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Disease models have provided conflicting evidence as to whether
spatial heterogeneity promotes or impedes pathogen persistence.
Moreover, there has been limited theoretical investigation into how
animal movement behavior interacts with the spatial organization
of resources (e.g., clustered, random, uniform) across a landscape to
affect infectious disease dynamics. Importantly, spatial heterogene-
ity of resources can sometimes lead to nonlinear or counterintuitive
outcomes depending on the host and pathogen system. There is a
clear need to develop a general theoretical framework that could be
used to create testable predictions for specific host-pathogen sys-
tems. Here, we develop an individual-based model integrated with
movement ecology approaches to investigate how host movement
behaviors interact with landscape heterogeneity (in the form of
various levels of resource abundance and clustering) to affect path-
ogen dynamics. For most of the parameter space, our results support
the counterintuitive idea that fragmentation promotes pathogen
persistence, but this finding was largely dependent on perceptual
range of the host, conspecific density, and recovery rate. For simula-
tions with high conspecific density, slower recovery rates, and larger
perceptual ranges, more complex disease dynamics emerged, and
the most fragmented landscapes were not necessarily the most con-
ducive to outbreaks or pathogen persistence. These results point to
the importance of interactions between landscape structure, individ-
ual movement behavior, and pathogen transmission for predicting
and understanding disease dynamics.

spatial heterogeneity | landscape fragmentation | disease model |
resource selection function | perceptual range

Spatial heterogeneity—differences occurring across a geographic
landscape—may arise from intrinsic differences between loca-
tions (e.g., resource abundance, quality, connectivity) or can emerge
from stochastic or dynamic processes within populations (e.g., de-
mographics, conspecific density) (1). The majority of disease models
that incorporate spatial heterogeneity have focused primarily on a
few well-studied wildlife systems (e.g., rabies and bovine tubercu-
losis [bTB]) or have been conducted in a purely theoretical context
(2). Theoretical and simulation studies have provided evidence both
for and against spatial heterogeneity promoting pathogen persis-
tence (3-5), and the relative importance of local and long-distance
processes is often unknown, except for in some well-studied dis-
eases like rabies (2). Importantly, spatial heterogeneity may lead
to nonlinear or counterintuitive outcomes depending on the host
and pathogen system (4, 5).

Foraging, migration, and dispersal play an important role in
creating spatial heterogeneity (6). Host movement and dispersal
patterns can vary considerably (7), and infection with parasites can
further alter those patterns (8). Both perceptual range (how far an
individual can perceive habitat to be able to make movement
choices) and movement capacity (the ability and efficiency with
which an individual can move) can affect the realized connectivity
of habitat patches in heterogeneous landscapes (9). While some
models have explored the sensitivity of disease dynamics to dis-
persal and migration rates (2), few studies compare the effects of
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different movement rules over a spatially explicit landscape on
pathogen transmission (5, 10). Moreover, disease models with mech-
anistic representations of animal movement remain rare (11).

In the realm of movement ecology, resource selection functions
(RSFs) models have fostered a better understanding of how or-
ganisms navigate their surroundings (2, 12). While several studies
have utilized RSFs to estimate interspecies contact risk, RSFs are
not commonly used to infer transmission events (2). Moreover,
cues, such as conspecific density, can also be important drivers of
individual movement decisions but are rarely utilized when mod-
eling habitat selection (13). In addition, it is difficult to validate
movement model predictions in the context of pathogen trans-
mission, because overlapping movement and pathogen trans-
mission datasets are still uncommon (12). Many existing spatial
disease models that explicitly incorporate individual movement
rely on random or correlated random walks (5, 11). While adequate
for some species at specific temporal scales, these approaches do
not necessarily capture an individual’s response to its immediate
surroundings or its memory that might favor revisitation or avoid-
ance of previous sites (14, 15).

