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The ability of Y as an alloying agent to improve the ductility of magnesium is explored using a solid
solution strengthening model to determine the relative strengthening effect on the available deformation
modes. We use density functional theory calculations to determine the interaction energy between an
edge 〈cþ a〉 dislocation and solute atoms surrounding it. We observe that substituting solute atoms
directly into the positions closest to the dislocation significantly changes the structure of the dislocation,
making the direct calculation and representation of these interaction energies difficult, and necessitating
a modification to the calculation of interaction energies. Next, we apply a solution strengthening model
to calculate the relative strengthening effect of the solutes and find that the ratio of the critical resolved
shear stress of second-order pyramidal 〈cþ a〉 slip to that of the basal slip, decreases with increasing Y
concentration. The resulting, more isotropic plastic response is beneficial for improving the room tem-
perature ductility of Mg alloys.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The high strength to weight ratio of magnesium makes it an
attractive material for structural applications in automotive and
aerospace industries. However its use as a wrought material has
been severely limited by its low room temperature ductility, a
consequence of the anisotropic response of its hexagonal close
packed (HCP) crystal structure. The critical resolved shear stress
(CRSS) required to move dislocations along the basal slip plane (the
preferred slip plane in Mg) are more than an order of magnitude
lower than the CRSS for non-basal prismatic and pyramidal slip
planes [1]. As a result, basal slip dominates deformation under
general loading of polycrystalline Mg, and not enough non-basal
slip systems are activated to provide the five independent slip
systems required by the von Mises criterion for ductility [2]. The
addition of alloying elements, capable of modifying the CRSS of
various deformation modes, can potentially promote non-basal
deformation modes by reducing the critical stress differential be-
tween basal and non-basal deformationmodes to increase ductility
at room temperature. Recent computational work, based on first-
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principles calculations, has begun to establish a quantitative,
theoretical basis to predict the effects of solutes on basal slip [3,4],
the twinning mode [5] and the thermally activated basal to prism
crosseslip behavior [6,7] in Mg. Despite these advances, a quanti-
tative study of solute effects on the 〈cþ a〉 slip mode does not yet
exist. In this paper, we use DFT calculations to compute the 〈cþ a〉
dislocation-solute core structure and interaction energies for Y
solutes. We then use these energies to predict the strengthening
effect of Y on the pyramidal II glide of 〈cþ a〉 edge dislocations via
the modified-Labusch-type strengthening model proposed by
Leyson et al. [4]. Yttriumwas chosen as an alloying element because
it has experimentally been shown to improve the ductility of
magnesium without sacrificing strength [8].

Existing DFT-based solute strengthening predictions start with
an interaction energy map between the solute and the dislocation.
Such maps show the energy of the dislocation, with the solute at
various positions in or between the partials, relative to some
reference energy configuration. The definition of the reference state
is not unique; Yasi et al. used the average of two site energies away
from the core, while Leyson et al., used the average energy of all
considered sites [3,4]. A well defined interaction energy map relies
on the fact that the dislocation core geometry remains unchanged
as solutes are placed at various positions. Alternatively, Yasi et al.
approximated the solute/dislocation interaction energy based on
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volume and chemical misfits. This method uses the exact core ge-
ometry of the dislocation without any solutes for the accurate
changes in bond angles and lengths as well as local volumetric
strains inside the core. Volume and stacking fault misfits are then
calculated for each solute, using smaller more tractable DFT cal-
culations that do not involve the dislocation directly. The results
compare well against direct calculations for Al solutes interacting
with basal dislocations in Mg [9]. We find that Y distorts the 〈cþ a〉
dislocation core structure in Mg. Therefore, none of the above
methods is directly applicable to our study in their original form.
We propose a modification to the misfit approach to take into ac-
count the changing core structure of the dislocation as the solute is
placed in different positions.

The rest of this paper is organized as follows. The computational
techniques and geometries are presented in Section II. In Section III
we showand discuss how Y solutes change the core structure of the
〈cþ a〉 dislocation. In section IV we propose a method to compute
the solute/dislocation energy map based on a modification to the
Yasi et al. [3] misfit energy approach. In Section V, we apply the
calculated interaction energies to a solid solution strengthening
(SSS) model to determine the relative strengthening effects on
basal vs. pyramidal slip and discuss the results.

