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a b s t r a c t

Tikhonov regularization is one of themost popularmethods for computing an approximate
solution of linear discrete ill-posed problems with error-contaminated data. A regulariza-
tion parameter λ > 0 balances the influence of a fidelity term, which measures how well
the data are approximated, and of a regularization term, which dampens the propagation
of the data error into the computed approximate solution. The value of the regularization
parameter is important for the quality of the computed solution: a too large value of λ > 0
gives an over-smoothed solution that lacks details that the desired solution may have,
while a too small value yields a computed solution that is unnecessarily, and possibly
severely, contaminated by propagated error.When a fairly accurate estimate of the normof
the error in the data is known, a suitable value of λ often can be determined with the aid of
the discrepancy principle. This paper is concernedwith the situationwhen the discrepancy
principle cannot be applied. It then can be quite difficult to determine a suitable value of λ.
We consider the situationwhen the Tikhonov regularization problem is in general form, i.e.,
when the regularization term is determined by a regularization matrix different from the
identity, and describe an extension of the COSE method for determining the regularization
parameter λ in this situation. This method has previously been discussed for Tikhonov
regularization in standard form, i.e., for the situation when the regularization matrix is
the identity. It is well known that Tikhonov regularization in general form, with a suitably
chosen regularizationmatrix, can give a computed solution of higher quality than Tikhonov
regularization in standard form.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with the solution of minimization problems of the form

min
x∈Rn

∥Ax − b∥, (1.1)

where ∥·∥ denotes the Euclidean norm, A ∈ Rm×n is an ill-conditioned matrix whose singular values ‘‘cluster’’ at the origin,
and the data vector b ∈ Rm is contaminated by an unknown error e ∈ Rm that may stem from measurement inaccuracies
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and discretization error. Thus, b = bexact + e. We are interested in computing the solution xexact of minimal Euclidean norm
of the least-squares problem with error-free data vector,

min
x∈Rn

∥Ax − bexact∥,

associated with (1.1). The desired solution xexact will be referred to as the exact solution. Since bexact is not known, we seek
to determine an approximation of xexact by computing a suitable approximate solution of (1.1).

Least-squares problems of the form (1.1) arise in many areas of science and engineering. They are commonly referred
to as discrete ill-posed problems, because they usually stem from the discretization of a linear ill-posed problem, such as a
Fredholm integral equation of the first kind; see, e.g., [1].

Due to the ill-conditioning of the matrix A and the error e in the data vector b, straightforward solution of the least-
squares problem (1.1) generally does not give a meaningful approximation of xexact. Therefore, the minimization problem
(1.1) is commonly replaced by a penalized least-squares problem of the form

min
x∈Rn

{∥Ax − b∥
2
+ λ2

∥Lx∥2
}. (1.2)

This replacement is known as Tikhonov regularization. The parameter λ > 0 is the regularization parameter that balances
the influence of the first term (the fidelity term) and the second term (the regularization term), which is determined by the
regularization matrix L ∈ Rp×n. Here p is an arbitrary positive integer.

The purpose of the regularization term is to damp undesired components of the minimal-norm least-squares solution of
(1.1). Theminimizationproblem (1.2) is said to be in standard formwhen L is the identitymatrix I , otherwise theminimization
problem is said to be in general form. We are interested in Tikhonov regularization in general form, because for a suitable
choice of regularization matrix L ̸= I the solution of (1.2) can be a much better approximation of xexact than the solution of
(1.2) with L = I; see, e.g., [2,3] for computed examples.

Common choices of the matrix L, when A stems from a uniform discretization of a Fredholm integral equation defined on
an interval, are the bidiagonal rectangular matrix

L′
=

1
2

⎡⎢⎢⎣
1 −1 0

1 −1
. . .

. . .

0 1 −1

⎤⎥⎥⎦ ∈ R(n−1)×n (1.3)

and the tridiagonal rectangular matrix

L′′
=

1
4

⎡⎢⎢⎣
−1 2 −1 0

−1 2 −1
. . .

. . .
. . .

0 −1 2 −1

⎤⎥⎥⎦ ∈ R(n−2)×n. (1.4)

When, instead, A is obtained by discretizing a Fredholm integral equation in a uniformmanner on a square, such as in image
restoration, the regularization matrix

L =

[
In ⊗ L′

L′
⊗ In

]
, (1.5)

is commonly used; see, e.g., [4,5]. Here In denotes the identity matrix of order n and ⊗ stands for the Kronecker product.
Many other regularization matrices have been proposed in the literature; see, e.g., [6–10].

The parameter determination approach of this paper can be applied to any regularization matrix L ∈ Rp×n that satisfies

N (A) ∩ N (L) = {0}, (1.6)

where N (M) denotes the null space of the matrix M . When (1.6) holds, the Tikhonov minimization problem (1.2) has the
unique solution

xλ = (ATA + λ2LT L)−1ATb (1.7)

for any λ > 0, where the superscript T denotes transposition.
The value of the regularization parameter λ determines how well the solution xλ of (1.2) approximates xexact and how

sensitive xλ is to the error e in the available data vector b. Assume for the moment that the norm ∥e∥ > 0 is known and that
the (unavailable) linear system of equations

Ax = bexact (1.8)

is consistent. Then the discrepancy principle prescribes that the regularization parameter λ > 0 be chosen so that

∥Axλ − b∥ = τ∥e∥, (1.9)
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where τ > 1 is a user-specified constant independent of ∥e∥; see [1,11] for discussions on this parameter choice method. It
easily can be shown that there is a unique positive value of λ such that the solution (1.7) of (1.2) satisfies (1.9) for reasonable
values of ∥e∥; see below.