Overall, we lack a mechanistic understanding of how host
movement and habitat preferences across heterogeneous land-
scapes affect pathogen dynamics. Here, we asked the following
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Fig. 1. Random forest regression analysis results describing variable impor-
tance for (A) outbreak success (did the pathogen spread beyond the initially
infected individual?), (B) maximum prevalence given outbreak success, and (C)
outbreak duration given outbreak success. Parameter descriptions are provided
in Table 1. Bar charts display an unscaled mean decrease in accuracy for pa-
rameters; higher values for mean decrease in accuracy correspond to parameters
with higher predictive ability. Error bars reflect SD of mean decrease in accuracy.
The randomForest package in R (with 10,000 trees) was used for this analysis.
While included in the random forest analysis, transmission rate (5) received a
variable importance score of zero for all three metrics (as would be expected,
since it did not vary in the factorial design) and is not depicted in Fig. 1.

question: how does individual movement behavior, governed by
perceptual range and individual selection for resource availability
and conspecific density, interact with spatial heterogeneity (via re-
source availability and clustering) to affect infectious disease dy-
namics? Specifically, we examined outbreak behavior through two
questions: (/) Which epidemiological, movement, or landscape
factors led to a successful outbreak (defined as spreading beyond
the initially infected individual)? (i) Given at least one secondary
case, which factors best predicted maximum prevalence and dura-
tion? We developed an individual-based susceptible-infected—
recovered (SIR) model for a theoretical host—pathogen system
where an RSF governed host movement choices and pathogens
were directly transmitted, assuming a density-dependent transmis-
sion function. We varied both landscape structure and movement
parameters, and we quantified disease dynamics by the maximum
prevalence and the duration of the outbreak. In addition, we
compared our spatially explicit model output to a comparable SIR
model that assumes homogeneous mixing. We propose a general
theoretical framework to generate testable predictions for specific
host—pathogen systems existing on complex landscapes.

Results

Which Factors Determine Whether an Outbreak Is Successful? The
outbreak data are heavily skewed—most initial pathogen intro-
ductions never transmitted successfully to a second individual.
Based on random forest analysis, recovery rate (y) had the largest
effect on whether there were any secondary cases beyond the
initially infected individual (Fig. 14). While conspecific density (d)
was the next most influential parameter, it had less than one-
fourth of the mean decrease in accuracy of recovery rate, sug-
gesting that pathogen infectious period (1/y) played an outsized
role in determining whether an outbreak resulted in secondary
cases (Fig. 14 and SI Appendix, Fig. S14).

Given Secondary Cases, Which Parameters Most Influence Maximum
Prevalence and Duration? If an outbreak spread successfully be-
yond the initially infected individual, the interaction of recovery
rate, perceptual range, and conspecific density had strong effects
on both maximum prevalence and duration for the simulations
(Fig. 2). This finding was supported by the random forest anal-
ysis, which identified recovery rate, perceptual range, and con-
specific density as the top three parameters in predictive value
for both maximum prevalence and duration (Fig. 1 B and C and
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SI Appendix, Fig. S1 B and C). Overall, simulations with faster
recovery rates (y =0.4), lower conspecific densities (d = 0.25), and
smaller perceptual ranges ( = 1, 2) had fewer successful outbreaks,
and outbreaks that were successful reached fewer individuals and
were shorter in duration (Fig. 2 and SI Appendix, Fig. S2).

Beyond these top three influential parameters, the order of
variable importance as identified by random forest analysis differed
for maximum prevalence and duration. For maximum prevalence,
selection for resources (f;) and proportion of available habitat (p)
outweighed strength of selection for conspecifics (f, and ;) and
degree of patchiness (H) (Fig. 1B and SI Appendix, Fig. S1B). In
contrast, for mean duration, the strength of selection for conspe-
cifics (f, and f;) outweighed strength of selection for resources
(1) and landscape structure (p and H) (Fig. 1C and SI Appendix,
Fig. S1C).