2. Computational method

The dislocation geometry, used to study the dislocation-solute
interactions, is based on previous DFT calculations of the 〈cþ a〉
edge dislocation [10]. The dislocation cell is oriented so that the
glide plane coincides with the xz-plane. The cell is periodic along
the z-axis, which coincides with the line direction, ½1010�, and is
two repeat units thick along this direction in order to avoid solute-
solute interactions. The corresponding k-mesh used was 1� 1� 4.
After substituting selected atoms in the dislocation with yttrium
solutes, the cells were again allowed to relax until forces within the
cell were below 5meV/Å. Calculations were performed using the
plane-wave DFT code VASP [11,12] using Vanderbilt ultrasoft
pseudopotentials and the Perdew-Wang GGA exchange-correlation
potential [13]. The energy cutoff was set at 1.3 times the largest of
the suggested cutoffs for the potentials, changed accordingly when
solute atoms are added. Specific k-meshes are described below for
each type of calculation performed.

The size misfit, εb, quantifies the difference in size between the
solute and host atoms. Calculating the size misfit directly using DFT
volume relaxations of an Mg supercell containing a single solute
atom gives inconsistent results between different cell sizes. To get a
more consistent value, we use the method proposed by Vannarat
et al. [14]. Bulk supercells of Mg containing one, two, and three
solute atoms are fully relaxed and the resulting changes in pressure
are calculated with DFT. The pressure varies linearly with solute
concentration, and the size misfit can be calculated using the slope
of the pressure vs. solute concentration:

εb ¼
�
1
B
vp
vc

�
(1)

where B is the DFT-calculated bulk modulus of pure Mg. These
calculations are typically done using supercells made up of
3� 3� 3 and 4� 4� 4 bulk unit cells; however, the large misfit
between Y and Mg results in a large difference between these
values, necessitating larger supercells. Good agreement was seen
when using 5� 5� 5 and 6� 6� 6 supercells, and the size misfit is
taken as the average of those two values. Using this method, the
size misfit was found to be 0.576, in good agreement with literature
values [15].

The chemical misfit is defined as the logarithmic derivative of
the Pyramidal II stacking fault energy gP2 with respect to solute
concentration in the dilute range,

εSFE ¼ dlngP2
dcs
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Following the methodology described in Ref. [3], we calculate
the chemical misfit by creating a 2� 2� 17 Mg supercell (with a
corresponding k-mesh of 8� 8� 1), resulting in a stack of 17 Py-
ramidal II planes. The lattice vector perpendicular to the stacking
fault plane is tilted in the direction of the lattice vectors in the SF
plane in order to create a periodic structure of stacking faults
separated by about 40 Å. A solute atom is substituted onto a site in
the cell near the stacking fault, and the atoms are allowed to relax
until all forces are less than 5meV/Å. The chemical misfit is
calculated from these as:

εSFE ¼ ESFðsoluteÞ � ESFðMgÞ
gP2

� ffiffiffi
3
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where the terms in the denominator represent the stable Pyramidal
II stacking fault energy per unit area and the area of the Pyramidal II
stacking fault. The solute term in the numerator is found by sub-
tracting the total energy of the cell without the stacking fault (but
still containing the solute) from the total energy of the cell con-
taining the SF and a solute. The Mg term in the numerator is the
total energy of the same stacking fault without the solute atom.
This isolates the change in SF energy with the addition of a solute.

Determining the interaction energy between the solute and
staking fault for this calculation is not trivial. A recent study by Yin
et al. [15] has shown that the pyramidal stacking fault will migrate
with the addition of yttrium solutes, making it difficult to deter-
mine what the interaction energy is for a solute positioned a few
atomic layers away from the SF. The authors work around this by
imposing constraints on atoms near the SF to keep it from moving,
and find that the SF-solute interaction energy goes to zero several
atomic layers away from the fault. In order to accurately represent
this, we use a different misfit value for each atomic layer above and
below the stacking fault using the stacking fault-solute interaction
energies reported in Ref. [15]. This gives values for εSFE
of �0.2775, �0.1526, and �0.0555 for solutes one, two, and three
atomic layers away from the stacking fault. These values are unit-
less, since these values represent the total interaction energy
normalized by the pure stacking fault energy.

