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ABSTRACT

The increase in scale and heterogeneity of high-performance com-

puting (HPC) systems predispose the performance of Message Pass-

ing Interface (MPI) collective communications to be susceptible to

noise, and to adapt to a complex mix of hardware capabilities. The

designs of state of the art MPI collectives heavily rely on synchro-

nizations; these designs magnify noise across the participating pro-

cesses, resulting in significant performance slowdown. Therefore,

such design philosophy must be reconsidered to efficiently and ro-

bustly run on the large-scale heterogeneous platforms. In this paper,

we present ADAPT, a new collective communication framework

in Open MPI, using event-driven techniques to morph collective

algorithms to heterogeneous environments. The core concept of

ADAPT is to relax synchronizations, while maintaining the minimal

data dependencies of MPI collectives. To fully exploit the different

bandwidths of data movement lanes in heterogeneous systems, we

extend the ADAPT collective framework with a topology-aware

communication tree. This removes the boundaries of different hard-

ware topologies while maximizing the speed of data movements.

We evaluate our framework with two popular collective operations:

broadcast and reduce on both CPU and GPU clusters. Our results

demonstrate drastic performance improvements and a strong resis-

tance against noise compared to other state of the art MPI libraries.

In particular, we demonstrate at least 1.3× and 1.5× speedup for

CPU data and 2× and 10× speedup for GPU data using ADAPT

event-based broadcast and reduce operations.

CCS CONCEPTS

• Computing methodologies → Distributed algorithms; •

Theory of computation→ Concurrent algorithms; • Computer

systems organization → Heterogeneous (hybrid) systems;
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1 INTRODUCTION

The need to satisfy the scientific computing community’s increasing

computational demands leads to larger HPC systemswithmore elab-

orate architectures, many levels of memory, highly multi-threaded

hardware components, and complex high-speed network topologies.

Many of these scientific applications rely on collective data move-

ment patterns—namely, collective communications. In distributed-

memory systems, most of these parallel applications take advantage

of the Message Passing Interface (MPI) [13] paradigm to satisfy

their data transfer needs. Therefore, it is crucial for MPI libraries

to sustain the parallel applications by providing the most optimal

communication capabilities, including highly-optimized collective

routines. With the increasing scale and complexity of HPC systems,

performance scalability on such machines becomes more challeng-

ing. Overall, there are two challenges preventing the performance

scalability of collective operations in large HPC systems:

Propagation of noise. HPC systems tend to increase in size,

with thousands of computer nodes and millions of, potentially dif-

ferent, cores. In such large and heterogeneous systems, system noise

can be easily amplified with all types of synchronizations including

the implicit synchronizations within collective operations and dras-

tically hurts an application’s performance. Operating system noise

was studied in [2] [17] and [11]. With the increase in system size,

noise should be extended to include the delay caused by fault toler-

ance [12, 22], in situ-analytics [24], and power management [14].

As suggested in previous research [17], noise can dramatically slow

down large-scale parallel applications. For some applications, noise

of only 2.5% can drop the performancemore than 400× on 500 nodes
and 1800× on 2500 nodes [10]. The main reason for the slowdown is

MPI collective operations. Noise occurring locally has little impact

by itself, but by delaying local communications it is being propa-

gated to other processes, and becomes magnified through certain

synchronizations within collective operations. Usually, a collective
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operation consists of many fine-grained MPI one-sided or two-

sided communication routines. Carelessly handling dependencies

of these point to point (P2P) routines brings extra synchronizations,

which potentially leads to noise propagation and amplification, and

therefore delivers sub-optimal performance.

Hardware heterogeneity and hierarchy. Another important

factor as we approach exascale is resource heterogeneity, resulting

in increasingly complex hardware hierarchies. A compute node on

such heterogeneous system usually contains multiple CPU sockets,

connected by high-speed inter-socket connections (e.g., Intel QPI

or AMD Hyper-transport). Scaling up, several compute nodes are

coupled together through the high-performance network interface

and organized into racks, then finally into super-computers.

