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Highlights

• An incremental variational formulation for Fluid–Structure Interaction (FSI) problems.
• A variational time integration for FSI based on optimal transportation theory.
• A pure Lagrangian description of general fluid and solid flows with viscosity.
• Automatic continuity and force equilibrium on FSI interfaces.
• Monolithic meshfree method for fluid interacting rigid or highly flexible structures.

Abstract

We present a monolithic Lagrangian meshfree solution for Fluid–Structure Interaction (FSI) problems within the Optimal
Transportation Meshfree (OTM) framework. The governing equations of the fluid and structure are formulated in the Lagrangian
configuration and solved simultaneously in a monolithic way. Mainly, the fully discretized equations are constructed by leveraging
on the OTM method to address the challenges in the Lagrangian description of the fluid domain. In this approach, the fluid–structure
interface becomes an internal surface of the entire field, and the continuity and force equilibrium on the interface are automatically
satisfied without any extra computations. The monolithic Lagrangian solution provides enhanced stability comparing to partitioning
approaches and eliminates the problem of free surface and material interface tracking. The presented method enables a Direct
Numerical Simulation (DNS) of the fluid flow with the absence of the convective terms. The accuracy and robustness of the OTM
FSI approach are systematically investigated by the classical Blasius solution of the boundary layer problem. Furthermore, we
illustrate the range and scope of the method through two examples: the impact of a rigid body on the fluid domain in a container
and the interaction between the fluid and highly flexible structures in an open channel.
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1. Introduction

In Fluid–Structure Interaction (FSI) problems, one or more solid structures interact with an internal or surrounding
fluid flow. FSI problems play prominent roles in many scientific and engineering fields, yet a comprehensive study of
such problems remains a challenge due to their high nonlinearity and multidisciplinary nature [1]. Nevertheless, for
most FSI problems, analytical solutions to the model equations are difficult to obtain, and experimental studies are
limited by the state-of-the-art diagnostics and usually inefficient and expensive. Alternatively, numerical simulation
is an enabling tool to explore the underlying physics in FSI phenomenon for its low cost and high efficiency.

FSI modeling and simulations may be broadly divided into two categories: partitioned approach and monolithic
approach. The partitioned approach [2,3] allows solving the flow equations and the structure equations separately
with techniques and software developed specifically for each one. For instance, one can use the Eulerian grid-based
method, such as Finite Element Method (FEM), Finite Differences (FD) method and Finite Volume (FV) method,
or the Smooth Particle Hydrodynamics (SPH) [4,5], to solve the fluid governing equations and a Lagrangian Finite
Element solution for the structure. The continuity and equilibrium conditions on the fluid–structure interface may
be enforced by directly applying the individual solutions as boundary conditions on each subdomain or by solving
additional equilibrium equations. This procedure is done every time step using specific time integration schemes.
Consequently, this approach experiences inherent difficulties in obtaining exact momentum and energy conservation
properties, which necessitates a stable and accurate coupling algorithm to alleviate instabilities [6,7]. Many studies
have analyzed the primary sources of instabilities in the partitioned approach, including the density, geometry and
nonlinear material response of the structure [8–11] as well as the matching of the time-integration scheme for the
individual solutions of the fluid and solid domains [12]. Another challenge in the partitioned approach comes from the
fact that the structure may be highly deformable, in which case the location of the interface is unknown and depends
on the time history of both the fluid and the structure domain. Conventional methods for the dynamic tracking of the
fluid–structure interfaces include Level Sets [13] and Front Tracking algorithm [14], which are expensive regarding
computational cost. Also, there have been several advances for the coupling of the solutions from both parts, for
example, the moving reference frames [15] or non-boundary conforming formulations [16,17].

On the other hand, a monolithic modeling allows making no distinction between the fluids and the solids,
while each subdomain is considered to have different material properties. A single simulation tool can be used
for solving simultaneously both fluid and solids described by one system of equations [18–21], which ensures the
exact momentum and energy balance. Monolithic schemes are theoretically more stable and accurate than partitioned
methods but computationally more expensive per time step [21]. The conventional monolithic approach uses the
Arbitrary Lagrangian–Eulerian formulation (ALE) [22,23]. In the ALE approaches the fluid mesh is allowed to deform
matching the deformation of the structural domain. This greatly facilitates the application of the interface boundary
conditions and makes ALE-based approaches very attractive (e.g. [24–27]). Similarly, spacetime approaches [28–
30] provide an accurate framework for the solution of complex FSI problems. Refs. [31,32] discuss in detail the
time integration scheme, the implications related to the strong coupling algorithm and the techniques used for mesh-
moving. An interesting work on the application of the ALE approach for monolithic FSI is presented in [33]. There the
formulation is based upon the iso-geometric approach in conjunction with a generalized alpha time integration scheme.
However, even the most advanced ALE formulations arrive at their limits when the domain shape deformations are
large, and remeshing and remapping of state variables are still necessary for large local deformation and unconstrained
multiphase flows.

Alternatively, a unified Lagrangian formulation for FSI is proposed in [34] using the Particle Finite Element Method
(PFEM) [35,36]. The main advantage of the unified Lagrangian formulation is that the convective terms disappear
from the fluid equations. The counterpart is that this may require a lot of remeshing due to mesh entanglements
for the fluid flows. The limitation in the grid-based Lagrangian modeling of the fluid can be addressed by the
meshfree methods. Recently, Li and Ortiz [37,38] developed an incremental updated Lagrangian meshfree scheme, the
Optimal Transportation Meshfree (OTM) method, which is capable of solving general fluid and solid flows, possibly
involving multiple phases, viscosity and general inelastic and rate-dependent constitutive relations, arbitrary variable
domains with discontinuity and boundary conditions. The OTM method is constructed through an integration of
optimal transportation theory [39] with Local Maximum Entropy (LME) meshfree approximation [40] and material
point sampling. The optimal-transportation variational framework results in geometrically exact updates of the local
volumes and mass densities, thus bypassing the need for solving a costly Poisson equation for the pressure and
eliminating the mass conservation errors that afflict Eulerian formulations. Furthermore, by adopting a discrete
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Hamilton principle based on a time-discrete action furnished by optimal transportation theory, the discrete trajectories
have exact conservation properties including symplecticity, linear and angular momentum. The introduction of
material points provides an effective numerical integration rule for the remaining terms of the action and facilitates
tracking the complex local constitutive updates. Fields requiring differentiation, such as deformation and temperature
gradient, are interpolated from node values using LME meshfree shape functions. The LME shape functions are
affine on the boundary, which enables the direct coupling of fluid flows to highly deformable structures. In addition,
the LME shape functions have the key property of possessing a weak Kronecker-delta property at the boundary, which
overcomes a common difficulty in meshfree methods and enables direct imposition of essential boundary conditions.
Moreover, a convenient feature of OTM is that seizing contact is accounted for automatically by simply allowing
nodes from different bodies to belong to the local neighborhoods of material points. The ensuing cancellation of linear
momentum automatically accounts for dynamic contacts of the seizing type [41]. The combination of these desirable
attributes effectively addresses many of the difficulties in the current state-of-the-art approaches, thereby supplying a
methodology that is well-suited to the simulation of general, possibly coupled, fluid/solid/structural problems.