We are interested in the common situation when no estimate of ∥e∥ is available. Parameter choice methods for this
situation are commonly referred to as ‘‘heuristic’’, because they may fail in certain situations; see [1]. A large number of
heuristic parameter choice methods have been proposed in the literature due to the importance of being able to determine
a suitable value of the regularization parameter when the discrepancy principle cannot be used; see, e.g., [12–23]. These
methods include the L-curve criterion, generalized cross validation, and the quasi-optimality principle.

Most heuristics parameter choicemethods have been developed for the situationwhen the regularizationmatrix L in (1.2)
is the identity matrix. We are concerned with the situation when L ∈ Rp×n is a fairly general matrix such that (1.6) holds.
It is the purpose of this paper to extend the Comparison of Solutions Estimator (COSE) method for determining a suitable
value for the regularization parameter for Tikhonov regularization problems in standard form described in [19] to Tikhonov
regularization problems in general form (1.2).

Section 2 describes the COSE method for Tikhonov minimization problems (1.2) that are small enough to allow the
computation of the Generalized Singular Value Decomposition (GSVD) of the matrix pair (A, L). The availability of this
decomposition makes it easy to solve the Tikhonov minimization problem (1.2) and determine a value of the regularization
parameter λ > 0 such that the norm of the residual error ∥Axλ − b∥ achieves a prescribed value. Moreover, knowledge of
the GSVD allows the inexpensive computation of a regularized approximate solution of (1.1) with the aid of the Truncated
Generalized Singular ValueDecomposition (TGSVD); see, e.g., [11,24]. Let k ≥ 1 be the truncation index of the TGSVDmethod
and denote the associated approximate solution of (1.1) by xk; see Section 2 for details on the definition of xk. Define the
associated residual vector

rk = b − Axk.

We consider rk an error-vector and determine the value of the regularization parameter λ = λk in (1.2) so that the associated
Tikhonov solution xλk of (1.7) satisfies (1.9) with τ∥e∥ replaced by ∥rk∥. We then compute the smallest k-value, denoted by
kmin, that minimizes k → ∥xk −xλk∥ and use xkmin or xλkmin

as approximations of xexact. Computed examples reported in [19]
show this approach to compute an approximation of xexact to be competitive with other available methods when L = I .

Section 3 is concerned with Tikhonov minimization problems (1.2) with matrices A and L that are too large to make
the computation of the GSVD of the matrix pair (A, L) attractive or feasible. The matrices A and L are then first reduced to
small or medium size, before the GSVD of the reduced matrices is computed. Several reduction methods are available in the
literature; see, e.g., [3,5,25–27]. We discuss two methods for reducing Tikhonov regularization problems (1.2) with large
matrices A and L to a Tikhonov regularization problem with small matrices. The methods differ in their handling of N (L).
Section 4 describes a few computed examples and Section 5 contains concluding remarks.

2. A GSVD-based COSE method

Assume that the matrices A ∈ Rm×n and L ∈ Rp×n in (1.2) satisfy (1.6) and m ≥ n ≥ p, with m small enough to make the
evaluation of the GSVD of the matrix pair (A, L) feasible. Then the GSVD furnishes decompositions of the form

A = U
[
Σ 0
0 In−p

]
Z−1, L = V

[
M 0

]
Z−1, (2.1)

where the matrices U ∈ Rm×n and V ∈ Rp×p have orthonormal columns, Z ∈ Rn×n is nonsingular, and the diagonal matrices

Σ = diag[σ1, σ2, . . . , σp] ∈ Rp×p, M = diag[µ1, µ2, . . . , µp] ∈ Rp×p

have nonnegative diagonal entries ordered according to

0 = σ1 = · · · = σp−ℓ < σp−ℓ+1 ≤ · · · ≤ σp ≤ 1, 1 ≥ µ1 ≥ · · · ≥ µp ≥ 0.

They are normalized so that σ 2
i + µ2

i = 1 for i = 1, 2, . . . , p. The requirement (1.6) secures the existence of the nonsingular
matrix Z . We may assume that the regularization matrix L ∈ Rp×n in (1.2) satisfies n ≥ p, because otherwise we compute
its QR factorization L = QR, where Q ∈ Rp×n has orthonormal columns and R ∈ Rn×n is upper triangular, and replace L by R
in (1.2).

A discussion on the computation of the GSVD is provided by Bai [28]; see also [29]. Here the inequality m ≥ n is not
imposed. We required this inequality above for ease of exposition. The computation of the GSVD of a pair of matrices of
moderate size is quite expensive. A simplification of the computations that reduces the count of arithmetic floating point
operations is described in [2]. Recently, a modification of the decomposition (2.1) aimed to make an analogue of the matrix
Z better conditioned has been discussed in [30].