3. Dislocation core geometry and effect of Y solutes

We start with the geometry of the 〈cþ a〉 edge dislocation in
pure Mg, previously calculated by DFT [10]. Fig. 1a shows the Nye
density distribution, computed following the method of Hartley
andMishin [16]. The 〈cþ a〉 dislocation dissociates into two 1=2〈cþ
a〉 partial dislocations separated by a stacking fault on the pyra-
midal II plane. A Y solute then substitutes a Mg atom at several
locations within the dislocation core and the atomic positions are
further optimized to accommodate the presence of the solute. The
atomic sites in which solutes are substituted are outlined with bold
circles in Fig. 1a. Beyond this region of substituted atoms, the
interaction energy is determined using the continuum approxi-
mation. The interaction energies are interpolated for a layer of
atoms between this outer region and the core where the solutes are
substituted in order to ensure a smooth transition.

We observe significant changes to the dislocation core as Y
solutes are introduced. Selected core structures, modified in the
presence of Y solutes, are shown in Fig. 2. The figure plots the strain
along the line direction εzz for the sake of easy comparison of the



Fig. 1. Dislocation core geometry in pure Mg. The top plot shows the edge component
of the corresponding Nye tensor distribution. The atoms outlined in bold indicate the
positions of those Mg atoms that are replaced with Y for direct calculations. The
bottom plot shows normal strain along the line direction of the dislocation. Beyond the
immediate dislocation core region, this strain is zero, making it easy to visualize and
compare the size and shape of the dislocations.
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exact extent of the dislocation core. This component of the strain is
zero outside of the core region and is thus used to clarify changes to
the extent of the dislocation core, when solutes are placed at
various locations. Part (b) of Fig. 1 shows the εzz plot for the
dislocation in pure Mg, for comparison. Fig. 3 summarizes the
changes to the distance between the partials for all solute positions.

It is apparent that some solutes change the shape of the dislo-
cation core and the separation of the partial dislocations signifi-
cantly. The separation distance between the partials can both
increase or decrease depending on the location of the solutes
within the dislocation core. Moreover, in some cases, visible dis-
tortions are introduced to the atom columns near the solute, with
the atoms being shifted so that they no longer align along z. This is
seen to some extent for each of the solute positions shown in Fig. 2,
but is most evident for solutes 15, 16, and 20 in parts (f-h). The fact
that the core structure of the 〈cþ a〉 dislocation changes substantially
in the presence of Y solutes at various locations inside the core is the
first new result of this paper.

The application of solute strengthening models relies on accu-
rate dislocation/solute interaction energies. In the dilute solution
limit, the general picture is that an initially straight dislocation in a
field of randomly distributed solutes will bow and shift in order to
reach a favorable solute environment that decreases its energy. The
total energy change as the dislocation moves from the straight to
the bowed out configuration is the sum of the decrease in potential
energy resulting from these favorable solute/dislocation in-
teractions and the increase in elastic energy as bowing out in-
creases the length of the dislocation. Therefore, for a dislocation
centered at the origin, the key quantity is the interaction energy
with solutes at all positions in space, measured from the dislocation
core.

Previous DFT studies of solute strengthening have found that the
atomic relaxations after introducing a solute atom are small enough
that the core structure of the dislocation effectively remains un-
changed. However, the large changes seen in the Mg 〈cþ a〉 dislo-
cation structure pose a challenge to a well-defined representation
of the interaction energy map. First, while direct DFT calculations of
solutes within the dislocation core provide the total energy corre-
sponding to each solute position, the definition of a reference state
is not straightforward. Consider a case in which the separation
between the partials has changed. While the change occurs as a
result of the interaction with the solute, the energy of the dislo-
cation itself, excluding the solute, is now changed. We consider all
these energy changes as part of the “interaction” energy. However,
this energy must be compared to that of a reference state of the
initial dislocation core with a Y solute, far enough from the dislo-
cation, to leave the core structure unchanged. This requires a
simulation size significantly larger than the scope of our
calculations.

In addition, the change in core geometry leads to difficulty in
representing a one-to-one map between the atom positions, rela-
tive to the initial dislocation, and atom positions relative to the
changing core structure. For instance, consider solute position 3 in
Fig. 1a where the left partial does not change, but the right partial
dislocation shifts to the right in response to the solute, increasing
the separation between the partials. The new relative position of
the solute and dislocation is different from that before the relaxa-
tion. Therefore, the energy of the relaxed cell cannot be attributed
to position 3. In other words, it is not possible to directly compute
the solute/dislocation interaction energy at position 3, because
once the solute is placed in this position the core structure changes.

