads to an equation of the type
(1.1). We present more details of this application in Section 2.

The parameter δ > 0 in (1.1) provides a connection between the approximation spaces for the solution u of a second
order elliptic PDE and the flux σ = −∇u. The flux is the quantity of primary interest in many problems that arise in the
sciences and engineering. It is desirable that δ be small in order to be able to determine an accurate approximation of the
flux with amodest computational effort. This is explained in Section 2. However, when δ > 0 is ‘‘tiny’’, discretization of (1.1)
gives rise to a linear system of algebraic equations (LSAEs) that is nearly singular. The near-singularity of the LSAE can make
its accurate solution difficult. This is illustrated in Section 5.

The aim of this paper is to provide simple, efficient, and accurate solvers for discretizations of variational problems of
the form (1.1) with a small parameter δ > 0. A difficulty is that the quality of the computed solution deteriorates as δ

decreases to zero, and is poor for small values of δ, when the solution is computed by a direct or iterative method applied to
the linear system of equations with a nearly singular matrix obtained by discretizing Eq. (1.1); see Section 5. We present a
robust solution method for the LSAE obtained from the discretization of (1.1) that produces accurate solutions independent
of δ > 0. This method is based on replacing the stiffness matrix by a better conditioned matrix, and solving the LSAE so
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obtained by an iterative method. An advantage of our solution approach, when compared with available schemes, such as
those described in [1,2], is its simplicity. In particular, our approach uses standard FEM spaces and is easy to implement.

We are interested in solution methods that are well suited for LSAEs of small to moderate size, as well as in solution
methods suitable for large-scale LSAEs. All methods presented for the solution of (1.1) are iterative, however, their design
depends on the size of the linear system of algebraic equations.

Iterative methods for the solution of singular and nearly singular LSAEs have received considerable attention in the
literature; see, e.g., [4–8] and references therein. Wewill describe a fast iterative solutionmethod that exploits the structure
of Eq. (1.1). Our method is easy to implement. Specifically, we use an iterative or direct solver for the LSAE with parameter
δ = 1 to determine a solution of the LSAE with δ > 0 ‘‘tiny’’. When δ = 1, the matrix of the LSAE is symmetric positive
definite and there aremany robust and efficient solvers available for the resulting system; see [9]. Several such systems have
to be solved in our iterative method for the solution of the discretized linear system with δ > 0 small obtained from (1.1).
Numerical examples reported in Section 5 show the number of iterations to be small and neither sensitive to δ > 0 nor to
the mesh size. Moreover, the number of iterations can be reduced by the application of a vector extrapolation method. We
will apply reduced rank (vector) extrapolation (RRE). A nice survey of extrapolation methods is provided by Brezinski and
Redivo Zaglia [10]. Vector extrapolation methods, and in particular RRE, are discussed in [11–14] as well as in references
therein.

The LSAE obtained by discretization of (1.1) with δ = 1 can be solved in a variety of ways. We will solve it by a direct
method based on sparse Cholesky factorization of the systemmatrix when the LSAE is of small to moderate size. Large-scale
systems can be solved by a preconditioned conjugate gradient method or a multigrid method. Our solution methods for
LSAEs with δ > 0 small takes advantages of these well-developed solvers, and are easy to implement as a result. In this
paper, we use MATLAB functions or algebraic multigrid methods developed in [15–18] for solving the LSAE with δ = 1.

This paper is organized as follows. Section 2 describes the background for Eq. (1.1) and presents some preliminary results.
In particular, we provide a justifications for choosing δ > 0 small. Section 3 discusses approximation spaces. The basis
elements are defined in Section 4, where we also derive the linear system of algebraic equations associated with (1.1).
Section 5 describes some numerical examples that illustrate the theory and the fast convergence of the iterative methods
proposed. Concluding remarks can be found in Section 6.

2. Problem formulation

We describe an example that gives rise to a variational problem of the form (1.1) and discuss our reason for choosing a
small value of δ. Our description is quite brief and we refer interested readers to [3] for further details.