Truncated GSVD (TGSVD) is a popular regularization method for the solution of discrete ill-posed problems (1.1) when
a regularization matrix L ̸= I is used; see, e.g., [11,24]. Let U = [u1, . . . ,un] and Z = [z1, . . . , zn] be the matrices in (2.1).
Substituting the decomposition (2.1) of A into (1.1) yields the simple minimization problem

min
y∈Rn

[
Σ 0
0 In−p

]
y − UTb

 , (2.2)
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where y = [y1, y2, . . . , yn]T = Z−1x. We remark that the regularization matrix L affects both the diagonal entries of Σ and
the matrix U .

The TGSVD method restricts the solution of the minimization problem (2.2) to vectors y whose p − k first entries,
y1, y2, . . . , yp−k, vanish. These components are associated with the p − k smallest diagonal elements of Σ . The parameter k
is a discrete regularization parameter.

We obtain the solution of the so restricted minimization problem

yk =

[
0, . . . , 0,

uT
p−k+1b
σp−k+1

, . . . ,
uT
pb
σp

,uT
p+1b, . . . ,uT

nb

]T

,

which defines the approximate solution

xk = Zyk =

p∑
i=p−k+1

uT
i b
σi

zi +
n∑

i=p+1

(uT
i b) zi (2.3)

of the least-squares problem (1.1), where 1 ≤ k ≤ ℓ. The approximate solution xk only depends on the k largest diagonal
entries of Σ . The last sum in the right-hand side represents the solution component in N (L).

The GSVD (2.1) allows us to express the Tikhonov solution (1.7) in the form

xλ =

p∑
i=1

σi uT
i b

σ 2
i + λ2µ2

i
zi +

n∑
i=p+1

(uT
i b) zi. (2.4)

When the GSVD (2.1) of the matrix pair (A, L) is available, the TGSVD and Tikhonov solutions (2.3) and (2.4), respectively,
are inexpensive to evaluate for different values of the regularization parameters k and λ. This is the basis of the COSEmethod.
Introduce the residual norms associated with the TGSVD solutions xk,

ρk = ∥Axk − UUTb∥, k = 1, 2, . . . , ℓ. (2.5)

For each k = 1, 2, . . . , ℓ, we determine a Tikhonov solution (2.4) that corresponds to the residual error norm ρk. We use the
orthogonal projector UUT in (2.5) to achieve better performance for inconsistent problems (1.1) and problems withm ≫ n.
It follows from (2.1) that the range of A is a subset of the range of U . Therefore,

∥Axk − b∥
2

= ∥Axk − UUTb∥
2
+ ∥(I − UUT )b∥

2,

and no choice of the regularization parameter k can reduce the last term in the right-hand side.
Using the GSVD (2.1) and letting τ = 1/λ2, we can express the equation

∥Axλ − UUTb∥
2

= ρ2
k

as a zero-finding problem for the function

f (τ ) =

p∑
j=1

µ4
j (u

T
j b)

2

(σ 2
j τ + µ2

j )2
− ρ2

k . (2.6)

It can easily be shown that this function has a unique zero. Newton’smethod applied to determine this zero can be expressed
as

τq+1 = τq +
1
2

⎡⎣ p∑
j=1

µ4
j (u

T
j b)

2

(σ 2
j τq + µ2

j )2
− ρ2

k

⎤⎦ ·

⎡⎣ p∑
j=1

σ 2
j µ4

j (u
T
j b)

2

(σ 2
j τq + µ2

j )3

⎤⎦−1

.

We remark that when L = I and µj = 1 for all j, and the σj are the singular values of A, the above iterations simplify to those
used in [19]. Let τ∗ > 0 denote the computed zero of (2.6). Then λk = τ

−1/2
∗ gives the value of the regularization parameter

for the Tikhonov solution (2.4).
Evaluate for k = 1, 2, . . . , ℓ the quantities

δk = ∥xλk − xk∥, (2.7)

and let kmin denote the index of the minimizer of the sequence δ1, δ2, . . . , δℓ. In case the minimizer is not unique, we let kmin
be the smallest minimizer. When kmin = 1, 2, we also consider the smallest minimizer of the sequence δ3, δ4, . . . , δℓ. If the
latter has index k > 3, then we set kmin = k. Our reason for doing this is that the sequence of the δk may exhibit a false local
minimum at the very beginning, due to the fact that, e.g., the underregularized vectors xλ1 and x1 may be close to each other,
without λ1 being a suitable choice of the regularization parameter λ.

We may use either the TGSVD solution xkmin or the Tikhonov solution xλkmin
as approximations of the desired solution

xexact of (1.1). When the system (1.8) is consistent andm = n in (2.1), the quantity

ρkmin = ∥Axλkmin
− UUTb∥ (2.8)
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typically furnishes a quite accurate estimate of the norm of the error e in the data vector b. The regularization parameters
kmin and λkmin determined by the following algorithm typically are appropriate also for inconsistent problems (1.1).

