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Abstract. We propose a stochastic Galerkin method using sparse wavelet bases for
the Boltzmann equation with multi-dimensional random inputs. The method uses lo-
cally supported piecewise polynomials as an orthonormal basis of the random space.
By a sparse approach, only a moderate number of basis functions is required to
achieve good accuracy in multi-dimensional random spaces. We discover a sparse
structure of a set of basis-related coefficients, which allows us to accelerate the com-
putation of the collision operator. Regularity of the solution of the Boltzmann equa-
tion in the random space and an accuracy result of the stochastic Galerkin method
are proved in multi-dimensional cases. The efficiency of the method is illustrated
by numerical examples with uncertainties from the initial data, boundary data and
collision kernel.
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1. Introduction

The Boltzmann equation plays an essential role in kinetic theory [9]. It describes
the time evolution of the density distribution of dilute gases, where fluid dynamics
equations, such as the Euler equations and the Navier-Stokes equations, fail to provide
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reliable information. It is an indispensable tool in fields concerning non-equilibrium
statistical mechanics, such as rarefied gas dynamics and astronautical engineering.

For most applications of the Boltzmann equation, the initial and boundary data
are given by physical measurements, which inevitably bring measurement errors. Fur-
thermore, due to the difficulty of deriving the collision kernels from first principles,
empirical collision kernels are often used. Such kernels contain adjustable parame-
ters which are determined by matching with experimental data [5]. This procedure
involves uncertainty on the parameters in the collision kernel. To understand the im-
pact of these random inputs on the solution of the Boltzmann equation, it is imperative
to incorporate the uncertainties into the equation, and design numerical methods to
solve the resulting system [30]. A proper quantification of uncertainty will provide
reliable predictions and a guidance for improving the models. Since the uncertainties
of the Boltzmann equations come from many independent sources, it is necessary to
use a multi-dimensional random space to incorporate all the uncertainties. Moreover, a
Karhunen-Loeve expansion of a random field will result in a multi-dimensional random
space.

Various numerical methods have been developed to solve the problem of uncer-
tainty quantification (UQ) [12,19,30,31]. Monte-Carlo methods [23] use statistical
sampling in the random space, which give halfth order convergence in any dimen-
sion. Stochastic collocation methods [2,4,22] take sampling points on a well-designed
grid, usually according to a quadrature rule, or take sampling points by least-square or
compressed sensing approaches, and the statistical moments are computed by numeri-
cal quadratures or reconstructed generalized polynomial chaos expansions. Stochastic
Galerkin methods [3, 4] use an orthonormal basis expansion in the random space. By
a truncation of the expansion and Galerkin projection, one is led to a deterministic
system of expansion coefficients. Both methods can achieve spectral accuracy in one-
dimensional random space if the quadrature rule (orthonormal basis) is well chosen.

Hu and Jin [16] gave a first numerical method to solve the Boltzmann equation with
uncertainty by a generalized polynomial chaos based stochastic Galerkin method. By
a singular value decomposition on a set of basis related coefficients, together with the
fast spectral method for the Boltzmann collision operator proposed by [21], the com-
putational cost of the collision operator is decreased dramatically. However, their work
focuses on low dimensional random spaces, and a direct extension of their method to
multi-dimensional random spaces will suffer from the curse of dimensionality, which
means K, the total number of basis functions, will grow like K = (K;{Jlrd), where K is
the number of basis in one dimension, and d is the dimension of the random space. This
cost is not affordable if both K7 and d are large. Monte-Carlo methods are feasible, but
a halfth order convergence rate can be unsatisfactory in many applications. Therefore
it is desirable to have an efficient and accurate method to solve the Boltzmann equation
with multi-dimensional random inputs.

In this work, we adopt a sparse approach [8,11] for the stochastic Galerkin method
to circumvent the curse of dimensionality. The idea of sparse approaches traces back to
Smolyak [28]. In recent years, sparse approaches have become a major way to break
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The Boltzmann Equation with Multi-Dimensional Random Inputs 467

the curse of dimensionality in various contexts, for example in Galerkin finite element
methods [8, 27, 33], finite difference methods [13, 14], high-dimensional stochastic
differential equations [24, 32] and uncertainty quantification [20,25]. The sparse ap-
proach we adopt was first proposed by Schwab et al. [26] for transport-dominated
diffusion problems, and then applied to discontinuous Galerkin methods for elliptic
equations by Wang et al. [29] and transport equations by Guo and Cheng [15]. Simply
speaking, we start from a hierarchical basis in one dimension. To construct the sparse
wavelet basis in multi-dimension, we take the tensor basis and discard those basis func-
tions that are in deep levels in most dimensions. In this way only a small number of
basis functions are kept, yet it can be proved that the accuracy is still as good as the
corresponding tensor basis, if the function to approximate is smooth enough. With a
hierarchical basis with N levels and piecewise polynomials of degree at most m, our
method can achieve an accuracy of O(N¢~12-N(+1)) with number of basis

K = O((m + 1)%2V N1
for d-dimensional random spaces. This accuracy is
O(K—(m+1) (log K)(m+2)(d_1))

in terms of K. It is algebraically accurate, but as d increases, the accuracy deterio-
rates very slowly. Furthermore, we discover a sparse structure of a set of basis related
coefficients, S;;,, which greatly reduces the cost of the expensive collision operator
evaluation.

