
37

A Transactional Correctness Tool for Abstract Data Types

CHRISTINA PETERSON and DAMIAN DECHEV, University of Central Florida

Transactional memory simplifies multiprocessor programming by providing the guarantee that a sequential

block of code in the form of a transaction will exhibit atomicity and isolation. Transactional data structures

offer the same guarantee to concurrent data structures by enabling the atomic execution of a composition

of operations. The concurrency control of transactional memory systems preserves atomicity and isolation

by detecting read/write conflicts among multiple concurrent transactions. State-of-the-art transactional data

structures improve on this concurrency control protocol by providing explicit transaction-level synchroniza-

tion for only non-commutative operations. Since read/write conflicts are handled by thread-level concurrency

control, the correctness of transactional data structures cannot be evaluated according to the read/write his-

tories. This presents a challenge for existing correctness verification techniques for transactional memory,

because correctness is determined according to the transitions taken by the transactions in the presence of

read/write conflicts.

In this article, we present Transactional Correctness tool for Abstract Data Types (TxC-ADT), the first tool

that can check the correctness of transactional data structures. TxC-ADT elevates the standard definitions of

transactional correctness to be in terms of an abstract data type, an essential aspect for checking correctness

of transactions that synchronize only for high-level semantic conflicts. To accommodate a diverse assortment

of transactional correctness conditions, we present a technique for defining correctness as a happens-before

relation. Defining a correctness condition in this manner enables an automated approach inwhich correctness

is evaluated by generating and analyzing a transactional happens-before graph during model checking. A

transactional happens-before graph is maintained on a per-thread basis, making our approach applicable

to transactional correctness conditions that do not enforce a total order on a transactional execution. We

demonstrate the practical applications of TxC-ADT by checking Lock Free Transactional Transformation and

Transactional Data Structure Libraries for serializability, strict serializability, opacity, and causal consistency.

CCS Concepts: • Computing methodologies → Concurrent programming languages; Concurrent

algorithms;

Additional Key Words and Pharses: Concurrency, correctness verification, transactional data structure

ACM Reference format:

Christina Peterson and Damian Dechev. 2017. A Transactional Correctness Tool for Abstract Data Types.

ACM Trans. Archit. Code Optim. 14, 4, Article 37 (November 2017), 24 pages.

https://doi.org/10.1145/3148964

1 INTRODUCTION

Advancements in multiprocessor programming remains at the forefront of research and devel-

opment to leverage the processing power of multi-core systems. The synchronization of shared

This work was funded by the National Science Foundation (NSF) under Grant Numbers NSF OAC 1440530, NSF CCF

1717515, and NSF OAC 1740095.

Authors’ addresses: C. Peterson and D. Dechev, University of Central Florida, 4000 Central Florida Blvd. Orlando, FL 32816

USA; emails: clp8199@knights.ucf.edu, dechev@cs.ucf.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1544-3566/2017/11-ART37 $15.00

https://doi.org/10.1145/3148964

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

https://doi.org/10.1145/3148964
mailto:permissions@acm.org
https://doi.org/10.1145/3148964

37:2 C. Peterson and D. Dechev

memory accesses such that safety and liveness properties are preserved is an inherent challenge

associated withmultiprocessor algorithms. Safety ensures that an algorithm is correct with respect

to a defined correctness condition while liveness ensures that the program threads terminate ac-

cording to a defined progress guarantee.

The difficulty of designing multiprocessor programs inspired transactional memory, a program-

ming paradigm introduced by Herlihy et al. [19], that would allow designers to write sequential

blocks of code that could be executed concurrently while preserving the safety and liveness prop-

erties expected from multiprocessor programs. In addition to safety and liveness properties of tra-

ditional multiprocessor programs, transactional memory is expected to exhibit for each transaction

(1) atomicity and (2) isolation. Atomicity guarantees that the effects of a transaction are either en-

tirely committed to memory or are entirely aborted. Isolation guarantees that the operations of

each transaction appear to take effect in an uninterrupted sequential order. These properties have

broad applicability, since they enable the atomic execution of a composition of operations.

A concurrent data structure is considered transactional if it supports executing operations atom-

ically and in isolation. Transactional data structures bring the benefits of transactional memory

to concurrent data structures by enabling the execution of a composition of operations. The con-

currency control employed by transactional memory systems [8, 9, 24] preserves atomicity and

isolation by detecting accesses to the same memory location among multiple concurrent transac-

tions. Conflicts on memory accesses are resolved by allowing one transaction to commit while the

others are aborted or delayed, referred to as transactional synchronization. This concurrency con-

trol protocol suffers a performance loss for transactional data structures when recurring conflicts

arise on frequently accessed memory locations such as the head of a linked list.

Commutative operations are operations that when executed in opposite order will yield the same

abstract state of the data structure.Non-commutative operations are operations that when executed

in opposite order will yield a different abstract state of the data structure. State-of-the-art trans-

actional data structures [18, 34, 38] improve the concurrency control of transactional memory

systems by leveraging semantic knowledge of the data structure to provide explicit transactional

synchronization for only non-commutative operations. This high-level semantic conflict detection

allows commutative operations to proceed concurrently by utilizing atomic read, atomic write,

and atomic read-modify-write (RMW) operations for the thread-level synchronization of low-level

read/write conflicts [18]. The exploitation of data structure semantics substantially improves per-

formance but comes with a subtle catch. The correctness of transactional data structures cannot be

judged according to the histories of low-level reads and writes. Since transactional data structures

do not synchronize transactions for read/write conflicts, the read/write histories do not exhibit

the isolation property expected from transactional memory systems. This presents a challenge

for verification techniques [2, 6, 11, 12, 14] that evaluate the correctness of transactional memory

systems based on low-level reads and writes.

In this article, we present Transactional Correctness tool for Abstract Data Types (TxC-ADT),

the first tool that can check the correctness of transactional data structures. As introduced in Ref-

erence [33], TxC-ADT allows the standard definitions of transactional correctness to be recast in

terms of an abstract data type. Correctness is evaluated based on the abstract data type history

rather than the read/write history. TxC-ADT accommodates a variety of widely accepted transac-

tional correctness conditions, including serializability [29], strict serializability [29], opacity [17],

and causal consistency [21].

We address several challenges to unify a diverse collection of correctness conditions applicable

to transactional data structures. First, the concurrent histories must be in terms of an abstract data

type. We address this challenge by providing the user with lightweight annotations that identify

the invocation and response of an abstract data type. We use the model checker CDSChecker [27]

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:3

to iterate through all possible interleavings of the transactional application and generate the con-

current histories based on the defined abstract data type.

Second, the legal sequential histories that define the allowable histories vary for each correctness

condition. We address this challenge by defining correctness through a happens-before relation

on transactions using a custom specification language. TxC-ADT automatically constructs a trans-

actional happens-before graph that represents the allowable ordering of the transactions based on

the happens-before relation. The legal sequential histories that represent correct behavior for the

concurrent history are automatically extracted from the graph through a recursive topological sort

algorithm. The advantage of deriving the legal sequential histories from a transactional happens-

before graph is that the atomicity and isolation properties are preserved in the legal sequential his-

tories. We optimize the recursive topological sort by pruning a reordering of transactions that are

commutative from the search space. The exploration of a reordering of commutative transactions

is redundant, because the transactions executed in either order will yield the same abstract state.

Third, transactional correctness conditions do not necessarily enforce a total order on a transac-

tional execution. Causal consistency is one such example in which transactions may be perceived

in a different order by each thread. We address this challenge by allowing the happens-before

relation to be defined on a per-thread basis, in which a transactional happens-before graph will

be constructed for each individual thread. The generated legal sequential histories will therefore

reflect the observed history for each individual thread.

TxC-ADT checks the correctness of a transactional data structure by automatically generating

all possible concurrent histories from a transactional program and verifying that each concurrent

history is equivalent to a legal sequential history in terms of an abstract data type according to

the defined correctness condition. The ability to check correctness in terms of an abstract data

type is essential as transactional data structures become mainstream in database [1, 26, 35] and

data analysis [36, 37] applications that require atomicity and isolation for a composition of opera-

tions. TxC-ADTwill impact multiprocessor designers that are seeking to deliver high-performance

transactional capabilities that maintain the correctness properties expected from a transactional

program while benefiting from a high-level semantic conflict detection protocol. We demonstrate

the practical applications of TxC-ADT by checking the correctness of the transactional data struc-

tures presented by Zhang et al. [38] and Spiegelman et al. [34].