Let Ω ∈ Rn, with n = 2 or n = 3, be a convex polygonal domain with boundary ∂Ω , and let ∥ · ∥s denote the norm in the
Sobolev space Hs(Ω) and (·, ·) the inner product in L2(Ω). Introduce the model second order PDE

− ∇ · A∇u = f in Ω (2.1)

with boundary condition

u = 0 on ∂Ω,

where A is a symmetric positive definite matrix and f ∈ L2(Ω). For ease of exposition, we let A be the identity matrix.
In many applications, the flux σ = −∇u is the quantity of primary interest. To approximate the flux accurately, one often

transforms the second order equation (2.1) into a system of first order equations,

σ + ∇u = 0 in Ω, (2.2)

∇ · σ = f in Ω. (2.3)

This system can be discretized and solved by a mixed finite element method or by a least-squares finite element method.
These methods produce accurate approximations of the flux. However, a drawback of both these methods is that they
approximate both u and σ simultaneously. This results in an unnecessarily large problem size and makes the computational
effort required to solve the resulting LSAE unnecessarily large when u is not required. To overcome this difficulty, a new
hybrid finite element method has been proposed in [3]. This hybridmethod is based on the following formulation. Taking an
inner product with τ ∈ H(div) in (2.2) and multiplying by δ, taking an inner product with ∇ · τ ∈ L2(Ω) in (2.3), and adding
the equations so obtained yields

(∇ · σ, ∇ · τ) + δ(σ + ∇u, τ) = (f , ∇ · τ) for all τ ∈ H(div).

Using integration by part, we obtain (∇u, τ) = −(u,∇ · τ) and the above equation can be expressed as

(∇ · σ, ∇ · τ) + δ(σ, τ) = (f + δu, ∇ · τ) for all τ ∈ H(div). (2.4)

This is a variational problem of the form (1.1) with F (τ) = (f + δu, ∇ · τ).



242 J. Ku, L. Reichel / Journal of Computational and Applied Mathematics 343 (2018) 240–249

However, since the primary variable u is not known,we cannot use (2.4) to compute the fluxσ.We therefore first compute
an approximation uH of u on a coarse mesh (with mesh size H). Then we compute an approximation σh of σ on a fine mesh
(with mesh size h) by solving

(∇ · σh, ∇ · τh) + δ(σh, τh) = (f + δuH , ∇ · τh) (2.5)

for all τh in some discrete space.
The following error estimates are shown in [3, Theorem 4.4] for any mixed-type finite element approximation spaces

such as Raviart-Thomas (RT) spaces or Brezzi-Douglas-Marini (BDM) spaces; see [19,20,22]. The estimates shed lights on the
roles δ, h, and H , and on how their sizes should be chosen.

Theorem 2.1. Let σh satisfy (2.5) and assume that ∥u − uH∥1 ≤ CH∥u∥2 for some constant C > 0 independent of H. Then

∥σ − σh∥ ≤ Ch∥σ∥1 + C
√

δH2
∥u∥2 for RT0 spaces

and

∥σ − σh∥ ≤ Ch2
∥σ∥2 + C

√
δH2

∥u∥2 for BDM1 spaces.

Remark 2.2. The crude approximation uH can be computed by using one of many well-known numerical methods, such as
a standard Galerkin method. Due to the fact that the parameter δ is small, the cost of computing uH typically is negligible as
explained in the following subsection. □

2.1. The role of the parameter δ

The error estimates of Theorem 2.1 suggest that the ratio between h and H should be

h =
√

δH2 for RT0 spaces and h2
=

√
δH2 for BDM1 spaces.

Choosing a small value of δ makes it possible to use a small fine mesh size h in conjunction with a large coarse mesh size H .
This implies that the cost of the computations on the coarse mesh is negligible compared to the cost of the computations on
the fine mesh when δ > 0 is sufficiently small. We are therefore interested in using a small value of δ. On the other hand, a
small δ results in a LSAE with a nearly singular matrix, and this may cause numerical difficulties if not handled properly. In
Section 4, we describe simple, efficient, and reliable solvers for these LSAEs with a near-singular matrix.