To overcome this problem, we use the misfit approximation
with some modifications as follows. The misfit approximation
approach computes the interaction energy from the local distor-
tions in the dislocation core combined with volumetric and
chemical misfits associated with each solute, without the need for a
dislocation/solute reference state. However, the original misfit
model uses the dislocation core in pure Mg to describe the local
environment even in the presence of a solute. Here, we assign a
“new” dislocation core to each solute position, and use it to define
the local environment and determine the interaction energy for
each solute position from the initial core. With this approach, all
changes to the dislocation core are considered in the “interaction
energy” and assigned to the corresponding solute position that
creates that new core. Next, we describe this approach in detail.

4. Calculation of dislocation/solute interaction energy

The misfit approximation, proposed by Yasi et al., describes the
dislocation/solute interaction energy in terms of the work done by
the dislocation displacement field as well as local shifts to the
nearest-neighbor bonds inside the core, on solute “misfits”. The
solute misfit quantifies the changes to the host lattice upon sub-
stitution of solutes and has two major components: size and
chemical misfits. The size misfit is caused by the change in local
volume as a result of different sizes between the solute and host
atoms. The “chemical” misfit accounts for the change in energy to
slip the crystal in the presence of the solute. The total interaction
energy is given by

U ¼ �3BV0,eV,εb þ Eslip,εSFE (4)

where εb and εSFE are the solute volume and stacking fault misfits,
respectively, V0 is the equilibrium volume of the Mg supercell used
in calculation of the size misfit and B is the bulk modulus for single
crystal Mg. Although the single crystal bulk modulus has been
shown to change with solute concentration, since we are



Fig. 2. These plots show the strain along the line direction for the relaxed 〈cþ a〉 edge dislocation after a solute has been added and the dislocation has been relaxed. These cells are
oriented so that the ½0110� is perpendicular to the plane of the paper. Marks have been added to compare the movement/shape change of the dislocation after each solute has been
added. Notice the significant distortion of atomic rows around the solute, with atoms in a single row being shifted so that they no longer overlap. This distortion, which we account
for in our model as a change in local volumetric strain, is how the solute atoms change the interaction energy calculation.

Fig. 3. Difference between the separation between the partials in the presence of Y
solute d and that in pure Mg d0 for all solute locations, corresponding to the positions
indicated in part (a) of Fig. 1. Solutes both increase and decrease the separation be-
tween the partial dislocations depending on their location inside the dislocation core.
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considering a dilute case we ignore this and use the pure Mg
modulus. The eV term is the local volumetric strain at each atomic
site, defined relative to the perfect-lattice nearest-neighbor posi-
tions as

eV ¼
"
det

�P
x0
!x0ix

0
j

	
det

�P
x!xixj

	
#1

2

� 1 (5)

where x0
!

are the vectors to the nearest neighbors for an atomic site
in the relaxed dislocation, and x! are the corresponding nearest-
neighbor vectors in a perfect HCP lattice [16]. The Eslip term is the
slip interaction energy at each atomic site,

Eslip ¼
� ffiffiffi

3
p

a=2
�
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
10

X
d
!
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(6)

where d
!

represents the vectors to nearest neighbors out of the
stacking fault plane, gð1122Þ is the generalized pyramidal II stacking
fault energy corresponding to displacement d

!
, and the factor of 1

10
comes from considering one-half of the bond energy of five bonds
(determined by considering how many nearest neighbors lie
outside of the pyramidal II plane) that would be broken during slip
[3]. The slip interaction terms are modified for 〈cþ a〉 slip. It is
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important to note that for pyramidal II 〈cþ a〉 dislocations, the local
slip environment must be examined carefully. Recent studies have
shown that the pyramidal stacking fault can migrate or spread over
several atomic layers [17]. In order to address this, we consider the
slip environment around several layers of atoms above and below
the dislocation. For the case of our dislocations, the stacking fault
stayed on the same atomic plane (i.e. the slip across the two atomic
planes between the partial dislocations remains close to 1

2hcþ ai),
though there was still some slight shifting of the atoms directly
above and below the stacking fault. These shifts were not neces-
sarily in the plane of the stacking fault, but are still taken into ac-
count when considering the volumetric strain.