This article makes the following contributions:

(1) We present the first tool that can check the correctness of transactional data structures.

We evaluate correctness based on an abstract data type, making our approach applicable

to transactional data structures that use a high-level semantic conflict detection. Exist-

ing correctness verification tools for transactional memory systems evaluate correctness

based on the low-level read/write histories, making these techniques impractical for state-

of-the-art transactional data structures.

(2) We present a technique for representing a transactional correctness condition as a

happens-before relation. The main advantage of this technique is that it enables a diverse

assortment of correctness conditions to be checked automatically by generating and an-

alyzing a transactional happens-before graph during model checking. Furthermore, this

technique enables TxC-ADT to be adaptable to other transactional correctness conditions

that may become prevalent in the advancement of transactional data structures.

(3) We present an optimization to the recursive topological sort of the transactional happens-

before graph that prunes a reordering of transactions that are commutative from the

search space. We accomplish this by allowing the user to specify the conditions for which

two operations commute.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:4 C. Peterson and D. Dechev

(4) We present a strategy for checking the correctness of a transactional data structure when

the designed correctness condition does not enforce a total order on a history. Serializ-

ability, strict serializability, and opacity require a total order on the history such that all

threads observe the transactions in the same order. However, causal consistency requires

only a partial order on a history, allowing threads to observe transactions in a different or-

der. To the best of our knowledge, this is the first verification strategy capable of checking

a transactional memory system for causal consistency.

(5) We present two case studies demonstrating the practical application of TxC-ADT to

check the correctness of state-of-the-art transactional data structures, including Lock-Free

Transactional Transformation [38] and Transactional Data Structure Libraries [34].

2 RELATEDWORK

A significant amount of research focuses on the correctness verification of transactional memory.

Several approaches [11, 12, 22] propose automatic techniques to verify correctness of transac-

tional memory systems. Flanagan et al. [12] present the dynamic analysis tool Velodrome that

performs atomicity verification that is both sound and complete. Velodrome analyzes operation

dependencies within atomic blocks and infers the transactional happens-before relations of an

observed execution trace. Serializability of the execution trace is determined by verifying that the

transactional happens-before graph is acyclic. Emmi et al. [11] present an automatic verification

method to check that transactional memories meet the correctness property strict serializability.

Their technique parameterizes a transactional memory implementation according to the number

of threads n and number of shared locations k by constructing a family of simulation relations that

demonstrates for all n > 0 and k > 0, the transactional memory implementation refines the strict

serializability specification. Litz et al. [22] present a tool that automatically corrects snapshot

isolation (SI) anomalies in transactional memory programs. The tool promotes dangerous read

operations in the conflict detection phase of the SI transactional memory implementation and

forces one of the affected transactions to abort. The authors reduce the problem of choosing the

read operation to be promoted to a graph coverage problem for a dependency graph focusing

on read operations. Since these techniques verify correctness based on the low-level read/write

histories of the transactions, they are not directly applicable to transactional data structures that

utilize high-level semantic conflict detection.

Model checking is a well-known technique for checking correctness properties of concurrent

programs. The model checker CHESS [25] enables the systematic and deterministic testing of con-

current programs. Binary instrumentation is provided between the test program and the concur-

rency API to explore the possible thread schedules. CDSChecker [27] enables the exploration of

thread schedules that use the relaxed semantics of the C/C++memorymodel, which utilizes a vari-

ation of the dynamic partial order reduction [13] technique to minimize the exploration of redun-

dant thread schedules. Line-Up [5], a tool that automatically checks deterministic linearizability,

uses CHESS [25] to produce all sequential histories of a finite test and checks that all concurrent

histories are consistent with the sequential histories. While Line-Up is designed for checking cor-

rectness of non-blocking data structures, the general approach of comparing concurrent histories

with sequential histories to evaluate correctness is utilized by TxC-ADT.

Approaches including those in References [2, 14–16, 28] propose techniques based on model

checking to verify correctness of transactional memory systems. Guerraoui et al. [14] present

a technique for verifying software transactional memory (STM) safety properties using model

checking. Their technique leverages the structural symmetries of STM algorithms to reduce

the verification problem of an unbounded STM state space to a finite-state verification prob-

lem that requires a small number of threads and shared variables. O’Leary et al. [28] verify the

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:5

correctness of Intel’s McRT STM [31] using the model checker Spin [20]. Baek at al. [2] present

ChkTM, a model checking environment that can verify the correctness of transactional mem-

ory systems. ChkTM checks serializability and strong isolation of a transactional memory system

by performing a coarse-grained state space exploration that records the transactional reads and

writes when only a single processor is active at a time and comparing the result to a fine-grained

state space exploration that records the memory accesses for all possible interleavings. These ap-

proaches verify correctness at the granularity of low-level reads and writes, so the correctness

checking algorithm of these approaches needs to be modified to account for a concurrent history

in terms of an abstract data type to be relevant for the high-level semantic conflict detection of

transactional data structures.

Many approaches [3, 4, 6, 7, 10, 23, 32] propose a formal logic to verify correctness of trans-

actional memory systems. Blundell et al. [4] demonstrate that a direct conversion of lock-based

critical sections into transactions can cause deadlock even if the lock-based program is correct.

The observations of Blundell et al. [4] highlights safety violations that may be introduced in trans-

actional programs but does not provide a methodology for detecting the resulting faulty behavior.

Cohen et al. [6] present an abstract model for specifying transactional memory semantics, a proof

rule for verifying that the transactional memory implementation satisfies the specification, and a

technique for verifying serializability and strict serializability for a transactional sequence. Since

conflicts considered in the abstract model are defined at the read/write level, the approach is lim-

ited to transactional memory systems that synchronize at low-level reads and writes. Manovit

et al. [23] present a framework of formal axioms for specifying legal operations of a transactional

memory system. The dynamic sequence of program instructions called in the test are converted to

a sequence of nodes in a graph, where an edge in the graph represents constraints on the memory

order. The analysis algorithm constructs the graph based on the Total Store Order (TSO) mem-

ory model ordering requirements and checks for cycles to determine order violations. The graph

construction is based on TSO ordering requirements, so the framework cannot be directly used to

verify transactional correctness conditions that utilize high-level semantic conflict detection.

Bieniusa et al. [3] provide a formalization of a semantics of transactional memory that can prove

properties of a transactional memory system. The semantics are based on low-level reads/writes

and does not account for high-level semantic conflict detection. Doherty et al. [10] present Transac-

tional Memory Specification 1 (TMS1), a correctness specification of a transactional memory run-

time library comprising transactional features in programming languages such as C or C++. TMS1

is specified using an I/O automaton, enabling formal and machine-checked correctness proofs of

transactional memory implementations. The advantage of TxC-ADT over this verification tech-

nique is that TxC-ADT is capable of automatically checking a correctness condition specification

while Doherty et al. [10]’s approach requires that the correctness proofs be constructed manually

using formal logic. Schmidt-Schauß et al. [32] present the specification calculus STM-Haskell with

Futures (SHF) and a concurrent implementation of SHF, referred to as CSHF. The CSHF specifi-

cation is proved correct by showing that it is semantically equivalent to the big-step reduction

defined for SHF. To extend the approach to be applicable to transactional data structures, updates

are necessary for the SHF and CSHF calculus syntax and reduction rules to account for a user-

specified abstract data type and the transaction log maintained in CSHF to abort transactions for

access conflicts on the abstract data type.

3 METHODOLOGY

State-of-the-art transactional data structures [18, 34, 38] deliver improved performance over

data structures built using traditional transactional memory systems by performing transactional

synchronization only for high-level semantic conflicts. To achieve these performance benefits,

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:6 C. Peterson and D. Dechev

Fig. 1. Abstract data type annotation example.

transactional data structures must abandon the isolation property at the granularity of low-level

reads andwrites. This presents a challenge for previous correction verification techniques [2, 6, 11,

12, 14] for transactional memory systems, because the transitions incorporated in the correctness

proofs exhibit actions taken by the transactions in the presence of read/write conflicts.