2.2. Two linear operators

Define the linear operators A and Aδ by

(Aσ, τ) = (∇ · σ, ∇ · τ) + (σ, τ), (2.6)

(Aδσ, τ) = (∇ · σ, ∇ · τ) + δ(σ, τ). (2.7)

The operator A is symmetric and positive definite. Its smallest eigenvalue is larger than or equal to 1. Hence, all eigenvalues
of A−1 lie between 0 and 1. The operator Aδ can be expressed as

Aδ = A + (δ − 1)I.

This shows that Aδ also is symmetric and positive definite for δ > 0 with its eigenvalues bounded below by δ.

3. Approximation spaces

To compute an approximate solution of (1.1), we first discretize the domain Ω by triangles. Let Th be a quasi-uniform
family of triangulations of Ω , where h > 0 is a parameter representative of the diameter of the triangles; see [21]. Fig. 3.1
shows a simple example. The triangles of Th are denoted by T .

We will use the Raviart–Thomas finite element spaces to approximate σ ∈ H(div). For each nonnegative integer r , the
Raviart–Thomas space of index r is given by

Vh = {v ∈ H(div) : v|T ∈ Pr (T ) + (x, y)Pr (T ) for all T ∈ Th}.

Here Pr (T ) denotes the set of polynomial functions of degree at most r on T . Note that the function v ∈ Vh is continuous
across the edges so that Vh ⊂ H(div), i.e.,

[v]E · νE = 0 for all interior edges E,

where [v]E = v|T+ − v|T− denotes the jump of v across the edge E = T+

⋃
T− and νE is a unit normal vector to E. The space

Vh has the approximation property

inf
τh∈Vh

∥σ − τh∥ ≤ Chr+1
∥σ∥r+1;

see [23] and references therein for a more detailed discussion on the properties and implementation of RT spaces.
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Fig. 3.1. Uniform mesh of mesh size h = 1/23 . There are 208 edges, which equals the degrees of freedom.

3.1. Decomposition of Vh

Recall that Pr (T ) denotes the set of polynomials of degree at most r on T . Introduce the space

Wh = {s ∈ H1
: s|T ∈ Pr+1(T )} (3.1)

of continuous piece-wise polynomials of degree r + 1 with a derivative, as well as the space

Sh = {q ∈ L2 : q|T ∈ Pr (T )}

of (possibly discontinuous) piece-wise polynomials of degree r on T . Define the discrete gradient operator gradh : Sh → Vh
by

(gradhq, v) = −(q,∇ · v) for all v ∈ Vh. (3.2)

Then we have the following (discrete) Helmholtz decomposition (cf. [24]),

Vh = gradhSh ⊕ curlWh.

This decomposition is orthogonal with respect to both the L2 and H(div) inner products. Using the orthogonality, one can
easily show that the two summand spaces gradhSh and curlWh are invariant under A and Aδ .

We also define a local L2-projection Ph : L2(Ω) → Sh as follows: Let for f ∈ L2(Ω),

(Phf , qh) = (f , qh) for all qh ∈ Sh. (3.3)

We refer to [1] for a more detailed presentation of the material in this subsection.

3.2. An iterative method

Using (2.7), we can express Eq. (2.5) as

(Aδσh, τh) = (f + δuH , ∇ · τh) for all τ ∈ Vh,

where we note that ∇ · τh ∈ Sh. Application of the L2 projection operator Ph defined in (3.3) to the above equation yields

(Aδσh, τh) = (Ph(f + δuH ) , ∇ · τh) = (−gradh(Ph(f + δuH )) , τh) (3.4)

for all τ ∈ Vh. Thus, we seek to solve

Aδσh = −gradh(Ph(f + δuH )).

Using (2.6) and (2.7), we obtain

Aδσh = Aσh + (δ − 1)σh = −gradh(Ph(f + δuH ))
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and it follows that

σh = (1 − δ)A−1σh + A−1(−gradh(Ph(f + δuH ))). (3.5)

This expression suggests the iterative scheme

σn+1
h = (1 − δ)A−1σn

h + A−1(−gradh(f + δuH )). (3.6)

Theorem 3.1. Let the sequence {σn
h}

∞

n=0 be defined by (3.6). Then

σn
h → σh as n → ∞.

