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Abstract. We propose a stochastic Galerkin method using sparse wavelet bases for

the Boltzmann equation with multi-dimensional random inputs. The method uses lo-
cally supported piecewise polynomials as an orthonormal basis of the random space.

By a sparse approach, only a moderate number of basis functions is required to

achieve good accuracy in multi-dimensional random spaces. We discover a sparse
structure of a set of basis-related coefficients, which allows us to accelerate the com-

putation of the collision operator. Regularity of the solution of the Boltzmann equa-
tion in the random space and an accuracy result of the stochastic Galerkin method

are proved in multi-dimensional cases. The efficiency of the method is illustrated

by numerical examples with uncertainties from the initial data, boundary data and
collision kernel.
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1. Introduction

The Boltzmann equation plays an essential role in kinetic theory [9]. It describes

the time evolution of the density distribution of dilute gases, where fluid dynamics

equations, such as the Euler equations and the Navier-Stokes equations, fail to provide
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reliable information. It is an indispensable tool in fields concerning non-equilibrium

statistical mechanics, such as rarefied gas dynamics and astronautical engineering.

For most applications of the Boltzmann equation, the initial and boundary data

are given by physical measurements, which inevitably bring measurement errors. Fur-

thermore, due to the difficulty of deriving the collision kernels from first principles,

empirical collision kernels are often used. Such kernels contain adjustable parame-

ters which are determined by matching with experimental data [5]. This procedure

involves uncertainty on the parameters in the collision kernel. To understand the im-

pact of these random inputs on the solution of the Boltzmann equation, it is imperative

to incorporate the uncertainties into the equation, and design numerical methods to

solve the resulting system [30]. A proper quantification of uncertainty will provide

reliable predictions and a guidance for improving the models. Since the uncertainties

of the Boltzmann equations come from many independent sources, it is necessary to

use a multi-dimensional random space to incorporate all the uncertainties. Moreover, a

Karhunen-Loeve expansion of a random field will result in a multi-dimensional random

space.

Various numerical methods have been developed to solve the problem of uncer-

tainty quantification (UQ) [12, 19, 30, 31]. Monte-Carlo methods [23] use statistical

sampling in the random space, which give halfth order convergence in any dimen-

sion. Stochastic collocation methods [2,4,22] take sampling points on a well-designed

grid, usually according to a quadrature rule, or take sampling points by least-square or

compressed sensing approaches, and the statistical moments are computed by numeri-

cal quadratures or reconstructed generalized polynomial chaos expansions. Stochastic

Galerkin methods [3, 4] use an orthonormal basis expansion in the random space. By

a truncation of the expansion and Galerkin projection, one is led to a deterministic

system of expansion coefficients. Both methods can achieve spectral accuracy in one-

dimensional random space if the quadrature rule (orthonormal basis) is well chosen.

Hu and Jin [16] gave a first numerical method to solve the Boltzmann equation with

uncertainty by a generalized polynomial chaos based stochastic Galerkin method. By

a singular value decomposition on a set of basis related coefficients, together with the

fast spectral method for the Boltzmann collision operator proposed by [21], the com-

putational cost of the collision operator is decreased dramatically. However, their work

focuses on low dimensional random spaces, and a direct extension of their method to

multi-dimensional random spaces will suffer from the curse of dimensionality, which

means K, the total number of basis functions, will grow like K =
(K1+d

K1

)

, where K1 is

the number of basis in one dimension, and d is the dimension of the random space. This

cost is not affordable if both K1 and d are large. Monte-Carlo methods are feasible, but

a halfth order convergence rate can be unsatisfactory in many applications. Therefore

it is desirable to have an efficient and accurate method to solve the Boltzmann equation

with multi-dimensional random inputs.

In this work, we adopt a sparse approach [8,11] for the stochastic Galerkin method

to circumvent the curse of dimensionality. The idea of sparse approaches traces back to

Smolyak [28]. In recent years, sparse approaches have become a major way to break
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The Boltzmann Equation with Multi-Dimensional Random Inputs 467

the curse of dimensionality in various contexts, for example in Galerkin finite element

methods [8, 27, 33], finite difference methods [13, 14], high-dimensional stochastic

differential equations [24, 32] and uncertainty quantification [20, 25]. The sparse ap-

proach we adopt was first proposed by Schwab et al. [26] for transport-dominated

diffusion problems, and then applied to discontinuous Galerkin methods for elliptic

equations by Wang et al. [29] and transport equations by Guo and Cheng [15]. Simply

speaking, we start from a hierarchical basis in one dimension. To construct the sparse

wavelet basis in multi-dimension, we take the tensor basis and discard those basis func-

tions that are in deep levels in most dimensions. In this way only a small number of

basis functions are kept, yet it can be proved that the accuracy is still as good as the

corresponding tensor basis, if the function to approximate is smooth enough. With a

hierarchical basis with N levels and piecewise polynomials of degree at most m, our

method can achieve an accuracy of O(Nd−12−N(m+1)) with number of basis

K = O((m+ 1)d2NNd−1)

for d-dimensional random spaces. This accuracy is

O(K−(m+1)(logK)(m+2)(d−1))

in terms of K. It is algebraically accurate, but as d increases, the accuracy deterio-

rates very slowly. Furthermore, we discover a sparse structure of a set of basis related

coefficients, Sijk, which greatly reduces the cost of the expensive collision operator

evaluation.