Note that eV and Eslip in equations (1)e(3), are computed from
the local changes to Mg bonds inside the dislocation core,
compared to the defect-free bulk Mg. Originally, the misfit
approximation for solute/dislocation interaction energy was
applied to obtain the interaction energy map of basal dislocations
in Mg with Al solutes. Al does not alter the basal dislocation core
structure. Therefore, the core geometry of the relaxed dislocation in
pure Mg was used to compute eV and Eslip. In this paper, we have
shown that the addition of Y solutes dramatically changes the
dislocation geometry.

To obtain the interaction energy map, we consider the pure Mg
〈cþ a〉 dislocation as the baseline for defining the Y solute posi-
tions. For each solute position, we then use the changed dislocation
core which is obtained after the relaxation, calculate the interaction
energy from Equation (5) at the location of the solute in the
deformed core, and then assign that energy value to the solute
position in the undeformed core. This way all of the changes in the
dislocation core energy are packed into the solute/dislocation
“interaction” energy and assigned to the initial location of the so-
lute with respect to the 〈cþ a〉 dislocation in pure Mg. This picture
is consistent with the concept of a dislocation gliding in pure Mg
and occasionally interacting with dilute solutes, and undergoing
changes in the core geometry in the process. For atoms far away
from the dislocation core, the continuum approximation of
�pðx; yÞDv is used, where pðx; yÞ is the pressure field of the dislo-
cation and Dv is the misfit volume between the solute and the host.
Note that Dv is related to εb and equals εbV0, where V0 is the
equilibrium atomic volume.

An additional step must be added when determining the
interaction energy from the deformed solute cells. We are specif-
ically interested in how the size difference interacts with volu-
metric strain resulting from a dislocation, where the difference in
size is accounted for by the volume misfit. However, when deter-
mining the volumetric strain around the substituted solute atom in
the deformed cell, the size difference is considered again in the
strain exerted by the solute on its neighbors. As a result, this “bulk
solute strain”, which is simply determined as the strain resulting
around the solute atom when it is relaxed in bulk Mg, needs to be
removed from the total volumetric strain around the solutes when
calculating interaction energy.

Before calculating the interaction energies, it is important to
discuss another point that requires special attention, and that sets
the solute 〈cþ a〉 dislocation system in Mg apart from similar
studies focused on basal dislocations: calculation of the pyramidal
generalized stacking fault energy and the cross section of this
surface, the g-line. Obtaining the slip interaction energy, from
Equation (6), requires an accurate representation of the g-surface.
Previous DFT studies do not show agreement between cross-
sections of the generalized stacking fault energy surface and DFT
relaxed dislocation core geometries for 〈cþ a〉 dislocations disso-
ciated along the pyramidal II plane [1,10,18]. Additionally, there
have been no studies specifically examining the dissociation of
these 〈cþ a〉 dislocations in experimental samples. Relaxed core
geometries show the dislocation dissociated into two stable
1=2〈cþ a〉 partial dislocations, which would coincide with a local
minimum halfway across the g-surface in the 1=3½2113� direction,
but g-surface calculations do not have a minimum here. We find
that a more reasonable representation of the generalized stacking
fault energy can be obtained by spreading the displacement over a
few layers of atoms above and below the stacking fault. This differs
from the method generally used to calculate generalized stacking
fault energies in that traditionally, the stacking fault is effectively
treated as being a discrete plane, while this method considers a
“stacking fault region.” This method is based on a similar method
introduced by Morris et al. [19] and has been recently shown to
produce more consistent and feasible generalized stacking faults
[20].

It should be noted that while the region around the stable
stacking fault converges to a value, the unstable regions do not. This
is not surprising, given our treatment of the stacking fault. As more
atomic layers are considered, the regions of atoms that actually
exhibit the stacking fault relative to each other shrink, while the
regions of tilted atoms become larger (and by consequence, the tilt
or ”strain” over this region is diffused). For the extreme case, as the
fully relaxed region nears the size of the stacking fault cell, the
relaxed structure will more closely resemble simple shear strain on
a bulk lattice. This is obviously not an accurate representation, so
we limit the number of atomic layers to the number of layers
needed to converge the area around the stable stacking fault in the
generalized g surface cross section.