Proof. It suffices to show that

(1 − δ)∥A−1
∥ < 1. (3.7)

Since the operator A is symmetric and positive definite with all eigenvalues larger than or equal to one, it follows that
∥A−1

∥ ≤ 1. The inequality (3.7) now follows from the fact that δ > 0. □

Remark 3.2. The above proof of convergence is based on the observation that (1 − δ)∥A−1
∥ ≤ 1 − δ < 1. However, the

actual rate of convergence is much faster than indicated by the proof. This is due to the fact that gradhSh is invariant under
A and Aδ , and −gradh(Ph(f + δuH )) ∈ gradhSh. Thus, the iterative procedure (3.6) only works in the subspace gradhSh. We
therefore may write this iterative procedure as

σn+1
h = (1 − δ)A−1

|gradhSh
σn
h + A−1

|gradhSh
(−gradh(f + δuH )).

The eigenvalues of A corresponding to eigenfunctions in gradhSh are strictly larger than unity, while the eigenvalues
of A corresponding to eigenfunctions in curlWh are one. It follows that the convergence rate is bounded by the quantity
(1 − δ)∥A−1

|gradhSh
∥, which is much smaller than unity. The iterations (3.6) therefore converge rapidly; see Tables 5.1 and 5.3

below. □

4. The linear system of algebraic equations

For simplicity, we will approximate σ using elements in the Raviart–Thomas space Vh of the lowest order r = 0. Let
ψ1, . . . ,ψN be a (edge) basis for Vh, i.e.,

Vh = span{ψ1, . . . ,ψN}, (4.1)

where each function ψi is supported by two elements (triangles) having the edge Ei as a common side. The following
definition of the basis functions is given in [23, Definition 4.3] and is helpful for the implementation of the functions.

Definition 4.1. Given an edge E, there are either two elements T+ and T− in Th with the joint edge E = ∂T+

⋂
∂T− or exactly

one element T+ in Th with E ⊂ ∂T+. Then, if T± = conv{E
⋃

T±} for the vertex P± opposite to E of T±, we have

ψE(x) =

{
±

|E|

2|T |
(x − P±) for x ∈ T±,

0 otherwise.

Any function x ∈ Vh can be represented as

x = x1ψ1 + x2ψ2 + · · · + xNψN .

Let x⃗ be a vector representation of x, i.e., x⃗ = [x1, . . . , xN ]
T . Now, using Vh as approximation space, the approximation σh of

σ is defined as follows:

(∇ · σh, ∇ · τh) + δ(σh, τh) = (q, ∇ · τh)∀τh ∈ Vh, (4.2)

where q = f + δuG
H . Since σh can be represented as

σh = σ1ψ1 + σ2ψ2 + · · · σnψN ,

and taking τh = ψi, for i = 1, 2, . . . ,N in (4.2), we obtain the linear system of equations:

(d11 + δb11)σ1 + (d12 + δb12)σ2 + · · · + (d1N + δb1N )σN = (q, ∇ · ψ1)
(d21 + δb21)σ1 + (d22 + δb22)σ2 + · · · + (d2N + δb2N )σN = (q, ∇ · ψ2)

· · · (4.3)
(dN1 + δbN1)σ1 + (dN2 + δbN2)σ2 + · · · + (dNN + δbNN )σN = (q, ∇ · ψN ),
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Fig. 4.1. Distribution of eigenvalues of the matrix S−1B for a uniform mesh on the unit square with mesh size h =
1
25

. The matrix is of order 3136.

where the (i, j)th elements of bij and dij are given by

bij = (ψj,ψi) and dij = (∇ · ψj, ∇ · ψi).