The rest of the paper is organized as follows: in Section 2 we introduce the Boltz-
mann equation with uncertainty and the framework of stochastic Galerkin (sG) method;
in Section 3 we introduce our sparse method with multi-wavelet functions; in Section
4 we give an estimate of the sparsity of the coefficients S;;;; in Section 5 we prove the
random space regularity of the solution of the Boltzmann equation with uncertainty, as
well as the accuracy of the sG method with sparse wavelet basis; in Section 6 we give
some numerical results; the paper is concluded in Section 7.

2. The Boltzmann equation with uncertainty

The classical (deterministic) Boltzmann equation in its dimensionless form reads

Of+v-Vof = %Q(f, ), 2.1

where f = f(t,x,v) is the density distribution function of a dilute gas at time ¢t € R,
position x € 2 C R% and with particle velocity v € R%. Kn is the Knudsen number,
a dimensionless number defined as the ratio of the mean free path and a typical length
scale, such as the size of the spatial domain. The collision operator Q(f, f) is given by

Arn=[ [ Bevio [f#I) - f0i]dodv., @2)
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which is a quadratic integral operator modeling the binary elastic collision between
particles. (v,v,) and (v’,v/,) are the particle velocities before and after a collision,

which are given by
, VAV v — v

2 2 ’
VvtV v — V*IU (2.3)
* T 2 2 ’

with a vector ¢ varying on the unit sphere. The collision kernel B is a non-negative
function of the form
B(v,v.,0) = B(|v — vy|,cos0),
where
6 = arceos &Y " Ve)

p—
is the deviation angle. A commonly used model for the collision kernel is the variable
hard sphere (VHS) model [5], which takes the form

B =blv —v,|}, (2.4)

where b and )\ are some constants whose values are usually determined by matching
with the experimental data to reproduce the correct transport coefficients such as the
viscosity.

The Boltzmann collision operator satisfies the conservation laws

1
QUf,f) v [|dv=0, (2.5)
Rdv ’VP
as well as the H-theorem
- Q(f, f)In fdv > 0. (2.6)
Rdv

The equality is achieved if and only if f takes the form

p _v—w?

@y 2C @7

M(V)(p,u,T) =

which is called the Maxwellian. p, u and T are the density, bulk velocity and tempera-
ture, given by

1 1
p= fdv, u=- fvdv, T = flv —ul?dv. (2.8)
Rdv P JRrdv dvp Jrav
The initial condition of the Boltzmann equation is given by
F0,%,v) = fO(x,v), (2.9)
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and a boundary condition is needed if the spatial domain € is a proper subset of R¢%.
We adopt the Maxwell boundary condition, which takes the form

fit,x,v) =g(t,x,v), x€9Q, v-n>0, (2.10)
with

g(t,x,v) = (1—a)f (t,x,v —2(v - n)n)

«a v

T 2Tw(x) .
T @D, )@z /.n<0f(t’x’v)|v njdv, (2.11)

where T, is the temperature of the wall, and n is the inner normal unit vector of the
wall. The first term is the specular reflective part, and the second term is the diffusive
part. « is the accommodation coefficient. o = 1 implies purely diffusive boundary;,
while @ = 0 implies purely reflective boundary. For simplicity we only consider the
case where the wall is static.

As mentioned before, there are many sources of uncertainties in the Boltzmann
equation, such as the initial data, boundary data, and collision kernel. To quantify
these uncertainties we introduce the Boltzmann equation with uncertainty

0uf (1% v,2) + v Vi (8.3%,v,2) = = @l ),

teRy, xeQCR%, veR¥, zc I, CcRY (2.12)
f(O’X,V,Z) :fO(X7V7Z)7 XGQ, VGRdU? ZGIZ?
flt,x,v,z) = g(t,x,v,z), teRy, x€0Q, veR¥, zcI,.