This treatment is still reasonable for the unstable regions,
because in a real dislocation, the regions that exhibit an unstable
stacking fault are surrounded by stable (or metastable) regions, so
we can expect this to at least give a reasonable upper bound for the
energy of the unstable regions (the energy always drops as more
atomic layers are considered and the cell relaxes more fully).
However, the point still remains that we do not have a way to
represent these unstable regions, though it stands to reason that
this approximation of the unstable regions is at least as accurate as
the traditional method, particularly since using the traditional
method gives an upper bound for the entire generalized SFE.
Finally, comparing the relative contributions of the misfit in-
teractions reveals that the contribution of stacking fault misfit is
small compared to the final interaction energy and the size misfit
dominates the final interaction energy (see scales of plots in Fig. 4
for relative interaction energy contributions).

As a result, even moderate changes will not have a strong
relative impact on the final interaction energy. Therefore, for the
purpose of calculating the interaction energy, considering the up-
per bound of energy in the unstable regions of the g-surface is a
reasonable assumption.

Fig. 5 shows the interaction energy map between Y solutes and
the 〈cþ a〉 edge dislocation inMg, considering the subtleties of core
structure change and stacking fault calculations, as explained
above. Next, we use this energy map as input to a solute
strengthening model to predict the change in CRSS for pyramidal II
glide of the 〈cþ a〉 dislocations.

5. Predictions of the CRSS

We use the strengthening model introduced by Leyson et al.
Details of this model are explained in Refs. [4,21,22]. The model's
central idea is that an initially straight dislocation in a random field
of solutes will bow out to lower its energy by finding regions of
favorable solute fluctuations. However, in doing so, the length of
the dislocation increases, which is associated with a cost in elastic
line energy of the dislocation. The total energy is optimized at some
critical values for the roughening amplitude of the bowing



Fig. 4. Plots of the contributions to the interaction energy of volumetric strain in (a) and (b) and slip interaction energy in (c) and (d) for the 〈cþ a〉 dislocation. Parts (a) and (c)
show the interaction energies using the pure Mg dislocation, while parts (b) and (d) show the interaction energies calculated for the dislocation with a solute at position 20. Notice
that the local slip environment is not changed nearly as drastically as the volumetric strain with the addition of a solute.

Fig. 5. All of the information needed to apply the solid solution strengthening model.
The top plot shows the final interaction energy map that considers directly calculated
interaction values for solutes immediately within the dislocation core region. The
schematic on the bottom shows how the dislocation is described in Leyson et al.’s
strengthening model. The dislocation with a length of L is separated into segments of z,
which bow out over length w due to favorable interactions with solutes.
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dislocation wc and critical segment lengths zc. Table 1 shows the
critical roughening amplitudes and segment lengths for strength-
ening of the 〈cþ a〉 dislocation by Y. To determine the role of core
changes by Y, we also calculated the interaction energy map
ignoring all the shape changes, by applying the original misfit
approximation to the 〈cþ a〉 dislocation core in pure Mg. We call
these cases “modified” and “unmodified” cores respectively.
Moreover, we include the strengthening parameters for basal slip
as well for comparison. The Y interaction energymapwith the basal
dislocation is computed by applying the misfit approximation to
this dislocation core, and again ignoring any changes to the basal
dislocation core structure.

We use a line tension of G¼ 4.0 eV nm�1 for basal edge dislo-
cations, based on molecular statics calculations an EAMMg [9]. For
〈cþ a〉 dislocations, we calculate the line energy of the dislocation
using an updatedMEAMpotential [1]. A dislocation is relaxed in the
center of a bulk slab of Mg, and the excess energy of the dislocation
(elastic and core energy) is determined as a function of the radius
away from the dislocation. The line tension is then determined by
removing the elastic energy from this total excess energy, so that
the remaining core energy levels off at the line tension beyond the
core radius. Using this method, the line tension of a 〈cþ a〉 dislo-
cation was found to be 17.5 eV nm-1.

