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ABSTRACT
Arıkan’s exciting discovery of polar codes has provided an alto-

gether new way to efficiently achieve Shannon capacity. Given a

(constant-sized) invertible matrix M , a family of polar codes can

be associated with this matrix and its ability to approach capac-

ity follows from the polarization of an associated [0, 1]-bounded
martingale, namely its convergence in the limit to either 0 or 1

with probability 1. Arıkan showed appropriate polarization of the

martingale associated with the matrix G2 =
(
1 0

1 1

)
to get capacity

achieving codes. His analysis was later extended to all matrices M
which satisfy an obvious necessary condition for polarization.

While Arıkan’s theorem does not guarantee that the codes achieve

capacity at small blocklengths (specifically in length which is a poly-

nomial in 1/ε where ε is the difference between the capacity of a

channel and the rate of the code), it turns out that a “strong” analy-

sis of the polarization of the underlying martingale would lead to

such constructions. Indeed for the martingale associated with G2

such a strong polarization was shown in two independent works

([Guruswami and Xia, IEEE IT ’15] and [Hassani et al., IEEE IT’14]),

thereby resolving a major theoretical challenge associated with the

efficient attainment of Shannon capacity.
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In this work we extend the result above to cover martingales

associated with all matrices that satisfy the necessary condition for

(weak) polarization. In addition to being vastly more general, our

proofs of strong polarization are (in our view) alsomuch simpler and

modular. Key to our proof is a notion of local polarization that only

depends on the evolution of the martingale in a single time step. We

show that local polarization always implies strong polarization. We

then apply relatively simple reasoning about conditional entropies

to prove local polarization in very general settings. Specifically, our

result shows strong polarization over all prime fields and leads to

efficient capacity-achieving source codes for compressing arbitrary

i.i.d. sources, and capacity-achieving channel codes for arbitrary

symmetric memoryless channels.
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1 INTRODUCTION
Polar codes, proposed in Arıkan’s remarkable work [2], gave a

fresh information-theoretic approach to construct linear codes that

achieve the Shannon capacity of symmetric channels, together with

efficient encoding and decoding algorithms. About a decade after

their discovery, there is now a vast and extensive body of work on

polar coding spanning hundreds of papers, and polar codes are also

being considered as one of the candidates for use in 5G wireless

(e.g., see [6] and references therein). The underlying concept of

polarizing transforms has emerged as a versatile tool to success-

fully attack a diverse collection of information-theoretic problems

https://doi.org/10.1145/3188745.3188816
https://doi.org/10.1145/3188745.3188816
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beyond the original channel and source coding applications, in-

cluding wiretap channels [15], the Slepian-Wolf, Wyner-Ziv, and

Gelfand-Pinsker problems [13], broadcast channels [8], multiple

access channels [1, 20], and interference networks [22]. We recom-

mend the survey by Şaşoğlu [19] for a nice treatment of the early

work on polar codes.

The algorithmic interest in polar codes emerges from a conse-

quence shown in the works [9, 10, 12] who show that this approach

leads to a family of codes of rateC − ε for transmission over a chan-

nel of (Shannon) capacity C , where the block length of the code

and the decoding time grow only polynomially in 1/ε . In contrast,

for all previous constructions of codes, the decoding algorithms

required time exponential in 1/ε . Getting a polynomial running

time in 1/ε was arguably one of the most important theoretical

challenges in the field of algorithmic coding theory, and polar codes

were the first to overcome this challenge. The analyses of polar

codes turn into questions about polarizations of certain martingales.
The vast class of polar codes alluded to in the previous paragraph

all build on polarizing martingales, and the results of [9, 10, 12]

show that for one of the families of polar codes, the underlying

martingale polarizes “extremely fast” — a notion we refer to as

strong polarization (which we will define shortly).

The primary goal of this work is to understand the process of po-

larization of martingales, and in particular to understand when does

a martingale polarize strongly. In attempting to study this question,

we come up with a local notion of polarization and show that this

local notion is sufficient to imply strong polarization. Applying this

improved understanding to the martingales arising in the study of

polar codes we show that a simple necessary condition for weak

polarization of such martingales is actually sufficient for strong

polarization. This allows us to extend the results of [9, 10, 12] to a

broad class of codes and show essentially that all polarizing codes

lead to polynomial convergence to capacity. Below we formally

describe the notion of polarization of martingales and our results.

1.1 Polarization of [0, 1]-Martingales
Our interest is mainly in the (rate of) polarization of a specific

family of martingales that we call the Arıkan martingales. We will

define these objects later, but first describe the notion of polarization

for general [0, 1]-bounded martingales. Recall that a sequence of

random variables X0, . . . ,Xt , . . . is said to be a martingale if for
every t and a0, . . . ,at it is the case that E[Xt+1 |X0 = a0, . . . ,Xt =
at ] = at . We say that that a martingale is [0, 1]-bounded (or simply

a [0, 1]-martingale) if Xt ∈ [0, 1] for all t ≥ 0.