Benefiting from massive parallelism with low power consump-

tion, HPC systems are increasingly incorporating accelerators

(NVIDIA GPUs, Intel KNL or specialized FPGA). Hence, more

and more applications, including traditional scientific applica-

tions [37] [41] and deep learning applications [38], are adopting

accelerators to boost their performance. However, embracing accel-

erators increases the already complicated architecture hierarchy, as

accelerators are connected to the host via PCI Express bus, and in

some cases such as GPUs connected to other GPUs via GPU-GPU

interconnects (NVLink). Clearly all these advancements at the hard-

ware level cause a drastic increase in performance and capability

differences between levels of the hierarchy. Communication time

between processes greatly varies depending on the physical dis-

tance and types of networks between them. Thus, maintaining good

network performance requires the holistic integration of process

placement and architecture capabilities. Recent advances in MPI col-

lectives implementations have demonstrated that such performance

issues can be partially solved by integrating hardware topology

information into collective operations [15, 19, 23]. However, the

insufficient cooperation of communications of different topology

levels (i.e., intra-socket, inter-socket, PCI bridges and inter-node

levels) leads to sub-optimal overlapping of communications at dif-

ferent levels. Also, the algorithms are not adaptable to fluctuating

network conditions. This calls for a collaborative approach, between

multiple levels of collective algorithms, dedicated to holistically

managing all levels of the network hierarchies.

Contributions. This work’s contributions are: an asynchronous

event-driven framework able to expose and take advantage of paral-

lelism between independent data movements composing collective

communications, a novel multi-level architecture aware implemen-

tation of some collective communications algorithms (reduce and

broadcast), an event-driven composition mechanism allowing mul-

tiple collective algorithms to be composed in a data-dependent hi-

erarchical manner, and the efficient integration of this event-driven

framework in the communication engine of Open MPI. More pre-

cisely, facing noise and complex hardware hierarchies, we propose

“ADAPT,” a new event-driven collective framework in Open MPI,

which treats the completion of non-blocking P2P routines within

collective operations as events, and each event completion allowing

the high-level logic to unfold dependent P2P routines. With the

help of the event-driven design, we can relax synchronization de-

pendencies and only maintain the minimal data dependencies. By

relaxing synchronizations, our framework offers more potential to

absorb the system noise instead of propagating or even amplifying

it further. Combining this feature with a carefully built topology-

aware tree, the ADAPT framework provides greater opportunities

to concurrently communicate over networks of different hierarchies

on heterogeneous systems. Specifically, the advantages of ADAPT

framework include:

• Relax the synchronizations in collective operations to allevi-

ate the effects of noise;

• Express a collective communication as a topology-aware

communication tree, to maximize the concurrent communi-

cations over different hardware levels;

• Enable highly efficient topology-aware NVIDIA GPU collec-

tive operations.

The rest of this paper is organized as follows. Section 2 ana-

lyzes the noise propagation with two kinds of dependencies in

existing implementations of MPI collectives, describes the design

of the ADAPT collective operations framework, and explains its

noise-resistant capability; Section 3 describes how the proposed

framework builds a topology-aware tree from different levels in

the hardware hierarchy to support CPU topology-aware collective

operations; Section 4 presents two optimizations for the ADAPT

framework to better support GPU topology-aware collective opera-

tions; and Section 5 is dedicated to performance evaluation of the

ADAPT collectives for different systems, including CPU and GPU.

This work concludes with related works described in Section 6,

followed by a summary and future directions outlined in Section 7.

2 DESIGN

With the increasing scale of high-performance computers, there

are more and more sources of interference that can impact the

performance of applications. Even though local noise often causes

very little delay per process, such delays can affect the overall

performance of applications significantly when noise is propagated

to other processes through communications [17].

Compared with P2P communications, collective communica-

tions are easily affected by noise for two reasons. First, the noise

propagation raises with the number of participants in collective

communications. Since the number of processes is determined by

application developers, reducing the noise cannot be done by lim-

iting the number of processes. Second, there are many sequential

dependencies in the implementations of collective operations that

allow noise to propagate. In this section, we identify the dependen-

cies in the implementations of collectives operations in mainstream

MPI libraries and analyze how these dependencies propagate noise.

We then introduce the ADAPT collective operations framework,

which adopts an event-driven idea to relax dependencies.

2.1 Existing Implementations

In general, collective operations implemented inmajorMPI libraries

are based on P2P communications, either blocking or non-blocking.