Here z € I, is a d-dimensional random vector with probability distribution 7(z) char-
acterizing the uncertainty in the system. We assume that the collision kernel has the
form

B(v,vy,0,2) = b(z)By(v, Vs, 0),

which means that (), can be written as

Qz(f, f) = b(2)Q(f, f)-
The Maxwell boundary data ¢(t, x, v, z) is given by

g(t7 X7 V7 Z)
=(1 —a(z))f(t,x,v - 2(v -n)n,z)
a(z) P
T )@ DT, (x, 2) @ D2¢ e / .n<of(t’x’v’z)|V v 213)

To solve the stochastic system (2.12), Hu and Jin [16] proposed a stochastic Galerkin
(sG) method. The idea is to approximate f by a truncated polynomial series:

K
f(tv X, V, Z) ~ fK(tv X, V, Z) = Z fk(tv X, V)q>k(z)7 (2.14)
k=1
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where {®,(z)} are an orthonormal polynomial basis, which satisfies

/I (I)Z(Z)(I)] (Z)?T(Z)dz = 61]

If one uses polynomials of degree at most K in a d dimensional random space, then

the number of basis functions is K = (K}{Td). Substituting (2.14) into (2.12) and

conducting a standard Galerkin projection, one gets
atfk(t7X, V) +v- fok(t,x, V) = Qk(fK7 fK)7 (2153-)
fr(0,%,v) = fil(x,v), (2.15b)
K
Qu(f, %) = Z SiikQ(fi, f7)s (2.150)
ij=1
where
Sin = /I b(2)®;(2)®; (2)B1,(2)7 (z)dz. (2.16)

The boundary condition is given by

K
9k = Z/ (1—a(z))®k(2)®(z)n(2z)dzf;(t,x,v — 2(v - n)n)
j=1"1=

K
+3 Diy(x,v) / £t x, v, 2)|v - nldv, 2.17)
j=1

v-n<0

where

_ (2 - 0y o),
Due) = | o g T B s @19)

is a matrix that is time independent hence can be pre-computed.

This gPC-sG method works well for low dimensional random inputs, but for high
dimensional ones, it might require a very large number of basis functions (KX large) to
approximate f to a given accuracy. If one takes K basis functions in each dimension
of a d-dimensional random space, then a direct extension of the gPC-sG method will
require K = (K;{Td) basis functions, which is prohibitively expensive if both K; and
d are large. Furthermore, since the computation of ), typically requires O(K?) times
evaluation of the deterministic collision operator, one has to choose a relatively small
K in order to afford the computation. Also, [16] uses the singular value decomposi-
tion of a size K matrix as pre-computation for the collision operator, which reduces
the computational cost by one order of magnitude, but this pre-computation can be
prohibitively expensive if K is large. In the following sections we propose a stochas-
tic Galerkin method with sparse grid basis functions, which requires much fewer basis
functions for multi-dimensional random spaces.
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The Boltzmann Equation with Multi-Dimensional Random Inputs 471

3. A sparse approach with multi-wavelet basis functions

3.1. The sparse wavelet basis construction

For simplicity we restrict to the case I, = [-1,1]¢, and 7(z) = 2% is the uniform
distribution. We follow the notation by Guo and Cheng [15]. We start by constructing
a hierarchical decomposition of the space consisting of piecewise polynomials of degree
at most m. Let P (a,b) be the space of polynomials of degree at most m on the interval
(a,b), and for every N > 0,

Vir={¢: ¢ P"(-1+27 V" 1427V + 1)), j=0,1,---,2Y -1}, (3.1

Then define the wavelet space W', N = 1,2,--- as the orthogonal complement of
V-, inside V. For convenience we define W = V. Then one obtains the hierar-
chical decomposition

Vi = GEQSjSNW]-m.

Then a standard sparse trick can be applied. For simplicity we introduce the following
vector notations: If i = (i1, - ,i4),j = (j1, - ,Jq) then

iéjmeansz.l <J1cstd < Jd,
()= C) ()
1 11 1d
1,, is the vector with 1 at m-th component and 0 elsewhere,
il = max {Jiml}, fil = [ia] + -+ Jiah

Define the d-fold tensor product of V" by

N,Z — N721 X X V]szd (3.2)
Similarly define the d-fold tensor product of wir by

Wsz:Wm X oo X W (3.3)

J1,21 JdsZd”
Then
m m
VN2 = Q0<jlowsh Wiz

The sparse trick is to replace the (> norm on j by the /' norm. In this way we define
the sparse wavelet space

Vﬁ,z = Do<|jl, <N Wiz (3.4)

From now on we will omit the subscript z for these spaces.
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3.2. Construction of the basis functions

We adopt the basis functions of W™ constructed by Alpert [1]. The basis functions
of W™ are denoted by zﬁ]’.’f', m' = 0,1,---,m, 1 = 0,1,---,2771 — 1 for j > 1 and
[l =0forj=0. 1/16’?6 are the orthonormal Legendre polynomials of degree m’ on
[—1,1], and ¢{’}é are piecewise polynomials on [—1,0] and [0, 1] that are orthogonal to
those Legendre polynomials, which can be constructed by a procedure similar to the
Gram-Schmidt orthogonalization. Other q/);”’l' are defined by dilation and translation of