Definition 1.1 (Weak Polarization). A [0, 1]-martingale sequence
X0,X1, . . . ,Xt , . . . is defined to beweakly polarizing if limt→∞{Xt }
exists with probability 1, and this limit is either 0 or 1 (and so the
limit is a Bernoulli random variable with expectation X0).

Thus a polarizing martingale does not converge to a single value

with probability 1, but rather converges to one of its extreme values.

For the applications to constructions of polar codes, we need more

explicit bounds on the rates of convergence leading to the notions

of (regular) polarization and strong polarization defined below in

Definition 1.3 and 1.4 respectively.

Definition 1.2 ((τ , ε)-Polarization). For functions τ , ε : Z+ → R≥0,
a [0, 1]-martingale sequence X0,X1, . . .Xt , . . . is defined to be (τ , ε)-
polarizing if for all t we have

Pr(Xt ∈ (τ (t), 1 − τ (t))) < ε(t).

Definition 1.3 (Regular Polarization). A [0, 1]-martingale sequence
X0,X1, . . . ,Xt , . . . is defined to be regular polarizing if for all con-
stantγ > 0, there exist ε(t) = o(1), such thatXt is (γ t , ε(t))-polarizing.

We refer to the above as being “sub-exponentially” close to the

limit (since it holds for every γ > 0). While weak polarization by

itself is an interesting phenomenon, regular polarization (of Arıkan

martingales) leads to capacity-achieving codes (though without

explicit bounds on the length of the code as a function of the gap

to capacity) and thus regular polarization is well-explored in the

literature and tight necessary and sufficient conditions are known

for regular polarization of Arıkan martingales [3, 14].

To get codes of block length polynomially small in the gap to

capacity, an even stronger notion of polarization is needed, where

we require that the sub-exponential closeness to the limit happens

with all but exponentially small probability. We define this formally

next.

Definition 1.4 (Strong Polarization). A [0, 1]-martingale sequence
X0,X1, . . . ,Xt , . . . is defined to be strongly polarizing if for all γ > 0

there exist η < 1 and β < ∞ such that martingale Xt is (γ t , β · ηt )-
polarizing.

In contrast to the rich literature on regular polarization, results

on strong polarization are quite rare, reflecting a general lack of

understanding of this phenomenon. Indeed (roughly) an Arıkan

martingale can be associated with every invertible matrix over any

finite field Fq , and the only matrix for which strong polarization is

known is G2 =
(
1 0

1 1

)
[9, 10, 12].

1

Part of the reason behind the lack of understanding of strong

polarization is that polarization is a “limiting phenomenon” in that

one tries to understand limt→∞ Xt , whereas most stochastic pro-

cesses, and the Arıkan martingales in particular, are defined by local

evolution, i.e., one that relatesXt+1 toXt . The main contribution of

this work is to give a local definition of polarization (Definition 1.5)

and then showing that this definition implies strong polarization

(Theorem 1.6). Later we show that Arıkan martingales polarize

locally whenever they satisfy a simple condition that is necessary

even for weak polarization. As a consequence we get strong polar-

ization for all Arıkan martingales for which previously only regular

polarization was known.

1.2 Results I: Local Polarization and
Implication

Before giving the definition of local polarization, we give some

intuition using the following martingale: Let Z0 = 1/2, and Zt+1 =
1
An exception is the work by Pfister and Urbanke [18] who showed that for the q-ary
erasure channel for large enough q , the martingale associated with a q × q Reed-

Solomon based matrix proposed in [17] polarizes strongly. A recent (unpublished)

work [7] shows that for the binary erasure channel, martingales associated with large

random matrices polarize strongly. Both these results obtain an optimal value of η for

(specific/random) large matrices. However, they only apply to the erasure channel,

which is simple to error correct via Gaussian elimination and therefore not really

reflective of the general capacity-achieving power of polar codes.
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Zt + Yt+12
−(t+2)

where Y1, . . . ,Yt , . . . are chosen uniformly and

independently from {−1,+1}. Clearly this sequence is not polar-

izing (the limit of Zt is uniform in [0, 1]). One reason why this

happens is that as time progresses, the martingale slows down and

stops varying much. We would like to prevent this, but this is also

inevitable if a martingale is polarizing. In particular, a polarizing

martingale would be slowed at the boundary and cannot vary much.