As shown previously for the basal dislocation [9], there are two
critical roughening amplitudes that minimize the total energy. The
strength is then dominated by the configuration with the highest
stress required to unpin the dislocation. The reason for existence of
two critical configurations is the large separation of the partials.
Closer to the SF plane, the large partial separation means a small
roughening amplitude decorrelates the solute fluctuations inside
the dislocation partials. This small roughening amplitude is not
sufficient to significantly decorrelate solutes farther from the core,
resulting in a second energy minimum at a larger roughening
amplitude. It is not surprising that the 〈cþ a〉 dislocation also ex-
hibits two energy minima, as the partial separation is even larger
than that in the basal dislocation. This underlines the importance of
having accurate, detailed structures of the dislocations. It also again
highlights the significant impact of the solutes on the dislocation, as
certain Y solute positions change the separation between the



Table 1
Major strengthening parameters found for a basal dislocation, the unmodified pyramidal II dislocation, and the pyramidal II dislocation modified with directly calculated
interaction energies near the dislocation. DEb is the energy barrier for slip, and ty0 is the 0 K strengthening effect. The c term is present in each of the reported values because
these are normalized by concentration. Values are shown for both dislocation configurations (short and long range) for each system.

Strengthening Parameters wc (nm) zcc1=3 (nm) DEb=c
1=3 (eV) ty0c2=3 (MPa)

Basal Config. 1 0.7988 3.9209 1.5155 381
Basal Config. 2 2.8755 15.3835 5.0060 89
Pyr2 unmod Config. 1 0.3045 0.6390 4.1829 8885
Pyr2 unmod Config. 2 2.7404 7.5816 28.5544 568
Pyr2 mod Config. 1 0.6090 1.3215 8.0901 4154
Pyr2 mod Config. 2 2.4359 6.2081 27.5530 752
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partials.
For each dislocation, configuration 1 is associated with short

range behavior, and has a high zero temperature yield stress (ty0),
and a relatively low energy barrier (DEb). Configuration 2 is asso-
ciated with longer range behavior, has a low zero temperature yield
stress and a larger energy barrier. In a real system, the dislocation
would have to overcome both energy barriers, and the larger of the
two dominates the strength and is thus chosen in the calculations.

Fig. 6 shows the temperature and solute concentration depen-
dence of the solute strengthening effect Dty for basal and pyra-
midal 〈cþ a〉 dislocations. Fig. 6a illustrates the temperature
dependence ofDty of basal and pyramidal II slip systems separately,
while (b) shows the ratio between the pyramidal and basal values.
As mentioned previously (c.f. Table 1), there are two characteristic
dislocation configurations that minimize the energy. These are
represented in Fig. 6a separately, using dashed and solid lines. Note
that the second critical roughening amplitude for the pyramidal
dislocation always requires smaller stress levels to unpin the dis-
locations and thus does not become relevant until higher
Fig. 6. The strengthening effect of solutes as a function of temperature (a) and solute con
pyramidal and basal slip as a function of temperature and concentration, respectively. (a) sh
energy, shown as solid and dashed lines. Parts (a) and (b) illustrate how a change in the dom
effects on pyramidal and basal slip. The two configurations are evident in the concentratio
temperatures, beyond the range consideredwith this model. On the
other hand, the second configuration for the basal dislocation
dominates the strength around 600K. Part (b) shows that the ratio
of the Dty for pyramidal II and basal modes increases slightly at
first, but then decreases above about 600 K, corresponding to
where the second configuration becomes dominant for the basal
dislocation. Above this temperature, the strengthening continues to
decrease faster for pyramidal slip than for basal as the basal
strengthening levels off. This may change at higher temperatures
when the second configuration becomes dominant for pyramidal
slip as well, but the high temperature regime could violate some of
the basic assumptions made in the solute strengthening model and
therefore is not considered here.

Fig. 6 (c) and (d) show the effect of solute concentration on Dt
pyramidal and basal dislocations and their ratio at T¼ 300K
respectively. The ratio of pyramidal to basal strengthening de-
creases with increasing solute concentration, implying the basal
mode is strengthenedmore than the pyramidal II, leading to amore
isotropic plastic deformation and consequently better ductility.
centration (c). Parts (b) and (d) show the ratio between the strengthening effects on
ows the strengthening effects on two dislocation configuration that minimize the total
inant dislocation configuration can significantly affect the ratio between strengthening
n plot as well, though they are not included here for the sake of clarity.
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However it is important to note that before comparing to experi-
ments, the CRSS for each mode in pure Mg should be added to Dt.
Fig. 7 shows the final CRSS values for pyramidal and basal slip (the
sum of Dty shown in Fig. 6 and the CRSS in pure Mg, which is taken
as 0.5MPa for basal [23] and 62MPa for pyramidal [24] at 300 K).
As Fig. 7 indicates, despite the fact that at each concentration, the
CRSS for pyramidal slip is larger than that for basal slip, the ratio is
dominated by the large discrepancy in pure Mg, and as a result
adding yttrium still reduces the CRSS ratio bymore than an order of
magnitude.
6. Discussion and conclusions