Let the N × N matrices B and D be defined by

B = [bij] and D = [dij],

and q⃗ = [q1, q2, . . . , qN ], where qi = (q, ∇ ·ψi) for i = 1, 2, . . . ,N . Then, using (4.3), the approximate solution σh is obtained
by solving the following system of linear equations:

(D + δB)σ⃗h = q⃗. (4.4)

4.1. The iterative method revisited

The matrix D + δB in the linear system of algebraic equations (4.4) is nearly singular for small positive values of δ. As
mentioned above, it is desirable to let δ be small so that the flux can be computed with high accuracy and moderate effort.
To overcome the difficulty of solving the near-singular linear system of algebraic equation (4.4), we proceed as follows. First,
set S = D + B. Then the matrix S is symmetric positive definite and well-conditioned. We write the system (4.4) as

(D + δB)σ⃗ = (D + B)σ⃗ + (δ − 1)Bσ⃗ = Sσ⃗ + (δ − 1)Bσ⃗ = q⃗.

Hence, the solution of (4.4) satisfies

σ⃗ = (1 − δ)S−1Bσ⃗ + S−1q⃗.

This equation suggests the iterative scheme

σ⃗n+1 = Mσ⃗n + g⃗, (4.5)

where M = (1 − δ)S−1B and g⃗ = S−1q⃗. Eq. (4.5) is the matrix representation of (3.6) with respect to the basis (4.1).
Convergence is established by Theorem 3.1. We comment on the computations required to carry out the iterations below.

Remark 4.2. The solution σh of (3.5) lives in gradhSh and this subspace is invariant under the operator A. All eigenvalues
of the matrix representation of A−1, i.e. of S−1B, are in the interval (0, 1]. The eigenvalues of A−1 restricted to gradhSh are
smaller than unity, typically much smaller, while the eigenvalues of the restriction of A−1 to curlWh are one. The matrix M
only acts on gradhSh. Therefore, the iterations (4.5) converge quickly; see also Remark 3.2. The distribution of the eigenvalues
of S−1B for a typical situation is displayed in Fig. 4.1. □

We conclude this section with some comments on the computational effort required for each iteration (4.5). When the
matrix S is of small to moderate size, we can determine its (sparse) Cholesky factorization. Each iteration then requires
a backward and forward solve using the Cholesky factors. This is quite inexpensive. Large-scale problems, for which it is
not attractive to compute the Cholesky factorization of S, can be solved by an iterative method, such as a preconditioned
conjugate gradient method or a multigrid method. It may be attractive to use an incomplete Cholesky factorization as a
preconditioner for the conjugate gradient method.
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Table 5.1
Performance for different δ values with h =

1
128 .

δ h2 h4 h5 h6 h8 h10

∥σ − σC
h∥ 0.0012 0.0013 0.0449 – – –

∥σ − σM
h ∥ 0.0012 0.0012 0.0476 2.0919e+04 2.0752e+04 2.0752e+04

∥σ − σD
h∥ 0.0012 0.0012 0.0724 4.0891 4.3579 4.3579

∥σ − σ I
h∥ 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

# of iterations 8 8 8 8 8 8

Table 5.2
Difference between smallest eigenvalue of operator A restricted to the range
of the gradient and smallest eigenvalue of the corresponding restriction of
the matrix A.

h 1/24 1/25 1/26

|λmin − λmin,h| 4.83 · 10−5 1.23 · 10−5 3.07 · 10−6

5. Numerical experiments

This section provides numerical examples that show the performance of the iterative method (4.5) for nearly singular
systems (4.4) to obtain approximation solution σh for the solution of σ of the following model problem:

(∇ · σ, ∇ · τ) + δ(σ, τ) = (q, ∇ · τ), on Ω. (5.1)

We use the lowest-order Raviart–Thomas space RT0 in our computations and apply the iterative method (4.5) to determine
an approximation of the solution σ.