The rest of the paper is organized as follows: in Section 2 we introduce the Boltz-

mann equation with uncertainty and the framework of stochastic Galerkin (sG) method;

in Section 3 we introduce our sparse method with multi-wavelet functions; in Section

4 we give an estimate of the sparsity of the coefficients Sijk; in Section 5 we prove the

random space regularity of the solution of the Boltzmann equation with uncertainty, as

well as the accuracy of the sG method with sparse wavelet basis; in Section 6 we give

some numerical results; the paper is concluded in Section 7.

2. The Boltzmann equation with uncertainty

The classical (deterministic) Boltzmann equation in its dimensionless form reads

∂tf + v · ∇xf =
1

Kn
Q(f, f), (2.1)

where f = f(t,x,v) is the density distribution function of a dilute gas at time t ∈ R
+,

position x ∈ Ω ⊂ R
dx , and with particle velocity v ∈ R

dv . Kn is the Knudsen number,

a dimensionless number defined as the ratio of the mean free path and a typical length

scale, such as the size of the spatial domain. The collision operator Q(f, f) is given by

Q(f, f) =

∫

Rdv

∫

Sdv−1

B(v,v∗, σ)
[

f(v′)f(v′
∗)− f(v)f(v∗)

]

dσdv∗, (2.2)
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which is a quadratic integral operator modeling the binary elastic collision between

particles. (v,v∗) and (v′,v′
∗) are the particle velocities before and after a collision,

which are given by










v′ =
v + v∗

2
+

|v − v∗|

2
σ,

v′
∗ =

v + v∗

2
−

|v − v∗|

2
σ,

(2.3)

with a vector σ varying on the unit sphere. The collision kernel B is a non-negative

function of the form

B(v,v∗, σ) = B(|v − v∗|, cos θ),

where

θ = arccos
σ · (v − v∗)

|v − v∗|

is the deviation angle. A commonly used model for the collision kernel is the variable

hard sphere (VHS) model [5], which takes the form

B = b|v − v∗|
λ, (2.4)

where b and λ are some constants whose values are usually determined by matching

with the experimental data to reproduce the correct transport coefficients such as the

viscosity.

The Boltzmann collision operator satisfies the conservation laws

∫

Rdv

Q(f, f)





1
v

|v|2



 dv = 0, (2.5)

as well as the H-theorem

−

∫

Rdv

Q(f, f) ln fdv ≥ 0. (2.6)

The equality is achieved if and only if f takes the form

M(v)(ρ,u,T ) =
ρ

(2πT )dv/2
e−

(v−u)2

2T , (2.7)

which is called the Maxwellian. ρ, u and T are the density, bulk velocity and tempera-

ture, given by

ρ =

∫

Rdv

fdv, u =
1

ρ

∫

Rdv

fvdv, T =
1

dvρ

∫

Rdv

f |v− u|2dv. (2.8)

The initial condition of the Boltzmann equation is given by

f(0,x,v) = f0(x,v), (2.9)
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and a boundary condition is needed if the spatial domain Ω is a proper subset of Rdx .

We adopt the Maxwell boundary condition, which takes the form

f(t,x,v) = g(t,x,v), x ∈ ∂Ω, v · n > 0, (2.10)

with

g(t,x,v) = (1− α)f (t,x,v − 2(v · n)n)

+
α

(2π)(dv−1)/2Tw(x)(dv+1)/2
e
−

|v|2

2Tw(x)

∫

v·n<0
f(t,x,v)|v · n|dv, (2.11)

where Tw is the temperature of the wall, and n is the inner normal unit vector of the

wall. The first term is the specular reflective part, and the second term is the diffusive

part. α is the accommodation coefficient. α = 1 implies purely diffusive boundary,

while α = 0 implies purely reflective boundary. For simplicity we only consider the

case where the wall is static.

As mentioned before, there are many sources of uncertainties in the Boltzmann

equation, such as the initial data, boundary data, and collision kernel. To quantify

these uncertainties we introduce the Boltzmann equation with uncertainty


























∂tf(t,x,v, z) + v · ∇xf(t,x,v, z) =
1

Kn
Qz(f, f),

t ∈ R+, x ∈ Ω ⊂ R
dx , v ∈ R

dv , z ∈ Iz ⊂ R
d,

f(0,x,v, z) = f0(x,v, z), x ∈ Ω, v ∈ R
dv , z ∈ Iz,

f(t,x,v, z) = g(t,x,v, z), t ∈ R+, x ∈ ∂Ω, v ∈ R
dv , z ∈ Iz.

(2.12)

Here z ∈ Iz is a d-dimensional random vector with probability distribution π(z) char-

acterizing the uncertainty in the system. We assume that the collision kernel has the

form

B(v,v∗, σ, z) = b(z)B0(v,v∗, σ),

which means that Qz can be written as

Qz(f, f) = b(z)Q(f, f).

The Maxwell boundary data g(t,x,v, z) is given by

g(t,x,v, z)

=(1− α(z))f(t,x,v − 2(v · n)n, z)

+
α(z)

(2π)(dv−1)/2Tw(x, z)(dv+1)/2
e
− |v|2

2Tw(x,z)

∫

v·n<0
f(t,x,v, z)|v · n|dv. (2.13)

To solve the stochastic system (2.12), Hu and Jin [16] proposed a stochastic Galerkin

(sG) method. The idea is to approximate f by a truncated polynomial series:

f(t,x,v, z) ≈ fK(t,x,v, z) =

K
∑

k=1

fk(t,x,v)Φk(z), (2.14)
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where {Φk(z)} are an orthonormal polynomial basis, which satisfies

∫

Iz

Φi(z)Φj(z)π(z)dz = δij .