Carelessly managing these P2P communications introduces un-

necessary sequential dependencies between them and such de-

pendencies bring synchronizations and order between otherwise

independent P2P communications. As discussed in [17], a delayed

process postpones its P2P communications, and further delays other

processes. Therefore, noise on one process delays the P2P commu-

nications, and then delayed P2P propagates noise to other P2P
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Figure 1: Implementation of MPI_Bcast using blocking P2P

communications. Red: noise source; Orange: affected P2P.

child_num: number of childen of the process

Figure 2: Noise propagation of dependencies. Red: noise

source; Orange: affected processes/P2P routines

communications via dependencies between them. Later, all delayed

P2P communications stall the processes participating in these P2P

communications. In this fashion, noise is propagated from a sin-

gle process to others and slows down the performance of entire

collectives.

We analyze two implementations ofMPI_Bcast, one using block-

ing and one using non-blocking communications, to identify hidden

dependencies and highlight their noise propagation patterns.

2.1.1 Collectives Using Blocking Point-to-Point Communications.

Figure 1 presents a pipelined implementation of MPI_Bcast using

blocking P2P routines which can support any kind of tree-based

algorithms. In the figure,MPI_Send (x, y) means sending segment x

to child y andMPI_Recv (x) means receiving segment x from parent.

With pipelining, big messages are segmented into several pieces and

propagated in order. In this implementation, root process issues an

MPI_Send for each of its children to transfer a segment. After they

are finished, the same procedure applies on the following segments.

Intermediate processes post anMPI_Recv to receive a segment from

their parent, and then issuemultipleMPI_Sends to send the received

segment to their children. After these MPI_Sends are done, they

start to receive the next segment until all segments are processed.

Leaf processes work similarly to intermediate processes without

delivering received segments.

Since blocking P2P communication routines involve synchroniza-

tions like handshakes between sender and receiver, noise on any

of these two processes can slow down the blocking P2P routines,

which further delays the process on the other side. When there are

dependencies between P2P routines, noise can be propagated from

one to others, resulting in slowdown of the entire collectives. In

the blocking P2P implementations of MPI_Bcast, we identify two

kinds of dependencies, which can propagate noise significantly:

• Data Dependency. If input data of some P2P routines depends

on the output data of another P2P routine, then there is data de-

pendency between them. Thus, they have to be executed in order

to get the correct results. In the blocking P2P implementation of

MPI_Bcast, intermediate processes have to receive one segment

before sending it to their children. As in Figure 1, MPI_Recv (i)
must occur before MPI_Send (i,m) (m ∈ [0, child_num − 1]) for
any segment i. This dependency is necessary for the correct-

ness of the broadcast operation. With data dependency, noise on

intermediate processes can be propagated to all their children.

Figure 2.a represents the noise propagation pattern caused by

data dependency with a binomial tree broadcast. If noise on pro-

cess d delays theMPI_Recv from b to d, then followingMPI_Send

from d to g is delayed, leading to the delay of g.

• Synchronization Dependency. This kind of dependency is

caused by synchronizations between P2P routines. A blocking

P2P routine waits until the operation is done, which naturally

brings a hidden synchronization. Such synchronization leads

to a dependency between the blocking P2P routine and all fu-

ture routines, which is called Synchronization Dependency. This

dependency brings unnecessary ordering of the routines, and

can propagate noise to other processes. As in Figure 1, root and

intermediate processes always send any segment to child m be-

fore child n, for all m < n (i.e., MPI_Send (0, 0) always before
MPI_Send (0, 1)), even though there is no data dependency be-

tween them. Thus, if MPI_Send (0, 0) is delayed (marked red), all

the followingMPI_Sends andMPI_Recvs are affected (marked or-

ange). Figure 2.b presents how noise is propagated from one pro-

cess to another as a result of this dependency. If noise on process

d delays the MPI_Recv of segment 0 from b to d (MPI_Recv (0)
on process d), then MPI_Send (0, d) on process b is also delayed

since noise can be propagated through blocking P2P commu-

nications, and thus the parent of process d—process b—is de-

layed. Later, because of synchronization dependency, the delay

ofMPI_Send (0, d) on process b affects theMPI_Send (0, e) on pro-
cess b, resulting in the delay of process e, the sibling of process

d. Therefore, a delayed process can affect its siblings and parent

in this case.

Based on the analysis above, via data dependency, noise on a

process is propagated to its children and further to grandchildren,

which is not avoidable. However, unnecessary synchronization

dependency propagates noise to parent and siblings. With this noise

propagation pattern, noise can be propagated to grandchildren,

grandparents and descendants of grandparents, and consequently,

all processes could be affected by noise (Figure 2.c). Therefore, we

can conclude that the blocking P2P implementation of MPI_Bcast

is able to amplify noise.