In this paper, we will employ a uniform set of governing equations in the Lagrangian description for both the fluid
and solid domain [42]. The variational constitutive updates [43] will be used to describe the dynamic response of
general fluid and solid flows involving viscous dissipation. The fully discretized governing equations of the whole
domain will be formulated within the OTM framework and solved simultaneously, which results in a monolithic
Lagrangian meshfree solution of fluid–structure interaction problems. In specific, the inertia term in the variational
structure of a rate problem will be discretized explicitly by the optimal transportation theory. In this approach, the
fluid–structure interface becomes an internal surface, which automatically ensures the continuity and force equilibrium
and leads to a more stable and accurate solution with fast convergence [11]. Additionally, the use of Lagrangian
meshfree formulations for the fluid eliminates the problem of free surface and interface tracking and addresses the
challenge of the mesh entanglement.

The remainder of this paper is organized as follows. Section 2 introduces the monolithic Lagrangian framework
for FSI problems including the governing equations, the uniform constitutive relation and the variational structure
with viscous dissipation mechanism for fluid and solid material in Lagrangian configuration. Section 3 illustrates
the temporal discretization and spatial discretization of the proposed approach within the OTM framework, and then
selected numerical examples of application are presented in Section 4 that demonstrate the scope and versatility of the
method. Some concluding remarks are finally collected in Section 5.

2. Monolithic Lagrangian framework for fluid–structure interaction

2.1. Governing equations for fluid and solid materials

Consider a continuous body, which consists of fluid material and solid material, initially occupying a reference
configuration Ω0 ⊂ Rd at t = 0 (here and subsequent, the reference configuration refers to the undeformed
configuration), and undergoing a motion described by a time-dependent deformation mapping ϕ : Ω0× [0, T ]→ Rd .
Material particles in the reference configuration are denoted by X ∈ Ω0 mapping to points x = ϕ(X, t) in the deformed
configuration Ωt = ϕ(Ω0, t). Then the motion and deformation of the body is subject to the solution of a general initial
boundary value problem in the Lagrangian form, i.e.,

F(X, t) = ∇0ϕ(X, t) in Ω0 × [0, T ], (1)
ϕ(X, t) = ϕ(X, t) on Γu × [0, T ], (2)

ρ0ϕ̈ −∇0 · P = ρ0B in Ω0 × [0, T ], (3)

P · N = T on Γt × [0, T ], (4)
ϕ(X, 0) = ϕ0(X) in Ω0, (5)
ϕ̇(X, 0) = V0(X) in Ω0, (6)

(ρ ◦ ϕ(X, t))J = ρ0 in Ω0, (7)

where ∇0 denotes the partial derivatives with respect to X, F is the deformation gradients, ϕ̇ and ϕ̈ are the material
velocity and acceleration respectively, ρ0 is the unit mass density in the reference configuration, P is the first Piola–
Kirchhoff stress tensor, B is the applied body force per unit mass in the reference configuration, and J = det(F) is
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the Jacobian of the deformation. The boundary of domain Ω0 is ∂Ω0 = Γu
⋃

Γt and Γu
⋂

Γt = Ø, where Γu is the
Dirichlet boundary and prescribed the displacement boundary conditions ϕ, and T is the external forces along the
Neumann boundary Γt . The Cauchy stress tensor follows from P in the form

σ = J−1PFT . (8)

We will employ this uniform set of governing equations in the Lagrangian description for both the fluid and solid
domain. In subsequent sections, those equations are taken as the basis for formulating constitutive relations, the weak
form and variational structure for FSI problems.

2.2. Uniform constitutive framework for fluid and solid materials

In addition to the uniform set of governing equations, we require a uniform constitutive framework within which
to describe the fluid and solid materials. To this end, we adopt a standard constitutive update algorithm proposed
by Radovitzky and Ortiz [43]. Assume the existence of a Helmholtz free energy density A(F) per unit undeformed
volume. For simplicity, we restrict attention to isothermal processes and omit the dependence of A and all other state
functions on temperature. Thus the first Piola–Kirchhoff stress tensor P can be decomposed additively,

P = Pe
+ Pv, (9)

into an equilibrium part Pe and a viscous part Pv . The equilibrium stress Pe follows from Coleman’s relations as

Pe
=

∂ A(F)
∂F

. (10)

from a potential if there exists a function Φ∗(Ḟ) which denotes the viscous dissipation. Thus, the viscous part Pv of
the stresses follow in the form

Pv(Ḟ;F) =
∂Φ∗(Ḟ)

∂Ḟ
. (11)

For elastic solid

Pv
= 0, P = Pe. (12)

For compressible Newtonian fluid, the viscous dissipation Φ∗(Ḟ) takes a form,

Φ∗(Ḟ) = µJddev
: ddev, (13)

ddev
= d −

1
3

tr(d)I, (14)

d = sym(ḞF−1), (15)

where d is the rate of deformation tensor, ddev is its deviatoric component. The viscous stress is given by

Pv(Ḟ;F) =
∂Φ∗(Ḟ)