If one uses polynomials of degree at most K1 in a d dimensional random space, then

the number of basis functions is K =
(K1+d

K1

)

. Substituting (2.14) into (2.12) and

conducting a standard Galerkin projection, one gets

∂tfk(t,x,v) + v · ∇xfk(t,x,v) = Qk(f
K , fK), (2.15a)

fk(0,x,v) = f0
k (x,v), (2.15b)

Qk(f
K , fK) =

K
∑

i,j=1

SijkQ(fi, fj), (2.15c)

where

Sijk =

∫

Iz

b(z)Φi(z)Φj(z)Φk(z)π(z)dz. (2.16)

The boundary condition is given by

gk =
K
∑

j=1

∫

Iz

(1− α(z))Φk(z)Φj(z)π(z)dzfj(t,x,v − 2(v · n)n)

+

K
∑

j=1

Dkj(x,v)

∫

v·n<0
fj(t,x,v, z)|v · n|dv, (2.17)

where

Dkj(x,v) =

∫

Iz

α(z)

(2π)(dv−1)/2Tw(x, z)(dv+1)/2
e
− |v|2

2Tw(x,z)Φk(z)Φj(z)π(z)dz (2.18)

is a matrix that is time independent hence can be pre-computed.

This gPC-sG method works well for low dimensional random inputs, but for high

dimensional ones, it might require a very large number of basis functions (K large) to

approximate f to a given accuracy. If one takes K1 basis functions in each dimension

of a d-dimensional random space, then a direct extension of the gPC-sG method will

require K =
(K1+d

K1

)

basis functions, which is prohibitively expensive if both K1 and

d are large. Furthermore, since the computation of Qk typically requires O(K2) times

evaluation of the deterministic collision operator, one has to choose a relatively small

K in order to afford the computation. Also, [16] uses the singular value decomposi-

tion of a size K matrix as pre-computation for the collision operator, which reduces

the computational cost by one order of magnitude, but this pre-computation can be

prohibitively expensive if K is large. In the following sections we propose a stochas-

tic Galerkin method with sparse grid basis functions, which requires much fewer basis

functions for multi-dimensional random spaces.
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3. A sparse approach with multi-wavelet basis functions

3.1. The sparse wavelet basis construction

For simplicity we restrict to the case Iz = [−1, 1]d, and π(z) = 1
2d

is the uniform

distribution. We follow the notation by Guo and Cheng [15]. We start by constructing

a hierarchical decomposition of the space consisting of piecewise polynomials of degree

at most m. Let Pm(a, b) be the space of polynomials of degree at most m on the interval

(a, b), and for every N ≥ 0,

V m
N = {φ : φ ∈ Pm(−1 + 2−N+1j, −1 + 2−N+1(j + 1)), j = 0, 1, · · · , 2N − 1}. (3.1)

Then define the wavelet space Wm
N , N = 1, 2, · · · as the orthogonal complement of

V m
N−1 inside V m

N . For convenience we define Wm
0 = V m

0 . Then one obtains the hierar-

chical decomposition

V m
N = ⊕0≤j≤NWm

j .

Then a standard sparse trick can be applied. For simplicity we introduce the following

vector notations: If i = (i1, · · · , id), j = (j1, · · · , jd) then

i ≤ j means i1 ≤ j1, · · · , id ≤ jd,
(

j

i

)

:=

(

j1
i1

)

× · · · ×

(

jd
id

)

,

1m is the vector with 1 at m-th component and 0 elsewhere,

|i|∞ = max
1≤m≤d

{|im|}, |i|1 = |i1|+ · · ·+ |id|.

Define the d-fold tensor product of V m
N by

Vm
N,z = V m

N,z1 × · · · × V m
N,zd

. (3.2)

Similarly define the d-fold tensor product of Wm
j by

Wm
j,z = Wm

j1,z1 × · · · ×Wm
jd,zd

. (3.3)

Then

Vm
N,z = ⊕0≤|j|∞≤NWm

j,z.

The sparse trick is to replace the l∞ norm on j by the l1 norm. In this way we define

the sparse wavelet space

V̂m
N,z = ⊕0≤|j|1≤NWm

j,z. (3.4)

From now on we will omit the subscript z for these spaces.
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3.2. Construction of the basis functions

We adopt the basis functions of Wm
j constructed by Alpert [1]. The basis functions

of Wm
j are denoted by ψm′

j,l , m′ = 0, 1, · · · ,m, l = 0, 1, · · · , 2j−1 − 1 for j ≥ 1 and

l = 0 for j = 0. ψm′

0,0 are the orthonormal Legendre polynomials of degree m′ on

[−1, 1], and ψm′

1,0 are piecewise polynomials on [−1, 0] and [0, 1] that are orthogonal to

those Legendre polynomials, which can be constructed by a procedure similar to the

Gram-Schmidt orthogonalization. Other ψm′

j,l are defined by dilation and translation of

ψm′

1,0:

ψm′

j,l (y) = 2(j−1)/2ψm′

1,0(2
j−1y + 2j−1 − 1− 2l), j = 2, 3, · · · , l = 0, 1, · · · , 2j−1 − 1,

which has support on the interval [−1 + 22−j l, −1 + 22−j(l + 1)].
The basis functions of Wm

j are tensor products of the one dimensional basis func-

tions:

ψm′

j,l (z) = ψ
m′

1
j1,l1

(z1)× · · · × ψ
m′

d

jd,ld
(zd),

0 ≤ |m′|∞ ≤ m, 0 ≤ l1 ≤ 2j1−1 − 1, · · · , 0 ≤ ld ≤ 2jd−1 − 1,

and the basis functions of V̂m
N consist of all the above functions for 0 ≤ |j|1 ≤ N . By

reordering the basis functions for V̂m
N we make them Φ1(z), · · · ,ΦK(z), where

K = K(m,N, d)

is the total number of basis functions. It is proved in Lemma 2.3 of [29] that

K = O
(

(m+ 1)d2NNd−1
)

. (3.5)

4. Estimate of the sparsity of Sijk

Recall the triple product tensor Sijk defined in (2.16). Due to the local support of

the sparse wavelet basis functions Φk, this tensor is sparse, especially when N and d
are large. Due to this sparsity, when one computes

Qk =
K
∑

i,j=1

SijkQ(fi, fj),

one only needs to compute those Q(fi, fj) where there is at least one k with Sijk 6= 0.

Now we prove some results on its sparsity. We focus on the dependence on N , so every

O(·) notation means multiplication by a constant that may depend on d.

Recall that when one takes the sparse wavelet space V̂m
N , the basis functions are

ψm′

j,l (z) = ψ
m′

1
j1,l1

(z1)× · · · × ψ
m′

d

jd,ld
(zd), 0 ≤ |m′|∞ ≤ m,

0 ≤ l1 ≤ 2j1−1 − 1, · · · , 0 ≤ ld ≤ 2jd−1 − 1, |j|1 ≤ N. (4.1)
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The function ψm′

j,l (z) is supported on the interval [−1 + 22−j l,−1 + 22−j(l + 1)] for

j ≥ 1. Since this support is independent of m′, we omit the m′ index in the following

consideration. If ψj1,l1 and ψj2,l2 have non-intersecting supports, then

∫

Iz

b(z)ψj1,l1(z)ψj2,l2(z)ψj3,l3(z)π(z)dz = 0, ∀j3, l3.

Recall that the number of basis functions, in V̂m
N , which includes those ψj,l with

|j|1 ≤ N and 0 ≤ l1 ≤ 2j1−1 − 1, · · · , 0 ≤ ld ≤ 2jd−1 − 1,

is

O((m+ 1)d2NNd−1).

Thus the number of the pairs of such functions is O
(

(m+ 1)2d22NN2d−2
)

. Now we

state our result:

Theorem 4.1. The pairs of basis functions of V̂m
N with intersecting supports have a total

number at most O
(

(m+ 1)2d22NNd+1
)

.

Proof. The number of φj,l for a fixed j is (m+ 1)2j−1 for j ≥ 1, and m+ 1 if j = 0.

Thus it is less than or equal to (m + 1)2j for all j. For fixed j1, j2, suppose j1 ≥ j2,

then φj1,l1 and φj2,l2 have intersecting supports if and only if the support of φj1,l1 is

a subinterval of the support of φj2,l2. For every l1, there is one and only one such l2.
Thus the number of pairs l1, l2 such that φj1,l1 and φj2,l2 have intersecting supports is

2j
1
, which is 2max{j1,j2} in general. Thus the desired number is

S = (m+ 1)2d
∑

0≤|j1|1≤N,0≤|j2|1≤N

2max{j11 ,j
2
1}+···+max{j1

d
,j2
d
}. (4.2)

Let k1 = max{j1, j2}, where the maximum acts on each component of vectors. Similarly

let k2 = min{j1, j2}. Then

|k1 + k2|1 = |j1 + j2|1 = |j1|1 + |j2|1 ≤ 2N,

and for each fixed k1,k2, there are at most 2d pairs of j1, j2 satisfying the conditions

k1 = max{j1, j2} and k2 = min{j1, j2}. Thus

S ≤C(d)(m+ 1)2d
∑

0≤|k1|1+|k2|1≤2N

2|k
1|1

=C(d)(m+ 1)2d
2N
∑

k=0

2k
(

k + d− 1

d− 1

) 2N−k
∑

l=0

(

l + d− 1

d− 1

)

≤C(d)(m+ 1)2dN
2N
∑

k=0

2k(k + 1)d−1(2N − k + 1)d−1.
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The first equality is because there are
(k+d−1

d−1

)

choices of k1 with |k1|1 = k, and similarly

for k2. The second inequality is because

(

k + d− 1

d− 1

)

=
k + 1

1

k + 2

2
· · ·

k + d− 1

d− 1
≤ (k + 1)d−1,

and taking the largest term in the l summation.

Then by taking derivative with respect of k, it is easy to see that the previous sum-

mation is optimized at

kmax = 2N −O(d).

Thus

S ≤C(d)(m+ 1)2dN22kmax(kmax + 1)d−1(2N − kmax + 1)d−1

≤C(d)(m+ 1)2d22NNd+1,

which finishes the proof. �

Remark 4.1. When d ≥ 4, one has 22NN2d−2 > 22NNd+1, thus in this case the number

of Q(fi, fj) needed to be computed is much less than the total number of pairs of fi,
fj. And the bigger d is, the more saving one will gain.

Numerically, we observe this sparsity result even in the cases d = 2, 3 (see, Section

6.1.3), and for a fixed d, the percentage of Q(fi, fj) needed to be computed decreases

exponentially as N increases, which is better than what one expects from the above

theorem (where the percentage is O( 1
Nd−3 )). This suggests that the above theorem is

not sharp.

