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Abstract

Until very recently, task-specific ionic liquids have been designed by altering the

chemistry of either the cation, anion or both. An alternative approach, that is gain-

ing considerable momentum, is to consider ionic liquids that are derived from mix-

ing two different ionic liquids and varying the molar composition of such blends to

exert precise control over the desired physicochemical and biological properties. As

the number of ionic liquids that result from mixing is projected to be close to a bil-

lion, it is highly desirable to predict a priori whether ionic liquid mixtures can be

considered as ideal solutions of their pure analogues. Towards this end, we employ

molecular dynamics simulations to predict the density, molar volumes, excess mo-

lar volumes, self-diffusion coefficients, and ionic conductivities for eleven ionic liquid

systems as a function of mole fractions spanning the entire range of compositions

of the constituent ionic liquids. The ionic liquid mixtures investigated here are 1-

n-butyl-3-methylimidazolium [C mim] chloride Cl paired with [C mim] acetate

[CH COO] /[OAC] , [C mim] trifluoroacetate [CF COO] /[TFA] and [C mim]

trifluoromethanesulfonate [CF SO ] /[TFS] , and [C mim][OAC] combined with [C mim][TFA]

and [C mim][TFS]. The effect of change in the alkyl chain length on the thermophysical

properties of ionic liquid mixtures containing anions as Cl – methylsulfate [MeSO ] ,

and Cl – bis(trifluoromethanesulfonyl)imide [NTf ] is evaluated by coupling with 1-

ethyl-3-methylimidazolium [C mim] , 1-n-hexyl-3-methylimidazolium [C mim] and

1-n-octyl-3-methylimidazolium [C mim] cations. The deviation of the property trend

from the linear mixing rule is discussed in terms of the difference in the properties of

pure ionic liquid analogues.
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Table 1: List of Imidazolium-based Binary Ionic Liquid Mixtures Investigated.
(Please note that united-atom (UA) representations are used for representing
the molecular structure, as per the employed UA force field.)

Compound              Molecular Structure                     Abbreviation  
1-n-butyl-3-methylimidazolium                            [C4mim]Clx[OAC]1-x 

chloride —  
1-n-butyl-3-methylimidazolium 
acetate 
 
1-n-butyl-3-methylimidazolium                                          [C4mim]Clx[TFA]1-x 

chloride —  
1-n-butyl-3-methylimidazolium 
trifluoroacetate 
 
1-n-butyl-3-methylimidazolium                                          [C4mim]Clx[TFS]1-x 

chloride —  
1-n-butyl-3-methylimidazolium 
trifluoromethanesulfonate 
 
1-n-butyl-3-methylimidazolium                            [C4mim][OAC]x[TFA]1-x 

acetate —  
1-n-butyl-3-methylimidazolium 
trifluoroacetate 
 
1-n-butyl-3-methylimidazolium                [C4mim][OAC]x[TFS]1-x 

acetate —  
1-n-butyl-3-methylimidazolium 
trifluoromethanesulfonate 
 
1-ethyl-3-methylimidazolium                              [C2mim]Clx[MeSO4]1-x 

chloride —  
1-ethyl-3-methylimidazolium 
methylsulfate 
 
1-n-hexyl-3-methylimidazolium                            [C6mim]Clx[MeSO4]1-x 

chloride —  
1-n-hexyl-3-methylimidazolium 
methylsulfate 
 
1-n-octyl-3-methylimidazolium                               [C8mim]Clx[MeSO4]1-x 

chloride —   
1-n-octyl-3-methylimidazolium 
methylsulfate 
 
1-ethyl-3-methylimidazolium                                                                         [C2mim]Clx[NTf2]1-x 

chloride —  
1-ethyl-3-methylimidazolium 
bis(trifluoromethanesulfonyl)imide 
 
1-n-hexyl-3-methylimidazolium                              [C6mim]Clx[NTf2]1-x 

chloride —  
1-n-hexyl-3-methylimidazolium 
bis(trifluoromethanesulfonyl)imide 
 
1-n-octyl-3-methylimidazolium                              [C8mim]Clx[NTf2]1-x 

chloride —  
1-n-octyl-3-methylimidazolium 
bis(trifluoromethanesulfonyl)imide 
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Results and Discussion
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Table 2: Self-diffusion coefficients (D × cm /sec) of ions for pure ionic liquids,
obtained from simulations in this work and compared with literature at 353 K