3.1 Transactional Correctness for Abstract Data Types

We first provide definitions relevant to a transactional execution. An event is (1) an operation

associated with changes in the status of a transaction, including transaction-begin, commit, or

abort, or (2) an operation associated with a method invocation or method response. A history is a

finite series of instantaneous events [18]. A sequential history is a history such that the events of

a transaction run in isolation from the events of other transactions [18]. A concurrent history is a

history in which the finite series of events are ordered according to a thread schedule.

The correctness of transactional data structures is evaluated by elevating the standard defini-

tions of transactional correctness to be properties on an abstract data type [33]. We provide the

user with lightweight annotations to indicate the invocation and response of a method invoked

on an abstract data type and use the model checker CDSChecker [27] to generate the concurrent

histories based on the defined abstract data type. An example of the annotation usage is shown in

Figure 1. The annotations are displayed in C-like syntax, because it demonstrates how to specify

an abstract data type using TxC-ADT. The invocation of a method is specified by passing a func-

tion pointer of the method and associated input to the begin function on line 3. The response of a

method is specified by passing a function pointer of the method and associated output to the end
function on line 5. A transactional region is specified using the txn_begin function on line 12 to

indicate the beginning of a transaction and the txn_end function on line 15 to indicate the end of

a transaction.

Our approach for specifying an abstract data type can be applied to reads and writes for the

verification of legacy transactional memory systems. The read/write operations need to be en-

closed between the begin function on line 3 and end function on line 5 with the appropriate

parameters passed to each function. This can be elegantly handled using macros for the read and

write operations. TxC-ADT will then evaluate correctness based on the read/write histories of the

transactions.

During model checking, the information extracted from each annotation is stored in an action

object, shown inAlgorithm 1. TheConcurrentHistory type on line 1.36 is a list of action objects that
represents a single generated concurrent history. To facilitate the correctness checking algorithm

presented in Algorithm 4, we assemble a transaction descriptor for each transaction in a concurrent

history. An active status indicates that a transaction is live and has not yet committed or aborted.

A committed status indicates that a transaction has completed and its effects are committed to

memory. An aborted status indicates that a transaction has completed and its effects are rolled

back. A transaction descriptor contains the transaction status (active, committed, or aborted), a

sequence number for the beginning and ending of a transaction, and a list of the methods invoked

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:7

on the abstract data type with a corresponding function pointer and associated input and observed

output values, as shown in Algorithm. 1. We now provide definitions that are fundamental for the

correctness checking strategy used by TxC-ADT:

Definition 3.1. The happens-before relation, denoted <H , is a partial order defined over the set

of transactions in a history h such that for any two transactions T1 and T2, if T1 <H T2, then the

commit or abort event of transaction T1 precedes the commit or abort event of transaction T2 in
history h.

Definition 3.2. The transactional happens-before graph is a directed graph such that for any two

transactions T1 and T2 in history h, if an edge exists from T1 to T2, then T1 <H T2.

The txn_map on line 1.34 maps each transaction to a unique identification number to maintain

the transactional happens-before graph as a two-dimensional list of transaction ids, as shown

on line 1.35. The LeдalHistory type on line 1.37 is a list of transaction identification numbers

that corresponds to a legal ordering of the transactions according to the correctness condition.

Correctness is evaluated by comparing the abstract data type methods list output values to the

legal sequential histories, discussed in Section 3.2.

If the transaction status is aborted, then a list of inverse operations is maintained on line 1.33 to

undo the effects of the operations to the abstract data type. This undo log is necessary to verify cor-

rectness conditions, such as opacity, that require aborted transactions to observe a consistent state

of the system. When correctness is judged on aborted transactions, the generated legal sequential

history must include the observed output from the aborted transaction. However, the inverse op-

erations must be called immediately after invoking all operations for the aborted transaction so

its effects do not propagate throughout the remaining generated legal sequential history.

ALGORITHM 1: Type Definitions

1 typedef int TxnId;

2 enum TxStatus

3 Active;

4 Commited;

5 Aborted;

6 enum ActionType

7 Invocation;

8 Response;

9 Correctness_Condition;

10 Txn_Begin;

11 Txn_End;

12 Commit;

13 Abort;

14 struct MethodDesc

15 int id ;

16 void *(f unc_ptr)(uint64_t);

17 uint64_t input ;

18 uint64_t observedOutput ;

19 struct ActionObject

20 int sequence_number ;

21 ActionType type ;

22 int tid ;

23 TxStatus status;

24 TxnId txn_id ;

25 void *(method)(uint64_t);

26 uint64_t input ;

27 uint64_t observedOutput ;

28 struct TxnDesc

29 TxStatus status;

30 int beдin;

31 int end ;

32 List<MethodDesc>method_list ;

33 List<MethodDesc>method_list_inv ;

34 Map<TxnId, TxnDesc> txn_map;

35 typedef List<List<TxnId>> Graph;

36 typedef List<ActionObject> ConcurrentHistory;

37 typedef List<TxnId> LegalHistory;

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:8 C. Peterson and D. Dechev

Fig. 2. Correctness condition declaration.

ALGORITHM 2: Recursive Topological Sort

1 Function RecTopologicalSort(Graph g)
2 list L ; // Empty list that contains sorted transactions

3 list N ; // List of all transactions with no incoming edges

4 LegalHistory S[] ;

5 foreach n ∈ N do

6 PrunedRecTopologicalSort(S[], n,L,N ,д) ;

7 return S[] ; // Return all legal sequential histories

3.2 A Unification of Transactional Correctness Conditions

To check that the generated concurrent histories are correct, each concurrent history must be

equivalent to a legal sequential history based on a transactional correctness condition. As trans-

actional data structures become widespread, the diverse assortment of transactional correctness

conditions will be potential candidates for delivering a design that provides the safety expected

from multiprocessor algorithms. For this reason, we designed TxC-ADT to accommodate well-

known transactional correctness conditions including serializability, strict serializability, opacity,

and causal consistency.

TxC-ADT unifies the transactional correctness conditions by observing that the ordering

constraints on the transactions according to the correctness conditions can be represented by a

transactional happens-before graph. The idea of a transactional happens-before graph was used

in Velodrome [12]. However, Velodrome’s graph is constructed by automatically inferring the

happens-before relationship between transactions from the low-level read/write orderings, which

is not applicable to transactional data structures that use a high-level semantic conflict detection.

Our strategy is to define for each correctness condition a happens-before relation on transac-

tions using a custom specification language. The definition for the correctness condition is placed

in the main method using the correctness_condition function as shown on line 2 of Figure 2.

The specifications for serializability, strict serializability, opacity, and causal consistency are pre-

sented in Section 3.3. A unit test for the transactional data structure must declare the main entry

point as user_main(int, char**) instead of main(int, char**) and use CDSChecker’s threads
library and the C++ Atomic Operations Library for atomic operations. Once the happens-before

relation is defined, TxC-ADT automatically constructs a transactional happens-before graph dur-

ing model checking. A topological sort of the happens-before graph will yield a possible legal

sequential history for the transactional execution. We can derive all possible legal sequential his-

tories for the transactional execution by applying a recursive topological sort to the transactional

happens-before graph.

Algorithm 2 presents the recursive topological sort function. The worst case time complexity of

a recursive topological sort isO(n!) due to the consideration of all possible orderings of n transac-

tions. We observe that this time complexity can be reduced by pruning the recursive topological

sort to not explore ordering variations for commutative transactions.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:9

ALGORITHM 3: Pruned Recursive Topological Sort

1 Function PrunedRecTopologicalSort(LegalHistory S[], TxnId n, list L, list N, Graph g)
2 if (L.size() != 0) && (commutes_matrix[n][L.back()] == true) && (reorder_matrix[n][L.back()] ==

true) && (n < L.back()) then

3 return ; // Prune redundant recursive call for commutative transactions

4 Graph д′ = д;

5 L.push_back(n) ; // Add n to list of sorted transactions

6 N .remove(n);

7 foreachm ∈ д′[n] do
8 д′[n].remove(m);

9 if m.incominд_edдes() == 0 then

10 N .push_back(m) ; // Add m to list of transactions with no incoming edges

11 foreach n′ ∈ N do

12 PrunedRecTopologicalSort(S[],n′,L,N ,д′) ;

13 if N .size() == 0 then

14 S[].push_back(L);

15 return;

Algorithm 3 presents the pruned recursive topological sort function called within Algorithm 2.