5. Regularity and accuracy

In this section, we prove the regularity of the solution to the Boltzmann equation

in the random space, and the accuracy of the stochastic Galerkin method using sparse

wavelet basis. These are straightforward multi-dimensional extensions of the corre-

sponding results in [16]. We assume that the random collision kernel depends linearly

on z. This is a reasonable assumption because when one uses the Karhunen-Loeve

expansion to approximate a random field, the resulting dependence on z is linear.

We consider the spatially homogeneous Boltzmann equation

∂f

∂t
= Q(f, f), (5.1)

subject to random initial data and random collision kernel

f(0,v, z) = f0(v, z), B = B(v,v∗, σ, z), z ∈ Iz.
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5.1. Regularity in the random space for the Boltzmann equation

We define the norms and operators:

‖f(t, ·, z)‖Lp
v

=

(
∫

Rdv

|f(t,v, z)|p dv

)1/p

,

‖f(t,v, ·)‖L2
z

=

(
∫

Iz

f(t,v, z)2π(z) dz

)1/2

,

‖|f(t, ·, ·)‖|k = sup
z∈Iz





k
∑

|l|=0

‖∂l
zf(t,v, z)‖

2
L2
v





1/2

,

Q(g, h)(v) =

∫

Rdv

∫

Sdv−1

B(v,v∗, σ, z)
[

g(v′)h(v′
∗)− g(v)h(v∗)

]

dσ dv∗,

Q1,j(g, h)(v) =

∫

Rdv

∫

Sdv−1

∂zjB(v,v∗, σ, z)
[

g(v′)h(v′
∗)− g(v)h(v∗)

]

dσ dv∗.

We first state the following estimates of Q(g, h) and Q1,j(g, h), which are standard

results proved in [7,18] and its extension to the uncertain case is straightforward:

Lemma 5.1. Assume the collision kernel B depends on z linearly, B and ∂zB are locally

integrable and bounded in z. If g, h ∈ L1
v ∩ L2

v, then

‖Q(g, h)‖L2
v

, ‖Q1,j(g, h)‖L2
v

≤ CB‖g‖L1
v

‖h‖L2
v

, (5.2a)

‖Q(g, h)‖L2
v

, ‖Q1,j(g, h)‖L2
v

≤ CB‖g‖L2
v

‖h‖L2
v

, (5.2b)

where the constant CB > 0 depends only on B and ∂zjB, j = 1, · · · , d.

Now we state our estimate on ‖|f‖|k.

Theorem 5.1. Assume that B satisfies the assumption in Lemma 5.1, and supz∈Iz ‖f
0‖L1

v

≤
M , ‖|f0‖|k < ∞ for some integer k ≥ 0. Then there exists a constant Ck > 0, depending

only on CB , M , T , and ‖|f0‖|k such that

‖|f‖|k ≤ Ck for any t ∈ [0, T ]. (5.3)

The proof of the theorem is provided in the Appendix.

5.2. Accuracy analysis

In this subsection, we will prove the convergence rate of the stochastic Galerkin

method using the previously established regularity. As in Section 5.1, we will still

restrict to the spatially homogeneous equation (5.1).

We use the sparse wavelet space V̂m
N with parameters m,N . For this space, the

number of basis functions

K = O
(

(m+ 1)d2NNd−1
)

.
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Define the space Hm(Iz) by

‖f‖Hm(Iz)

=max
∑

0≤mi1
,··· ,mir≤m

∑

0≤mj1
,··· ,mjd−r

≤1

‖∂
mi1
zi1

· · · ∂
mir
zir ∂

mj1
zj1

· · · ∂
mjd−r
zjd−r

f‖L2(Iz),

where the maximum is taken over all non-empty subsets {i1, · · · , ir} ⊂ {1, · · · , d}, and

{j1, · · · , jd−r} is the complement of {i1, · · · , ir}. Using the orthonormal basis {Φk(z)},

the solution f to (5.1) can be represented as

f(t,v, z) =

∞
∑

k=1

fk(t,v)Φk(z), where fk(t,v) =

∫

Iz

f(t,v, z)Φk(z)π(z) dz. (5.4)

Let PK be the projection operator defined as

PKf(t,v, z) =

K
∑

k=1

fk(t,v)Φk(z).

Then one has the following projection error estimate (in [26, Theorem 5.1]):

Lemma 5.2. For any f ∈ Hm+1(Iz), N ≥ 1, we have

‖PKf − f‖L2(Iz) ≤ C(m,d)Nd−12−N(m+1)‖f‖Hm+1(Iz). (5.5)

This lemma implies that the projection error

‖PKf − f‖L2(Iz) ≤ C(m,d)K−(m+1)(logK)(m+2)(d−1)‖f‖Hm+1(Iz). (5.6)

Define the norms

‖f(t, ·, ·)‖L2
v,z

=

(∫

Iz

∫

Rd

f(t,v, z)2dvπ(z)dz

)1/2

, (5.7)

then we have the following:

Lemma 5.3. Assume z obeys the uniform distribution, i.e., z ∈ Iz = [−1, 1]d and π(z) =
1/2d. If ‖|f0‖|d(m+1) is bounded, then

‖PKf − f‖L2
v,z

≤ C(m,d)K−(m+1)(logK)(m+2)(d−1), (5.8)

where C(m,d) is a constant depending on m and d.