2.1.2 Collectives Using Nonblocking Point-to-Point Communi-

cations. An improvement over the previous implementation is us-

ing non-blocking P2P communications (MPI_Isend, MPI_Irecv) in-

stead of blocking ones. Figure 3 presents the pipelined implementa-

tion of MPI_Bcast in Open MPI using non-blocking P2P routines.

MPI_Isend (x, y) means sending segment x to child y,MPI_Irecv (x)
means receiving segment x from parent, andWait (x)meanswait for

segment x. In this implementation, root process issues anMPI_Isend

for each of its children to transfer a segment and uses Waitall to
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Figure 3: Implementation of MPI_Bcast using non-blocking

P2P communications. Red: noise source; Orange: affected

P2P

wait for all the previousMPI_Isends. After they are finished, it starts

to send the next segment. A leaf process posts two MPI_Irecvs for

the first two segments, but only waits for the first one segment.

When it receives the first segment, it posts anMPI_Irecv for the next

segment and waits for the second segment. Intermediate processes

behave similarly to leaf processes except that they need to send

the received segment to its children in the same fashion as the root

process. The reason the non-root processes post two MPI_Irecvs

instead of one is to handle out of order segments.

Unlike blocking P2P communication routines, non-blocking rou-

tines are more noise resistant; if one process is delayed, the process

on the other side is still able to progress other non-blocking P2P

routines without hanging. Thus, in most cases, noise on one pro-

cess is less likely to be propagated to another via non-blocking

P2P routines [17], except when the other process has nothing to

work but waits for the delayed non-blocking P2P communication.

Even though non-blocking P2P communication has a higher po-

tential to absorb noise, in the non-blocking P2P implementation of

MPI_Bcast, there are still dependencies that can propagate noise.

The following describes the two dependencies and noise propaga-

tion patterns resulting from them:

• Data Dependency. It is the same as the blocking P2P implemen-

tation. This dependency is required for correctness of broadcast

operation. Therefore, like the blocking P2P implementation, noise

on intermediate processes can be propagated to their all children

with data dependency.

• Synchronization Dependency. As seen in Figure 3, by using

MPI_Isends, data movements from one process to all of its chil-

dren become independent and they can be progressed in any se-

quence by MPI’s progress engine. However, theWaitall andWait

act as synchronizations that order P2P routines between them.

Thus, any delays on these two routines can affect the following

routines. This type of dependency can also propagate noise to

Figure 4: Implementation of MPI_Bcast in ADAPT. Red:

noise source; Orange: affected operations

siblings and parent. For example, in Figure 2, if noise on process

d delays theMPI_Irecv of segment 0 from b to d (MPI_recv (0) on
process d), then process b is not delayed directly since b can still

progress other MPI_Isend, such as MPI_Isend (0, e) on process b.

However, because of the Waitall, process b can be affected if all

other non-blocking P2P communications are completed, except

for the delayed one. In this case, Waitall on process b only waits

for the delayed P2P, and hence, process b is delayed. Later, be-

cause of synchronization dependency, the delay of Waitall on

process b affects the following MPI_Isend (1, e) on process b, re-

sulting the delay of Wait (1) on process e. Thus, process e, the

sibling of process d, is also delayed.

With the combination of data dependency and synchronization

dependency, noise can be propagated to all the processes. Compared

with the blocking P2P implementation discussed before, the non-

blocking implementation of MPI_Bcast is more tolerant to noise

since non-blocking routines offer out-of-order executions, instead

of waiting for delayed P2P routines. However, theWaitall andWait

in the nonblocking version still bring heavy synchronizations, and

thus the nonblocking version is not sufficient to absorb noise and

minimize noise propagation.