Effects of Landscape Structure and Individual Movement Behavior.
When holding the influential parameters of recovery rate, per-
ceptual range, and conspecific density constant, interactions
between landscape structure and individual movement behavior
emerged. For simulations with lower conspecific density (d =
0.25) and faster recovery rates (y=0.4), epidemics were rarely
successful (ST Appendix, Fig. S3 E and F). For simulations with
lower conspecific density (d = 0.25) and slower recovery rates
(y=0.1 and 0.2), more fragmented landscapes (H <0.5) with
lower resource availability (p <0.5) exhibited larger outbreak size
and lasted longer for more RSF combinations (SI Appendix, Fig.
S3 A-D); this same pattern was observed for systems with both
higher conspecific density (¢ = 0.50) and faster recovery rates
(y=0.2,0.4) (SI Appendix, Fig. S4 C-F). In general, positive se-
lection for resources (#; =3, 6) led to higher outbreak peaks and
longer-lasting outbreaks compared with random selection for
habitat ($; =0) (Fig. 3 and SI Appendix, Fig. S5). However, for
simulations with higher conspecific densities (d = 0.5), slower re-
covery rates (y=0.1), and higher perceptual ranges (r = 3), we
observed more complex dynamics (Fig. 3 and SI Appendix, Figs. S4
A and B and S6) where RSFs interacted with landscape structure
to determine epidemic dynamics (Fig. 4).
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Fig. 2. Effects of recovery rate (x axis) on (A) maximum prevalence and (B)
duration for successful outbreaks (number of secondary cases greater than
or equal to one) across different conspecific densities (columns) and per-
ceptual ranges (rows). These plots are combined for all RSFs and for all
landscape structures. These outcomes for individual RSFs can be observed in
SI Appendix, Fig. S2.
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Fig. 3. Box plots of (A) maximum prevalence and (B) duration for a subset of the simulations where y = 0.1, d = 0.5, and r = 3. Columns correspond to Hurst
exponent (H; lower values correspond to higher clustering), and rows correspond to proportion available habitat (p). Dashed lines represent separate regimes

of random, medium, or strong selection for resources (3;).

For the parameter space exhibiting a higher proportion of
successful outbreaks across RSFs (r = 3, y = 0.1, d = 0.5),
maximum prevalence was higher across more RSFs for more
clustered habitat (H = 0.1) with lower resource availability (p =
0.25) (Fig. 34). However, this did not necessarily correlate with
duration. While outbreaks lasted longer on average for more
RSFs in fragmented landscapes (H = 0.1 and p = 0.25), out-
breaks lasted longer at intermediate clustering (H = 0.5) for
certain RSFs (Figs. 3B and 4B). Overall, when hosts exhibited strong
positive selection for both conspecifics (f, =3,6 and §, =1,2) and
resources, disease outbreaks had the largest variation in duration
for patchy landscapes (H = 0.1) with an intermediate proportion
of available habitat (p = 0.5) (Fig. 3B). However, regardless of
landscape structure, stronger selection for the presence of other
conspecifics (e.g., #, =2) reliably increased the observed duration
of outbreaks (Fig. 3B). This threshold behavior for selection for
conspecifics—where selection for conspecifics supersedes land-
scape structure—was not observed for landscapes with lower
conspecific densities and faster recovery rates (SI Appendix, Figs.
S3 and S5).

White et al.

How Do These Results Compare with Models that Assume Homogenous
Mixing? Compared with the spatially explicit movement model
described here, the equivalent homogenous mixing model with
density-dependent transmission consistently overestimated the
maximum prevalence reached for both conspecific densities and
all three simulated recovery rates (SI Appendix, Fig. S74). In
particular, for the higher perceptual range (r = 3), slowest recovery
rate (y=0.1), and higher conspecific density treatment (d = 0.5),
the homogeneous mixing model did not capture the skewed na-
ture of observed epidemics’ duration (S Appendix, Fig. STB).

