Thermophysical Properties of Imidazolium-based
Binary lonic Liquid Mixtures using Molecular
Dynamics Simulations
Utkarsh Kapoor and Jindal K. Shah*

School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 USA

E-mail: jindal.shah@okstate.edu


jindal.shah@okstate.edu

Abstract

Until very recently, task-specific ionic liquids have been designed by altering the
chemistry of either the cation, anion or both. An alternative approach, that is gain-
ing considerable momentum, is to consider ionic liquids that are derived from mix-
ing two different ionic liquids and varying the molar composition of such blends to
exert precise control over the desired physicochemical and biological properties. As
the number of ionic liquids that result from mixing is projected to be close to a bil-
lion, it is highly desirable to predict a priori whether ionic liquid mixtures can be
considered as ideal solutions of their pure analogues. Towards this end, we employ
molecular dynamics simulations to predict the density, molar volumes, excess mo-
lar volumes, self-diffusion coefficients, and ionic conductivities for eleven ionic liquid
systems as a function of mole fractions spanning the entire range of compositions
of the constituent ionic liquids. The ionic liquid mixtures investigated here are 1-
n-butyl-3-methylimidazolium [C mim| chloride Cl paired with [C mim] acetate
[CH COO] /[OAC] , [C mim]| trifluoroacetate [CF COO| /[TFA] and [C mim]
trifluoromethanesulfonate [CF SO | /[TFS] , and [C mim][OAC] combined with [C mim|[TFA]
and [C mim][TFS]. The effect of change in the alkyl chain length on the thermophysical
properties of ionic liquid mixtures containing anions as Cl — methylsulfate [MeSO | ,
and Cl — bis(trifluoromethanesulfonyl)imide [NTf | is evaluated by coupling with 1-
ethyl-3-methylimidazolium [C mim] , 1-n-hexyl-3-methylimidazolium [C mim] and
1-n-octyl-3-methylimidazolium [C mim| cations. The deviation of the property trend
from the linear mixing rule is discussed in terms of the difference in the properties of

pure ionic liquid analogues.
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Table 1: List of Imidazolium-based Binary Ionic Liquid Mixtures Investigated.
(Please note that united-atom (UA) representations are used for representing
the molecular structure, as per the employed UA force field.)

Compound Molecular Structure Abbreviation
1-n-butyl-3-methylimidazolium ¢ [Camim]CI{{OAC]1-x
chloride — 0‘1:2’"\0’“\0 0 O/E‘

1-n-butyl-3-methylimidazolium . ’

acetate “

1-n-butyl-3-methylimidazolium
chloride —
1-n-butyl-3-methylimidazolium
trifluoroacetate

1-n-butyl-3-methylimidazolium
chloride —
1-n-butyl-3-methylimidazolium
trifluoromethanesulfonate

1-n-butyl-3-methylimidazolium
acetate —
1-n-butyl-3-methylimidazolium
trifluoroacetate

1-n-butyl-3-methylimidazolium
acetate —
1-n-butyl-3-methylimidazolium
trifluoromethanesulfonate

1-ethyl-3-methylimidazolium
chloride —
1-ethyl-3-methylimidazolium
methylsulfate

1-n-hexyl-3-methylimidazolium
chloride —
1-n-hexyl-3-methylimidazolium
methylsulfate

1-n-octyl-3-methylimidazolium
chloride —
1-n-octyl-3-methylimidazolium
methylsulfate

1-ethyl-3-methylimidazolium
chloride —
1-ethyl-3-methylimidazolium

bis(trifluoromethanesulfonyl)imide

1-n-hexyl-3-methylimidazolium
chloride —
1-n-hexyl-3-methylimidazolium

bis(trifluoromethanesulfonyl)imide

1-n-octyl-3-methylimidazolium
chloride —
1-n-octyl-3-methylimidazolium

bis(trifluoromethanesulfonyl)imide

[Camim]CL{TFA]1x

[Camim]CI TFS]1-x

[Camim][OACI{TFA]1x

[Csmim][OACI]ATFS]1x

[C2mim]CL{MeSO4]1x

[Cemim]CL{MeSO4]1x

[Cemim]CL{MeSO4]1x

[Comim]CIx[NTf2]1-x

[Cemim]CINTf2]1-x

[Cemim]CINTf2]1-x
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Table 2: Self-diffusion coefficients (D x cm /sec) of ions for pure ionic liquids,
obtained from simulations in this work and compared with literature at 353 K
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Figure 1: The liquid phase density as a function of molar composition at 353 K: (a)
common cation [Cymim|* paired with different anions namely CI-—[OAC]~, CI~—[TFA]~,
Cl~—[TFS]~, [OAC] —[TFA]~, and [OAC] —[TFS|~; (b) cations [Comim]|", [Cgmim|*, and
[Cgmim]* coupled with different anions Cl=—[MeSO,]~ and CI~—[NTF,|~. Standard devia-
tions were calculated from three independent trials for all mixture compositions. Note that
the continuous lines joining data points are only guide to the eye.
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Figure 6: Ionic conductivity computed the Einstein relation (eq. 6) as a function of composi-
tion at 353 K: (a) common cation [Cymim|T paired with different anions namely C1~—[OAC]~,
Cl~—[TFA]~, CI——[TFS]~, [OAC] —[TFA]~, and [OAC] —[TFS]~ (b) cations [Comim]*,
[Cemim]*, and [Cgmim|™ coupled with different anions Cl=—[MeSO,]~ and Cl~—[NTF,]~.
Standard deviations were calculated from three independent trials for all mixture composi-
tions. Note that the continuous lines joining data points are only guide to the eye.

27



4 L] I | I | I L] 3 L] I | I | I
= (2) oo [Cmim|CL[0AC], 1 L () @@ [C,mim]CL[MeSO,], _ .
- = m [C mim]Cl [TFA] _ = m [Cmim]CL [MeSO,], _

[C,mim]CL[TFS], _ g [Cymim]C] [MeSO,]
A4 [C,mim][OAC] [TFA], _ «
3l v [C mim][OAC] [TFS], _

1x
A A [Cmim]CI[NTE], =
vy [Cmim]CI [NTf,] .
[C,mim]C1 [NTH], _

* NE (S/m)

Figure 7: Ionic conductivity computed using Nernst-Einstein (NE) equation (eq. 7) as a
function of composition at 353 K: (a) common cation [Cymim|* paired with different anions
namely C17—[OAC]|~, CI~—[TFA]~, CI—[TFS|~, [OAC] —[TFA]~, and [OAC] —[TFS]~ (b)
cations [Comim]t, [Cgmim|*, and [Cgmim|t coupled with different anions Cl~—[MeSO,4|~
and ClI~—[NTF;]~. Standard deviations were calculated from three independent trials for all
mixture compositions. Note that the continuous lines joining data points are only guide to
the eye.
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