2.2 ADAPT: Event-Driven Design

2.2.1 Implementation of ADAPT. In this section, to better ex-

ploit the available parallelisms in collectives and minimize noise

propagation, we present the ADAPT collective communication

framework. The key of ADAPT is to design collective communica-

tions algorithms with events and callbacks, which eliminates the

need to wait for P2P communications to complete. This type of pro-

gramming model is called “event-driven.” In a typical event-driven

program, there is an event loop to detect events, and when an event

occurs, the corresponding callback is triggered. In this way, the

execution flow of a program is determined by events and their

callbacks. To implement events and callbacks, ADAPT is deeply
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integrated with the communication engine in Open MPI: we use

the completion of a non-blocking P2P communication as an event,

which triggers a detailed analysis of the state of the collective

algorithms, and we enable next data movements if necessary by

posting new non-blocking routines. One thing worth mentioning

is that the non-blocking P2P communications, where callbacks are

attached, are at a lower level than MPI_Isend/MPI_Irecv (shown

as “Isend/Irecv” in the following) since MPI_Isend/MPI_Irecv does

not support callbacks. Instead of waiting for each non-blocking

P2P, we create a request for each collective operation and do not

mark it as complete until the collective is done. Therefore, Open

MPI’s progress engine keeps progressing all the non-blocking P2P

routines until this request is completed.

The implementation of the ADAPT broadcast algorithm is shown

in Figure 4. Following the event-driven pattern, all segments are

propagated to all processes via a series of the Isends/Irecvs and their

callbacks.

• Root: the root process posts N Isends to send the first N segments

to each child, then uses set_Isend_cb to attach a callback to each

of these Isends. When any Isend is completed, the Isend_cbwill be

called to post another Isend to send the next available segment.

• Non-root: a non-root process postsM Irecvs to receive the firstM

segments from its parents and attaches callbacks to these Irecvs

with set_Irecv_cb. When any Irecv is completed, Irecv_cb is called

to post another Irecv for receiving the next available segment. If

the process is an intermediate process, besides receiving the next

available segment, it posts multiple Isends to send the received

segment to its children in Irecv_cb.

In ADAPT, we issue N Isends to a single child and M Irecvs

from the parent to handle multiple segments simultaneously to

maximize the usage of the network resources and absorb noise (will

be discussed in 2.2.2). Usually, M is set to be larger than N . This

is because there is an issue of matching an Isend (of a segment)

to a corresponding Irecv: if the segment arrives on the receiver

side before the receiver posts a corresponding Irecv, the segment

will be considered “unexpected.” In this case, MPI needs to store it

into a temporary buffer and match it later when the corresponding

Irecv is posted by the receiver. This introduces significant latency,

as the procedure requires memory allocation and data copying;

thus, it is very important to ensure an Irecv is always posted before

the arrival of its corresponding segment. To address this issue, we

need to make sure M is bigger than N to minimize the chance of

unexpected segments.

2.2.2 Analysis of Dependencies in ADAPT. As discussed in Sec-

tion 2.1, in existing broadcast implementations, there are two types

of dependencies (data dependency and synchronization depen-

dency). In this section, we demonstrate how the ADAPT framework

relaxes synchronization dependencies and minimizes noise propa-

gation by making every segment and every child independent of

each other using an event-driven design.

Data Dependency. Any process needs to receive the data be-

fore starting to send the data to its children. This dependency is

necessary for the correctness of the broadcast operation.

Synchronization Dependency. In ADAPT, the completion of

a non-blocking P2P routine triggers a callback, then posts another

non-blocking routine. For example, on root process, Isend (N , 0) can

only be issued after the earliest one of Isend (i, 0) (i ∈ [0,N − 1]) is
completed. This leads to a synchronization dependency between

these two P2P routines. However, this synchronization dependency

can hardly propagate noise because of the following two reasons.

First, in ADAPT, segments can be handled in any order (segment

independence). Take the root process for example. All segments

are put into a virtual “segment pool” in the beginning. The root

process then posts N Isends to send the first N segments to child

0 (Isend (i, 0) (i ∈ [0,N − 1])). If any of them are done, its Isend_cb

issues another Isend to send the next available segment from the

segment pool. Thus, there are N concurrent Isends between root

and each child. If any one is delayed, segments can be re-balanced to

other Isends. Therefore, delay of one segment can hardly delay the

communication of other segments between root and one child—and

thus, noise can be absorbed. Second, each child can transfer data

segments independently from each other (child independence). In

the existing implementations of MPI_Bcast, a process always waits

for a segment to be transferred to all its children before transferring

the next segment. While in ADAPT, every child keeps its own state

and transfer data segments independently. In this way, noise cannot

be propagated to a process’s siblings. In a word, in ADAPT, segment

independence absorbs the noise magnitude and child independence

limits the range of noise propagation, and thus the synchronization

dependency in ADAPT can hardly propagate noise.