Discussion

We were expecting landscape structure to have a substantial im-
pact on simulated disease dynamics. While this was true to some
extent, two of the top three covariates in variable importance as
determined by random forest analysis (i.e., recovery rate and
conspecific density) had nothing to do with landscape structure
per se. However, perceptual range played a key role in deter-
mining maximum prevalence and duration of outbreaks (Fig. 1 B
and C), and perceptual range functionally defines the landscape
that an individual host perceives. Other modeling studies have
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Fig. 4. Box plots of (A) maximum prevalence and (B) duration for three RSFs
when recovery rate (y) = 0.1, conspecific density (d) = 0.5, and perceptual
range (r) = 3. The RSFs (rows: 3, 5, ff3) correspond to three biological sce-
narios: (i) positive selection for resources (51 = 3, > = 0, 3 = 0), (ii) positive
selection for resources with conspecific avoidance (8, = 3, f =0, 3 = 1),
and (iii) positive selection for resources with conspecific attraction (5, = 3,
B2 = 2, p3 = —0.5) (S| Appendix, Fig. S8). Landscape structure abbreviations
take the form of proportion available habitat (p)/patchiness (Hurst expo-
nent, H): H, high proportion available habitat; HP, high patchiness; L, low;
LP, low patchiness; M, medium; MP, medium patchiness.

verified the potential importance of perceptual range in deter-
mining landscape connectivity (16), and our results emphasize the
concomitant implications for pathogen spread and persistence.
This suggests that the incorporation of plastic perceptual ranges
may also be important for future disease models (17).

When holding these top three influential parameters (recovery
rate, conspecific density, and perceptual range) constant, frag-
mentation promoted pathogen outbreaks and persistence for most
of the explored parameter space, particularly for simulations with
combinations of (i) lower conspecific densities and slower recovery
rates (ST Appendix, Fig. S3 A-D) or (ii) higher conspecific densities
and faster recovery rates (SI Appendix, Fig. S4 C-F). However, this
pattern was highly dependent on hosts being able to perceive more
of their habitat to be able to make movement decisions (e.g., a
larger perceptual range) (SI Appendix, Figs. S3 and S4). Positive
selection for resources was also necessary to elicit differences in
pathogen spread in response to landscape structure, particularly at
faster recover rates (Fig. 3 and SI Appendix, Fig. S5). In an applied
setting, these results highlight the potential role of resource hot-
spots and resource provisioning in altering not only animal move-
ment patterns but also, subsequent pathogen transmission (18).
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Resource hotspots can occur naturally (e.g., carcasses acting as
landscape hotspots for transmission of rabies in jackals) (19) or
artificially through human supplementation [e.g., Mycoplasma gal-
lisepticum transmission at bird feeders (20) or brucellosis trans-
mission from supplemental feeding of elk in Yellowstone National
Park (21)]. While such selection could apply to foraging choices, it
could also apply to selection for burrows or dens. For example, in
desert tortoises (Gopherus agassizii ), contacts primarily occurring in
underground burrows are thought to drive transmission of Myco-
plasma agassizii (22).

At higher perceptual range (r = 3), slower recovery rates
(y=0.1), and higher conspecific densities (d = 0.5), we captured
more nuanced and complex behavior that resulted from interac-
tions between landscape structure, movement behavior, and re-
covery rate (Figs. 3 and 4). Notably, a comparable homogenous-
mixing, density-dependent SIR model did not capture the skewed
distribution of epidemic duration found for simulations in this
parameter space (SI Appendix, Fig. S7TB). Outbreaks reaching the
most individuals generally occurred in more fragmented land-
scapes (H=0.1,p=0.1) (Fig. 34), but outbreaks in patchy/me-
dium proportion habitat landscapes (H = 0.1, p =0.5) lasted longer
for some RSFs and exhibited more variation in observed duration
(Figs. 3B and 4B and SI Appendix, Fig. S6F). Also, threshold be-
havior was exhibited for selection for conspecifics in this param-
eter space; very strong selection for conspecifics (4, = 2) promoted
longer-lasting outbreaks with higher maximum prevalence regard-
less of landscape structure (Fig. 3). This was interesting, because
relatively small differences in RSF values resulted in substan-
tially different disease dynamics (SI Appendix, Fig. S8). For such
regimes, we suggest that it may be important to model individual
responses to landscape structure to better capture the dynamics
of a given disease.