∂Ḟ
= Jσ vF−T , (16)

where

σ v
= 2µddev, (17)

is the viscous part of the Cauchy stress tensor, and µ denotes the shear viscosity coefficient. Furthermore, the free
energy density A is represented by the equation of state, which leads to the equilibrium stress Pe as

Pe(F) =
∂ A(J )

∂F
= J p(J )F−T , (18)

where

p(J ) =
∂ A(J )

∂ J
, (19)
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is the equilibrium pressure. For instance, the Tait–Murnaghan equation of state, p(J ) = p0 +
K
n (J−n

− 1), is often
employed to describe the volumetric responses of water [44]. Therefore, the first Piola–Kirchhoff stress tensor P for
compressible Newtonian fluid can be obtained as

P = Pe
+ Pv

= J
(

p(J )I + 2µddev)F−T (20)

which is consistent with the Cauchy stress tensor of compressible Newtonian fluid in the Eulerian configuration. It is
noteworthy that this framework is general enough to model fluid and solid flows with arbitrary constitutive relations
as long as the Helmholtz free energy density and dissipation potential are defined.

3. Optimal transportation meshfree implementation

In this section, we proceed to establish a fully discretized version of the governing equations (1)–(7) in space and
time by adopting the Optimal Transportation Meshfree (OTM) framework. The OTM method is originally introduced
by Li and Ortiz [37], which is constructed through an integration of optimal transportation theory [39] for time
discretization with Local Maximum Entropy (LME) meshfree approximation [40] and material point sampling.

3.1. Incremental variational formulation

In order to formulate the time-discretized governing equations, we will extend the variational updates proposed
by Ortiz and Stainier 1999 [45] for general dissipative systems to account for the inertia terms. To this end, the
corresponding action I [ϕ̇] of general fluid–structure interaction problems with viscosity follows from the formula

I [ϕ̇] =
∫
ΩF SI

(
K̇ + Ȧ(F)+ Φ∗(Ḟ)− ρ0B · ϕ̇

)
dV −

∫
Γt

T · ϕ̇d S (21)

where (̇) denotes the material time derivative and ΩF SI = Ω f
⋃

Ωs is the union of the fluid and solid subdomains,
Ω f and Ωs . K , A and Φ∗ are the kinetic energy, Helmholtz free energy density and a dissipation pseudo-potential
function which represents the viscous response of the material, respectively [42,45]. The fluid flow will be considered
as compressible or near incompressible material in our formulation.

The functional given in Eq. (21) shows the variational characterization of a rate problem, i.e., the problem of finding
the rate of change of the state variables given its current state and boundary conditions. In calculations, it is necessary
to establish the time discretization of the variational formulation. Thus the time-dependent problem can be reduced
to a sequence of incremental problems each characterized by a minimum principle. Formally, the time-discretized
incremental variational problem can be derived by recourse to minimizing paths [46], leading to the definition of
an equivalent static problem. On the other hand, it is also sufficient to identify any convenient incremental potential
over a time interval which is consistent with the field equations. The essential difficulty for a dynamic problem is
to directly embed a specific time discretization of the inertia terms within the incremental variational formulation.
However, Benamou and Brenier [47,48] showed that the so called L2 Kantorovich (or Wasserstein) distance between
the initial and final mass densities in [tk, tk+1] gives the exact minimum of the action of the incremental kinetic energy
in fluids, i.e.,

d2
W (ρk, ρk+1) = inf

paths

{
(tk+1 − tk)

∫ tk+1

tk

∫
Ωk

ρk |ϕ̇|
2dV dt

}
, (22)

where the L2 Kantorovich distance is defined as

d2
W (ρk, ρk+1) = inf

T

∫
Ωk

|T (x)− x|2ρk(x)dV, (23)

and T is any admissible map transporting ρk to ρk+1. The mass densities are related by the Jacobian equation

(ρ ◦ T )(x, t) det(∇T ) = ρk(x) for t ∈ [tk, tk+1]. (24)

Li and Ortiz employed the Wasserstein distance for the discrete kinetic energy of general fluid and solid flows
in the OTM method, and generalized the Benamou–Brenier differential formulation of optimal mass transportation
problems to problems including arbitrary geometries and constitutive behavior [37]. In this work, we will adopt the
time-discretized inertia terms using the Wasserstein distance to address the challenge in the variational incremental
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formulation of rate problems. To this end, let t0 = a < t1 < · · · < tk < tk+1 < · · · < tn−1 < tn = b be a discretization
of the time interval [a, b] and assume that the state (ρk, ϕk) at time tk is known. Then, we wish to consistently
approximate the state ϕk+1 at time tk+1 as the solution of an extremum problem. By a consistent approximation we
mean that the limits of the divided differences (ϕk+1 − ϕk)/∆t as ∆t = tk+1 − tk tends to zero satisfy the rate field
equations. Introduce the incremental functional

Ik[ϕk+1] = inf
paths

∫ tk+1

tk
I [ϕ̇]dt. (25)

Thus, we can define the semi-discretized incremental functional with the aid of Eq. (22) as

Ik[ϕk+1] =
1
2

d2
W (ρk, ρk+1)

∆t
+

∫
ΩF SI

(
Ak+1 − Ak +∆tΦ∗(

Fk+1 − Fk

∆t
)
)

dV

−

∫
ΩF SI

ρkBk+1 · (ϕk+1 − ϕk)dV −
∫
Γt

Tk+1 · (ϕk+1 − ϕk)d S

(26)

where the subscript k signifies that Ik[ϕk+1] depends parametrically on the initial state ϕk at tk , and the minimum is
taken over all admissible paths joining ϕk at time tk to ϕk+1 at tk+1. Taking variations (Ref. [39], Theorem 8.13) gives

δ Ik =

∫
ΩF SI

2ρk

tk+1 − tk−1

(
ϕk→k+1(x)− x

tk+1 − tk
+

ϕ−1
k−1→k(x)− x

tk − tk−1

)
· δϕk+1dV

+

∫
ΩF SI

(Pe
k+1 + Pv

k+1) : δFk+1dV

−

∫
ΩF SI

ρkBk+1 · δϕk+1dV −
∫
Γt

Tk+1 · δϕk+1d S,

(27)

where the minimizer of the incremental action in [tk, tk+1] is given in terms of McCann’s displacement interpola-
tion [49],

ϕ(x, t) =
tk+1 − t
tk+1 − tk

x+
t − tk

tk+1 − tk
ϕk→k+1(x), (28)

and

ϕ̇(x, t) =
ϕk→k+1(x)− x

tk+1 − tk
. (29)

Enforcing stationarity, i.e., δ Ik = 0, yields the linear momentum conservation and boundary conditions in the
interval [tk, tk+1]. The discrete motion consists of incremental transference maps ϕk→k+1 transporting ρk into ρk+1

optimally with respect to the cost function (23).