Based on the above analysis, we can conclude that, benefits from

the event-driven design, ADAPT relaxes synchronization depen-

dencies, and minimizes noise propagation.

2.2.3 Extend ADAPT to other collective operations. From the

three implementations of tree-based MPI_Bcast mentioned above,

we can notice that there is a common communication pattern: a

process sends data to its children or receives data from its parents,

which we call basic building block. In the blocking P2P version,

Algorithm 1: Blocking P2P Implementation

1 for i ← 0 to k do

2 MPI_Send(i)/MPI_Recv(i);

the basic building block can be shown as Algorithm 1, where k

is the number of needed P2P communications. A similar pattern

appears in the implementation of collective operations in MPICH

and MVAPICH. In the non-blocking P2P version, the basic building

Algorithm 2: Nonblocking P2P Implementation

1 for i ← 0 to k do

2 MPI_Isend(i)/MPI_Irecv(i);

3 Waitall()

block becomes Algorithm 2; this pattern exists in MVAPICH and

Open MPI. Compared to the blocking version, it provides more

parallelism by adopting MPI_Isend/MPI_Irecv. The basic building

block of ADAPT is Algorithm 3, which uses non-blocking P2P

as Algorithm 2 and reduces synchronizations by removing the

Waitall. For the MPI_Bcast algorithms are not based on trees, the
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Algorithm 3: Adapt Implementation

1 for i ← 0 to k do

2 Isend(i)/Irecv(i);

3 set_Isend_cb(i)/set_Irecv_cb(i);

event-driven design can still be used as long as the basic building

blocks exist in the algorithms. For example, a scatter followed by

an allgather is a common algorithm to do big message MPI_Bcast.

In the scatter phase, a process may send data to multiple other

processes which is similar to the MPI_Bcast discussed above and

the same technique can be applied to it. For other one-to-all, all-

to-one and some all-to-all collectives, a process always need to

send or receive data from other processes. In this way, the basic

building block is a common part in various collectives, and thus

the event-driven design can be extended to them.

2.2.4 Support Different Collectives with Multiple Communication

Trees. In collective operations, the relationship of parents-children

forms a communication tree. In ADAPT, the communication tree of

a collective operation can be any type of tree, e.g., a chain, binary

tree, binomial tree, or other advanced trees [31]. The design of the

ADAPT framework allows most operations to be independent of

the underlying communication tree. Therefore, it is easy to adapt

the trees based on network topology to boost performance, which

is discussed in Section 3.

3 TOPOLOGY-AWARE SUPPORT IN ADAPT

This section describes how to equip the ADAPT framework with

topology-aware capabilities in order to handle complex hardware

hierarchies in heterogeneous systems.

3.1 Topology-Aware Collectives with
Multi-Level Communicators

Existing methods of implementing hierarchical collective opera-

tions use multiple communicators to group processes based on

topology [1, 19, 33]. A communicator is created for each group.

Take a broadcast operation, for example: a broadcast starts from

the top level communicator and the next level cannot start until

the upper-level broadcast is finished. Thus, a broadcast consists of

several broadcasts within multiple levels’ communicators. In this

way, this method is suboptimal for large messages, since the upper-

level broadcast and lower-level broadcast do not overlap with each

other.

3.2 Topology-Aware Collectives with a Single
Communicator

To eliminate the boundaries between multiple levels, we present

a new topology-aware collective operation based on a topology-

aware tree, which “virtually” groups all processes in a single com-

municator instead of dividing the processes into multiple commu-

nicators.

3.2.1 Build Topology-Aware Communication Tree. As discussed

in Section 2, the ADAPT framework can be plugged in with a

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Figure 5: Topology-aware communication tree of a broad-

cast algorithmon amulti-core cluster (4 cores per socket and

2 sockets per node)

carefully built communication tree to provide topology-aware capa-

bilities. This section describes how to build such a topology-aware

tree. The following description assumes the topology information

and that the placement of each process is known. In Open MPI, this

information is available to all processes and can be extracted from

the PMIx runtime using Portable Hardware Locality (hwloc) [4].