The model presented here best describes direct transmission
of a single infectious agent (or limited indirect transmission as
defined by aerosolized transmission or limited fomite persistence
relative to movement time steps) within a single host species ex-
periencing density-dependent transmission. Thus, these results are
applicable to host—pathogen systems that have previously been
favored in a spatial modeling context, including rabies and bTB (2,
12). For example, a recent model of raccoon rabies found that
inadequate levels of vaccination in continuous, poor-quality hab-
itat could prove counterproductive, leading to outbreaks (4). Our
findings are also relevant to emerging pathogens ranging from
Ebola or respiratory viruses among primate species to bat-to-bat
transmission of Hendra virus (23, 24). For example, a recent
spatially structured model for Hendra virus in fruit bats found that
habitat loss led to congregation in urban roosting sites and re-
duced migration, which could aid in disease persistence and in
spillover to humans (24). Since conspecific density played a key
role in determining the relationship between outbreak success and
fragmentation, this work might be particularly relevant to wildlife
populations where host densities vary widely through time [e.g.,
Moepia virus or Hantavirus in rodents, where direct transmission
via agonistic interactions is known to be important (25, 26)].

We recognize that many host—pathogen systems experience
more complex transmission cycles than represented by this model;
we would expect dynamics to differ with the incorporation of
demographic processes (births and deaths), disease-related mor-
tality from a more lethal pathogen (e.g., rabies), a substantial in-
cubation period, or chronic infection (e.g., bTB). While this work
does not explicitly address the potential effects of pathogen
coinfection (27), multihost pathogens [e.g., canine distemper virus
(28)], indirect transmission or environmental persistence [e.g.,
chronic wasting disease (29)], or vector foraging behavior [e.g.,
Lyme disease (30)], the results of this research could easily be
extended to more biologically complex systems.

Future studies could build in additional landscape complexity
or focus on more realistic mechanisms governing movement

White et al.
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choices. For instance, we modeled pathogen transmission across
theoretical binary landscapes. Realistically, movement choices
are influenced by a variety of landscape covariates, not just
presence or absence of resources (31). Similarly, we considered
each cell in the landscape to be equally permeable—other than
relative distance from the host, there was no cost to traversing
bad-quality habitat relative to good-quality habitat. In addition,
we did not model depletion of resources explicitly but rather,
through reaction of individuals to other conspecifics (5, and ;).
This helped us limit the number of assumptions built into the
model, but it certainly simplifies the proximate mechanisms of
foraging behavior (32). Finally, for a given simulation, all indi-
viduals responded the same way to the presence of resources
and conspecifics. We note that, for many systems, there will be
individual variability in foraging and social behavior, and
these differences may merit further consideration for some
host—pathogen systems (33). For instance, a recent study of
raccoons and contact risk for rabies determined that a subset
of individuals was responsible for the majority of risky con-
tacts, despite all individuals following the same movement
rules (34). Finally, we ignored the fact that animal movement
behavior can change with infection (8).

A recent systematic review investigating the relationship be-
tween pathogen transmission and anthropogenic land use change
found that a majority of studies linked anthropogenic change
with higher transmission risk (35). Overall, our work has im-
portant implications for how pathogens spread across frag-
mented and human-influenced landscapes and supports other
modeling studies that have suggested that fragmentation can
have nonlinear effects on pathogen persistence in specific host—
pathogens systems (4, 5, 36) and that spatial hotspots of trans-
mission can emerge from limited high-quality resource sites (36—
38). This work provides a theoretical mechanistic framework that
can be expanded to specific host—pathogen systems to provide
testable hypotheses about the influence of landscape structure
and movement behavior on disease dynamics, thus providing a
critical bridge between the disciplines of movement and disease
ecology (2, 11, 12). We hope that this model inspires additional
consideration of how landscape structure may influence disease
dynamics and foster investigation of these questions in specific
host—pathogen systems and applied management settings.