The first condition in our definition of local polarization insists that

this be the only reason a martingale slows down (we refer to this

as variance in the middle).
Next we consider what happens when a martingale is close to

the boundary. For this part consider a martingale Z0 = 1/2 and

Zt+1 = Zt +
1

2
Yt+1min{Zt , 1 − Zt }. This martingale does polarize

and even shows regular polarization, but it can also be easily seen

that the probability that Zt ∈ [ 1
2
· 2−t , 1 − 1

2
· 2−t ] is one (whereas

we would like probability of say Zt ∈ [10−t , 1−10
−t ] to go to 0). So

this martingale definitely does not show strong polarization. This

is so since even in the best case the martingale is approaching the

boundary at a fixed exponential rate, and not a sub-exponential one.

To overcome this obstacle we require that when the martingale is

close to the boundary, with a fixed constant probability it should

get much closer in a single step (a notion we refer to as suction at
the ends).

The definition below makes the above requirements precise.

Definition 1.5 (Local Polarization). A [0, 1]-martingale sequence
X0, . . . ,X j , . . . , is locally polarizing if the following conditions hold:

(1) (Variance in the middle): For every τ > 0, there is a θ =
θ (τ ) > 0 such that for all j, we have: If X j ∈ (τ , 1 − τ ) then
E[(X j+1 − X j )2 |X j ] ≥ θ .

(2) (Suction at the ends): There exists an α > 0, such that for
all c < ∞, there exists a τ = τ (c) > 0, such that:

(a) If X j ≤ τ then Pr[X j+1 ≤ X j/c |X j ] ≥ α .
(b) Similarly, if 1−X j ≤ τ then Pr[(1−X j+1 ≤ (1−X j )/c |X j ] ≥

α .
We refer to condition (a) above as Suction at the low end and
condition (b) as Suction at the high end.

Whenwewish to bemore explicit, we refer to the sequence as (α ,τ (·),θ (·))-
locally polarizing.

As such this definition is neither obviously sufficient for strong

polarization, nor is it obviously satisfiable by any interesting mar-

tingale. In the rest of the paper, we address these concerns. Our

first technical contribution is a general theorem connecting local

polarization to strong polarization.

Theorem 1.6 (Local vs. Strong Polarization). If a [0, 1]-
martingale sequence X0, . . . ,Xt , . . . , is locally polarizing, then it
is also strongly polarizing.

It remains to show that the notion of local polarization is not

vacuous. Next, we show that in fact Arıkan martingales polarize

locally (under simple necessary conditions). First we give some

background on Polar codes.

1.3 The Arıkan Martingale and Polar Codes
The setting of polar codes considers an arbitrary symmetric memory-
less channel and yields codes that aim to achieve the capacity of this
channel. Given a finite field Fq , and output alphabet Y, recall that

a q-ary channel CY |Z is a probabilistic function from Fq to Y or

equivalently it is given by q probability distributions {CY |α }α ∈Fq
supported on Y. A memoryless channel maps Fnq to Yn

by acting

independently (and identically) on each coordinate. A symmetric

channel is a memoryless channel where for every α , β ∈ Fq there

is a bijection σ : Y → Y such that for every y ∈ Y it is the case

that CY=y |α = CY=σ (y) |β , and moreover for any pair y1,y2 ∈ Y,

we have

∑
x ∈Fq CY=y1 |x =

∑
x ∈Fq CY=y2 |x (see, for example, [4,

Section 7.2]). As shown by Shannon every memoryless channel has

a finite capacity, denoted Capacity(CY |Z ). For symmetric channels,

this is the mutual information between the input Z and output Y
where Z is drawn uniformly from Fq and Y is drawn from CY |Z
given Z .

Given any q-ary memoryless channel CY |Z and invertible matrix

M ∈ Fk×kq , the theory of polar codes implicitly defines a martingale,

which we call the Arıkan martingale associated with (M,CY |Z ) and
studies its polarization. (An additional contribution of this work is

that we give an explicit compact definition of this martingale, see

Definition 3.1. Since we do not need this definition for the purposes

of this section, we defer it for Section 3). The consequences of

regular polarization are described by the following remarkable

theorem. (Below we use M ⊗ N to denote the tensor product (or

the Kronecker product) of the matrix M and N . Further, we use

M⊗t
to denote the tensor of a matrixM with itself t times.)

Theorem 1.7 (Implied by Arikan [2]). Let C be a q-ary symmet-
ric memoryless channel and letM ∈ Fk×kq be an invertible matrix. If
the Arıkanmartingale associated with (M,C) polarizes regularly, then
given ε > 0 and c < ∞ there is a t0 such that for every t ≥ t0 there is
a code C ⊆ Fnq for n = kt of dimension at least (Capacity(C) − ε) · n
such thatC is an affine code generated by the restriction of (M−1)⊗t to
a subset of its rows and an affine shift. Moreover there is a polynomial
time decoding algorithm for these codes that has failure probability
bounded by n−c .2

For n = 2
t
, Arıkan and Telatar [3] proved that the martingale

associated with the matrix G2 =
(
1 0

1 1

)
, polarizes regularly over

any binary input symmetric channel (Arıkan’s original paper [2]

proved a weaker form of regular polarization with τ (t) < 2
−5t/4

which also sufficed for decoding error going to 0). Subsequent work

generalized this to other matrices with the work of Korada, Şaşoğlu,

and Urbanke [14] giving a precise characterization of matricesM
for which the Arıkan martingale polarizes (again over binary input

channels). We will refer to such matrices as mixing.