3.2. Spatial discretization

Next, we proceed to the spatial discretization of the variations of the semi-discrete action (Eq. (27)). In general,
solving the fluid flow using Lagrangian grid-based methods is cumbersome due to the mesh entanglements and needs
for frequent remeshing. Therefore, we will utilize the OTM discretization scheme for the entire computational domain,
where all the field information is carried by two sets of points, namely nodes and material points, as shown in Fig. 1.
In specific, the nodes xa,k carry position information, such as displacement, velocity, and acceleration, while the local
state of materials is evaluated at the material points xp,k , for instance, the local strain, stress, and internal variables,
etc. The material points serve as integration points as well, which supplies a convenient way for numerical integration.
Analogue to the Finite Element Method, we set the initial position of the material points and nodes using a conforming
mesh for ΩF SI , where the nodes of the finite element mesh become the nodes in the OTM method and the quadrature
points of the finite elements are considered as the OTM material points. The connectivity between the material points
and nodes are initialized using the connectivity of the finite element mesh but dynamically reconstructed during the
computation by using a search algorithm based on the deformation-dependent geometrical information.
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Fig. 1. Schematic of the OTM approximation scheme, showing two successive configurations Ωk and Ωk+1 of the body, mapped into each other
by the incremental deformation mapping ϕk→k+1 and the corresponding sets of nodes xa,k and xa,k+1, and material points xp,k and xp,k+1,
respectively. NH (xp,k ) represents the neighborhood of material point xp at tk , and NH (xp,k+1) stands for the neighborhood of material point xp at
tk+1, and h is the scope of the neighborhood of xp,k+1. The nodes included in the neighborhood will be used for approximation calculations.

We consider the standard Ritz–Galerkin approach to approximate the displacement using Local Maximum Entropy
(LME) msehfree shape functions, i.e.,

ϕ(X, t) =
N∑

a=1

Xa,t Na(X), (30)

δϕ(X, t) =
N∑

a=1

δXa,t Na(X), (31)

where ϕ(X, t) is the position of an arbitrarily unknown point X at time t , N signifies the total number of the nodes
of the whole domain, Na(X) is the shape function of the node Xa , and Xa,t is the position of node Xa at time t .
Consequently, the transference maps ϕk→k+1 must be approximated by conforming interpolations of the form

ϕk→k+1(x) =
∑

a∈NH (x)

xa,k+1 Na(x) (32)

and the position of the material points at time tk+1 as well as the deformation gradient are approximated from the node
degrees of freedom as

xp,k+1 =
∑

a∈NH (xp,k )

xa,k+1 Na(xp,k), (33)

and

Fp,k+1 = ∇ϕk→k+1(xp,k)Fp,k, (34)

where NH (xp,k) represents the neighborhood of a material point xp at tk as Fig. 1 shown.
For completeness, we briefly summarize the construction of the LME shape functions as introduced in [40]. Let

ΩMax−Ent be the convex hull of the node set at tk , and the shape function of the node xa,k at a given material point xp,k
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is defined as the solution of problem (35):

minimize fβ ≡ β

M∑
a=1

Na(xp,k)|xp,k − xa,k |
2
+

M∑
a=1

Na(xp,k) log Na(xp,k),

subject to: Na(x) ⩾ 0, a ∈ [1, M],∑
Na(x) = 1,∑

Na(x)xa = x,

(35)

where β ∈ R+ is a Pareto optimal parameter used to ponder the locality term against the entropy term in the objective
function.

The constraints in the minimization problem ensure that the resulting shape functions satisfy the zeroth and first
order consistency. The solution of the minimization problem is unique and can be directly calculated as:

Na(x) =
1

Z (x, λ∗(x))
exp

[
−β|x− xa|

2
+ λ∗(x) · (x− xa)

]
, (36)

where:

λ∗(x) = arg min
λ∈Rn

log Z (x, λ), (37)

Z (x, λ) =
M∑

a=1

exp
[
−β|x− xa|

2
+ λ · (x− xa)

]
. (38)

It is noteworthy that the original constrained minimization problem (35) is replaced by finding the minimizer λ∗

of a scalar function defined in Rn , where n is the spatial dimension of the computational domain, in the calculation of
the meshfree shape functions. This unconstrained minimization problem with convexity can be solved very efficiently
and robustly by a combination of Newton–Raphson and Nelder–Mead simplex algorithms. Furthermore, unlike other
optimization-based meshfree approximation schemes, such as Moving Least Square (MLS), the computational cost of
LME shape functions is independent on the number of nodes in the neighborhood, which furnishes an effective means
of solving extremely large deformation problems. In practice, a dimensionless parameter γ related to β by γ = βh2 is
used to control the support width of the shape functions. Fig. 2 shows the LME shape functions with different values
of γ and the definition of local characteristic length h in a two-dimensional convex domain.