The pruned recursive topological sort function is passed a list of legal sequential histories S[], a
transaction id n to select as the next ordered transaction, a list L that contains the sorted trans-

actions, a list N of transactions with no incoming edges, and a graph д. The commutes_matrix
is a Boolean two-dimensional matrix where position (i, j) is true if transaction i and transaction

j commute and false otherwise. The reorder_matrix is a Boolean two-dimensional matrix where

position (i, j) is true if transaction i and transaction j have no ordering constraints and false if

transaction i and transaction j are ordered by the happens-before relation. Both matrices are con-

structed based on the correctness condition specification, described in Section 3.3. If transaction

n commutes with the last transaction in list L and these transactions can be reordered, then the

orderings in which n < L.back() will not be explored. Alternatively, we could have also chosen to

not explore the orderings in which L.back() < n. If pruning is not possible, then all edgesm outgo-

ing from transaction n are removed from an updated graph д′ on line 3.8 and the pruned recursive

topological sort function is called on the updated list N of transactions with no incoming edges.

The algorithm for checking a correctness condition is presented in Algorithm 4. The

IsHistoryCorrect function generates the transactional happens-before graph on line 4.2 from

the ConcurrentHistory object in conjunction with the correctness condition specification. A re-

cursive topological sort on the graph, shown on line 4.3, computes all possible orderings of the

transactions. For each possible transaction ordering, the concurrent output and sequential output

are generated from the transaction descriptorTxnDesc detailed in Algorithm 1. For eachmethod in

a transaction’smethod_list , the observed output is amended to the concurrent history on line 4.9,

and the method’s function pointer is invoked on line 4.10 and amended to the sequential output

on line 4.11. If a transaction does not commit, then the function pointers of the inverse methods

inmethod_list_inv are invoked to undo the effects of the transaction in the remainder of the legal

sequential history. The order of the inverse methods inmethod_list_inv is the reverse order of the

corresponding methods in method_list . This is essential to restore the correct abstract state for

non-commutative operations [18].

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:10 C. Peterson and D. Dechev

ALGORITHM 4: Correctness Checking Algorithm for Concurrent History

1 Function IsHistoryCorrect(ConcurrentHistory* history)
2 Graph д ← GenerateGraph(history) ; // Generate transactional happens-before graph

3 LegalHistory S[]← RecTopologicalSort(д) ; // Generate set of legal sequential

histories

4 foreach s ∈ S[] do
5 list concurrent_output ;

6 list sequential_output ;

7 foreach txn ∈ s do
8 foreach m ∈ txn.method_list do
9 concurrent_output .push_back(m.observedOutput) ; // m’s observed output

10 uint64_t temp = (∗m. f unc_ptr)(m.input) ; // Invoke m sequentially

11 sequential_output .push_back(temp) ; // m’s sequential output

12 if txn.status!=COMMITTED then

13 foreach m_inv ∈ txn.method_list_inv do

14 (∗m_inv . f unc_ptr)(m_inv .input) ; // Invoke m_inv sequentially

15 if concurrent_output==sequential_output then
16 return true ; // Concurrent output is equivalent to a legal sequential

history

17 else

// Document counterexample

// Report all documented counterexamples

18 return false ; // Concurrent output is not equivalent to a legal sequential history

The concurrent history output is compared with the legal sequential history output on line 4.15.

If this comparison is true, then the individual concurrent history is correct and IsHistoryCorrect
returns true. Otherwise, the counterexample is documented and the for-loop on line 4.4 contin-

ues to iterate through the possible legal sequential histories. If the concurrent history output is

not equivalent to any legal sequential history output, then the concurrent history is not correct.

IsHistoryCorrect returns false and the counterexamples collected are reported to the user at the

end of model checking.

The derivation of the legal sequential histories from a transactional happens-before graph pre-

serves two critical properties expected from a transactional execution: atomicity and isolation.

The transactions that appear in a legal sequential history are executed entirely (allowing for the

verification of atomicity) and in a one-at-a-time sequential order (allowing for the verification of

isolation). Moreover, since all transactional correctness conditions preserve atomicity and isola-

tion, our approach may be extended to other correctness conditions that may be adopted in the

advancement of transactional data structures.

The comparison between legal sequential history and concurrent history is performed by com-

paring the observed effects of each individual method in the concurrent history to the observed

effects of the corresponding method in the legal sequential history. The comparison is performed

in this manner rather than directly comparing the concurrent history output in the order of ob-

servation with the output of each legal sequential history, because the order in which the method

response occurs in the concurrent history may appear to violate isolation. Since commutative op-

erations do not require transactional synchronization, the concurrent history may reflect a method

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:11

ALGORITHM 5: Correctness Checking Algorithm for Implementation

1 Function IsUnitTestCorrect(UnitTestm)
2 ConcurrentHistory H []← GenerateConcurrentHistories(m) ; // Generate concurrent

histories from unit test

3 bool outcome = true;

4 foreach h ∈ H [] do

5 if IsHistoryCorrect(h) == false then

6 outcome = false;

7 return outcome ; // At least one concurrent history is not equivalent to a legal

sequential history

response ordering in which the effects of a transaction are interleaved with the effects of another

transaction. This is acceptable behavior for transactional data structures, because the interleaved

effects of commutative operations result in the same abstract state.

The algorithm for checking the correctness of a unit test is presented in Algorithm 5. The

IsUnitTestCorrect function accepts a unit test as a parameter and generates all concurrent his-

tories of the unit test from a model checker on line 5.2. The foreach-statement on line 5.4 iterates

through all concurrent histories and checks if each concurrent history is correct. If all concurrent

histories are correct, then the unit test meets the transactional correctness condition; otherwise,

the unit test does not meet the transactional correctness condition. Since correctness is judged only

on the generated concurrent histories, the outcome of the IsUnitTestCorrect function is rele-

vant only to the unit test. To check that the implementation is correct, the unit test must be written

to include all methods and a minimal set of inputs such that all behaviors of the transactional data

structure are explored.

3.2.1 Correctness of TxC-ADT Technique. We provide a formal definition of commutativity be-

tween transactions as follows.

Definition 3.3. Two transactions T1 and T2 commute if for all histories h if h ·T1 and h ·T2 are
both legal, then h ·T1 ·T2 and h ·T2 ·T1 are both legal and define the same abstract state.

Theorem 3.4. Let transaction i and transaction j be commutative and allowed to be reordered ac-

cording to the transactional happens-before graph. Let h be all possible histories generated by a topo-

logical sort of the transactional happens-before graph. Algorithm 3 will explore h · i · j and terminate

the PrunedRecTopologicalSort call for h · j · i .

Proof. Let commutes_matrix be a Boolean two-dimensional matrix where position (i, j) is true
if transaction i and transaction j commute and false otherwise. Let reorder_matrix be a Boolean

two-dimensional matrix where position (i, j) is true if transaction i and transaction j have no or-

dering constraints and false if transaction i and transaction j are ordered by the transactional

happens-before graph. Let L be a partial list of transactions that are sorted according to the trans-

actional happens-before graph. Let N be a list of all transactions with no incoming edges. Let

n ∈ N be a transaction that is under consideration for being amended to the end of L. By Defini-

tion 3.3, if L.back() and n commute, then these transactions executed in either order will yield the

same abstract state. If L.back() and n are allowed to be reordered according to the transactional

happens-before graph, then it is only necessary to explore the ordering L.back() ·n or n · L.back().
Arbitrarily choose to explore the ordering in which transaction id n is greater than transaction id

L.back(), denoted n > L.back(). Given that L is not empty, commutes_matrix[n][L.back()] is true,

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:12 C. Peterson and D. Dechev

and reorder_matrix[n][L.back()] is true, then the orderings such that n < L.back() do not need to
be explored. Let transaction i have a smaller id than transaction j. Since the if-statement on line 3.2

will resolve to true if n < L.back(), L.back() and n commute, and L.back() and n can be reordered

according to the transactional happens-before graph, the history h · i · j will be explored and the

PrunedRecTopologicalSort call will terminate for h · j · i . �

Theorem 3.5. RecTopologicalSort returns a set S of all legal sequential histories defined by the

transactional happens-before graph.