Definition 1.8 (Mixing Matrix). A matrixM ∈ Fk×kq is said to be
mixing, if it is invertible and none of the permutations of the rows
of M yields an upper triangular matrix, i.e., for every permutation
π : [k] → [k] there exists i, j ∈ [k] with j < π (i) such thatMi, j , 0.
2
We remark that the encoding and decoding are not completely uniform as described

above, since the subset of rows and the affine shift that are needed to specify the code

are only guaranteed to exist. In the case of additive channels, where the shift can

be assumed to be zero, the work of Tal and Vardy [21] (or [10, Sec. V]) removes this

non-uniformity by giving a polynomial time algorithm to find the subset.
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It is not too hard to show that the Arıkan martingale associated

with non-mixing matrices do not polarize (even weakly). In contrast

[14] shows that every mixing matrix over F2 polarizes regularly.
Mori and Tanaka [17] show that the same result holds for all prime

fields, and give a slightly more complicated criterion that charac-

terizes (regular) polarization for general fields. (These works show

that the decoding failure probability of the resulting polar codes

is at most 2
−nβ

for some positive β determined by the structure

of the mixing matrix — this follows from an even stronger decay

in the first of the two parameters in the definition of polarization.

However, they do not show strong polarization which is what we

achieve.)

As alluded to earlier, strong polarization leads to even more

effective code constructions and this is captured by the following

theorem.

Theorem 1.9 ([2, 10, 12]). Let C be aq-ary symmetric memoryless
channel and let M ∈ Fk×kq be an invertible matrix. If the Arıkan
martingale associated with (M,C) polarizes strongly, then for every
c there exists t0(x) = O(logx) such that for every ε > 0 and every
t ≥ t0(1/ε) there is an affine code C , that is generated by the rows of
(M−1)(⊗t ) and an affine shift, with the property that the rate of C is
at least Capacity(C) − ε , and C can be encoded and decoded in time
O(n logn) where n = kt and failure probability of the decoder is at
most n−c .

This theorem is implicit in the works above, but for completeness

we include a proof of this theorem in the full version of this paper.

As alluded to earlier, the only Arıkan martingales that were known

to polarize strongly were those where the underlying matrix was

G2 =
(
1 0

1 1

)
. Specifically Guruswami and Xia [10] and Hassani et

al. [12] show strong polarization of the Arıkan martingale associ-

ated with this matrix over any binary input symmetric channel, and

Guruswami and Velingker [9] extended to the case of q-ary input

channels for prime q. By using the concept of local polarization we

are able to extend these results to all mixing matrices.

1.4 Results II: Local Polarization of Arıkan
Martingales

In our second main result, we show that every mixing matrix gives

rise to an Arıkan martingale that is locally polarizing:

Theorem 1.10. For every prime q, for every mixing matrixM ∈
Fk×kq , and for every symmetric channel CY |Z over Fq , the associated
Arıkan martingale sequence is locally polarizing.

As a consequence of Theorems 1.9, 1.6, and 1.10, we have the

following theorem.

Theorem 1.11. For every prime q, every mixing matrixM ∈ Fk×kq ,
every symmetric channel C over Fq , and every c < ∞, there exists
t0(x) = O(logx) such that for every ε > 0, for every t ≥ t0(1/ε),
there is an affine code C , that is generated by the rows of (M−1)(⊗t )
and an affine shift, with the property that the rate of C is at least
Capacity(C)−ε , andC can be encoded and decoded in timeO(n logn)
where n = kt and failure probability of the decoder is at most n−c .

The above theorem shows that all polar codes associated with

every mixing matrix achieves the Shannon capacity of a symmetric

memoryless channel efficiently, thus, vastly expanding on the class

of polar codes known to satisfy this condition.

Our primary motivation in this work is to develop a general

approach to proving polarization that applies to all matrices (match-

ing the simple necessary condition for polarization) and is strong

enough for the desired coding theory conclusion (convergence to

capacity at polynomial block lengths, the distinguishing feature of

polar codes). At the same time, our proof is arguably simpler and

brings to light exactly what drives strong polarization — namely

some simple local polarization conditions that hold for the single

step evolution. One concrete motivation to consider polar codes

with different choice of mixing matricesM is that an appropriate

choice can lead to decoding error probability of exp(−nβ ) for any
β < 1 (as opposed to β < 1/2 for G2) [14, 17], where n = k

t
is the

block length of the code.