Algorithm 1 Comparison of solution estimator for L ̸= I .
Input: Matrices A ∈ Rm×n, L ∈ Rp×n, data vector b ∈ Rm

Output: Tikhonov regularization parameter, TGSVD truncation index
1: Compute the GSVD (2.1) of the matrix pair (A, L)
2: Compute the TGSVD solutions (2.3) xk, k = 1, . . . , ℓ
3: for k = 1, . . . , ℓ do
4: Compute residual norm ρk = ∥Axk − UUTb∥

5: Compute Tikhonov regularization parameter λk by determining the zero of the function (2.6)
6: Compute the Tikhonov solution (2.4)

xλk =

p∑
j=1

σj

σ 2
j + λ2

kµ
2
j
(uT

j b)xj +
n∑

j=p+1

(uT
j b)xj

7: Compute δk = ∥xλk − xk∥
8: end for
9: kmin = argmink=1,...,ℓ δk

10: if kmin ≤ 2 then
11: k2 = argmink=kmin+1,...,kmax δk
12: if k2 > kmin + 1 then
13: kmin = k2
14: end if
15: end if
16: The TGSVD truncation index is kmin, the Tikhonov regularization parameter is λkmin .

Algorithm 1 computes the value kmin of the truncation index for the TGSVD method as well as the corresponding value
λkmin of the regularization parameter for Tikhonov regularization. In the numerical experiments,we display these parameters
as well as the estimate (2.8) of the norm of the error in the data vector b furnished by the computed Tikhonov solution.
Computed examples presented in Section 4 show this estimate to be quite accurate for many computed examples when the
system (1.8) is consistent.

3. Large-scale problems

It is prohibitively expensive to compute the GSVD of a pair of largematrices. Tikhonov regularization problems (1.2) with
large matrices A and L have to be reduced to problems of small size before the COSE method of Section 2 can be applied.
Many reduction methods have been described in the literature; see, e.g., [3,25]. We will show examples with a method
described in [26], that first reduces A by applying r ≪ min{m, n} steps of Golub–Kahan bidiagonalization with initial vector
b. Generically, this yields the decompositions

AWr = W̃r+1Br+1,r , AT W̃r = WrBT
r,r , (3.1)

where the matrices Wr = [w1,w2, . . . ,wr ] ∈ Rn×r and W̃r+1 = [w̃1, w̃2, . . . , w̃r+1] ∈ Rm×(r+1) have orthonormal columns
with w̃1 = b/∥b∥. The matrix W̃r is made up of the first r columns of W̃r+1, and Br+1,r is lower bidiagonal with positive
diagonal and subdiagonal entries,

Br+1,r :=

⎡⎢⎢⎢⎢⎢⎢⎣

ρ1 0
σ2 ρ2

. . .
. . .

σr−1 ρr−1
σr ρr

0 σr+1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(r+1)×r .

It has the leading principal submatrix Br,r ∈ Rr×r ; see, e.g., [29] for details. We assume that r is chosen small enough so
that the decompositions (3.1) with the stated properties exist. The value of r used in computations, generally, is not large;
in particular, r ≪ n.

We seek a solution of (1.2) in the subspace range(Wr ). Thus, we solve the Tikhonov minimization problem

min
y∈Rr

{∥AWry − b∥
2
+ λ2

∥LWry∥2
}. (3.2)
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It follows from (1.6) that this problem has a unique solution for any λ > 0.
Introduce the QR factorization

LWr = QrRr , (3.3)

i.e., the matrix Qr ∈ Rp×r has orthonormal columns and Rr ∈ Rr×r is upper triangular, or upper trapezoidal in case
rank(LWr ) < r . Here we assume that r ≤ p. Using the factorization (3.3) and the decompositions (3.1), we can express
(3.2) as

min
y∈Rr

{∥Br+1,ry − ∥b∥e1 ∥
2
+ λ2

∥Rry∥2
}, (3.4)

where e1 = [1, 0, . . . , 0]T denotes the first axis vector. The matrices in (3.4) are small and the COSEmethod of Section 2 can
be applied to this reduced Tikhonov minimization problem. The overall procedure is described in Algorithm 2.

We remark that when an initial number of bidiagonalization steps r is chosen, and subsequently is increased to be able
to compute a more accurate approximation of the desired solution xexact, the QR factorization (3.3) has to be updated. Daniel
et al. [31] describe efficient formulas for this purpose.

Algorithm 2 COSE for L ̸= I for large-scale problems based on partial Golub–Kahan bidiagonalization.
Input: Matrices A ∈ Rm×n, L ∈ Rp×n, data vector b ∈ Rm, number of steps rsteps, max number of steps Nmax
Output: GK/TGSVD and Tikhonov parameters rmin, λrmin , and corresponding regularized solutions xrmin , xλrmin
1: w̃1 = b/∥b∥

2: r = 0
3: repeat
4: r = r + rsteps
5: Perform rsteps steps of Golub–Kahan (GK) bidiagonalization, obtaining matrices W̃r+1, Wr , and Br+1,r
6: Compute the compact QR factorization of LWr
7: b̃ = ∥b∥e1 ∈ Rr+1

8: Apply Algorithm 1 to the projected least squares problem min ∥Br+1,ry − b̃∥ with regularization matrix R, obtaining
the truncation index rmin, the Tikhonov parameter λrmin , and the regularized solutions yrmin , yλrmin