P:
wﬁ'(y) = 2(3’—1)/2¢T(’)(2j—1y +27t—1-2), j=2,3,---, 1=0,1,---,271 -1,

which has support on the interval [—1 + 22771, —1 + 2277 (1 + 1)].
The basis functions of W are tensor products of the one dimensional basis func-

tions:
() = g (21) X - x U7 (za),
0<|mee<m, 0<l<2071_1...0<lg<2e 1,
and the basis functions of \Afﬁ consist of all the above functions for 0 < |j|; < N. By
reordering the basis functions for V; we make them ®(z),--- , ®x(z), where
K = K(m,N,d)

is the total number of basis functions. It is proved in Lemma 2.3 of [29] that

K=0 ((m + 1)d2NNd—1> . (3.5)

4. Estimate of the sparsity of S;;;

Recall the triple product tensor S;;;, defined in (2.16). Due to the local support of
the sparse wavelet basis functions ®,, this tensor is sparse, especially when N and d
are large. Due to this sparsity, when one computes

K
Qv =Y SijQ(fis f)),
ij=1
one only needs to compute those Q(f;, f;) where there is at least one k with S;;;, # 0.
Now we prove some results on its sparsity. We focus on the dependence on N, so every
O(-) notation means multiplication by a constant that may depend on d.
Recall that when one takes the sparse wavelet space V', the basis functions are

ml

U (2) =90 (21) X x G (zg), 0 < [m|o <,
0<h <27 =1, 0<g <297 =1, [jh<N. (41
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The function zﬁ]’.”l/(z) is supported on the interval [—~1 + 2277], —1 + 227J(] + 1)] for
j > 1. Since this support is independent of m/, we omit the m’ index in the following
consideration. If ¢;1 ;1 and ;2 1> have non-intersecting supports, then

/ b(Z)iﬂlel (Z)T/Jj2712 (Z)¢j3’13 (Z)?T(Z)dz = O, VJg, 13.

z

Recall that the number of basis functions, in \A”]G, which includes those v;; with
ji <N and 0<l; <271 —1,... 0<]y<2at 1,
is
O((m + 1)%2N N1,
Thus the number of the pairs of such functions is O ((m + 1)?922V N24=2). Now we

state our result:

Theorem 4.1. The pairs of basis functions of \7% with intersecting supports have a total
number at most O ((m + 1)?422N Na+1),

Proof. The number of ¢, for a fixed j is (m + 1)2/~! for j > 1, and m + 1 if j = 0.
Thus it is less than or equal to (m + 1)2/ for all j. For fixed j',j2, suppose j' > j2,
then ¢;1 1 and ¢;2 ;> have intersecting supports if and only if the support of ¢;1 ;1 is
a subinterval of the support of ¢;2 ;2. For every I', there is one and only one such /2.
Thus the number of pairs {', 1% such that ¢;1 0 and ¢;2 2 have intersecting supports is

27", which is 2m2x{7".3*} in general. Thus the desired number is

S = (m + 1)2d Z 2max{j1,yf}+ +max{gd,yd} (4.2)
0<]jH1<N,0<32[1 <N

Let k! = max{j', j?}, where the maximum acts on each component of vectors. Similarly
let k> = min{j', j?}. Then

k' + K2y = |j' + 3% = i'h + 5%l < 2N,

and for each fixed k!, k?, there are at most 2¢ pairs of j!,j? satisfying the conditions
k! = max{j!,j?} and k? = min{j!, j*}. Thus

S <C(d)(m + 1)% > glklx

0<|k! |1+ k2|1 <2N

2N —k
k+d-—1 [+d—1
m+12dzzk<+ )Z@_l )

=0
2N
<C(d)(m+1)*NY "2k + 1)1 2N — k+ 1)
k=0
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The first equality is because there are (*%97") choices of k! with |k'|; = k, and similarly

for k2. The second inequality is because

<k+d—1> Ck+1k+2  k+d—1

. - d-1
d—1 1 2 g—1 Sk+DT

and taking the largest term in the [ summation.
Then by taking derivative with respect of k, it is easy to see that the previous sum-
mation is optimized at
kmax = 2N — O(d).

Thus
S <C(d)(m + 1)? N2 (ko + 1DTH2N — Epaxe + 1)1
<C(d)(m + 1)%422N Nd+1
which finishes the proof. O

Remark 4.1. When d > 4, one has 22V N2d-2 > 92N Nd+1 thys in this case the number
of Q(fi, f;) needed to be computed is much less than the total number of pairs of f;,
fj. And the bigger d is, the more saving one will gain.

Numerically, we observe this sparsity result even in the cases d = 2,3 (see, Section
6.1.3), and for a fixed d, the percentage of Q(f;, f;) needed to be computed decreases
exponentially as N increases, which is better than what one expects from the above
theorem (where the percentage is O(#)). This suggests that the above theorem is
not sharp.