1.5 Comparison with Previous Analyses of
(Strong) Polarization

While most of the ingredients going into our eventual analysis of

strong polarization are familiar in the literature on polar codes,

our proofs end up being much simpler and modular. We describe

some of the key steps in our proofs and contrast them with those

in previous works.

Definition of Local Polarization. While we are not aware of a

definition similar to local polarization being explicit in the literature

before, such notions have been considered implicitly before. For

instance, for the variation in the middle (where we require that

E[(Xt+1−Xt )2] ≥ θ ifXt ∈ (τ , 1−τ )) the previous analyses in [9, 10]
required θ be quadratic in τ . Indeed this was the most significant

technical hurdle in the analysis for prime case in [9]. In contrast, our

requirement on the variation is very weak and qualitative, allowing

any function θ (τ ) > 0. Similarly, our requirement in the suction at
the ends case is relative mild and qualitative. In previous analyses

the requirements were of the form “if Xt ≤ τ then Xt+1 ≤ X 2

t
with positive probability.” This high demand on the suction case

prevented the analyses from relying only on the local behavior

of the martingale X0, . . . ,Xt , . . . and instead had to look at other

parameters associated with it which essentially depend on the

entire sequence. (For the reader familiar with previous analyses,

this is where the Bhattacharyya parameters enter the picture.) Our

approach, in contrast, only requires arbitrarily large constant factor

drop, and thereby works entirely with the local properties of Xt .

Local Polarization Implies Strong Polarization.Our proof that
local polarization implies strong polarization is short (about 3 pages)

and comes in two parts. The first part uses a simple variance ar-

gument to show that Xt is exponentially close (in t ) to the limit

except with probability exponentially small in t . The second part

then amplifies Xt ’s proximity to {0, 1} to sub-exponentially small

values using the suction at the end guarantee of each local step,

coupled with Doob’s martingale inequality and standard concen-

tration inequalities. Such a two-part breakdown of the analysis is

not new; however, our technical implementation is more abstract,

more general and more compact all at the same time.
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Local Polarization of Arıkan martingales. We will elaborate

further on the approach for this after defining the Arıkan martin-

gales, but we can say a little bit already now: First we essentially

reduce the analysis of the polarization of Arıkan martingale as-

sociated with an arbitrary mixing matrixM to the analysis when

M = G2. This reduction loses in the parameters (α ,τ (·),θ (·)) speci-
fying the level of local polarization, but since our strong polarization

theorem works for any function, such loss in performance does

not hurt the eventual result. Finally, local polarization for the case

where the matrix is G2 is of course standard, but even here our

proofs (which we include for completeness) are simpler since they

follow from known entropic inequalities on sums of two indepen-

dent random variables. We stress that even quantitatively weak

forms of these inequalities meet our requirements of local polar-

ization, and we do not need strong forms of such inequalities (like

Mrs. Gerber’s lemma for the binary case [5, 10] and an ad hoc one

for the prime case [9]).

Some Weakness in our Analyses.We first point out two weak-

nesses in our analyses. First, in contrast to the result of Mori and

Tanaka [17] who characterize the set of matrices that lead to regu-

lar polarization over all fields, we only get a characterization over

prime fields. Second, our definition of strong polarization only al-

lows us to bound the failure probability of decoding by an arbitrarily

small polynomial in the block length whereas results such as those

in [3] actually get exponentially small (2
−nβ

for some β > 0) failure

probability.

In both cases we do not believe that these limitations are inherent

to our approach. In particular the extension to general fields will

probably involve more care, but should not run into major technical

hurdles. Reducing the failure probability will lead to new technical

challenges, but we do believe they can be overcome. Specificially,

this requires stronger suction which is not true for the Arıkan

martingale if one considers a single step evolution, but it seems

plausible that multiple steps (even two) might show strong enough

suction! We hope to investigate this in future work.

Organization of the Rest of this Paper. In this extended ab-

stract, we give a sketch of the proof of our main new contribution

(Theorem 1.6) that local polarization implies strong polarization in

Section 2. We formally define the Arıkan martingale in Section 3

and give a very brief overview of our proof that the Arıkan mar-

tingale locally polarizes in Section 4. The full version of this paper

contains all proofs.