9: until (rmin < 0.75 · r) or (r > Nmax) or (GK stops for breakdown)
10: The TGSVD truncation index is rmin, the Tikhonov parameter is λrmin
11: xrmin = Wryrmin , xλrmin

= Wryλrmin

The solution method described above does not considerN (L) in the choice of solution subspace. The following, alternate,
approach explicitly determines a solution component inN (L). This component is not damped by L. The approach is applicable
when N (L) is known and has fairly small dimension, and guarantees that certain solution features represented by N (L) are
not damped. It has previously been applied in several direct and iterative solution methods [26,32,33]. Let the orthonormal
columns of the matrix W̆s ∈ Rn×s span N (L) and introduce the QR factorization,

AW̆s = Q̆sR̆s,

where Q̆s ∈ Rn×s has orthonormal columns and R̆s ∈ Rs×s is upper triangular. Due to (1.6), the matrix R̆s is nonsingular.
Introduce the orthogonal projectors

PW̆s
= W̆sW̆ T

s , P⊥

W̆s
= I − W̆sW̆ T

s , PQ̆s
= Q̆sQ̆ T

s , P⊥

Q̆s
= I − Q̆sQ̆ T

s .

Then, using that I = PW̆s
+ P⊥

W̆s
and P⊥

Q̆s
APW̆s

= 0, we obtain

∥Ax − b∥
2

= ∥PQ̆s
Ax − PQ̆s

b∥
2
+ ∥P⊥

Q̆s
Ax − P⊥

Q̆s
b∥

2

= ∥PQ̆s
APW̆s

x − (PQ̆s
b − PQ̆s

AP⊥

W̆s
x)∥2

+ ∥P⊥

Q̆s
AP⊥

W̆s
x − P⊥

Q̆s
b∥

2.

Substitution into (1.2) gives

min
x∈Rn

{∥PQ̆s
APW̆s

x − (PQ̆s
b − PQ̆s

AP⊥

W̆s
x)∥2

+ ∥P⊥

Q̆s
AP⊥

W̆s
x − P⊥

Q̆s
b∥

2
+ λ2

∥Lx∥2
}.

Let y = W̆ T
s x. Then

∥PQ̆s
APW̆s

x − (PQ̆s
b − PQ̆s

AP⊥

W̆s
x)∥ = ∥R̆sy − (Q̆ T

s b − Q̆ T
s AP

⊥

W̆s
x)∥. (3.5)

Since R̆s is nonsingular, wemay for any P⊥

W̆s
x determine y ∈ Rs so that the expression in the right-hand side of (3.5) vanishes.

This determines the component W̆sy inN (L) of the solution of (1.2). The solution component inN (L)⊥ is P⊥

W̆s
x, where x solves

min
x∈Rn

{∥P⊥

Q̆s
AP⊥

W̆s
x − P⊥

Q̆s
b∥

2
+ λ2

∥LP⊥

W̆s
x∥2

}.
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Table 4.1
Discretized ill-conditioned test problems used in the numerical experiments.

Baart Deriv2(2) Foxgood Gravity Heat(1)
Hilbert Lotkin Phillips Prolate Shaw

We solve this projected minimization problem as described above, i.e., we apply r steps of Golub–Kahan bidiagonalization
to thematrix P⊥

Q̆s
AP⊥

W̆s
. This yields (an approximation of) the component inN (L)⊥ of the solution x of (1.2), which allows us to

determine y ∈ Rs such that (3.5) vanishes and gives the solution component inN (L). We remark that since P⊥

Q̆s
AP⊥

W̆s
= P⊥

Q̆s
A,

wemay omit the projector P⊥

W̆s
. Thematrix P⊥

Q̆s
A, of course, does not have to be explicitly formed. This splitting of the solution

of (1.2) into components in N (L) and N (L)⊥ is attractive when the dimension of N (L) is not large. See Algorithm 3 for a
summary of the method.

Algorithm 3 COSE for L ̸= I for large-scale problems based on partial Golub–Kahan bidiagonalization and the availability of
a basis for the null space of L.

Input: Matrices A ∈ Rm×n, L ∈ Rp×n, Ŭ ∈ Rn×s whose columns are a basis for N (L), data vector b ∈ Rm, number of steps
rsteps

Output: GK/TGSVD and Tikhonov parameters rmin, λrmin , and corresponding regularized solutions xrmin , xλrmin

1: Orthonormalize the basis for N (L) by the QR factorization W̆M = Ŭ
2: Compute the QR factorization Q̆ R̆ = AW̆
3: Compute the projection Ă = A − Q̆ (Q̆ TA)
4: Compute the projection b̆ = b − Q̆ (Q̆ Tb)
5: Apply Algorithm 2 with input Ă, L, b̆, and number of steps rsteps, obtaining the truncation index rmin, the Tikhonov

parameter λrmin , and the regularized solutions zrmin , zλrmin
. The matrix Ă, of course, is not explicitly formed.