Proof. Let N be a list of all transactions with no incoming edges in the transactional happens-

before graph. Any selection of n ∈ N will yield a valid topological sort of the transactional

happens-before graph. The foreach-statement on line 2.5 calls PrunedRecTopologicalSort with

n ∈ N as a parameter. Since L is initially empty, n is amended to the back of L and removed from

N . All transactions m with an edge from n to m are removed from the transactional happens-

before graph on line 3.8. If m has no incoming edges, then it is amended to N on line 3.10. Any

selection of n′ ∈ N will yield a valid topological sort of the happens-before graph. The foreach-

statement on line 3.11 calls PrunedRecTopologicalSortwithn′ ∈ N as a parameter. Since L is not
empty, n′ may possibly be pruned from the recursive topological sort on line 3.2. By Theorem 3.14,

PrunedRecTopologicalSort will only explore one ordering of commutative transactions that are

allowed to be reordered according to the transactional happens-before graph. Given that n′ is not
pruned from the recursive toplological sort, n′ is amended to the back of L and removed from N .

The recursive calls terminates when N is empty and amends the topological sort L to S on line 3.4.

Since all possible orderings are considered for exploration and the pruned orderings will produce

the same abstract state as another topological sort L ∈ S by Theorem 3.4 and Definition 3.3, set S
will contain all legal sequential histories defined by the transactional happens-before graph. �

Theorem 3.6 (Soundness). Leth be a concurrent history of implementationX . Ifh does not satisfy
the specified correctness condition, then IsHistoryCorrect(h) (Algorithm 4) returns false.

Proof. By Theorem 3.5, RecTopologicalSort returns a set S of all legal sequential histories

defined by the transactional happens-before graph. The foreach-statement on line 4.4 iterates

through every legal sequential history in S . The foreach-statements on line 4.7 and line 4.8 it-

erate through each method called by each transaction in legal sequential history s ∈ S . For each
method the observed output from the concurrent history is amended to the list concurrent_output
on line 4.9. Themethod’s function pointer is invoked on line 4.10 to generate the sequential output,

which is amended to the list sequential_output on line 4.11. Aborted transactions are accounted

for by invoking the inverse method’s function pointer on line 4.14. If the if-statement on line 4.15

evaluates to true, then concurrent history h is equivalent to a legal sequential history generated

from the transactional happens-before graph. Since the transactional happens-before graph repre-

sents the allowable orderings of the transactions according to the specified correctness condition,

concurrent history h satisfies the specified correctness condition and IsHistoryCorrect(h) re-
turns true. If the end of the for-loop on line 4.4 is reached, then IsHistoryCorrect(h) returns
false. In this case, since concurrent history h is not equivalent to any legal sequential history gen-

erated from the transactional happens-before graph, h does not satisfy the specified correctness

condition. Therefore, the theorem holds. �

Theorem 3.7 (Completeness). Let H be the set of concurrent histories generated from a unit test

m of implementationX . If for any arbitraryh ∈ H IsHistoryCorrect(h) (Algorithm 4) returns false,

then implementation X does not satisfy the specified correctness condition and IsUnitTestCorrect
(Algorithm 5) returns false.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:13

Fig. 3. Grammar for the custom specification language.

Proof. If there exists some concurrent history h ∈ H such that IsHistoryCorrect(h) returns
false, then by Theorem 3.6, h does not satisfy the specified correctness condition. An implemen-

tation X satisfies the specified correctness condition with respect to unit test m if for all h ∈ H ,

IsHistoryCorrect(h) returns true. If given an arbitrary h ∈ H such that IsHistoryCorrect(h)
returns false, then the Boolean oucome is set to false on line 5.6. ImplementationX does not satisfy

the specified correctness condition and IsUnitTestCorrect (Algorithm 5) returns false. There-

fore, the theorem holds. �

3.3 Specification Language

The context-free grammar for our custom specification language, presented in Figure 3, is de-

scribed using the Backus-Naur form (BNF). Terminals are integers (line 30), operators (line 31),

variables (line 32), and text enclosed in single quotes. Non-terminals are program (line 1), func-

tion (line 2), statement (line 3), statement list (line 15), partial statement (line 16), and expression

(line 18). The specification language is designed to retrieve data from the concurrent history, which

is a list of ActionObjects , defined on line 1.36.

The expression on line 22 retrieves the unique transaction identification number associated

with the transaction descriptor at sequence number x in the concurrent history. The transac-

tional happens-before graph is initially empty at the start of each generated concurrent history.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:14 C. Peterson and D. Dechev

Since some transactional correctness conditions are properties on only a subset of the transac-

tions within a history, we require that a transaction must be explicitly inserted in the transac-

tional happens-before graph in the specification. The statement on line 7 enables a transaction to

be inserted in the transactional happens-before graph.

To place a happens-before relation between two transactions as shown on line 6, information

on these transactions pertinent to the correctness condition being evaluated must be extracted.

The expression on line 21 retrieves the size of the concurrent history. The thread id of a transac-

tion can be obtained by the expression on line 23. This information is necessary for correctness

conditions that place an ordering constraint on transactions called by the same thread. The status

of a transaction at sequence number x in the concurrent history can be obtained by the expres-

sion on line 24, which is relevant for correctness conditions that place an ordering constraint only

on committed transactions. A real-time ordering between transactions can be determined by the

expression on line 25, which evaluates to true if the response of the first transaction occurs before

the response of the second transaction. A real-time ordering constraint is placed on transactions

for correctness conditions such as strict serializability and opacity.

Not all transactional correctness conditions require a total ordering on the transactions in a

history. Causal consistency is one such example in which threads may perceive transactions in

a different order. Our specification language accommodates this property by maintaining a per-

thread transactional happens-before graph given the case that a correctness condition requires

only a partial ordering on the transactions. Algorithm 4 must be applied to each thread’s transac-

tional happens-before graph to evaluate correctness. The statement on line 9 allows a transaction

to be inserted into the transactional happens-before graph belonging to the thread as evaluated by

the expression within the brackets. The statement on line 8 allows a happens-before relation to be

placed between two transactions in a thread’s transactional happens-before graph. Causal consis-

tency places an ordering constraint on two transactions if one transaction’s effects causes another

transaction’s effects. The expression on line 26 evaluates to true if at least one of the operations in

the first transaction causes the effects of at least one of the operations in the second transaction.

Internally, the evaluation of cause and effect between operations is performed by mapping each

operation’s output to an operation’s input if a mapping exists.

The challenge with organizing transactions in a happens-before graph is that a recursive topo-

logical sort with a worst-case time complexity of O(n!) must be applied to the graph to derive all

possible legal sequential histories. We reduce this worst-case time complexity by pruning a recur-

sive call that would explore a reordering of commutative transactions. Since commutative transac-

tions can be reordered without affecting the resultant abstract state of the data structure, the explo-

ration of commutative transactions called in opposite order is unnecessary, because it will produce

the same legal sequential history. The statement on line 10 allows two methods to be declared as

commutative given that the condition in parenthesis is never false. The expression on line 27 re-

trieves the method id of the method invoked at sequence number x in the concurrent history.

The operational semantics of the specification language are provided in Figure 4. A state is

described by the (n+3)-tuple (M,G,G1, . . . ,Gn , c), where n is the number of threads in the unit test,

M is a Boolean two-dimensional matrix such that the value at position (i ,j) indicates if transaction
i and transaction j are commutative, G is the transactional happens-before graph, Gi is the local

transactional happens-before graph for thread i in the unit test, and c is the program statement to

evaluate next. A transition from state S0 to state S1 is expressed as S0 → S1.

3.3.1 Serializability.

Definition 3.8. A history h is serializable if the subsequence of h consisting of all events of com-

mitted transactions is equivalent to a legal sequential history [29].

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:15

Fig. 4. Operational semantics for the custom specification language.

Fig. 5. Concurrent history example.

Fig. 6. Serializability specification. Fig. 7. Happens-before example for serializability.

Serializability requires that all committed transactions preserve atomicity and isolation. There

is no ordering constraint placed on the individual transactions. The specification for serializability

is shown in Figure 6. If the transaction status is determined to be committed on Line 3, then the

transaction is inserted in the transactional happens-before graph on Line 5.

Figure 7 shows the happens-before graph and legal sequential histories generated from the spec-

ification of Figure 6 applied to the concurrent history of Figure 5. The happens-before graph con-

tains all committed transactions without any ordering constraints. The legal sequential histories

encompasses all topological sorts of the happens-before graph. Since there are 3! ways to order

three items, there are six possible legal sequential histories, as shown in Figure 7.