5. Regularity and accuracy

In this section, we prove the regularity of the solution to the Boltzmann equation
in the random space, and the accuracy of the stochastic Galerkin method using sparse
wavelet basis. These are straightforward multi-dimensional extensions of the corre-
sponding results in [16]. We assume that the random collision kernel depends linearly
on z. This is a reasonable assumption because when one uses the Karhunen-Loeve
expansion to approximate a random field, the resulting dependence on z is linear.

We consider the spatially homogeneous Boltzmann equation

of

subject to random initial data and random collision kernel

f(0,v,z) = f°(v,z), B=B(v,v.,0,2z), z€l,.
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5.1. Regularity in the random space for the Boltzmann equation

We define the norms and operators:

Il = ([ Ievapay) "

1tV ) \\L2:</ftvz (2)d )/

1/2

k
H‘f(t; ) )H‘k = Sup Z |’a;f(t7v7z)”2L% )

z€l, 1]=0
= / / B(v,vy,0,2) [g(v')h(V)) — g(v)h(v.)] dodv.,
Rdv JSdv—1
Q1,j(g,h /Rdv /Sdu ) 02, B(v,vy,0,2) [g(v))h(V)) — g(v)h(v,)] dodv,.

We first state the following estimates of Q(g,h) and Qi ;(g,h), which are standard
results proved in [7, 18] and its extension to the uncertain case is straightforward:

Lemma 5.1. Assume the collision kernel B depends on z linearly, B and 0,B are locally
integrable and bounded in z. If g,h € L N L2, then

1Q(. Wl 3. 1Q15(0. Wl 5. < Cisllgly Iz, (5.22)
1Q(g, MLz, 1@ (g, Wz < Crllgllr 1Al rz, (5.2b)
where the constant Cp > 0 depends only on B and 0., B, j = 1,--- ,d.
Now we state our estimate on ||| f|||x.

Theorem 5.1. Assume that B satisfies the assumption in Lemma 5.1, and sup,c, || f°]/ 11 <
M, |||£°x < oo for some integer k > 0. Then there exists a constant Cj, > 0, dependlng
only on C, M, T, and ||| f°||s such that

A

IfIllx < Ck  forany t e [0,T]. (5.3)

The proof of the theorem is provided in the Appendix.

5.2. Accuracy analysis

In this subsection, we will prove the convergence rate of the stochastic Galerkin
method using the previously established regularity. As in Section 5.1, we will still
restrict to the spatially homogeneous equation (5.1).

We use the sparse wavelet space Vﬁ with parameters m, N. For this space, the
number of basis functions

K=0 ((m + 1)d2NNd—1> .
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Define the space H" (1) by

1f Fem (22
m; ir AT
= max Z Z [0z, - oL 0zt - sz RPAZITAY
0<my - ,mi, <m 0<m, - ,mj;, <1
where the maximum is taken over all non-empty subsets {ij,--- ,i,} C {1,---,d}, and
{j1,-* ,Ja—r} is the complement of {iy,--- ,i,}. Using the orthonormal basis {®y(z)},

the solution f to (5.1) can be represented as

f(t,v,z) ka t,v)®r(z), where fi(t,v)= [ f(t,v,2)Pk(z)m(z)dz. (5.4)
I,

Let Pk be the projection operator defined as

Prf(t,v,z) = katv<1>k

Then one has the following projection error estimate (in [26, Theorem 5.1]):

Lemma 5.2. For any f € H™"1(1,), N > 1, we have
1Pk f = fll2(ry < Clmy d)N 2NV Fllgmia ). (5.5)
This lemma implies that the projection error

1Pxcf = fllza,) < C(myd) K~ (log K) 2@V fllmin ). (5.6)

1/2
1t sz, (// F(t,v.2)2dvr(z >d) , 57

then we have the following:

Define the norms

Lemma 5.3. Assume z obeys the uniform distribution, i.e., z € I, = [~1,1]¢ and 7(z) =
1/2% If ||| £l gm+1) is bounded, then

Pk f — fllzz . < C(m,d)K =" (log K)m+2d=1), (5.8)

where C(m, d) is a constant depending on m and d.

Given the gPC approximation of f:

tvz

MN

k(t,x,v)Dy(2), (5.9)
k=1
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we now define the error function
K
eK(t> v, Z) = PKf(tv Vv, Z) - fK(tv Vv, Z) = Z ek(t7 V)q>k(z)7
k=1

where ¢, = fk — f%. Then we have

Theorem 5.2. Assume the random variable z and initial data f° satisfy the assumption
in Lemma 5.3, and the gPC approximation f% is uniformly bounded in K, then

1 = F¥llzs,, < €@ {Clm, d) K=" (10 )20 e (0)]| 5, }

The proof of Lemma 5.4 and Theorem 5.5 can be proved in the same way as Section
4.2 in Hu and Jin [16], in view of Lemma 5.3. We omit the details.