Methods

We developed a stochastic, individual-based SIR model for a nonlethal
pathogen in a closed population (i.e., no births, deaths, immigration, or
emigration). Individuals could move across a spatially explicit, discrete lattice
landscape, where resource presence or absence was variable in space (S/
Appendix, Fig. S9). Using the midpoint displacement algorithm, we gener-
ated theoretical binary neutral landscapes that varied in the proportion of
available habitat (p) and the degree of habitat clumping (Hurst exponent, H)

(39). We assumed a torus shape (i.e., wrapped boundaries) for these land-
scapes to avoid edge effects (40).

An RSF and a 2D movement kernel modulated individual movement
choices across these theoretical landscapes. For a habitat of k=1, ...,m
discrete grid cells, the probability of an individual moving from current lo-
cation, a, to new location, b, over a fixed temporal time step is
P(a to b)=¢(a, b)wp/> i, [#(a, k)W), where ¢(-) is a 2D movement kernel
in the absence of habitat selection, ¢k represents the center point of each
grid cell, and wj, and wy are RSFs governing an individual's movement
preferences for cells b and k, respectively. Generally, an RSF for any given cell
j takes the form wj=exp(f;-Rj+p, - N;+p; -NI-Z). The parameters R; and N;
correspond to the resource quality and number of conspecifics, respectively,
in cell j. The coefficients g, #,, and p3 govern the strength of selection that
resource quality and the number of conspecifics play in habitat choice (31).
In particular, because conspecific density changes through time across a
static resource landscape, the inclusion of the quadratic term g5 allows us to
test three biologically feasible scenarios in response to the presence of
conspecifics: (i) individuals avoid conspecifics, (ii) individuals are attracted to
conspecifics (signaling good-quality habitat) until there are tradeoffs with
resource depletion, and (iii) individuals make movement choices irrespective
of conspecifics (more on how we calibrated values for the RSF is in S/ Ap-
pendix). We began by assuming a Moore neighborhood (eight neighboring
cells) but subsequently tested the effects of larger continuous perception
and relocation kernels (Table 1). We assumed the simplest case, where the
movement kernel is inversely proportional to radial distance from the center
point of the current grid cell and acts in the absence of resource availability:
$(r)=1/27r2, where r=1/(Xa —x¢.)> + (Va — Yo, )>-

The equation gives an inverse distance weight (i.e., 1/r) that is multiplied
by the circumference at that distance to account for a uniform circular
distribution (i.e., 1/2xr).

We conducted 100 replications per parameter set, and we used a factorial
design to explore the relative effects of recovery rate, conspecific density,
landscape structure, RSFs, and perceptual range on disease dynamics (Table 1
and S/ Appendix, Fig. S9). We calibrated the transmission probability (5) to
be able to test reasonable values of the basic reproductive rate Ro(for an SIR
model, Ry ~ /7). Under that framework, we tested values of Ry ~0.5, 1, and 2
in our simulations (Table 1 and S/ Appendix, SI Text).

Each simulation began with a single infectious individual and continued until
there were no remaining infectious individuals on the landscape. At each time
step, every individual in the simulation had the opportunity to evaluate the
surrounding environment and move to a cell within the perceptual range. After
all individuals had been given the opportunity to relocate, the possibility of
transmission was evaluated; we assumed that transmission could occur only
between individuals of the same cell during the same time step. The proba-
bility of a susceptible individual becoming infected was represented by
P(T)=1-(1-p)", where  is the transmission rate and / is the number of in-
fectious individuals in the same cell. After potential transmission events, in-
fected individuals could also recover with a probability, y, at each time step. This
corresponded to an average infectious period of the pathogen of 1/y (Table 1).