We terminate the iterations (4.5) when the relative difference between two consecutive iterates is less than 10−10,
i.e. when

∥σ⃗n − σ⃗n+1∥

∥σ⃗n∥
≤ 10−10. (5.2)

Here ∥ · ∥ denotes the Euclidean vector norm.
We compare the iterative method (4.5) to several other solution methods that are easy to implement, including direct

solution of (4.4) using the MATLAB backslash command (\), which computes a Cholesky or LU factorization of the matrix
D + δB in (4.4), and using the MATLAB command ‘chol’, which computes the Cholesky factorization of the same matrix.
Since the matrix D + δB is symmetric positive definite, the backslash command should compute the Cholesky factorization
and both solution methods should give the same computed solution. However, as we will see below, they do not. We also
compare with the use of an algebraic multigrid method (AMG). Specifically, we apply the AMG solver developed and made
available by Notay [16].

5.1. Example on a square

We solve the model problem (5.1) on Ω = [0, 1]× [0, 1]with exact solution σ = [(1−2x)(y−y2), (x− x2)(1−2y)]T . To
illustrate the performance of the iterative procedure (4.5)when the system (4.4) is nearly singular, we let δ = h2, h4, . . . , h10,
where h = 1/128 is themesh size. The number of degrees of freedom is 2h−1(h−1

+1)+h−2, which is 49408. ThematrixM in
(4.5) therefore is of size 49408× 49408, which is small enough to allow the computation of its sparse Cholesky factorization
in MATLAB.

In Table 5.1, σ denotes the exact solution of the discrete problem, σ I
h is the solution determined by the iterative method

(4.5), σD
h stands for the solution computed by theMATLAB direct solver \, and σM

h and σC
h denote the solution obtained by the

AMG method and Cholesky factorization, respectively. The table shows the iterative method (4.5) to produce approximate
solutions that are close to the exact solution, while the other methods are seen to yield poor accuracy when δ is small. When
the MATLAB function ’chol’ for the Cholesky factorization of the matrix D + δB in (4.4) is applied for small values of δ > 0,
it does not recognize the matrix as positive definite and does not provide a solution. This happens for δ ≤ h6.

Table 5.1 shows the iterative method (4.5) to require 8 iterations to achieve the desired accuracy for all δ = h2, . . . , h10.
We recall that the quantity (1−δ)∥A−1

|gradhSh
∥ bounds the rate of convergence of the iterative method. For our model problem,

the smallest eigenvalue of the operator A restricted to the subspace grad S is λmin = 1 + 2π2. An associated eigenfunction
is (cosπx sinπy, sinπx cosπy). The smallest eigenvalue, λmin,h, of the restriction of the matrix A to gradhSh approximates
λmin. The difference |λmin − λmin,h| decreases as h decreases; see Table 5.2. Thus,

(1 − δ)∥A−1
|gradhSh

∥ ∼ (1 − δ)
1

1 + 2π2 ∼ 0.0482
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Table 5.3
Number of iteration as a function of δ with h =

1
128 .

δ 1 0.99999 0.99 0.9 0.5 0.1

∥σ − σ I
h∥ 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

# of iterations 1 2 4 5 7 8

Fig. 5.1. log-log plot of convergence behavior for mesh sizes h = 1/25, . . . , 1/28 with δ = h4 .

for tiny δ > 0. This explains why 8 iterations are required for all values of h, because 0.04828 < 10−10 < 0.04827, where
10−10 is the stopping criterion (5.2).

Table 5.3 shows how the number of iterations required to achieve the desired accuracy for δ = 1, 0.99999, 0.99, 0.5, 0.1
depends on δ. For all values of δ, the number of iterations to achieve the desired accuracy satisfies

((1 − δ)0.0482)N(δ) < 10−10 < ((1 − δ)0.0482)N(δ)−1 ,

where N(δ) denotes the number of iterations as a function of δ.
Fig. 5.1 shows the convergence behavior of the errors ∥σ − σD

h∥ and ∥σ − σ I
h∥ for δ = h4 and decreasing h =

1/25, 1/26, 1/27, 1/28, where σD
h and σ I

h are the approximate solutions determined by the MATLAB command \ and our
iterative procedure, respectively. The degrees of freedom of Fig. 5.1 are 3136, 12416, 49408, and 197120. The direct MATLAB
solver is seen not to be able to deal with the nearly singular systems obtained for small h values and produces a solution
with a large error, while our iterative method determines accurate approximate solutions. We also considered mesh sizes
both larger and smaller than h = 1/128. The number of iterations required to satisfy (5.2) for thesemesh sizes was the same
as for h = 1/128.