6: Solve the triangular linear system R̆y = Q̆ T (b − Azrmin )
7: z = W̆y
8: The TGSVD truncation index is rmin, the Tikhonov parameter is λrmin
9: xrmin = zrmin + z, xλrmin

= zλrmin
+ z

4. Numerical example

In this section we investigate the performance of the proposed methods by means of selected ill-conditioned test
problems, listed in Table 4.1. Most of them are contained in Hansen’s Regularization Tools [34], except for the matrices
Hilbert, Lotkin, and Prolate, which are constructed with the gallery function of MATLAB. Each problem from [34] is
associated to amodel solution xexact; for thegallery examples,we use the solution of the problemBaart from [34].MATLAB
functions that implement the algorithms described in this paper, as well as algorithms from [19], are available at the authors’
home pages; see, e.g., http://bugs.unica.it/~gppe/soft/.

For each test problem, we first determine the noise-free data vector as bexact = Axexact; then the associated perturbed
data vector b is obtained by

b = bexact +
ν

√
n
∥bexact∥w,

wherew is a vector whose components are normally distributed with zero mean and unit variance, and ν is the noise level.
Fig. 4.1 illustrates the performance of Algorithm 1. We consider the test problem Gravity from [34] with m = n = 40.

The regularization matrix is chosen to be the discrete approximation of the first derivative L′, defined in (1.3), and the noise
level is ν = 10−2. For each value of the TGSVD truncation parameter k = 1, 3, . . . , 11, we plot the exact solution xexact,
the TGSVD solution xk (2.3) and the associated Tikhonov solution xλk (2.4). The last vector is obtained by minimizing the
function (2.6) by Newton’s method.

In this numerical example, as it happens in the majority of cases, the vectors xk and xλk are closest to each other when
they best approximate the solution xexact. The minimum of the quantities δk (2.7) is achieved for k = 5, which also produces
the least Euclidean norm error. This is shown by Fig. 4.2, which displays the values of the error

∥xk − xexact∥ (4.1)

and δk as functions of k.
To compare Algorithm 1 to other well-known methods for the estimation of the truncation parameter in TGSVD, we

replicate for the new algorithm Experiment 4.1 from [19]. For each test problem in Table 4.1, we construct two ‘‘square’’

http://bugs.unica.it/%7Egppe/soft/
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Fig. 4.1. Test problem Gravity, from [34], with m = n = 40, L = L′ given by (1.3), and ν = 10−2 . The thick graphs represent the exact solution, the thin
graphs show TGSVD solutions xk for k = 1, 3, . . . , 11, and the dashed graphs are the corresponding Tikhonov solutions xλk . Each plot reports the value of
δk (2.7). The minimal δk , as well as the best approximation of xexact in the Euclidean norm, are achieved for k = 5.

Fig. 4.2. The thick dashed graph represents the error (4.1) for the numerical experiment reported in Fig. 4.1, and the thin graph represents the values of δk
(2.7), for k = 1, 2, . . . , 20. The minima of both graphs are attained for k = 5.

discretizations, of size n = 40 and n = 100, respectively, and two ‘‘rectangular’’ ones, of size 80 × 40 and 200 × 100. The
noise level is set to the values ν = 10−3, 10−2, 10−1, which are compatible with real-world applications, and each normally
distributed noise vector w is generated 10 times. This procedure produces 600 square linear systems and 600 rectangular
consistent systems.

To investigate the behavior of themethods also for inconsistent linear systems, we introduce a vector q that is orthogonal
to the range of the over-determinedmatrix A. A multiple φ of q is then added to the right-hand side of the consistent system,
to obtain

bexact = Axexact + φ q. (4.2)

By repeating the above processwithφ = 1 andφ = 10, we construct two sets of 600 rectangular inconsistent linear systems.
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Table 4.2
Percentage of numerical experiments that lead to a regularized solution xk such that (4.3) holds for ρ = 2 (ρ = 5), for TSVD with L = L′ given by (1.3)
and different values of φ in (4.2).

Method Square systems Rectangular systems

φ = 0 φ = 1 φ = 10

COSE 17%(2%) 19%(4%) 19%(4%) 22%(5%)
L-corner [18] 36%(18%) 39%(22%) 79%(59%) 84%(62%)
Res L-curve [35] 51%(30%) 63%(35%) 81%(64%) 83%(68%)
Regińska [36] 58%(30%) 32%(11%) 56%(36%) 46%(28%)
ResReg [22] 36%(4%) 27%(5%) 56%(36%) 46%(28%)
Quasiopt [34] 44%(22%) 34%(10%) 31%(10%) 27%(9%)
GCV [34] 49%(41%) 25%(13%) 43%(18%) 43%(21%)
Extrapolation [13] 61%(13%) 58%(19%) 56%(36%) 46%(28%)
Discrepancy [1] 23%(1%) 41%(3%) 69%(43%) 68%(49%)

Table 4.3
Percentage of numerical experiments that lead to a regularized solution xk such that (4.3) holds for ρ = 10 (ρ = 100), for TSVD with L = L′ given by (1.3)
and different values of φ in (4.2).