2 LOCAL TO GLOBAL POLARIZATION
In this section we sketch the proof of Theorem 1.6, which asserts

that every locally polarizing [0, 1]-martingale is also strongly polar-

izing. The proof of this statement is implemented in two main

steps: first, we show that any locally polarizing martingale, is

((1 − ν
2
)t , (1 − ν

4
)t )-polarizing for some constant ν depending only

on the parameters α ,τ ,θ of local polarization. This means that,

except with exponentially small probability, min{Xt/2, 1 −Xt/2} is
exponentially small in t , which we can use to ensure that Xs for
all

t
2
≤ s ≤ t stays in the range where the conditions of suction

at the ends apply (again, except with exponentially small failure

probability). Finally, we show that if the martingale stays in the

suction at the ends regime, it will polarize strongly — i.e. if we have

a [0, 1]-martingale, such that in each step it has probability at least

α to decrease by a factor of C , we can deduce that at the end we

have Pr(XT > C−αT /4) ≤ exp(−Ω(αT )).
We start by showing that in the first t/2 steps we do get ex-

ponentially small polarization, with all but exponentially small

failure probability. This is proved using a simple potential function

min{
√
Xt ,

√
1 − Xt } which we show shrinks by a constant factor,

1 − ν for some ν > 0, in expectation at each step. Previous analyses

in [9, 10] tracked

√
Xt (1 − Xt ) (or some tailormade algebraic func-

tions [11, 16]) as potential functions, and relied on quantitatively

strong forms of variance in the middle to demonstrate that the

potential diminishes by a constant factor in each step. While such

analyses can lead to sharper bounds on the parameter ν , which in

turn translate to better scaling exponents in the polynomial con-

vergence to capacity, e.g. see [11, Thm. 18] or [16, Thm. 1], these

analyses are more complex, and less general.

Lemma 2.1. If a [0, 1]-martingale sequence X0, . . .Xt , . . . , is
(α ,τ (·),θ (·))-locally polarizing, then there exist ν > 0, depending
only on α ,τ ,θ , such that E[min(

√
Xt ,

√
1 − Xt )] ≤ (1 − ν )t .

We defer the proof of this lemma to the full version of this paper,

but give a brief idea of the proof here. W.l.o.g. we may consider

the case X j < 1/2 and note that it suffices to prove that E[X j+1] ≤
(1 − ν )X j . In turn this claim follows easily from the facts that (1)

E[X j+1] = X j , (2) The square-root function is strictly concave (and

so E[
√
X j+1] <

√
X j unless X j+1 = X j deterministically), and (3)

for an appropriate choice of the threshold τ0, the variance in the

middle (when X j ∈ (τ0, 1/2)), as well as the suction at the ends

(when X j ≤ τ0), conditions guarantee that the standard deviation

of X j+1 is a constant multiple of X j for all choices of X j < 1/2. The
following corollary is immediate from Lemma 2.1 and Markov’s

inequality.

Corollary 2.2. If a [0, 1]-martingale sequence X0, . . .Xt , . . . , is
(α ,τ (·),θ (·))-locally polarizing, then there exist ν > 0, depending
only on α ,τ ,θ , such that Pr[min(Xt/2, 1 − Xt/2) > λ(1 − ν

2
)t ] ≤

(1 − ν
4
)t 1√

λ
.

The next lemma will be used to show that if a [0,1]-martingale

indeed stays at all steps s ≥ t
2
in the suction at the ends range,

i.e. in each step it has constant probability α of dropping by some

large constant factor C , then expect it to be (C−α t/8, exp(−Ω(αt)))-
polarized.

Lemma 2.3. There exists c < ∞, such that for all K ,α with Kα ≥ c
the following holds: Let Xt be a martingale satisfying Pr(Xt+1 <
e−KXt |Xt ) ≥ α , where X0 ∈ (0, 1). Then Pr(XT > exp(−αKT /4)) ≤
exp(−Ω(αT )).

We give a full proof of this lemma in the full version of this

paper, and just sketch the idea here. Consider the random variable

Yj = logX j . On the one handwe haveYj+1 ≤ Yj−K with probability

at least α , and on the other hand we have that the probability that

Yj+1 ≥ Yj + i is at most 2
−i

(for every positive i). Intuitively this

suggests E[Yj+1 − Yj ] ≤ −Kα + c for some absolute constant c
and so E[Yt ] ≤ Y0 − t(Kα − c). Concentration results then can be
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applied to show that the probability that Yt does not drop by half

this amount is exponentially small.

Given Corollary 2.2 and Lemma 2.3, Theorem 1.6 is essentially im-

mediate. The only additional ingredient is an application of Doob’s

inequality to assert that once “moderate” polarization has occurred,

the probability of coming out of a “suction end” is exponentially

small. Again the full version of this paper has the details.