We compared the spatially explicit model results with a simpler stochastic
SIR model that assumes density-dependent transmission and homogeneous
mixing. This was simulated with a Reed Frost model, in which cumulative
probability of transmission during at time step, 7, is equal to P, =1—(1-p)",

Table 1. Factorial design of 2,916 parameter combinations encompassing epidemiology, movement behavior, and landscape structure
Parameter Levels Values
Conspecific density (d; individuals Low, medium 0.25, 0.5

per unit area of simulated landscape)
Transmission rate (f) Constant 0.2

Recovery rate (y); conversely,
infectious period (1/y)
Proportion of available habitat (p)
Clustering of habitat (H)
Strength of selection for resources (5;)
Strength of selection for
conspecifics (55, f3)
Perceptual range (r)

Slow, medium, fast; long, medium,
short infectious periods

Low, medium, high

Low, medium, high

None (random), low, high

None (random), avoidance, attraction

Low, medium, high

0.1, 0.2, 0.4 time™";
10, 5, 2.5 time steps
0.25, 0.50, 0.75
0.1, 0.5, 0.9
0,36
(0, 0), (0, -1), (1, =1), (1, -0.5),
(2, -1), (2, -0.5)
1,2, 3

We conducted 100 simulations per parameter set. More information on how the RSF parameters (j,,,,33) were calibrated and how these values

correspond to movement choices is in S/ Appendix, SI Text.

White et al.

PNAS Latest Articles | 5 of 6

ECOLOGY



where g equals the per contact transmission risk and /, equals the number of
infectious individuals at time step 7. The number of infected individuals at
the next time step is then given by /. =Binomial(S;, P;). Unlike for the spa-
tially explicit simulations, this probability was evaluated for the entire
population, not just a single cell in the landscape. The results from this
simple stochastic simulation were verified with the output from comparable
deterministic ordinary differential equations (S/ Appendix, SI Text).

Finally, we used random forest analysis—a machine learning method—to
tease apart the relative contributions of parameters to outbreak outcomes. As
a recursive partitioning method, random forest analysis fits a single predictive
model by synthesizing the predictions from numerous classification or re-
gression trees (41, 42). The random forest approach has several advantages for
ecological data; most notably, this approach can handle complicated, non-
linear, and potentially collinear relationships between predictor variables (41,
42). This approach also avoids some of the pitfalls of using a frequentist ap-
proach to analyze simulation results, since sample size in simulation studies is
arbitrary and can result in significant P values regardless of effect size (43).
Other disease model studies have used this approach to better understand
complex data with multiple predictors (44, 45).

Variable importance measures from random forest analysis describe the
relative role that a covariate plays in deciding model outcomes (42). We used the
randomForest package in R (46) to calculate variable importance scores so that
we could understand what factors affected three separate response variables:
(i) outbreak success (did the pathogen spread beyond the initially infected in-
dividual?); given successful transmission, (i/) maximum prevalence and (iii) du-
ration of the outbreak. For covariates, we included conspecific density,
transmission rate, recovery rate, landscape structure (p and H), individual

. Keeling M, Rohani P (2008) Modeling Infectious Diseases in Humans and Animals
(Princeton Univ Press, Princeton).

. White LA, Forester JD, Craft ME (2018) Dynamic, spatial models of parasite trans-
mission in wildlife: Their structure, applications and remaining challenges. J Anim Ecol
87:559-580.

3. Hagenaars TJ, Donnelly CA, Ferguson NM (2004) Spatial heterogeneity and the per-

sistence of infectious diseases. J Theor Biol 229:349-359.

4. Rees EE, Pond BA, Tinline RR, Bélanger D (2013) Modelling the effect of landscape
heterogeneity on the efficacy of vaccination for wildlife infectious disease control.
J Appl Ecol 50:881-891.

. Tracey JA, Bevins SN, Vandewoude S, Crooks KR (2014) An agent-based movement model to
assess the impact of landscape fragmentation on disease transmission. Ecosphere 5:art119.

. Lloyd-Smith JO (2010) Modeling density dependence in heterogeneous landscapes:
Dispersal as a case study. J Theor Biol 265:160-166.

. Brown LM, Crone EE (2016) Individual variation changes dispersal distance and area
requirements of a checkerspot butterfly. Ecology 97:106-115.