Finally, variations of semi-discrete incremental potential δ Ik (Eq. (27)) are now taken with respect to nodal
unknowns and stationarity conditions yield fully-discrete mechanical balance equations, which can alternatively be
written

ma,k+1ϕ̈a,k+1 = f ext
a,k+1 − f int

a,k+1, (39)

where ma,k+1 denotes the lumped mass of the node xa at tk+1,

ϕ̈a,k+1 =
2

tk+1 − tk−1
(
xa,k+1 − xa,k

tk+1 − tk
−

xa,k − xa,k−1

tk − tk−1
) (40)

is a central difference approximation of the nodal acceleration. Thus, update of the nodal coordinates is obtained as

xa,k+1 = xa,k + (tk+1 − tk)m−1
a,k+1

(
la,k +

tk+1 − tk−1

2
(f ext

a,k+1 − f int
a,k+1)

)
(41)

where the linear momenta at tk is given by

la,k = ma,k+1
xa,k − xa,k−1

tk − tk−1
(42)

The internal nodal forces f int
a,k+1 are defined as

f int
a,k+1 =

∫
ΩF SI

(Pe
k+1 + Pv

k+1) · ∇Na(x)dV

=

∑
p∈S(xa,k )

(
Pe(Fp,k+1)+ Pv(Ḟp,k+1)

)
· ∇Na(xp,k)wp,k,

(43)
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Fig. 2. The shape functions with different γ and the definition of local characteristic length h in a two-dimensional convex domain.

where wp,k is the volume of a material point xp,k and S(xa,k) is the effective support range of node xa,k at tk . The
external nodal forces f ext

a,k+1 are given by

f ext
a,k+1 =

∫
ΩF SI

ρkBk+1 Na(x)dV +
∫
Γt

Tk+1 Na(x)d A

=

∑
p∈S(xa,k )

ρkB(xp,k)Na(xp,k)wp,k +
∑

q∈γ (xa,k )

T(θq,k)Na(θq,k)Aq,k .
(44)

Algorithm given in Table 1 outlines the general structure of the forward solution, which has the usual structure
of explicit time-integration schemes, where the updated node coordinates are computed directly from the initial
conditions at the beginning of the time step.

3.3. Fulid–Structure interface conditions

In the traditional partitioned approaches, the surface coupling between the fluid field and the structural field requires
the transfer of fluid induced action force and displacement caused by structure on the Fluid–Structure interface
(FS interface). In this paper, we employed a uniform set of governing equations in the Lagrangian description for
both the fluid and solid subdomains. Additionally, we start with a conforming mesh for the entire domain with an
explicit discretization of the FS interface. That ensures the nodes on the FS interface belonging to the fluid and
solid simultaneously. As a consequence, the FS interface ΓFSI (Fig. 3) becomes an internal surface that separates two
different types of materials in the sense of continuum media. Therefore, the continuity condition of the FS interface is
automatically satisfied, and dynamic tracking of the interface is a natural output of the Lagrangian framework without
any extra computational cost, i.e.,

u f (x) ≡ us(x), ∀x ∈ ΓFSI. (45)

Meanwhile, the force equilibrium at the FS interface is guaranteed by the linear momentum conservation of the
system. The fully discretized mechanical balance equation is reduced to the following form at the FS interface,

f int
a,k+1 = ma,k+1ϕ̈a,k+1, ∀xa ∈ ΓFSI (46)

where the right-hand side of the equation presents the inertia effect of the interface which competes with the internal
forces generated by the fluid and solid domain. The definition of the internal nodal forces in Eq. (43) can be rewritten
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Table 1
Spatial discretization algorithm.

Algorithm Fluid-structure interaction

Step 1: Set k = 0, initialize node coordinates xa,k , material point coordinates xp,k , volumes wp,k , densities ρp,k , neighborhood
NH (xp,k ), shape functions Na(xp,k ), shape function derivatives ∇Na(xp,k ) and deformation gradient Fp,k .

Step 2: Compute mass matrix Ma,k , linear momenta la,k and nodal forces fa,k .
Step 3: Update node coordinates:

xa,k+1 = xa,k + (tk+1 − tk )M−1
a,k

(
la,k +

tk+1−tk−1
2 fa,k

)
.

Step 4: Compute material points incremental deformation gradients:
Fp,k→k+1 = xa,k+1 ⊗∇Na(xp,k ).

Step 5: Compute material points deformation gradients:
Fp,k+1 = Fp,k→k+1 ◦ Fp,k .

Step 6: Update nodal forces: f int
a,k+1 and f ext

a,k+1.
Step 7: Update linear momenta:

la,k+1 = la,k +
1
2 (fa,k+1)− fa,k (tk+1 − tk ).

Step 8: Update mass matrix:
Ma,k+1 =

∑
p∈NH (xa,k )m p Na(xp,k ).

Step 9: Update material point coordinates xp,k+1 =
∑

a∈NH (xp,k )xa,k+1 Na(xp,k ), neighborhood NH (xp,k ), volumes
wp,k+1 = det(Fp,k→k+1)wp,k and densities ρp,k+1 = m p/wp,k+1.

Step 10: Recompute shape functions Na(xp,k+1) and derivatives ∇Na(x p,k+1) from updated node set.
Step 11: Reset k ← k + 1. If k = n exit (where n is the last time step index). Otherwise go to step 2.

more specifically for an FSI problem,

f int
a,k+1 =

∫
Ωs∪Ω f

Pk+1 ·∇NadV =
∫
Ωs

Pk+1 ·∇NadV +
∫
Ω f

Pk+1 ·∇NadV

=

∑
p∈Ss (xa,k )

Pk+1 ·∇Na(xp,k)wp,k +
∑

p∈S f (xa,k )

Pk+1 ·∇Na(xp,k)wp,k

= f s
a,k+1 + f f

a,k+1,

(47)

where{
Ss(xa,k) = NH (xa,k) ∩ Ωs,

S f (xa,k) = NH (xa,k) ∩ Ω f
(48)

and f s
a,k+1 and f s

a,k+1 denote the traction fields on xa induced by the structure and fluid, respectively. Here, the effective
support range S(xa,k) is not only dependent on a geometric factor,

NH (xa,k) = {∥θq − xa,k∥ ≤ Ra,k, θq ∈ Mp}, (49)

where Ra,k is the dynamic scope of the neighborhood determined by the material points effective range and Mp is the
material point set of the entire domain (fluid and solid), but also the material to which the node belongs. Schematically
Fig. 3 illustrates the definition of effective support range for the different type of nodes, which is similar to the visibility
condition in meshfree methods. For instance, xa on the FS interface has its neighborhood identical to NH (xa) and
covering both the fluid and solid domain, while the support of an interior node of Ωs (or Ω f ) is confined within Ωs (or
Ω f ). Thus, the internal nodal forces of interfacial nodes are assembled from both the fluid and solid material points to
simulate the interaction between the fluid and solid domain. In a static case, the traditional interface traction balance
can be obtained as

f s
a,k+1 = −f f

a,k+1. (50)
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Fig. 3. Schematic representation of FS interface in monolithic Lagrangian meshfree method.