5.2. Example on a disk

We solve the model problem (5.1) on the unit disk Ω = {(x, y) : x2 + y2 ≤ 1} with exact solution

σ = [
x√

x2 + y2
,

y√
x2 + y2

]
T

= −∇(1 −

√
x2 + y2).

For the generation of meshes on the disk, we use the mesh generator presented in [25]. The matrix of the resulting linear
system of equations is symmetric positive definite.

We let δ = h2, h4, . . . , h10, where h =
1
64 is the mesh size, and show the convergence behavior of several solvers in

Table 5.4 for different δ-values. Moreover, Fig. 5.2 displays the convergence of our proposed method and the direct MATLAB
solver (\) for h = 1/23, . . . , 1/26 with δ = h6. Our proposed method shows superior performance.

5.3. Extrapolation

Extrapolation is a popular approach to speed up the convergence of a slowly converging sequence. Vector extrapolation
methods with many applications are discussed in [11–14]. The reduced rank extrapolation method (RRE) is a particularly
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Table 5.4
Performance for different δ values with h =

1
64 .

δ 1 h2 h4 h6 h8 h10

∥σ − σC
h∥ 0.0359 0.0361 0.0361 0.0362 – –

∥σ − σM
h ∥ 0.0359 0.1274 0.1279 0.1279 50.4845 80.5983

∥σ − σD
h∥ 0.0359 0.0361 0.0361 0.0361 38.0661 207.4175

∥σ − σ I
h∥ 0.0359 0.0361 0.0361 0.0361 0.0361 0.0361

# of iterations 1 11 11 11 11 11

Fig. 5.2. log-log plot of convergence behavior for mesh sizes h = 1/23, . . . , 1/26 with δ = h6 .

effective vector extrapolation method. We outline this method following [11]. Introduce the first and second differences

∆σ⃗n = σ⃗n+1 − σ⃗n, ∆2σ⃗n = ∆σ⃗n+1 − ∆σ⃗n, n = 0, 1, 2, . . . ,

of the iterates (4.5). The RRE method produces approximations of the form

s⃗k,q =

q∑
j=0

γ
(q)
j σ⃗k+j (5.3)

of the limit σ⃗∞ of the sequence σ⃗0, σ⃗1, σ⃗2, . . . , where

q∑
j=0

γ
(q)
j = 1,

q∑
j=0

η
(k)
ij γ

(q)
j = 0, i = 0, 1, . . . , q − 1,

with η
(k)
ij = [∆2σ⃗k+i, ∆σ⃗k+j].

Define the matrices ∆iSk,q = [∆iσ⃗k, . . . , ∆iσ⃗k+q−1] for i = 1, 2. One can express the approximation (5.3) as

s⃗k,q = σ⃗k − ∆Sk,q∆2S†
k,q∆σ⃗k,

where ∆2S†
k,q denotes the Moore–Penrose pseudoinverse of the matrix ∆2Sk,q; see, e.g., [11] for details. The vectors s⃗k,q can

be computed efficiently for several values of k and q by algorithms described in [11,13].
We applied RRE to the iterates σ⃗n defined by (4.5) to speed up their convergence towards the limit σ⃗∞. Specifically,

we applied (5.3) with k = 0 and terminated the extrapolation process as soon as an analogue of (5.2) is satisfied for the
extrapolated vectors. We found that it was sufficient to carry out 6 iterations (4.5) independently of the size of δ > 0 and
for several mesh sizes. Thus, when the vectors σ⃗n have many components and are expensive to compute, the application of
RRE may be beneficial.
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6. Conclusion

The paper describes a simple iterative method that allows fast and accurate solution of linear systems of algebraic
equations that arise from the discretization of variational problems of the form (1.1). A computed example illustrates the
good performance of the method. A reduction in the number of iterations required to satisfy the stopping criterion (5.2) can
be achieved by the application of reduced rank extrapolation.
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