Given the gPC approximation of f :

fK(t,v, z) =
K
∑

k=1

f̂k(t,x,v)Φk(z), (5.9)
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we now define the error function

eK(t,v, z) = PKf(t,v, z)− fK(t,v, z) :=

K
∑

k=1

ek(t,v)Φk(z),

where ek = f̂k − fk. Then we have

Theorem 5.2. Assume the random variable z and initial data f0 satisfy the assumption

in Lemma 5.3, and the gPC approximation fK is uniformly bounded in K, then

‖f − fK‖L2
v,z

≤ C(t)
{

C(m,d)K−(m+1)(logK)(m+2)(d−1) + ‖eK(0)‖L2
v,z

}

.

The proof of Lemma 5.4 and Theorem 5.5 can be proved in the same way as Section

4.2 in Hu and Jin [16], in view of Lemma 5.3. We omit the details.

Remark 5.1. In general, wavelet bases are used for functions with low regularity. Here

we briefly explain the reason why we use them for smooth functions. For low dimen-

sional random spaces (d ≤ 4), by choosing a large m (i.e., m ≥ 2) one can obtain a

good accuracy order (almost (m+1)-th order) with the wavelet basis. However, due to

the factor (m + 1)d in the number of basis functions K (see (3.5)), m cannot be large

for higher dimensional random spaces (d ≥ 5). Thus for such random spaces one has

to sacrifice the accuracy order a little and take m = 0, 1 in order to make the number

of basis functions K affordable.

6. Numerical results

In this section we give some numerical results of the stochastic Galerkin method

with sparse technique. We first demonstrate the efficiency of the sparse wavelet basis,

and then show its application to the Boltzmann equation with uncertainty.

The random space is taken as [0, 1]d with the uniform distribution. For the Boltz-

mann equation with uncertainty, the physical space is taken as [0, 1], and the velocity

space is truncated as [−Rv, Rv ]
2. The physical space is discretized into Nx grid points

xi =
(

i+
1

2

)

∆x, i = 0, 1, · · · , Nx − 1, (6.1)

where ∆x = 1
Nx

. The velocity space is discretized into Nv grid points in each dimension:

vi,j =
(

−Rv +
(

i+
1

2

)

∆v,−Rv +
(

j +
1

2

)

∆v
)

, i, j = 0, 1, · · · , Nv − 1, (6.2)

where ∆v = 2Rv/Nv .

The flux term v · ∇xfk in (2.15) is discretized by the second order upwind scheme

with the minmod slope limiter. The collision operator is computed by the fast spectral

method [21]. The time discretization is given by the second order Runge-Kutta scheme.
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6.1. The sparse wavelet basis

6.1.1. Number of basis functions

We first give a comparison of number of basis functions between our sparse wavelet

function space V̂m
N and the tensor basis Vm

N . The result is shown in Table 1. It is

clear that the sparse technique saves a great number of basis functions, especially in

multi-dimensional random spaces.

6.1.2. Efficiency of the sparse wavelet function space

We give a comparison of the L2 approximation error of V̂m
N and Vm

N . For each random

dimension d = 2, 3, 4 we pick a smooth test function as follows:

f(z) =
1

2πK(z)2
exp

(

−
1

2K(z)

)(

2K(z) − 1 +
1−K(z)

2K(z)

)

, (6.3)

where

Kd=2(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2)), (6.4a)

Kd=3(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3)), (6.4b)

Kd=4(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)). (6.4c)

We use the function spaces V̂m
N and Vm

N with different m, N values to approximate

these functions, and compute their relative L2 error |f − PKf‖L2/|f‖L2 , where PK is

the projection operator onto the corresponding function space. The result is shown in

Fig. 1. It can be seen that the sparse wavelet method performs much better than the

tensor method.

Table 1: Comparison of number of basis functions: m is the maximal degree of polynomials. d is the
dimension; in each cell, the left number is the number of basis of functions of V̂m

N ; the right number is the
number of basis of functions of Vm

N .

(a) m = 0

N = 3 N = 4 N = 5
d = 1 8,8 16,16 32,32
d = 2 20,64 48,256 112,1024

d = 3 38,512 104,4096 272,32768
d = 4 63,4096 192,65536 552,1048576

(b) m = 1

N = 3 N = 4 N = 5
d = 1 16,16 32,32 64,64
d = 2 80,256 192,1024 448,4096

d = 3 304,4096 832,32768 2176,262144
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Figure 1: Comparison of approximation error of both sparse basis and full tensor basis for d = 2, 3, 4. For
d = 4 we do not give the result by tensor basis because the number of basis functions is too large.

6.1.3. Sparsity of Sijk

We give a test of the sparsity of the tensor Sijk, as well as the number of Q(fi, fj)
needed to compute. We take a random collision kernel

b(z) = 1 + 0.2z1.

For simplicity we only show the results with m = 0, since the sparsity of Sijk with larger

m is similar. The result is shown in Fig. 2. One can clearly see an exponential decay

of the percentage of nonzeros in Sijk, as well as the percentage of Q(fi, fj) needed to

compute, as N or d increase. This is even better than what we have proved.

To further demonstrate the sparsity of Sijk we give a graph of nonzero elements of

Sijk for m = 0, N = 4, d = 3, shown in Fig. 3. The points in the first graph represent

nonzero elements in Sijk. The second graph is the projection of the first graph onto i, j
coordinates, and the points in it represent those Q(fi, fj) needed to compute.
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Figure 2: Sparsity of Sijk and the number of Q(fi, fj) needed to compute, d = 2, 3, 4, m = 0.
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Figure 3: Demonstration of sparsity of Sijk: m = 0, N = 4, d = 3. Left: blue points represent non-zeros
terms of Sijk. Right: blue points represent a pair (i, j) with Sijk 6= 0 for some k.