4. Numerical tests and results

In this section, the accuracy and convergence characteristics of the OTM FSI approach are assessed by the classical
Blasius solution of the boundary layer problem. In addition, the range and scope the method is demonstrated in two
examples: the impact of a rigid body on the fluid domain in a container and the interaction between the fluid and
highly flexible structures in an open channel.

4.1. Blasius solution

The Blasius boundary layer solution for flow over a flat plate is among the best known solutions in fluid mechanics.
The boundary layer equations assume the following: steady, incompressible flow, laminar flow, no significant gradients
of pressure in the x-direction, and velocity gradients in the x-direction are small compared to velocity gradients in
the y-direction. The simplified Navier–Stokes Equations based on these assumptions, known as the boundary layer
equations, are given as (see Ref. [50]):⎧⎪⎪⎨⎪⎪⎩

∂u
∂x
+

∂v

∂y
= 0,

u
∂u
∂x
+ v

∂u
∂y
= ν

∂2u
∂y2 ,

(51)

where u and v are the x and y components of the velocity, and ν is the kinematic viscosity of the fluid. In the Blasius
solution, a non-dimensional position η (the so-called similarity variable) combines both the x and y position:

η =
y∗
√

x∗
=

y/
√

νL/U
√

x/L
= y

√
U
νx

, (52)

where x∗ and y∗ are non-dimensional coordinates, U is the free stream velocity, and L is an arbitrary length scale that
cancels itself out. The non-dimensional velocities u∗ and v∗ are then functions of non-dimensional stream function f :⎧⎨⎩u∗ =

u
U
= f ′(η),

v∗ =
v

νU/x
= 0.5[η f ′(η)− f (η)].

(53)

A governing equation for f can be found by inserting Eqs. (52) and (53) into Eq. (51), obtains the Blasius equation

2 f ′′′ + f f ′′ = 0, (54)
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Fig. 4. Schematic of the Blasius flow applied in simulation (not to scale).

where the boundary conditions are no-slip, no through flow at the wall, and u = U as y approaches infinity. In
non-dimensional variable, these become:⎧⎨⎩u∗(y = 0) = 0⇒ f ′(η = 0) = 0,

v∗(y = 0) = 0⇒ f (η = 0) = 0,

u∗(y →∞) = 1⇒ f ′(η→∞) = 1.

(55)

The non-linear differential equation (54) appears to be simple but difficult to solve analytically. Nevertheless,
the Blasius equation can be solved numerically with the desirable accuracy. Blasius [51] himself gave a solution in
power series for a viscous fluid past an infinitesimally thick, semi-infinite flat plate. This problem is employed as a
benchmark to systematically investigate the characteristics (including accuracy, robustness and convergence) of the
presented method. Fig. 4 shows the schematic of the Blasius flow in our simulations. The fluid with a characteristic
height H = 200 mm is moving at a constant velocity U = 34,000 mm/s in the x-direction in the half-space x < 0. A
flat plate with characteristic length L = 1000 mm is placed along the half-plane y = 0, x > 0 and modeled as a fixed
solid domain. Thus, the fluid–structure interface is the fixed top surface of the flat plate, which is similar to no-slip
boundary conditions to the fluid. The fluid density and viscosity are ρ = 1.225 kg/m3 and µ = 1.81 × 10−3 Pa s,
respectively, which results in a high Reynolds number up to Re = 2.3× 104.

In our analysis, the normalized L2 norm is used to quantify the difference between the numerical results and the
theoretical considerations:

L2 =

(∫ h
0 ∥u

h
− u∥2dy∫ h

0 ∥u∥2dy

) 1
2

=

(∑
i=0 |u

h(yi )− u(yi )|
2hi∑

i=0 |u(yi )|2hi

) 1
2

, (56)

where uh(yi ) and u(yi ) are the x components of the velocity at a position yi calculated by numerical and the Blasius
solution, respectively. Convergence study on the discretization size is conducted for h = 4 mm, 3 mm, 2 mm and 1
mm. In specific, the fluid domain is modeled by 402,802 degrees of freedom and 400,000 material points at h = 1
mm.

The results of the numerical investigations and comparisons are summarized in Figs. 5–7. It can be observed in
Fig. 5 that a thin laminar boundary layer grows gradually till a stable status, while the flow velocity increases from
zero at the wall to the incoming flow velocity U across the thickness of the boundary layer. The numerical values of
the mean velocity profile as a function of the non-dimensional position η are compared with the Blasius solutions in
Fig. 6. Particularly, the velocity field at locations x = 500 mm, 700 mm and 900 mm for a fine discretization of the
domain converges to the analytical solution as the computation approaches to a steady state. Furthermore, the time
evolution of the L2 error of the mean velocity field for various discretization sizes is shown from Figs. 7(a)–7(c). It
can be observed that the accuracy of the numerical results at all the three locations is improved continuously with the
refinement of the domain. A more detailed picture of the accuracy and convergence properties of the OTM FSI solution
is afforded by conventional convergence plot, Fig. 7(d). The level of accuracy of the presented method revealed by
our analysis is quite remarkable.
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Fig. 5. Growth of a laminar boundary layer (t = 0.006 s) on the flat plate.

Table 2
Material and input parameters for the water impact tests.

Mass of wedge (g) 14.7694
Impact speed (mm/s) 1281
Water density (kg/m3) 998
Shear viscosity of water (Pa s) 1.002× 10−3

Bulk modulus of water (Pa) 2.2× 106

Tait-Murnaghan equation of state γ 7

4.2. Impact between fluid and rigid body

Aircraft crash landing on water is a complex FSI scenario, and conducting a large-scale test for aircraft water
impact is expensive and also limited by test procedures and data measurement. Alternatively, numerical simulation
is an enabling tool in ditching investigations for its low cost and high efficiency. [52,53]. In this section, a water
impact of rigid wedge benchmark is performed, and the corresponding numerical results are compared to experimental
measurements conducted by S. A. Shah et al. [54] to exhibit the capabilities of the OTM FSI approach.