. ± . . ± . .
. ± . . ± . . .
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Fi g ur e 1:  T h e li q ui d p h as e d e nsit y as a f u n cti o n of m ol ar c o m p ositi o n at 3 5 3 K: ( a)
c o m m o n c ati o n [ C 4 mi m] + p air e d wit h di ff er e nt a ni o ns n a m el y Cl − –[ O A C] − , Cl− –[ T F A] − ,
Cl − –[ T F S] − , [ O A C]− –[ T F A] − , a n d [ O A C]− –[ T F S] − ; ( b) c ati o ns [ C2 mi m] + , [ C6 mi m] + , a n d
[ C8 mi m] + c o u pl e d wit h di ff er e nt a ni o ns Cl − –[ M e S O 4 ]

− a n d Cl − –[ N T F 2 ]
− . St a n d ar d d e vi a-

ti o ns w er e c al c ul at e d fr o m t hr e e i n d e p e n d e nt tri als f or all mi xt ur e c o m p ositi o ns. N ot e t h at
t h e c o nti n u o us li n es j oi ni n g d at a p oi nts ar e o nl y g ui d e t o t h e e y e.
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Fi g ur e 6: I o ni c c o n d u cti vit y c o m p ut e d t h e Ei nst ei n r el ati o n ( e q. 6) as a f u n cti o n of c o m p osi-
ti o n at 3 5 3 K: ( a) c o m m o n c ati o n [ C 4 mi m] + p air e d wit h di ff er e nt a ni o ns n a m el y Cl − –[ O A C] − ,
Cl − –[ T F A] − , Cl− –[ T F S] − , [ O A C]− –[ T F A] − , a n d [ O A C]− –[ T F S] − ( b) c ati o ns [ C 2 mi m] + ,
[ C6 mi m] + , a n d [ C8 mi m] + c o u pl e d wit h di ff er e nt a ni o ns Cl − –[ M e S O 4 ]

− a n d Cl − –[ N T F 2 ]
− .

St a n d ar d d e vi ati o ns w er e c al c ul at e d fr o m t hr e e i n d e p e n d e nt tri als f or all mi xt ur e c o m p osi-
ti o ns. N ot e t h at t h e c o nti n u o us li n es j oi ni n g d at a p oi nts ar e o nl y g ui d e t o t h e e y e.
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Fi g ur e 7: I o ni c c o n d u cti vit y c o m p ut e d usi n g N er nst- Ei nst ei n ( N E) e q u ati o n ( e q. 7) as a
f u n cti o n of c o m p ositi o n at 3 5 3 K: ( a) c o m m o n c ati o n [ C4 mi m] + p air e d wit h di ff er e nt a ni o ns
n a m el y Cl − –[ O A C] − , Cl− –[ T F A] − , Cl− –[ T F S] − , [ O A C]− –[ T F A] − , a n d [ O A C]− –[ T F S] − ( b)
c ati o ns [ C 2 mi m] + , [ C6 mi m] + , a n d [ C8 mi m] + c o u pl e d wit h di ff er e nt a ni o ns Cl − –[ M e S O 4 ]

−

a n d Cl − –[ N T F 2 ]
− . St a n d ar d d e vi ati o ns w er e c al c ul at e d fr o m t hr e e i n d e p e n d e nt tri als f or all

mi xt ur e c o m p ositi o ns. N ot e t h at t h e c o nti n u o us li n es j oi ni n g d at a p oi nts ar e o nl y g ui d e t o
t h e e y e.
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