Remark 5.1. In general, wavelet bases are used for functions with low regularity. Here
we briefly explain the reason why we use them for smooth functions. For low dimen-
sional random spaces (d < 4), by choosing a large m (i.e., m > 2) one can obtain a
good accuracy order (almost (m + 1)-th order) with the wavelet basis. However, due to
the factor (m + 1)d in the number of basis functions K (see (3.5)), m cannot be large
for higher dimensional random spaces (d > 5). Thus for such random spaces one has
to sacrifice the accuracy order a little and take m = 0,1 in order to make the number
of basis functions K affordable.

6. Numerical results

In this section we give some numerical results of the stochastic Galerkin method
with sparse technique. We first demonstrate the efficiency of the sparse wavelet basis,
and then show its application to the Boltzmann equation with uncertainty.

The random space is taken as [0, 1]? with the uniform distribution. For the Boltz-
mann equation with uncertainty, the physical space is taken as [0, 1], and the velocity
space is truncated as [~ R,, R,]2. The physical space is discretized into N, grid points

1
xi:(i+§)Aaj, i=01,- Ny—1, 6.1)
where A, = N% The velocity space is discretized into N,, grid points in each dimension:
o1 1 .
vig= (= R+ (i+5)00, =R+ (j+3)A0), ij=01 No=1, (62)
where Av = 2R, /N,.
The flux term v - V4 f; in (2.15) is discretized by the second order upwind scheme

with the minmod slope limiter. The collision operator is computed by the fast spectral
method [21]. The time discretization is given by the second order Runge-Kutta scheme.
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6.1. The sparse wavelet basis
6.1.1. Number of basis functions

We first give a comparison of number of basis functions between our sparse wavelet
function space \7% and the tensor basis V%;. The result is shown in Table 1. It is
clear that the sparse technique saves a great number of basis functions, especially in
multi-dimensional random spaces.

6.1.2. Efficiency of the sparse wavelet function space

We give a comparison of the L? approximation error of \7% and V7. For each random
dimension d = 2, 3,4 we pick a smooth test function as follows:

1 1 1 - K(z)
10 =g (o) (R0 -1+ 1) 6
where
Kag=2(z) =1 —0.5(0.5 4+ 0.1sin(z1) + 0.1sin(223)), (6.4a)
Ka=3(z) =1 —0.5(0.5 + 0.1sin(z1) 4+ 0.1sin(222) + 0.1 cos(z3)), (6.4b)

Ka=4(z) =1 —0.5(0.5 + 0.1sin(z1) + 0.1sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)). (6.4c)

We use the function spaces \7% and V7Y with different m, N values to approximate
these functions, and compute their relative L? error |f — Pk f||z2/|f|l 12, where Pk is
the projection operator onto the corresponding function space. The result is shown in
Fig. 1. It can be seen that the sparse wavelet method performs much better than the
tensor method.

Table 1: Comparison of number of basis functions: m is the maximal degree of polynomials. d is the

dimension; in each cell, the left number is the number of basis of functions of V7; the right number is the
number of basis of functions of V.

@ m=0
N =3 N =4 N =5
d=1 8,8 16,16 32,32
d=2 20,64 48,256 112,1024
d=31| 38,512 104,4096 272,32768
d=4| 63,4096 | 192,65536 | 552,1048576
b)m=1
N=3 N =4 N =5
d=1 16,16 32,32 64,64
d=2 80,256 192,1024 448,4096
d =3 | 304,4096 | 832,32768 | 2176,262144
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Figure 1: Comparison of approximation error of both sparse basis and full tensor basis for d = 2,3,4. For
d = 4 we do not give the result by tensor basis because the number of basis functions is too large.

6.1.3. Sparsity of S;;.

We give a test of the sparsity of the tensor S;;;, as well as the number of Q(f;, f;)
needed to compute. We take a random collision kernel

b(z) =1+ 0.22.

For simplicity we only show the results with m = 0, since the sparsity of S;;;, with larger
m is similar. The result is shown in Fig. 2. One can clearly see an exponential decay
of the percentage of nonzeros in S;;;, as well as the percentage of Q(f;, f;) needed to
compute, as N or d increase. This is even better than what we have proved.

To further demonstrate the sparsity of S;;;, we give a graph of nonzero elements of
Sijk form = 0, N = 4, d = 3, shown in Fig. 3. The points in the first graph represent
nonzero elements in S;;,. The second graph is the projection of the first graph onto 1, j
coordinates, and the points in it represent those Q(f;, f;) needed to compute.
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Sparsity of S‘Ik, m=0 Saving of Q(f‘,fj) computation, m=0
T T

—e—d=2 10701 g2l
—e—d=3 —e—d=3
—o—d=4 —o—d=4

S,
L

percentage of nonzeros
percentage of Q(f,f) needed to compute

1002k

//

1003k

107040

Figure 3: Demonstration of sparsity of Si;x: m =0, N = 4, d = 3. Left: blue points represent non-zeros
terms of Sijx. Right: blue points represent a pair (4, j) with S;;x # 0 for some k.