. Welicky RL, Sikkel PC (2015) Decreased movement related to parasite infection in a
diel migratory coral reef fish. Behav Ecol Sociobiol 69:1437-1446.

. Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes.
Trends Ecol Evol 11:131-135.

10. Lane-deGraaf KE, et al. (2013) A test of agent-based models as a tool for predicting

patterns of pathogen transmission in complex landscapes. BMC Ecol 13:35.

11. Fofana AM, Hurford A (2017) Mechanistic movement models to understand epidemic
spread. Philos Trans R Soc Lond B Biol Sci 372:20160086.

12. Dougherty ER, Seidel DP, Carlson CJ, Spiegel O, Getz WM (2018) Going through the
motions: Incorporating movement analyses into disease research. Ecol Lett 21:588-604.

13. Campomizzi AJ, et al. (2008) Conspecific attraction is a missing component in wildlife
habitat modeling. J Wildl Manage 72:331-336.

14. Oliveira-Santos LGR, Forester JD, Piovezan U, Tomas WM, Fernandez FAS (2016) In-
corporating animal spatial memory in step selection functions. J Anim Ecol 85:516-524.

15. Smouse PE, et al. (2010) Stochastic modelling of animal movement. Philos Trans R Soc
Lond B Biol Sci 365:2201-2211.

16. Pe'er G, Kramer-Schadt S (2008) Incorporating the perceptual range of animals into
connectivity models. Ecol Modell 213:73-85.

17. Olden JD, Schooley RL, Monroe JB, Poff NL (2004) Context-dependent perceptual ranges
and their relevance to animal movements in landscapes. J Anim Ecol 73:1190-1194.

18. Becker DJ, Hall RJ (2016) Heterogeneity in patch quality buffers metapopulations
from pathogen impacts. Theor Ecol 9:197-205.

19. Borchering RK, Bellan SE, Flynn JM, Pulliam JRC, McKinley SA (2017) Resource-driven
encounters among consumers and implications for the spread of infectious disease.
J R Soc Interface 14:20170555.

20. Dhondt AA, Dhondt KV, Hawley DM, Jennelle CS (2007) Experimental evidence for
transmission of Mycoplasma gallisepticum in house finches by fomites. Avian Pathol
36:205-208.

. Cross PC, Edwards WH, Scurlock BM, Maichak EJ, Rogerson JD (2007) Effects of
management and climate on elk brucellosis in the Greater Yellowstone Ecosystem.
Ecol Appl 17:957-964.

22. Aiello CM, et al. (2016) Host contact and shedding patterns clarify variation in
pathogen exposure and transmission in threatened tortoise Gopherus agassizii: Im-
plications for disease modelling and management. J Anim Ecol 85:829-842.

23. Rushmore J, et al. (2013) Social network analysis of wild chimpanzees provides in-

sights for predicting infectious disease risk. J Anim Ecol 82:976-986.

N

Gl

o

~

oo

©

2

=

60of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1801383115

movement preferences (as governed by the RSF: f;,,, f3), and perceptual
range (Table 1). We report variable importance scores in terms of mean de-
crease in accuracy, which is equivalent to percentage increase in mean square
error for regression random forest analyses (46). Mean decrease in accuracy
corresponds to the loss of predictive value for the model when a parameter is
permutated randomly rather than using its given value (42). We report raw
variable importance measures that have not been scaled by the SE, as these
values may be less biased for correlated predictors (47). We also corroborated
variable importance results by conducting a secondary analysis using the cforest
function from the party package in R (47). This approach has been shown to
have a more robust estimate of variable importance (47); however, this comes
with a computational cost. After reducing our analysis to 1,000 trees (so that
computational time was tractable in cforest), we found that our main conclu-
sions were still supported, with the only changes being the order of lower-
ranked variables with very similar importance values (S/ Appendix, Fig. S1).
All simulations and analyses were conducted in R (version 3.3.2). Code and
simulation results are available at https:/github.com/whit1951/landscape-sim.
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