Method Square systems Rectangular systems

φ = 0 φ = 1 φ = 10

COSE 1%(0%) 1%(0%) 2%(0%) 2%(0%)
L-corner [18] 16%(12%) 20%(15%) 45%(25%) 49%(35%)
Res L-curve [35] 23%(7%) 29%(17%) 53%(30%) 58%(39%)
Regińska [36] 20%(3%) 6%(0%) 24%(1%) 16%(0%)
ResReg [22] 0%(0%) 2%(0%) 24%(1%) 16%(0%)
Quasiopt [34] 16%(2%) 5%(0%) 5%(0%) 4%(0%)
GCV [34] 39%(35%) 12%(6%) 10%(1%) 12%(0%)
Extrapolation [13] 5%(1%) 4%(0%) 24%(1%) 16%(0%)
Discrepancy [1] 0%(0%) 1%(0%) 37%(36%) 47%(45%)

Let kbest be the truncation index that gives the least Euclidean error norm

Ebest = ∥xkbest − xexact∥ = min
k

∥xk − xexact∥.

In Table 4.2 we record the percentage of numerical experiments that Algorithm 1, as well as a set of competing methods,
produced an error larger than a certain multiple, ρ > 1, of the best error Ebest. The methods considered besides COSE
are well known; we give some references to the particular implementation we used: L-corner [18], Residual L-curve [35],
Regińska criterion [36], Restricted Regińska criterion [22], Quasi-optimality [34], Generalized Cross Validation (GCV) [34],
and Extrapolation [13]. The discrepancy principle selects the smallest index k such that

∥Axk − b∥
2

≤ (1.3 ν ∥b∥)2 + φ2.

The first entry of columns 2 to 5 of Table 4.2 reports, for each method considered and with L defined by (1.3), the
percentage of numerical experiments that lead to a regularized solution xk such that

∥xk − xexact∥ > ρ Ebest (4.3)

for ρ = 2, while the second entry (in parentheses) displays the same quantity in the case ρ = 5.
Table 4.3 reports the same results for the factors ρ = 10 and ρ = 100. Both tables show that the COSE approach is

extremely effective in approximating the TGSVD regularization parameter. In particular, it is the only method, among the
ones tested, to produce trustworthy estimates both for consistent and inconsistent problems. From this point of view, only
the quasi-optimality criterion gives comparable results.

Similar remarks can be deduced from Tables 4.4 and 4.5, which reproduce analogous measurements of Tables 4.2 and 4.3
with the regularization matrix L′′ (1.4). We conclude that the performance of the COSE method with L ̸= I is similar to that
reported in [19] for Tikhonov regularization problems in standard form, that is, with L = I .

We turn to numerical experiments that illustrate the behavior of the COSEmethodwhen applied to large-scale problems,
i.e., we discuss the performance of Algorithms 2 and 3. The first algorithm constructs a linear space of small dimension by
the Golub–Kahan process, where the original problem is projected before applying Algorithm 1. No information about the
null space of the regularization matrix L is required. Algorithm 3, on the other hand, requires a user to provide a basis of this
null space. The availability of this basis makes it possible to decompose the given problem into a large-scale problem, whose
solution is orthogonal to N (L) and which is solved by Algorithm 2, and a small problem which furnishes the component of
the solution in the null space.

Fig. 4.3 is concerned with the solution of the test problem Phillips from [34] of size 500× 500, with noise level ν = 10−2

and L = L′′. The plot on the left shows the Euclidean error norm produced by Algorithms 2 and 3 when k increases. The
optimal values for the two methods are kopt2 = 7 and kopt3 = 5, respectively. The graphs on the right display the behavior of
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Table 4.4
Percentage of numerical experiments that lead to a regularized solution xk such that (4.3) holds for ρ = 2 (ρ = 5), for TSVD with L = L′′ given by (1.4)
and different values of φ in (4.2).

Method Square systems Rectangular systems

φ = 0 φ = 1 φ = 10

COSE 21%(4%) 18%(5%) 18%(5%) 17%(5%)
L-corner [18] 63%(46%) 65%(51%) 78%(66%) 82%(70%)
Res L-curve [35] 60%(44%) 75%(57%) 83%(72%) 82%(69%)
Regińska [36] 31%(15%) 22%(8%) 32%(17%) 24%(11%)
ResReg [22] 23%(6%) 19%(1%) 32%(17%) 24%(11%)
Quasiopt [34] 34%(18%) 23%(9%) 21%(8%) 17%(6%)
GCV [34] 63%(59%) 22%(16%) 33%(18%) 24%(11%)
Extrapolation [13] 42%(19%) 33%(8%) 33%(17%) 24%(11%)
Discrepancy [1] 22%(3%) 24%(1%) 51%(39%) 55%(48%)

Table 4.5
Percentage of numerical experiments that lead to a regularized solution xk such that (4.3) holds for ρ = 10 (ρ = 100), for TSVD with L = L′′ given by
(1.4) and different values of φ in (4.2).