6.2. Application to the Boltzmann equation with uncertainty
In this subsection, the velocity space is assumed to be two-dimensional and its

discretization is always given by N, = 32. The time discretization is given by 0.8 times
the CFL condition for spatial inhomogeneous problems.

6.2.1. Accuracy of the approximation of the collision operator

We first check the accuracy of the collision operator Q(f, f) computed by the sparse
stochastic Galerkin method. The function f is given by the Bobylev-Krook-Wu [6,17]
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Figure 4: Accuracy of the approximation of the collision operator for d = 2,3, 4.

solution with uncertainty:

1 [v|® 1-K(2) »
f(V,Z) = W exp <— 2]C(Z)> <2IC(Z) -1+ T(Z)V ) R (65)
where
Ki=2(z) =1 —0.5(0.5 4+ 0.1sin(z1) 4 0.1sin(2z22)), (6.6a)
Ka=3(z) =1 —0.5(0.5 + 0.1sin(z1) 4+ 0.1sin(22z2) + 0.1 cos(z3)), (6.6b)
Ka=4(z) =1 —0.5(0.5 + 0.1sin(2z1) + 0.1sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)). (6.6¢)

For this f, Q(f, f) with collision kernel B = % is given explicitly by

Q.0 = (- + 50 ) §

The numerical solution is given by

K

K
QU N)(v,2) = > Qr(v)Pi(z), where Qx(v) =D SirQ(fi, f;)(v).

k=0 i,j=0

We compare the relative L? error for d = 2,3, 4 and sparse basis \7% with different m,
N. The result is shown in Fig. 4. One can clearly see the error is a little worse than
O(K~(m+1) and it becomes a little worse as d increases. This is caused by the log K
factor in the error estimate.
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6.2.2. The homogeneous Boltzmann equation with uncertainty on the collision
kernel

We solve the homogeneous Boltzmann equation with deterministic initial data and a
random collision kernel. We take the dimension of the random space d = 2, 3, and the
collision kernels are

b(z) =1+ 0.2z + 0.129, d=2, (6.8a)
b(z) =1+0.221 +0.129 + 0.0723, d=3. (6.8b)
The initial data is the BKW solution
1 v|?
folv.2) = L exp(-1v) ¥ ©9)
and the exact solution is given by
1 |v|? 1-K,
flt,v,z) = 512 OXP (—%> (2/C -1+ K vl©), (6.10)
with
K(t,z) =1 — exp(—b(2z)t/8)/2. (6.11)

We solve this equation by the sparse sG method with m = 0, time step At = 0.01 and
final time ¢t = 1, and check the relative L? error with the exact solution. The result is
shown in Fig. 5. The phenomenon is similar to the previous accuracy test.

6.2.3. The Boltzmann equation with random initial data

We test our method on the (inhomogeneous) Boltzmann equation with uncertainty.
The random space is 4-dimensional. We take the z-domain to be [0, 1] with the periodic

aa
T
@ N

relative L2 error
3

.
10 10° 10
number of basis

Figure 5: The homogeneous Boltzmann equation with a random collision kernel: accuracy result. m = 0,
At=0.01, t=1.
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boundary condition. We use the following random initial data to mimic the Karhunen-
Loeve expansion

1
Po=3 (2 + sin(27x) + sin(4nz)z1 /2 + sin(67x)z2 /4

+sin(8mx)z3/6 + sin(107wx) 24 /7) ,
ug = (0.2, 0),
1
Ty = 1 (3 + cos(2mx) + cos(4mx)z1 /2 + cos(6mx) 2z /4 (6.12)

+ cos(8mx)z3/6 + cos(10mx) 24 /7) ,

fo o exp<_w>+exp<_w>
[T 4T 27T, 2T, '

The z-domain is discretized into N, = 50 mesh points, and we compare the solution
by the sparse stochastic Galerkin method with m = 0, N = 3 and a stochastic collo-
cation method with full tensor basis in random space at time ¢ = 0.1. The collocation
method is implemented by solving the deterministic problem at points of the form
z = (z1,--- ,2zq) Where each z; is one of the M, = 8 Gauss-Legendre quadrature points
(thus one needs to solve M j deterministic problems). And then the mean and standard
deviation are computed by numerical quadrature. The comparison result is shown in
Fig. 6. We see the results by the two methods agree well.