3.3.2 Strict Serializability.

Definition 3.9. A history h is strictly serializable if the subsequence of h consisting of all events

of committed transactions is equivalent to a legal sequential history in which these transactions

execute sequentially in the order they commit [29].

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:16 C. Peterson and D. Dechev

Fig. 8. Strict serializability specification. Fig. 9. Happens-before example for strict

serializability.

Strict serializability requires that all committed transactions preserve real-time ordering, as well

as atomicity and isolation. The specification for strict serializability is shown in Figure 8. If a

transaction is committed, then it is inserted in the transactional happens-before graph on lines 4

and 7. The keyword precedes on line 10 evaluates to true if the response of transactionm occurs

before the invocation of transaction n in real-time. If both transaction m and transaction n are

committed, and transactionm precedes transaction n, then a happens-before relation is placed on

transactionm and transaction n on line 11.

Figure 9 shows the happens-before graph and legal sequential histories generated from the spec-

ification of Figure 8 applied to the concurrent history of Figure 5. The happens-before graph con-

tains all committed transactions, where transactions 1 and 2 are ordered before transaction 3 due

to the real-time ordering constraint of strict serializability. Since there is no ordering constraint

between transactions 1 and 2, there are two possible legal sequential histories, as shown in Figure 7.

3.3.3 Opacity. Opacity requires that all transactions (committed, aborted, or active) observe

a consistent state of the system. Prior to defining opacity, we provide definitions to transform

an incomplete history into a complete history by aborting or committing the active transactions.

A commit-try event is a request to commit. An abort-try event is a request to abort. An active

transaction that has issued a commit-try is commit-pending.

Definition 3.10. A history h iswell formed if each individual transactionTi comprises a sequence

of invocation andmatching response events such that (1) no event follows a commit or abort event,

(2) only a commit or abort event can follow a commit-try event, and (3) only an abort event can

follow an abort-try event [17].

Definition 3.11. A history h′ is in Complete(h) if (1) h′ is well formed, (2) h′ is obtained from h
by inserting a number of commit-try, commit, and abort events for transactions that are active in

h, (3) every transaction that is active and not commit-pending in h is aborted in h′, and (4) every

transaction that is commit-pending in h is either committed or aborted in h′ [17].

Definition 3.12. A history h is opaque if there exists a sequential history S equivalent to some

history in the set Complete(h) such that (1) S preserves the real-time order of h and (2) every

transaction Ti ∈ S is legal in S [17].

Opacity requires that all transactions preserve real-time ordering, as well as atomicity and iso-

lation. Since all transactions must observe a consistent state of the system, all transactions are

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:17

Fig. 10. Opacity specification. Fig. 11. Happens-before example for opacity.

inserted in the transactional happens-before graph regardless of their status. The specification for

opacity is shown in Figure 10. If transactionm precedes transaction n in real-time, then a happens-

before relation is placed between transactionm and transaction n on line 7.

Figure 11 shows the happens-before graph and legal sequential histories generated from the

specification of Figure 10 applied to the concurrent history of Figure 5. The happens-before graph

contains all transactions (committed, active, or aborted), where transactions 1 and 2 are ordered

before transactions 3 and 4 due to the real-time ordering constraint of opacity. Since there is no

ordering constraint between transactions 1 and 2, or transactions 3 and 4, there are four possi-

ble legal sequential histories, as shown in Figure 11. Since transaction 4 aborts, the inverse of

Insert(400) (Insert_Inv(400)) must be applied to undo the effects of transaction 4 in the legal

sequential histories.

3.3.4 Causal Consistency.
Definition 3.13. A causality relation consists of operation pairs (X ,Y) such that operation X

causes operation Y .

Definition 3.14. A history h is causally consistent if for each thread ti , there exists a sequential
history Si equivalent to some history in the set Complete(h), such that (1) Si preserves the causality
relation and (2) every committed transaction executed by ti is legal in Si [30].

Causal consistency requires that committed transactions observe other transactions issued by

the same thread and transactions that cause the observed effects, where the observed effects must

preserve atomicity and isolation. Since each thread may observe a different ordering on the trans-

actions, the committed transactions as a whole cannot be totally ordered. Therefore, each thread

must maintain its own transactional happens-before graph. The specification for causal consis-

tency is shown in Figure 12. If a transaction is committed, then it is inserted into its thread’s

transactional happens-before graph on lines 4 and 7. If both transactionm and transaction n are

committed, then there are two scenarios in which a happens-before relation may be placed on the

transactions. The first scenario occurs if both transaction m and transaction n are issued by the

same thread and transactionm precedes transaction n, as shown on lines 10 and 11. The second

scenario occurs if transactionm and transaction n are not issued by the same thread and transac-

tionm causes transaction n, as shown on lines 12, 13, and 14. The happens-before relation is only

placed between transactionm and transaction n in the graph of the thread that issued transaction

n. This is due to the transaction that caused the effect is not necessarily aware of the effect.

Figure 13 shows the happens-before graph and legal sequential histories generated from the

specification of Figure 12 applied to the concurrent history of Figure 5. The happens-before graph

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:18 C. Peterson and D. Dechev

Fig. 12. Causal consistency specification. Fig. 13. Happens-before example for causal

consistency.

Fig. 14. Serializability specification with com-

mutative methods specified.

Fig. 15. Pruning example for serializability with

commutative methods specified.

is maintained on a per-thread basis. Each thread i observes the committed transactions issued by

thread i in commit order as well as committed transactions from other threads that cause the effects

of thread i’s transactions. Since Delete(300) of transaction 3 observes the effects of Insert(300) of
transaction 2, thread 1’s happens-before graph orders transaction 2 before transaction 3. Thread

2’s happens-before graph only contains transaction 2, because none of thread 1’s transactions

cause the effects of transaction 2. Since there is no ordering constraint between transactions 1 and

2 in thread 1’s happens-before graph, there are two possible legal sequential histories, as shown

in Figure 13. Thread 2’s happens-before graph only contains transaction 2, yielding one possible

legal sequential history.

3.3.5 Commutativity Specification. The recursive topological sort in the correctness checking

function, detailed in Algorithm 4, is optimized by specifying commutative methods in a transac-

tion. Figure 14 depicts the specification for serializability with a specification identifying commuta-

tive methods for set operations on line 9. Set operations are commutative if they have different in-

put arguments. Figure 15 shows the commutes_matrix , reorder_matrix , legal sequential histories,

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:19

Table 1. TxC-ADT Results for Transactional Data Structures

Correctness Condition

Transactional Data

Structure

Causal

Consistency Serializability

Strict

Serializability Opacity

LFTT Linked List Pass Pass Pass Pass

LFTT Skiplist Pass Pass Pass Pass

TDSL Queue Pass Pass Pass Pass

TDSL Skiplist Pass Pass Pass Pass

and the pruned legal sequential histories for the example concurrent history in Figure 5. In this ex-

ample, transactions 1 and 2 commute and transactions 1 and 3 commute, because the input passed

to eachmethod of the transaction is unique. Transaction 2 and 3 do not commute, because they both

invoke a method with input 300. The commutes_matrix reflects this relationship, because position

(1, 2) = true, position (1, 3) = true, and position (2, 3) = false. All positions of the reorder_matrix
are true, because serializability does not enforce any particular order on the transactions. Since

transaction 1 commutes with both transaction 2 and transaction 3, the only reordering that must

be explored is between transaction 2 and transaction 3, as listed in the legal sequential histories of

Figure 15. All other ordering may be pruned from the recursive topological sort, because they yield

the same abstract state of the data structure as the orderings listed in the legal sequential histories.

4 CASE STUDIES

We evaluate TxC-ADT by checking the correctness of Lock-Free Transactional Transformation

(LFTT) [38] and Transactional Data Structure Libraries (TDSL) [34]. The tests are conducted on a

64-core NUMA system (4 AMD opteron 6272 CPUswith 16 cores per chip@2.1GHz). Each unit test

comprises three threads such that two threads each issue a transaction with two operations and

one thread issues a transaction with one operation. The operations in the transactions are selected

such that a high-level semantic conflict exists between two transactions issued by different threads.