The schematic of test facility and specimens are summarized in Fig. 8. Symmetric wedge impactors with various
angles were dropped vertically into a water tank. To promote a two-dimensional fluid field upon impact, the length
of the wedges was sized to give a 2 mm gap on each side of the water tank. The deadrise angle θ is defined between
the horizontal and the wedge inclined face, as shown in Fig. 8(b). The wedges were manufactured from pinewood,
sanded for consistency, and varnished to prevent water absorption. Also, sheet metal plates were added to ensure each
wedge had the same mass. The impact event was filmed using a high-speed video camera at 500 frames/second and
used to characterize the kinematic behavior of the impactor and fluid flow. Dots were drawn on the face of the wedge
to generate the displacement-time history of the wedge. More experimental testing details can be found in Ref. [54].

In our numerical tests, models with a wedge depth of 3 mm were analyzed as shown in Fig. 8. The wedge was
modeled as a rigid body with the density determined to match the experimental inertial characteristics of each wedge.
Gravity with a gravitational acceleration equal to 5474 mm/s2 was applied to the wedge due to the existence of
friction of the test facility measured in experiments. Three deadrise angles (θ = 20◦, 30◦, 40◦, respectively) were
tested. The water is modeled by 70,981 OTM nodes and 284,009 material points. The Tait–Murnaghan equation of
state is employed to calculate the pressure in water. Table 2 lists the other parameters employed in the calculations.

Fig. 9 shows a qualitative comparison of the fluid flow patterns between the experiment and numerical predictions.
It is evident that the time evolution of the deformed configuration of water along the wedge face is captured and
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(a) 1 mm discretization size at x = 500 mm. (b) 1 mm discretization size at x = 700 mm.

(c) 1 mm discretization size at x = 900 mm.

Fig. 6. Numerical results converge to the Blasius curve.

symmetric flow patterns can be observed along both sides of the wedge. In addition, the shape of the water crater
and the depth of wedge penetration are in excellent agreement with experimental results. It is worth mentioning that,
there were obvious splash of water phenomenon in experiments, while slightly splash of material points from the
numerical results due to the resolution of the discretization. Fig. 10(a) and (b) demonstrate the effect of increasing
deadrise angle on the force-time history and the maximum section force for each configuration, respectively. The
wedge section force was determined by normalizing the wedge force by the depth. As shown in Fig. 10, the predicted
impact forces are consistent with the experimental measurements. Furthermore, it is noteworthy that increasing the
deadrise angle decreases the maximum impact force. This well-known phenomenon caused by low angle wedges
producing a more bluff or slamming water entry [55] is successfully elucidated in the OTM FSI simulations.

4.3. Interaction between fluid and highly flexible structures

The last example concerns about the simulation of biological fluid flow interacting with highly deformable cells.
Microfluidics is an attractive technology for the analysis and characterization of live erythrocytes (or Red Blood Cell,
RBC) in physiological blood flows. However, several critical challenges in diagnostics and measurements have limited
the application of microfluidic systems. In this study, microfluidic experiments were integrated with FSI simulations
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(a) L2 vs. time steps (x = 500 mm). (b) L2 vs. time steps (x = 700 mm).

(c) L2 vs. time steps (x = 900 mm). (d) L2 vs. discretization size (t = 0.06 s).

Fig. 7. The relationships among the L2 metric, time steps, and the discretization size.

to understand the cell dynamics under various flow rates and utilized to validate the computational framework as well.
In the experiments, a 4 mm wide and 0.05 mm height micro-channel were fabricated by assembling a rectangular Poly
(methyl methacrylate) (PMMA) piece onto glass with a microscope slide through a Double Sided Adhesive (DSA)
film in between, while the specific immobilized endothelium protein (Laminin) was coated in the bottom surface
of the channel as the substrate shown in Fig. 11(a). The prepared channels were placed horizontally on an inverted
microscope stage (Olympus, IX 83) and the blood samples were perfused into the channels through a syringe pump at
a constant volumetric flow rate that mimics blood flow in vessels. During experiments, after all the non-adhered cells
were washed away, the flow rate was adjusted to produce different local flow velocities at cell adherent site, and the
deformation of the adherent single cell was recorded until completely detached. The cell deformation was measured
and represented by cell aspect ratio.

Meanwhile, three-dimensional simulations of the RBC in plasma were performed by the presented monolithic
Lagrangian meshfree method. As sketched in Fig. 11(b) a cuboid with dimensions 180 µm × 24 µm × 12 µm
in the vicinity of the cell is simulated. The RBC is modeled explicitly as a compound of RBC membrane and
cytoplasm embedded in the plasma. Fig. 12 shows a cross-section of the discretization for the entire domain by a
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Fig. 8. Experiment setup [54]: (a) Test facility. (b) Wedge specimen dimensions (mm). Numerical model: the definition of numerical model applied
in FSI simulation by the Monolithic Lagrangian Meshfree Method.

conforming tetrahedron mesh to initialize the position of the material points and nodes as well as the initial support.
For simplicity, one material point is placed at the barycenter of each tetrahedron, and the vertices of the tetrahedron
are selected as the initial neighborhood of the material point. Afterward, the connectivity list is completely jettisoned
and not used anymore for a truly meshfree solution. While it is sufficient to use one integration point in the initial
setup, it shows rank-deficiency instability as more nodes contribute to the material point at large deformations. To
suppress the zero-energy modes, the stabilization algorithm proposed in [56,57] is implemented in the OTM method.
In our computations, the initial velocity is uniform at a given local flow rate everywhere in the plasma, and the RBC
(including the RBC membrane and cytoplasm) remains static. The boundary conditions are chosen as: slip boundary
conditions at the top, bottom and sides of the plasma domain and do-nothing outflow boundary conditions at the end.
The dynamic material point generation algorithm is employed to add plasma dynamically to the computational domain
and maintain a constant incoming flow. The cytoplasm and plasma are modeled as nearly incompressible Newtonian
fluid using the constitutive relation in Eq. (20) and the Tait–Murnaghan equation of state, where K = 2 × 107 Pa is
taken as their bulk modulus and γ = 7.