6.2.4. The Boltzmann equation with randomness on initial data, boundary data,
and collision kernel

We finally solve the inhomogeneous Boltzmann equation with uncertainty on initial
data, boundary data, and collision kernel. The random domain is taken to be 6-
dimensional. We take the initial data to be the equilibrium with

p(x,z) =1, u(z,z) =0, (6.13a)
T =1+0.5(1+0.225) exp(—100(1 + 0.1z3)(z — 0.4 — 0.0121)?), (6.13b)
and the boundary data is given by the Maxwellian boundary condition with random

parameters
T,=1+02z, o=05+0.325. (6.14)

The collision kernel is given by
b(z) =1+ 0.22. (6.15)

The spatial discretization is given by N, = 100 to better capture the details near the
boundary. We compare the result by the stochastic Galerkin method with sparse tech-
nique with the stochastic collocation method with full grid at time ¢ = 0.04. The
Galerkin method has parameters m = 0, N = 3, and the collocation method is as
described in the previous numerical result with M, = 4 collocation points in each di-
mension. The result is shown in Fig. 7. One can see that the two results agree well.
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Figure 6: The Boltzmann equation with random initial data. N, = 50, ¢ = 0.1. Curve: collocation with
M, = 8; asterisks: Galerkin with m = 0, N = 3. Left column: mean of density, first component of bulk
velocity, and temperature. Right column: standard deviation of density, first component of bulk velocity,
and temperature.

7. Conclusions

In this paper we developed a sparse wavelets based stochastic Galerkin method
for the Boltzmann equation with uncertainty. The uncertainty could come from initial
data, boundary data, and collision kernel. This method enables us to quantify the
uncertainty from multi-dimensional random inputs, which is previously infeasible using
the global gPC basis. We proved and numerically demonstrated the sparsity of the basis
related coefficient, S;;;, which allows us to dramatically accelerate the computation
of the collision operator under the Galerkin projection. Regularity of the solution of
the Boltzmann equation in the random space and an accuracy result of the stochastic
Galerkin method are proved.

Many related problems are still open, for example, asymptotic-preserving
schemes [10] for the Boltzmann equation with uncertainty, adaptive mesh techniques
to capture discontinuities in the random space, quantification of nonlinear uncertain-
ties on the collision kernel, etc.
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Figure 7: The Boltzmann equation with randomness on initial data, boundary data, and collision kernel
(d =6). N =100, ¢ = 0.04. Curve: collocation with M, = 4; asterisks: Galerkin with m = 0, N = 3.
Left column: mean of density, first component of bulk velocity, and temperature. Right column: standard
deviation of density, first component of bulk velocity, and temperature.

Appendix: Proof of Theorem 5.2

Proof. First, from the conservation property of Q, one has

£t 2l = 17°C, 2|y < M.

Then we use mathematical induction on k. For k& = 0, multiplying (5.1) by f and
integrating on v, by the Cauchy-Schwarz inequality and (5.2a), one obtains

1
300 [ Pav= [ QU5 av < Il U Nl
<Collfluy I35 < CuMIlfl%,

Now Gronwall’s inequality implies that there is a positive constant Cj such that (5.3)
is true for k£ = 0.
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Now for some £ > 0 assume (5.3) holds. Take any multi-index j with |j|; = k£ + 1.
Taking j-th derivative of z on (5.1) gives

J . j=1m .
a0if =3 G)Q(a; )+ Zym T ( )le@ﬂf “nlp) A
1=0

1=0

where we used the bilinearity of the collision operator and the assumption that B is
linear in z. )
Multiplying (A.1) by 8. f and integrating over v yields

18t / (@ f)*dv
2 ]Rd
J

S CHPECIR S

.] 1m N
+ me Z < )Hajfumuczlm@‘f o) s
m=1

<> (1) csloblia ok 110k i

1=0

j—1m ,.
o > () cutoisluglobslugloy e
m=1

<coctliifly Y- (3)+2cacololriz;

0<1<j,1#0,j
A
onCRlolfl > Y (1)
m=1 1=0

=@~ 2) OO |z + 20 CollOhf I3, + 2 (k + )CBCEIA S |- (A2)

In the first inequality we used the Cauchy-Schwarz inequality, and in the second in-
equality we used (5.2b). In the third inequality the induction assumption is used for
the second sum, since the indexes 1 and j — 1,,, — 1 appeared there have order less
than or equal to k. Every term in the first sum can be treated similarly except terms
corresponding to the cases of 1 = 0 and 1 = j, which are treated separately. In the final
equality, we used the identity

L

> (f) =1+ 1)t =2"

=0

Then we apply Gronwall’s inequality to (A.2) and get the control

1/2
sup (A4t v,2)3,) " < Cern,

zCly,
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with a positive constant C;. Sum over all j with [j|; = k& + 1 we get (5.3) for k£ + 1.
This completes the mathematical induction and the proof. O
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