For the set abstract data type, one transaction invokes Insert(X) and another transaction invokes

Delete(X). For the queue abstract data type, one transaction invokes Dequeue() and another trans-
action also invokes Dequeue(). We collect the concurrent histories from CDSChecker and equally

distribute them among the 64 cores to check correctness using TxC-ADT. The correctness condi-

tions incorporated in the evaluation include serializability, strict serializability, opacity, and causal

consistency. The results are shown in Table 1. The data structures of both approaches meet opac-

ity, the strongest transactional correctness property. These are the expected results, since LFTT

is designed for strict serializability and TDSL is designed for opacity. Although the correctness

proofs for LFTT [38] verify strict serializability, the approach of LFTT is also opaque, because the

logical interpretation allows all transactions to observe a consistent state of the system regardless

of the transaction status.

The execution times for the unit tests are shown in Table 2. The column abbreviated CDS is the

time (in seconds) for CDSChecker to generate the concurrent histories of the transactional data

structure unit test. The column abbreviated TxC is the time (in seconds) for TxC-ADT to analyze

the concurrent histories and determine if the unit test meets the specified transactional correctness

condition. Opacity takes the largest amount of time to check, because the effects of all transactions

(active, committed, and aborted) must be evaluated for correctness. Strict serializability generally

takesmore time to check than serializability, because the specification for strict serializability takes

additional time to incorporate real-time ordering in the transactional happens-before graph. The

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:20 C. Peterson and D. Dechev

Table 2. TxC-ADT Execution Time Results (in Seconds)

LFTT Linked List (seconds) LFTT Skiplist (seconds) TDSL Queue (seconds) TDSL Skiplist (seconds)

Correctness Condition TxC. CDS. TxC. CDS. TxC. CDS. TxC. CDS.

Causal Consistency 1,076 901 30 57 18 15 569 640

Serializability 958 901 28 57 21 15 501 640

Strict Serializability 1,451 901 28 57 24 15 468 640

Opacity 1,729 901 28 57 22 15 532 640

Number of Concurrent Histories 405,524 11,323 8,401 210,967

Fig. 16. LFTT linked list unit test. Fig. 17. LFTT linked list concurrent histories.

time to check causal consistency increases as the number of transactions that satisfy the causality

relation increases. This occurs because an increase in the per-thread transactional happens-before

graph size requires more time to analyze. The variance in execution time for each data structure

is due to the total number of concurrent histories computed for each unit test. The total number

of concurrent histories computed by CDSChecker increases as the number of atomic operations

called in the unit test increases. The large variance between the LFTT linked list and the LFTT

skiplist is due to the logarithmic search time of a skiplist reduces the total number of possible

atomic operations invoked in the unit test.

To demonstrate the ability of TxC-ADT to produce counterexamples, we inject design flaws

within the source code accompanying LFTT and TDSL that may occur in the development of

transactional data structures. The following subsections provide a brief overview of the LFTT and

TDSL designs and explains the counterexamples resulting from the injected design flaws.

4.1 Lock-Free Transactional Transformation

LFTT is a methodology for transforming high-performance lock-free base data structures into

high-performance lock-free transactional data structures. LFTT introduces a node-based conflict

detection scheme that allows commutative operations to proceed concurrently using the thread-

level synchronization of the lock-free base data structure. Non-commutative operations require

transaction-level synchronization where the thread that detects a conflict will help finish the de-

layed transaction by utilizing a transaction descriptor that stores the instructions and arguments

for operations and a transaction status. The penalties of rollbacks are minimized by incorporat-

ing a logical rollback where a transaction may interpret the logical status of a node based on the

operation type and the transaction status recorded in the transaction descriptor.

We inject a design flaw into the original LFTT linked list source code to produce counterexam-

ples when checking for opacity. The design flaw entails a disabling of the logical interpretation so

the threads observe the concrete state of the system instead of the abstract state of the system. This

design flaw causes the effects of a transaction to be visible to other transactions prior to a com-

mit, which will violate the isolation property of transactional execution. The unit test is shown in

Figure 16, the concurrent histories are shown in Figure 17, and the resulting counterexamples are

shown in Figure 18. In the left counterexample, thread A’s transaction executes first and commits,

and thread B’s transaction executes second and aborts. When executing these transactions in iso-

lation, the Delete(3) operation of thread A should return false, because 3 has not been inserted

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:21

Fig. 18. LFTT linked list opacity counterexamples (with design flaws injected).

Fig. 19. TDSL queue unit test. Fig. 20. TDSL queue concurrent histories.

in the set, and the Insert(2) operation of thread B should return false, because thread A already

inserted 2 in the set. However, the program output demonstrates that thread A’s Delete(3) oper-
ation observes the effects of thread B’s Insert(3) operation and successfully removes 3 from the

set. Thread B’s Insert(2) operation fails, because it observes the effects of thread B’s Insert(2)
operation.

In the right counterexample, thread B’s transaction executes first and aborts, and thread A’s

transaction executes second and commits. Since opacity requires that all transactions observe a

consistent state of the system, the output of all transactions must be evaluated. When executing

these transactions in isolation, thread B’s operations will both succeed, since the set is initially

empty. However, since thread B aborts, its effects must be invisible to thread A. The Insert(2)
operation by thread A should succeed and the Delete(3) operation by thread A should fail, since

the abstract state of the set is an empty list after the abort by thread B. The program output

demonstrates that thread B’s Insert(2) operation fails, because it observes thread A’s Insert(2)
operation, and thread A’s Delete(3) operation succeeds, because it observes the Insert(3) by

thread B.

4.2 Transactional Data Structure Libraries

TDSL introduces a methodology for bundling sequences of data structure operations into atomic

transactions. TDSL enables customizations to the read-set tracking and validation to incorporate

standard software transactional memory techniques or optimizations such that the read-set only

includes memory locations that represent real semantic conflicts. TDSL provides composition of

transactional data structures, as well as support for singleton transactions consisting of an indi-

vidual operation.

We inject a design flaw into the original TDSL queue source code to produce counterexamples

when checking for opacity. The design flaw entails disabling the locking of the queue during a

transactional commit and the preemptive locking during a dequeue operation. This design flaw

causes the effects of a transaction to be visible prior to the commit, which violates the isolation

property of transactional execution. The unit test is shown in Figure 19, the concurrent histories

are shown in Figure 20, and the resulting counterexamples are shown in Figure 21. Thread A and

thread B both invoke a Dequeue operation on a queue with one element. Since both threads hold a

reference to the same head element and the queue is not locked during the commit, both dequeue

1, since it is at the head of the queue. In the left counterexample, the sequential output indicates

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:22 C. Peterson and D. Dechev

Fig. 21. TDSL queue opacity counterexamples (with design flaws injected).

that thread B should dequeue 3, because thread A commits first. In the right counterexample, the

sequential output indicates that thread A should dequeue 2, because thread B commits first.

5 LIMITATIONS

TxC-ADT has several limitations inherent with model checking tools. The concurrent histories

generated during model checking are for a unit test of the data structure. If the unit test does not

expose an incorrect concurrent history, then TxC-ADT will report that the data structure satisfies

the specified correctness condition. A corner case is an extreme configuration of a data structure,

such as a full or empty queue. The unit test should be written to include all known corner cases

to expose bugs that would go undetected in a general unit test.

Model checking is vulnerable to state space explosion due to the exploration of all possible

thread interleavings. CDSChecker [27] uses dynamic partial order reduction [13] to minimize the

exploration of redundant executions. Since CDSChecker cannot completely explore infinite state

spaces, unbounded loops are explored under the restriction of a fair schedule. Additional effort is

also required by the user to construct a unit test that is as small as possible while including all data

structure operations and corner cases. Since a unit test that includes all possible inputs leads to a

infinite state space, a minimal set of inputs should be chosen to explore the possible behaviors of

the data structure.

TxC-ADT’s recursive topological sort optimization is limited to operations such that commuta-

tivity is independent of the state of the data structure. For example, the enqueue() and dequeue()
operations of a queue commute if the queue is not empty. Since the state of the queue is affected

by any committed transaction, it is not possible to conclusively determine if two transactions com-

prising queue operations will always commute. Establishing a commutative relationship between

transactions is limited to set operations, since two transactions on a set commute given that the

operations in transaction t1 are passed different inputs than the operations in transaction t2.