6.2. Application to the Boltzmann equation with uncertainty

In this subsection, the velocity space is assumed to be two-dimensional and its

discretization is always given by Nv = 32. The time discretization is given by 0.8 times

the CFL condition for spatial inhomogeneous problems.

6.2.1. Accuracy of the approximation of the collision operator

We first check the accuracy of the collision operator Q(f, f) computed by the sparse

stochastic Galerkin method. The function f is given by the Bobylev-Krook-Wu [6, 17]
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Figure 4: Accuracy of the approximation of the collision operator for d = 2, 3, 4.

solution with uncertainty:

f(v, z) =
1

2πK(z)2
exp

(

−
|v|2

2K(z)

)(

2K(z) − 1 +
1−K(z)

2K(z)
v2

)

, (6.5)

where

Kd=2(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2)), (6.6a)

Kd=3(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3)), (6.6b)

Kd=4(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)). (6.6c)

For this f , Q(f, f) with collision kernel B = 1
2π is given explicitly by

Q(f, f)(v, z) =

((

−
2

K(z)
+

|v|2

2K(z)2

)

f

+
1

2πK(z)2
exp

(

−
|v|2

2K(z)

)(

2−
1

2K(z)2
|v|2

))

1−K(z)

8
. (6.7)

The numerical solution is given by

Q̃(f, f)(v, z) =

K
∑

k=0

Qk(v)Φk(z), where Qk(v) =

K
∑

i,j=0

SijkQ(fi, fj)(v).

We compare the relative L2 error for d = 2, 3, 4 and sparse basis V̂m
N with different m,

N . The result is shown in Fig. 4. One can clearly see the error is a little worse than

O(K−(m+1)), and it becomes a little worse as d increases. This is caused by the logK
factor in the error estimate.
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6.2.2. The homogeneous Boltzmann equation with uncertainty on the collision

kernel

We solve the homogeneous Boltzmann equation with deterministic initial data and a

random collision kernel. We take the dimension of the random space d = 2, 3, and the

collision kernels are

b(z) = 1 + 0.2z1 + 0.1z2, d = 2, (6.8a)

b(z) = 1 + 0.2z1 + 0.1z2 + 0.07z3, d = 3. (6.8b)

The initial data is the BKW solution

f0(v, z) =
1

π
exp(−|v|2)

|v|2

2
, (6.9)

and the exact solution is given by

f(t,v, z) =
1

2πK2
exp

(

−
|v|2

2K

)(

2K − 1 +
1−K

2K
|v|2

)

, (6.10)

with

K(t, z) = 1− exp(−b(z)t/8)/2. (6.11)

We solve this equation by the sparse sG method with m = 0, time step ∆t = 0.01 and

final time t = 1, and check the relative L2 error with the exact solution. The result is

shown in Fig. 5. The phenomenon is similar to the previous accuracy test.

6.2.3. The Boltzmann equation with random initial data

We test our method on the (inhomogeneous) Boltzmann equation with uncertainty.

The random space is 4-dimensional. We take the x-domain to be [0, 1] with the periodic

101 102 103
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Figure 5: The homogeneous Boltzmann equation with a random collision kernel: accuracy result. m = 0,
∆t = 0.01, t = 1.
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boundary condition. We use the following random initial data to mimic the Karhunen-

Loeve expansion






























































ρ0 =
1

3
(2 + sin(2πx) + sin(4πx)z1/2 + sin(6πx)z2/4

+ sin(8πx)z3/6 + sin(10πx)z4/7) ,

u0 = (0.2, 0),

T0 =
1

4
(3 + cos(2πx) + cos(4πx)z1/2 + cos(6πx)z2/4

+ cos(8πx)z3/6 + cos(10πx)z4/7) ,

f =
ρ0

4πT0

(

exp
(

−
|v − u0|

2

2T0

)

+ exp
(

−
|v + u0|

2

2T0

)

)

.

(6.12)

The x-domain is discretized into Nx = 50 mesh points, and we compare the solution

by the sparse stochastic Galerkin method with m = 0, N = 3 and a stochastic collo-

cation method with full tensor basis in random space at time t = 0.1. The collocation

method is implemented by solving the deterministic problem at points of the form

z = (z1, · · · , zd) where each zi is one of the Mz = 8 Gauss-Legendre quadrature points

(thus one needs to solve Md
z deterministic problems). And then the mean and standard

deviation are computed by numerical quadrature. The comparison result is shown in

Fig. 6. We see the results by the two methods agree well.

6.2.4. The Boltzmann equation with randomness on initial data, boundary data,

and collision kernel

We finally solve the inhomogeneous Boltzmann equation with uncertainty on initial

data, boundary data, and collision kernel. The random domain is taken to be 6-

dimensional. We take the initial data to be the equilibrium with

ρ(x, z) = 1, u(x, z) = 0, (6.13a)

T = 1 + 0.5(1 + 0.2z2) exp(−100(1 + 0.1z3)(x− 0.4 − 0.01z1)
2), (6.13b)

and the boundary data is given by the Maxwellian boundary condition with random

parameters

Tw = 1 + 0.2z4, α = 0.5 + 0.3z5. (6.14)

The collision kernel is given by

b(z) = 1 + 0.2z6. (6.15)

The spatial discretization is given by Nx = 100 to better capture the details near the

boundary. We compare the result by the stochastic Galerkin method with sparse tech-

nique with the stochastic collocation method with full grid at time t = 0.04. The

Galerkin method has parameters m = 0, N = 3, and the collocation method is as

described in the previous numerical result with Mz = 4 collocation points in each di-

mension. The result is shown in Fig. 7. One can see that the two results agree well.
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Figure 6: The Boltzmann equation with random initial data. Nx = 50, t = 0.1. Curve: collocation with
Mz = 8; asterisks: Galerkin with m = 0, N = 3. Left column: mean of density, first component of bulk
velocity, and temperature. Right column: standard deviation of density, first component of bulk velocity,
and temperature.