Method Square systems Rectangular systems

φ = 0 φ = 1 φ = 10

COSE 1%(0%) 3%(0%) 3%(0%) 3%(0%)
L-corner [18] 40%(32%) 48%(36%) 60%(42%) 61%(45%)
Res L-curve [35] 39%(23%) 52%(32%) 61%(39%) 59%(40%)
Regińska [36] 4%(0%) 4%(0%) 7%(0%) 0%(0%)
ResReg [22] 1%(0%) 0%(0%) 7%(0%) 0%(0%)
Quasiopt [34] 10%(0%) 4%(0%) 3%(0%) 0%(0%)
GCV [34] 57%(54%) 13%(5%) 8%(0%) 0%(0%)
Extrapolation [13] 5%(2%) 1%(0%) 7%(0%) 1%(0%)
Discrepancy [1] 0%(0%) 0%(0%) 38%(36%) 46%(45%)

Fig. 4.3. Test problem Phillips, from [34], with m = n = 500, ν = 10−2 , L = L′′ , kopt2 = 7, kopt3 = 5, k2 = 8, k3 = 6. The errors (4.1) are plotted on the left
and the δk on the right for k = 1, 2, . . . .

the quantity δk (2.7), which is minimized by k2 = 8 and k3 = 6. The errors obtained with these parameter values are very
close to the optimal error, and the approximate solutions determined by Algorithms 2 and 3 are close to the model solution,
as the graphs on the left of Fig. 4.5 shows.

Fig. 4.4 illustrates a case when Algorithm 2 fails. The test problem is Shaw from [34]; the noise level and regularization
matrix are the same as above. In this case, the trend of the δk is quite oscillatory and a false minimum at k2 = 4 produces an
over-regularized solution; see the graph on the right of Fig. 4.5. On the contrary, Algorithm 3 returns the optimal solution.

Algorithm 2 produces an incorrect solution also for the problem Deriv2 from [34]; see Fig. 4.6. Here, there is a different
problem: the projected Krylov space does not contain a suitable approximation for the solution, as is testified by the slowly
decaying error curve, whose minimum is well approximated by the algorithm. The resulting solution is under-regularized,
as the left plot of Fig. 4.8 shows, while Algorithm 3 gives an accurate approximation.

In the above example the model solution is only approximately in N (L′′). In Fig. 4.7 we analyze the case of a nontrivial
solution which is exactly contained in the null space. We consider the model solution xexact with components

xi = sin
4π (i − 1)

n
, i = 1, . . ., n,
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Fig. 4.4. Test problem Shaw from [34] with m = n = 500, ν = 10−2 , L = L′′ , kopt2 = 6, kopt3 = 4, k2 = 4, k3 = 4. The errors (4.1) are displayed on the left
and the δk on the right for k = 1, 2, . . . .

Fig. 4.5. Exact and computed approximate solutions for the numerical examples of Figs. 4.3 (left) and 4.4 (right).

Fig. 4.6. Test problem Deriv2 from [34] with m = n = 500, ν = 10−2 , L = L′′ , kopt2 = 15, kopt3 = 3, k2 = 13, k3 = 2. The errors (4.1) are shown on the left
and the δk on the right for k = 1, 2, . . . .

and choose L =
16π2

n2
I+L′′. BothAlgorithms2 and3 yield accurate approximations of xexact for this problem, and the computed

solutions are graphically indistinguishable from xexact, as the right plot in Fig. 4.8 shows.
To conclude, we consider the regularization matrix (1.5), and apply it to the solution of an image restoration problem,

namely, the test problem Tomo from [34]. We fix the input parameter N to 32; this generates a linear system with
m = n = 1024. The noise level is ν = 10−2.

The graphs for the errors and δk-values are shown in Fig. 4.9. Due to the very slow decay of the singular values of the
coefficientmatrix, we fixed themaximumnumber of iteration to 400. Both Algorithm 2 and Algorithm 3 are able to correctly
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Fig. 4.7. Test problem Deriv2, from [34], with the ‘‘sin’’ solution, m = n = 500, ν = 10−2 , L = L′′ , kopt2 = 7, kopt3 = 5, k2 = 1, k3 = 7. The errors (4.1) are
depicted on the left and the δk on the right for k = 1, 2, . . . .

Fig. 4.8. Exact and computed approximate solutions for the numerical examples of Figs. 4.6 and 4.7.

Fig. 4.9. Test problem Tomo, from [34], with m = n = 1024, ν = 10−2 , L defined by (1.5), kopt2 = 386, kopt3 = 386, k2 = 360, k3 = 360. The errors (4.1) are
shown on the left and the δk on the right for k = 1, 2, . . . .

estimate the optimal regularization parameter within this range. This is confirmed by the plots of the solutions, reported in
Fig. 4.10.

5. Conclusion

It is well known that the use of a regularization matrix L ̸= I in (1.2) can yield better approximations of the desired
solution xexact than L = I . However, while there are many heuristic techniques available for determining a suitable value of
the regularization parameter when L = I , much less attention has been paid to the development of heuristic methods for
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Fig. 4.10. Exact and computed approximate solutions for the numerical example of Fig. 4.9.

L ̸= I . This paper describes three algorithms that can be applied for general matrices L ∈ Rp×n. One of these algorithms is
well suited for problems of small to moderate size and two algorithms are suitable for use with large-scale problems. The
latter algorithms differ in how the null space of L is handled; one of them requires the null space to be explicitly known.
Computed examples illustrate the performance of the algorithms described and show them to be competitive.
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