6 CONCLUSION

We presented TxC-ADT, the first correctness tool that can check the correctness of transac-

tional data structures. TxC-ADT’s capabilities encompass the designed correctness guarantees of

transactional data structures that employ a high-level semantic conflict detection by recasting cor-

rectness in terms of an abstract data type. Existing correctness verification tools for transactional

memory systems evaluate correctness according to the thread transitions in the presence of low-

level read/write conflicts, which is not applicable to state-of-the-art transactional data structures.

We accommodate a diverse assortment of transactional correctness conditions by presenting a

technique for defining correctness as a happens-before relation. Establishing the conditions for

which a transaction happens before another transaction enables correctness to be evaluated au-

tomatically through an analysis of a transactional happens-before graph during model checking.

Since our technique preserves atomicity and isolation, it can be easily extended to other trans-

actional correctness conditions that may be adopted in the advancement of transactional data

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

A Transactional Correctness Tool 37:23

structures. We account for transactional correctness conditions that do not require a total order

on a transactional execution bymaintaining a per-thread transactional happens-before graph. This

strategy enables the verification of causal consistency in which a thread only observes the effects

of transactions by other threads if the effect satisfies the causality relation. The case studies demon-

strate the practical application of TxC-ADT to check the correctness of cutting-edge transactional

data structures.

REFERENCES

[1] Peter Alvaro, Peter Bailis, Neil Conway, and Joseph M. Hellerstein. 2013. Consistency without borders. In Proceedings

of the 4th Annual Symposium on Cloud Computing. ACM, 23.

[2] Woongki Baek, Nathan Bronson, Christos Kozyrakis, and Kunle Olukotun. 2010. Implementing and evaluating a

model checker for transactional memory systems. In Proceedings of the 15th IEEE International Conference on Engi-

neering of Complex Computer Systems (ICECCS’10). IEEE, 117–126.

[3] Annette Bieniusa and Peter Thiemann. 2011. Proving isolation properties for software transactional memory. In

European Symposium on Programming. Springer, 38–56.

[4] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. 2006. Subtleties of transactional memory atomicity

semantics. IEEE Comput. Arch. Lett. 5, 2 (2006).

[5] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010. Line-up: A complete and automatic

linearizability checker. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and

Implementation 2010 (PLDI’10), Vol. 45. ACM, 330–340.

[6] Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and Lenore D. Zuck. 2007. Verifying correctness of

transactional memories. In Formal Methods in Computer Aided Design 2007 (FMCAD’07). IEEE, 37–44.

[7] Ariel Cohen, Amir Pnueli, and Lenore D. Zuck. 2008. Mechanical verification of transactional memories with non-

transactional memory accesses. In International Conference on Computer Aided Verification. Springer, 121–134.

[8] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. 2010. NOrec: Streamlining STM by abolishing owner-

ship records. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’10), Vol. 45. ACM, 67–78.

[9] Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II. In International Symposium on Distributed

Computing. Springer, 194–208.

[10] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2013. Towards formally specifying and verifying

transactional memory. Formal Aspects Comput. 25, 5 (2013), 1–31.

[11] Michael Emmi, Rupak Majumdar, and Roman Manevich. 2010. Parameterized verification of transactional memo-

ries. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation 2010

(PLDI’10), Vol. 45. ACM, 134–145.

[12] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008. Velodrome: A sound and complete dynamic atomicity

checker for multithreaded programs. Proceedings of the 29th ACM SIGPLAN Conference on Programming Language

Design and Implementation 2008 (PLDI’08). 293–303.

[13] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for model checking software. In

Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 2005 (POPL’05),

Vol. 40. ACM, 110–121.

[14] Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and Vasu Singh. 2008. Model checking transactional

memories. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation

2008 (PLDI’08). 372–382.

[15] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. 2008. Completeness and nondeterminism in model check-

ing transactional memories. Lect. Not. Comput. Sci. 5201 (2008), 21–35.

[16] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. 2009. Software transactional memory on relaxed memory

models. In Proceedings of the International Conference on Computer-Aided Verification (CAV’09), Vol. 9. Springer, 321–

336.

[17] Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of transactional memory. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 175–184.

[18] MauriceHerlihy and Eric Koskinen. 2008. Transactional boosting: Amethodology for highly-concurrent transactional

objects. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM,

207–216.

[19] Maurice Herlihy and J Eliot B Moss. 1993. Transactional Memory: Architectural Support for Lock-free Data Structures.

Vol. 21. ACM.

[20] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Trans. Softw. Eng. 23, 5 (1997), 279–295.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

37:24 C. Peterson and D. Dechev

[21] Phillip W Hutto and Mustaque Ahamad. 1990. Slow memory: Weakening consistency to enhance concurrency in

distributed shared memories. In Proceedings of the 10th International Conference on Distributed Computing Systems

1990. IEEE, 302–309.

[22] Heiner Litz, Ricardo J Dias, and David R Cheriton. 2015. Efficient correction of anomalies in snapshot isolation trans-

actions. ACM Trans. Arch. Code Optimiz. 11, 4 (2015), 65.

[23] Chaiyasit Manovit, Sudheendra Hangal, Hassan Chafi, Austen McDonald, Christos Kozyrakis, and Kunle Olukotun.

2006. Testing implementations of transactional memory. In Proceedings of the 15th International Conference on Parallel

Architectures and Compilation Techniques. ACM, 134–143.

[24] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat, William N. Scherer III,

and Michael L. Scott. 2006. Lowering the overhead of nonblocking software transactional memory. In Workshop on

Languages, Compilers, and Hardware Support for Transactional Computing (TRANSACT’06).

[25] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga Nainar, and Iulian

Neamtiu. 2008. Finding and reproducing heisenbugs in concurrent programs. In Proceedingso of the USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’08), Vol. 8. 267–280.

[26] Peter Muth, Thomas C. Rakow, Gerhard Weikum, Peter Brossler, and Christof Hasse. 1993. Semantic concurrency

control in object-oriented database systems. In Proceedings of the 9th International Conference on Data Engineering

1993. IEEE, 233–242.

[27] Brian Norris and Brian Demsky. 2013. CDSchecker: Checking concurrent data structures writtenwith C/C++ atomics.

In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages

and Applications (OOPSLA’13), Vol. 48. ACM, 131–150.

[28] John O’Leary, Bratin Saha, and Mark R. Tuttle. 2009. Model checking transactional memory with Spin. In Proceedings

of the 29th IEEE International Conference on Distributed Computing Systems 2009 (ICDCS’09). IEEE, 335–342.

[29] Christos H. Papadimitriou. 1979. The serializability of concurrent database updates. J. ACM 26, 4 (1979), 631–653.

[30] Michel Raynal, Gérard Thia-Kime, and Mustaque Ahamad. 1997. From serializable to causal transactions for col-

laborative applications. In Proceedings of the 23rd EUROMICRO Conference New Frontiers of Information Technology

(EUROMICRO’97). IEEE, 314–321.

[31] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin Hertzberg. 2006. McRT-STM:

A high performance software transactional memory system for a multi-core runtime. In Proceedings of the 11th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 187–197.

[32] Manfred Schmidt-Schauß and David Sabel. 2013. Correctness of an STM Haskell Implementation. Vol. 48. ACM.

[33] Peter M. Schwarz and Alfred Z Spector. 1984. Synchronizing shared abstract types. ACM Trans. Comput. Syst. 2, 3

(1984), 223–250.

[34] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Transactional data structure libraries. In Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 682–696.

[35] Gary D. Walborn and Panos K. Chrysanthis. 1995. Supporting semantics-based transaction processing in mobile

database applications. In Proceedings of the 14th Symposium on Reliable Distributed Systems 1995. IEEE, 31–40.

[36] Paul Wu and Alan Fekete. 2003. An empirical study of commutativity in application code. In Proceedings of the 7th

International Database Engineering and Applications Symposium 2003. IEEE, 361–369.

[37] Paul Wu, Alan Fekete, and Uwe Rohm. 2008. The efficacy of commutativity-based semantic locking in a real-world

application. IEEE Trans. Knowl. Data Eng. 20, 3 (2008), 427–431.

[38] Deli Zhang and Damian Dechev. 2016. Lock-free transactions without rollbacks for linked data structures. In Pro-

ceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures. ACM, 325–336.

Received June 2017; revised September 2017; accepted September 2017

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 37. Publication date: November 2017.