We have computed the structure and solute interaction energies
of an edge 〈cþ a〉 dislocation inMg, using DFTcalculations. First, we
showed that Y solutes changed the core geometry and posed
challenges to the computation of a well-defined interaction energy
map. We approached this problem by approximating the interac-
tion energy through the misfit approach, proposed by Yasi et al. [3],
but with a different core geometry associated to each solute posi-
tion. The modified dislocation cores were calculated directly by
optimizing the core in the presence of Y, at the corresponding po-
sition, with DFT. This result is very important for the study of
deformation behavior in metals in general since it could potentially
be applied to any slip system. While it could even be applied to
basal systems, the deformation is small enough to be neglected for
Fig. 7. The total CRSS as a function of solute concentration (a) and the ratio of pyra-
midal to basal CRSS (b). This CRSS includes our calculated strengthening effect and the
room temperature CRSS of pure Mg. The CRSS ratio illustrates how even though the
strengthening is higher for pyramidal slip than basal, the addition of yttrium solutes
should still reduce the CRSS ratio, and thus improve the ductility of the metal.
basal dislocations, making it unnecessary to account for the shape
change. However, this method would be more useful when
considering more complex slip systems. In particular, it can be used
to more accurately examine the behavior of pyramidal slip in any
HCP metal.

Next, we used this accurate interaction energy map in a solid
solution strengthening model introduced by Leyson et al. [4] to
determine the relative strengthening effect of Y solutes on basal vs.
non-basal 〈cþ a〉 dislocations. We found that ratio between CRSS
for 〈cþ a〉 slip and that for the basal slip reduces significantly as Y
concentration increases from zero to 1 at% at room temperature,
resulting in reduced plastic anisotropy in Mg-Y alloys, which is
consistent with experimental observations of improved room
temperature ductility in these alloys. However, a fixed concentra-
tion of Y increasingly strengthens pyramidal II more than the basal
mode with increased temperature.

Next, we compare our results to recent findings by Ando et al.
who have measured the stress required for second order pyramidal
slip to occur [24]. In that study, the Mg-Y single crystals were
stressed along the c-axis, and so the CRSS can be determined by
simply multiplying their reported yield stress by the appropriate
Schmid factor. As mentioned above, it is important to note that our
model only calculates the change in strength from solutes, so in
order to get an accurate representation of the CRSS, the CRSS of
pure Mg must be included. We used values of 62MPa at 300K and
40MPa at 473 K reported in Ref. [24]. Using a solute concentration
of 0:5%, we predict CRSS values of 114MPa and 60MPa at 300 K and
473 K, respectively, compared to the experimental values of
112MPa and 56MPa, overall showing very good agreement.

We emphasize that the relative solute strengthening of pyra-
midal and basal modes is only one piece of the greater puzzle of
alloying effects on plasticity of Mg alloys. For example, a recent
molecular dynamics study by Wu and Curtin [17] reveals that the
DFT-predicted core for the 〈cþ a〉 edge dislocation has an easy glide
mode on the pyramidal II planes, but undergoes a thermally-
activated, stress-dependent core transition, where the original 〈cþ
a〉 dissociates along the basal planes, and thus becomes immobile
and contributes to the high work hardening rate during 〈cþ a〉 slip.
What we present in this paper only considers the effect of solutes
on the easy glide mode. Another important issue is how alloying
elements affect this core transition. Moreover, effect of alloying on
stress and temperature dependence of the screw components'
cross slip process should be quantified and compared with those of
the thermally-activated process of core transitions in the edge
components. There are also other mechanisms that are often sig-
nificant during deformation in Mg alloys, such as twinning modes.

Nonetheless, systematic studies of individual deformation
modes, such as the one presented here, are useful in providing a
fundamental understanding of alloying effects on deformation
behavior, towards quantitative and predictive design of new alloys.
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