3 ARIKAN MARTINGALE
We now formally describe the Arıkan martingale associated with

an invertible matrix M ∈ Fk×kq and a channel CY |Z . Briefly, this
martingale measures at time t , the conditional entropy of a random

variable A′
i, conditioned on the values of a vector of variables B′

and on the values of A′
j for j smaller than i for a random choice

of the index i. Here A′
is a vector of kt random variables taking

values in Fq while B′ ∈ Yk t
. The exact construction of the joint

distribution of these 2kt variables is the essence of the Arıkan

construction of codes, and we describe it shortly. The hope with this

construction is that eventually (for large values of t ) the conditional
entropies are either very close to 0, or very close to logq for most

choices of i.
Before proceeding with a description of this joint distribution, as

well as how the choice of i evolves with time, we will fix some no-

tation. (A full description of our notational conventions is included

in the full version of this paper). Below, we index vectors in Fk
t

q
with t-tuples i ∈ [k]t . Let ≺ denote the lexicographic order on these

t-tuples, i.e., i = (i1, . . . , it ) ≺ j = (j1, . . . , jt ) if iℓ < jℓ for the least

index ℓ ∈ [t] for which iℓ , jℓ . We somewhat abuse the indexing

notation, usingX≺i to mean the set of variables {Xj : j ≺ i}. We use

notation X[i, ·] to denote the slice of coordinates of X with prefix i.
When t = 1, the process starts with k independent and identical

pairs of variables {(Ai ,Bi )}i ∈[k ] whereAi ∼ Fq and Bi ∼ CY |Z=Ai .
(So each pair corresponds to an independent input/output pair

from transmission of a uniformly random input over the chan-

nel CY |Z .) Let A = (A1, . . . ,Ak ) and B′ = (B1, . . . ,Bk ), and note

that the conditional entropies H (Ai |A≺i ,B′) are all equal, and this

entropy, divided by log
2
q, will be our value of X0. On the other

hand, if we now let A′ = A · M then the conditional entropies

H (A′
i |A′≺i ,B′) are no longer equal (for most, and in particular

for all mixing, matrices M). On the other hand, conservation of

conditional entropy on application of an invertible transforma-

tion tells us that Ei∼[k][H (A′
i |A′≺i ,B′)/log

2
q] = X0. Thus letting

X1 = H (A′
i |A′≺i ,B′)/log

2
q (for random i) gives us the martingale

at time t = 1.

While this one step of multiplication by M differentiates among

the k (previously identical) random variables, it doesn’t yet polarize.

The hope is by iterating this process one can get polarization
3
. But

to get there we need to describe how to iterate this process. This

iteration is conceptually simple and illustrated in Figure 1 (though

notationally still complex). Roughly the idea is that at the beginning

of stage t , we have defined a joint distribution of kt dimensional

vectors (A,B) along with a multi-index i ∈ [k]t . We now sample

k independent and identically distributed pairs of these random

3
In the context of Polar coding, differentiation and polarization are good events, and

hence our “hope.”

variables {(A(ℓ),B(ℓ))}ℓ∈[k ] and view (A(ℓ))ℓ∈[k ] as a kt ×k matrix

which we multiply by M to get a new kt × k matrix. Flattening

this matrix into a kt+1-dimensional vector gives us a sample from

the distribution of A′ ∈ Fk t+1q . B′
is simply the concatenation of

all the vectors (B(ℓ))ℓ∈[k ]. And finally the new index j ∈ [k]t+1 is
simply obtained by extending i ∈ [k]t with a (t + 1)th coordinate

distributed uniformly at random in [k]. Xt+1 is now defined to be

H (A′
j |A′≺j,B′)/log

2
q. The formal description is below.

Definition 3.1 (Arıkan martingale). Given an invertible matrix
M ∈ Fk×kq and a channel description CY |Z for Z ∈ Fq ,Y ∈ Y,
the Arıkan-martingale X0, . . .Xt , . . . associated with it is defined as
follows. For every t ∈ N, let Dt be the distribution on pairs Fk

t
q ×Yk t

described inductively below:
A sample (A,B) from D0 supported on Fq × Y is obtained by

sampling A ∼ Fq , and B ∼ CB |A. For t ≥ 1, a sample (A′,B′) ∼ Dt

supported on Fk
t

q × Yk t is obtained as follows:

• Draw k independent samples (A(1),B(1)), . . . , (A(k ),B(k )) ∼
Dt−1.

• Let A′ be given by A′
[i, ·] = (A(1)

i , . . . , A
(k)
i ) · M and B′ =

(B(1),B(2), . . .B(k )).

Then, the sequence Xt is defined as follows: For each t ∈ N,
sample it ∈ [k] iid uniformly. Let j = (i1, . . . , it ) and let Xt :=

H (Aj |A≺j,B)/log2 q, where the entropies are with respect to the dis-
tribution (A,B) ∼ Dt . 4

M⊗t A
(1)
∗

CY |Z

CY |Z

CY |Z

CY |Z

CY |Z

M⊗t A
(2)
∗

CY |Z

CY |Z

CY |Z

CY |Z

CY |Z

M⊗t A
(3)
∗

CY |Z

CY |Z

CY |Z

CY |Z

CY |Z

M

A
(1)
®1

A′
[®1,1]

A
(2)
®1

A′
[®1,2]

A
(3)
®1

A′
[®1,3]

M

M

Figure 1: Figure showing evolution of Arıkanmartingale for
3 × 3 matrixM .