In addition, these simulations adopt the Mooney–Rivlin model presented by Skalak et al. for the nonlinear elastic
response of the RBC membrane with the Helmholtz free energy density defined as W (F) = C1

4 ( 1
2 I 2

1 + I1− I2)+ C2
8 I 2

2 ,
where I1 and I2 are the first and second invariants of the right Cauchy–Green deformation tensor, respectively. Note
that the viscoelastic response of RBCs commonly realized in literature is represented by the compound behavior of the
membrane and cytoplasm in our model. Thus, one set of experiments for healthy RBCs at the flow rate of 1.454 mm/s
was utilized to determine C1 and C2 by minimizing the difference between the predicted aspect ratio of the cell and the
experimental data from a top view characterization using a Gradient-based optimization algorithm. The mean values
of the shear modulus obtained from the calibration process are given by C1 = 2.3 × 105 Pa and C2 = 2.3 × 104 Pa.
Fig. 13 shows a typical OTM simulation of the biological flow interacting with the highly deformable RBC.

In order to further validate the FSI algorithm, physical experiments and numerical simulations at various flow
rates from 0.28 mm/s to 1.8 mm/s were conducted simultaneously. In all the calculations, the same shear modulus
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Fig. 9. The fluid flow patterns qualitative comparison between the experiment and numerical predictions with different deadrise angles θ at different
time steps.

Fig. 10. (a) Section force time history comparison between the experiment and numerical predictions with varying deadrise angle, (b) Maximum
section force comparison between the experiment and numerical predictions with varying deadrise angle.

obtained from calibration was used. Fig. 14 demonstrates the deformed configuration of the cell at steady state under
different flow conditions as well as the maximum shear stress distribution in the membrane. A stress concentration
on the cell is found near the adherent site and the concave shape of the RBC membrane due to the plasma-exerted
drag forces and adhesive forces. In case that an adhesion model may be applied to the attachment site, the OTM FSI
simulation furnishes an effective means of modeling the cell detachment process. Moreover, the stress concentration at
the concave region, when the RBC is attached to the substrate, indicates a potential site for the rupturing of erythrocyte,
also known as Hemolysis. A quantitative comparison of the predicted cell aspect ratio and the measured in experiments
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Fig. 11. The flow around single red blood cell. (a) The microfluidic device with the blood sample is placed on an inverted microscope. Snapshot of
the individual adherent RBC under shear flow after channel washed is shown at the right corner. (b) The computational domain to analyze single
cell dynamics.

Fig. 12. Cross section of a typical conforming tetrahedron mesh for the entire computational domain.

is elucidated in Fig. 15. It is evident that the predicted shape of the healthy RBC (top view) is highly comparable with
the deformed RBC shape imagined in real-time experiments. Furthermore, both the simulation and experimental
data show the same trend regarding the non-linear change of cell aspect ratio with increasing local flow velocities.
The predicted cell aspect ratio at various flow rates by the OTM FSI algorithm matches extraordinarily well the
experimental data, which again implies the accuracy and robustness of the approach in modeling the fluid interacting
with highly flexible structures.

5. Summary and conclusions

This paper presents a Monolithic Lagrangian Meshfree method for three dimensional Fluid–Structure Interaction
(FSI) problems based on the Optimal Transportation Meshfree (OTM) framework. The governing equations for
both fluid and structure domain are formulated in the Lagrangian configuration and solved simultaneously. In
addition, a standard constitutive update algorithm is utilized to describe the dynamic responses of fluid and solid
flows, based on which the variational formulation for general FSI problems with viscous dissipation mechanism is
constructed. The corresponding fully-discretized variational formulation is obtained within the OTM framework. The
time discretization furnished by optimal transportation theory for a general dissipative dynamic system leads to the
formulation of robust and efficient state update algorithms and variational time integrator. Furthermore, the material



216 J. Fan et al. / Comput. Methods Appl. Mech. Engrg. 337 (2018) 198–219

Fig. 13. Snapshots of the deformation of a red blood cell in plasma simulated by the OTM FSI algorithm at the flow rate of 1.454 mm/s. The
membrane is represented by solid surface, the plasma by streamline and cytoplasm by velocity arrows. Color shows the von mises stress on the
membrane and the velocity in the plasma and cytoplasm in the flow direction.

Fig. 14. The deformed configuration of RBCs at steady state predicted by the OTM FSI algorithm at various flow rate from 0.28 mm/s to 1.8 mm/s.
The color scheme shows the maximum shear stress concentration on the RBC membrane.

point sampling is employed for a computationally convenient spatial discretization and numerical integration. The
Local Maximum Entropy (LME) shape functions are adopted for approximating the incremental motion and fields
requiring differentiation, which enables direct imposition of essential boundary conditions and strong coupling of
fluid flows to highly deformable structures.

The proposed approach falls into the framework of monolithic Lagrangian FSI approaches and furnishes a Direct
Numerical Simulation (DNS) of fluid flows. As a consequence, the fluid–structure interface becomes an internal
surface of the coupled fluid–structure domain, and the continuity and force equilibrium is automatically satisfied
without any extra computational cost. Furthermore, the use of Lagrangian formulations for fluid eliminates the
problem of free surface and interface tracking and results in symmetric system matrices due to the absence of
convective terms. The accuracy and robustness of the proposed approach are systematically investigated by the
classical Blasius solution of the boundary layer problem. Furthermore, we illustrate the range and scope of the method
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Fig. 15. Aspect ratio change of an adherent healthy RBC under different local flow velocities. (a) The predicted shape of the healthy RBC is
comparable with the background real time experimental images. (b) Both the simulation and experimental data show the same trend regarding the
non-linear change of cell aspect ratio with increasing local flow velocities.

using two examples of: the impact between the fluid and rigid body for closed systems, and the interaction between
the fluid and highly flexible structure for open systems, in which we find excellent agreement between the numerical
predictions and experimental measurements. The validation tests indicate that the proposed method possesses the
potential for dealing with strongly coupled solid and fluid flows involving complex geometry, large deformation,
general constitutive relations.
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