7. Conclusions

In this paper we developed a sparse wavelets based stochastic Galerkin method

for the Boltzmann equation with uncertainty. The uncertainty could come from initial

data, boundary data, and collision kernel. This method enables us to quantify the

uncertainty from multi-dimensional random inputs, which is previously infeasible using

the global gPC basis. We proved and numerically demonstrated the sparsity of the basis

related coefficient, Sijk, which allows us to dramatically accelerate the computation

of the collision operator under the Galerkin projection. Regularity of the solution of

the Boltzmann equation in the random space and an accuracy result of the stochastic

Galerkin method are proved.

Many related problems are still open, for example, asymptotic-preserving

schemes [10] for the Boltzmann equation with uncertainty, adaptive mesh techniques

to capture discontinuities in the random space, quantification of nonlinear uncertain-

ties on the collision kernel, etc.
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Figure 7: The Boltzmann equation with randomness on initial data, boundary data, and collision kernel
(d = 6). Nx = 100, t = 0.04. Curve: collocation with Mz = 4; asterisks: Galerkin with m = 0, N = 3.
Left column: mean of density, first component of bulk velocity, and temperature. Right column: standard
deviation of density, first component of bulk velocity, and temperature.

Appendix: Proof of Theorem 5.2

Proof. First, from the conservation property of Q, one has

‖f(t, ·, z)‖L1
v

= ‖f0(·, z)‖L1
v

≤ M.

Then we use mathematical induction on k. For k = 0, multiplying (5.1) by f and

integrating on v, by the Cauchy-Schwarz inequality and (5.2a), one obtains

1

2
∂t

∫

Rd

f2 dv =

∫

Rd

fQ(f, f) dv ≤ ‖f‖L2
v

‖Q(f, f)‖L2
v

≤CB‖f‖L1
v

‖f‖2L2
v

≤ CBM‖f‖2L2
v

.

Now Gronwall’s inequality implies that there is a positive constant C0 such that (5.3)

is true for k = 0.
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Now for some k ≥ 0 assume (5.3) holds. Take any multi-index j with |j|1 = k + 1.

Taking j-th derivative of z on (5.1) gives

∂t∂
j
zf =

j
∑

l=0

(

j

l

)

Q(∂l
zf, ∂

j−l
z f) +

d
∑

m=1

jm

j−1m
∑

l=0

(

j− 1m

l

)

Q1,m(∂l
zf, ∂

j−1m−l
z f), (A.1)

where we used the bilinearity of the collision operator and the assumption that B is

linear in z.

Multiplying (A.1) by ∂j
zf and integrating over v yields

1

2
∂t

∫

Rd

(∂j
zf)

2 dv

≤

j
∑

l=0

(

j

l

)

‖∂j
zf‖L2

v

‖Q(∂l
zf, ∂

j−l
z f)‖L2

v

+
d

∑

m=1

jm

j−1m
∑

l=0

(

j− 1m

l

)

‖∂j
zf‖L2

v

‖Q1,m(∂l
zf, ∂

j−1m−l
z f)‖L2

v

≤

j
∑

l=0

(

j

l

)

CB‖∂
j
zf‖L2

v

‖∂l
zf‖L2

v

‖∂j−l
z f‖L2

v

+

d
∑

m=1

jm

j−1m
∑

l=0

(

j− 1m

l

)

CB‖∂
j
zf‖L2

v

‖∂l
zf‖L2

v

‖∂j−1m−l
z f‖L2

v

≤CBC
2
k‖∂

j
zf‖L2

v

∑

0≤l≤j,l 6=0,j

(

j

l

)

+ 2CBC0‖∂
j
zf‖

2
L2
v

+ CBC
2
k‖∂

j
zf‖L2

v

d
∑

m=1

jm

j−1m
∑

l=0

(

j− 1m

l

)

=(2k+1 − 2)CBC
2
k‖∂

j
zf‖L2

v

+ 2CBC0‖∂
j
zf‖

2
L2
v

+ 2k(k + 1)CBC
2
k‖∂

j
zf‖L2

v

. (A.2)

In the first inequality we used the Cauchy-Schwarz inequality, and in the second in-

equality we used (5.2b). In the third inequality the induction assumption is used for

the second sum, since the indexes l and j − 1m − l appeared there have order less

than or equal to k. Every term in the first sum can be treated similarly except terms

corresponding to the cases of l = 0 and l = j, which are treated separately. In the final

equality, we used the identity

L
∑

l=0

(

L

l

)

= (1 + 1)L = 2L.

Then we apply Gronwall’s inequality to (A.2) and get the control

sup
z∈Iz

(

‖∂j
zf(t,v, z)‖

2
L2
v

)1/2
≤ Ck+1,
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with a positive constant Ck+1. Sum over all j with |j|1 = k + 1 we get (5.3) for k + 1.

This completes the mathematical induction and the proof. �
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