4
We stress that the only randomness in the evolution of Xt is in the choice of

i1, . . . , it , . . .. The process of sampling A and B is only used to define the dis-

tributions for which we consider the conditional entropies H (Aj |A≺j, B).
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Figure 1 illustrates the definition by highlighting the construction

of the vector A′
, and in particular highlights the recursive nature

of the construction.

It is easy (and indeed no different than in the case t = 1) to show

that E[Xt+1 |Xt ] = Xt and so the Arıkan martingale is indeed a

martingale. This is asserted below and proved in the full version of

this paper.

Proposition 3.2. For every matrixM and channel CY |Z , the Arıkan
martingale is a martingale and in particular a [0, 1]-martingale.

Finally, we remark that based on the construction it is not too

hard to see that if M were an identity matrix, or more generally

a non-mixing matrix, then Xt would deterministically equal X0.

(There is no differentiation and thus no polarization.) The thrust

of this paper is to show that in all other cases we have strong

polarization.

4 PROOF OVERVIEW OF LOCAL
POLARIZATION

Here we describe the overall structure of the proof of Theorem 1.10,

which states that the Arıkan martingale is locally polarizing.

Theorem 1.10. For every prime q, for every mixing matrixM ∈
Fk×kq , and for every symmetric channel CY |Z over Fq , the associated
Arıkan martingale sequence is locally polarizing.

We describe the main ideas for the case t = 1. (All other steps

are similar.) Let A ∈ Fkq be a random vector, and let W be an

arbitrary random variable such that the entries ofA are independent

and identically-distributed, conditioned on W . In what follows,

let H (·|·) = H (·|·)/log
2
q. Let X0 := H (A1 |W ) be the conditional

entropy of each entry of A.
Now let A′

:= A ·M be the variables obtained in the next step of

polarization. Local polarization of the Arıkanmartingale boils down

to showing that for a random index i ∈ [k], the conditional entropies
of the transformed variables X1 ∼ H (A′

i |A′≺i ,W ) satisfy the local

polarization conditions (of variance in the middle and suction at

the ends).

Our analysis follows roughly two steps: First we focus on a simple

case M = G2 =
(
1 0

1 1

)
. This turns our attentions to the quantities

H (A1 + A2 |W ) and H (A2 |W ,A1 + A2). Variance in the middle in

this case corresponds to proving that H (A1 +A2 |W ) −H (A1 |W ) is
bounded away from zero if H (A1,W ) ∈ (τ , 1− τ ). This statement is

already explicit in the literature (see [5, Lemma 4.2]) and follows

relatively easily from the concavity of the (conditional) entropy.

Suction at the ends also follows easily from the properties of entropy.

Specifically in the low-end after conditioning onW , low entropy

implies thatAi takes on some value with very high probability, and

the event that it does not take on this modal value happens with low

probability. With A1 +A2 the probability the unlikely event is the

probability that at least one of them takes on the unlikely value, and

this probability is roughly twice the probability that any one of them

takes on the unlikely value. This fact in turn immediately implies

that H (A2 |W ,A1 + A2) is much smaller than H (A1 |W ). The full

version of this paper argues this explicitly. Finally for the suction

at the high end, we use elementary Fourier analysis and note that

the non-zero Fourier coefficients of the distribution of A1 (after

conditioning onW ) can be used to estimate its entropy, and these

Fourier coefficients square (exactly) when considering A1 + A2,

showing that H (A1 + A2 |W ) is much closer to 1 than H (A1 |W ).
Again this is formally shown in the full version.

These lemmas immediately suffice to prove local polarization

when M = G2. The general case is not much harder. It turns out

that using the fact that entropy is preserved under invertible trans-

forms we can argue that the conditional entropies H (A′
j |A′≺j ) are

preserved if we replaceM by DM for an invertible lower triangular

matrix D. Furthermore we also have that H (Y |Z) = H (Y |T · Z)
for any variable Y , vector Z and invertible matrix T. Using these

simple facts we establish that w.l.o.g. we can consider a matrix

M such that there exists a j, j ′ and non-zero α ,α ′ ∈ Fq such that

H (A′
j |A′≺j ) ≥ H (A1+αA2), andH (A′

j′ |A′≺j′) ≤ H (A1 |A1+α
′A2).

This allows us to use the analysis in the 2× 2 case to argue that the

conditions of local polarization are met by the Arikan martingale

associated with any mixing matrix. (We note that the parameters

of local polarization do drop by factors that are polynomial in k
since we only show the existence of such j, j ′). The full details of
this step may be found in the full version of this paper, culminating

in the proof of Theorem 1.10.
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