Using the topology information for all processes, we can build

a topology-aware communication tree. We start by grouping pro-

cesses bottom-up. Figure 5 presents an example of the topology-

aware tree. There are three groups: node, socket, and core. Since

the network within a group is homogeneous, the way processes

communicate with each other within each group can be decided,

optimally, by existing approaches [29]. Also, because the network of

each group is independent from others, processes within different

groups can communicate using a different pattern. As in Figure 5,

P4, P5, P6 and P7 form a group and communicate using a chain

fashion. P0 and P4 form a chain in the upper-level group and P4

glues these two chains together.

3.2.2 ADAPT vs. Blocking/Non-Blocking P2P Collectives. The

blocking/non-blocking P2P implementations of one-to-all and all-to-

one collectives (discussed in Section 2.1) can also support different

kinds of tree algorithms; it is possible to plug the topology-aware

tree discussed above into blocking/non-blocking implementations

of collectives to make them topology-aware. It is known that the

nonblocking performs better than the blocking version because it

can relax the dependencies and exploit more parallelism by posting

several MPI_Isends, and these MPI_Isends may transfer data con-

currently if they occupy different physical networks. For example,

in the broadcast operation of the tree in Figure 5, P0 posts three

MPI_Isends to P1, P4 and P8—which occupy inter-node, inter-socket

and intra-socket communication channels—and can be progressed

independently at different speeds. However, theWaitall in the non-

blocking version forces the three MPI_Isends to complete at the

same time, and thus, they all run at the slowest speed of the three

inter-connections, which is the inter-node communication. There-

fore, the non-blocking P2P implementations of collectives are not

able to fully utilize the network’s resources.

The ADAPT framework removes the Waitall, so in the previous

example, the three Isends can be progressed independently and

123



ADAPT: An Event-Based Adaptive Collective Communication Framework HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

data can be propagated at full network speed. Therefore, the event-

driven design of ADAPT utilizes network resources more efficiently.

4 SUPPORT FOR HETEROGENEOUS
ARCHITECTURES

Most GPU-aware MPI implementations assume each MPI process

is bound to one GPU, transforming inter-process communications

to/from GPU memory to inter-GPU communications. With its re-

lease of CUDA version 4.0, NVIDIA introduced CUDA Inter-Process

Communication (IPC) to allow GPU remote direct memory access

(RDMA) between two GPUs within the same socket. For communi-

cations between GPUs across the socket, there are two approaches:

going through CPU memory, or using GPUDirect (starting from

CUDA 5.0) by going through a third-party device—in general an

InfiniBand (IB) adapter—attached to each socket. Most machines are

not equipped with multiple InfiniBand adapters, thus, using Infini-

Band for inter-socket communications delays inter-node communi-

cations because they will be sharing the same InfiniBand adapter

and the same PCI-Express bus. In this paper, we assume inter-socket

communications go through CPU memory; for inter-node commu-

nication, it can use either GPUDirect or go through intermediate

CPU memory; but both approaches occupy Network Interface Con-

trollers (NICs), which in our case is InfiniBand. Therefore, collective

operations on GPU data need to handle multiple types of networks,

including PCI-Express, InfiniBand, and CPUmemory bus. To handle

communications over such contrasting networks, topology-aware

collectives are more efficient than traditional collective algorithms.

Therefore, in this section, we describe how we extended and opti-

mized ADAPT to efficiently handle GPU data.

4.1 Minimize Communications over
PCI-Express

As seen in Figure 5, for broadcast operations, the node leader is

the busiest MPI process of the entire communications because it re-

ceives data from the previous node leader and sends data to the next

node leader, the next socket leader, and the next process within the

same socket. All of these communications go through PCI-Express,

and might introduces heavy congestions on the node’s PCI-Express.

Figure 6.a shows the movements of the data on the node leader

when using GPUDirect. Communications between node leaders

go through NICs via PCI-Express (red line). When the node leader

sends the data to a socket leader, data goes through an implicit

intermediate CPU buffer to the next socket leader’s GPU. Such data

movement uses the PCI-Express and Intel QuickPath Interconnect

(QPI) bus (purple line). When the node leader sends data to the next

GPU within the same socket, data flows through the PCI-Express

as well (blue line). Since these three communications occupies the

same direction on PCI-Express, only one third of the PCI-Express’s

bandwidth can be available for each communication. As shown

in Figure 6.b, when GPUDirect is disabled, inter- and intra-socket

communications do not change, but inter-node communications

need to take an extra step to go through an intermediary CPU

buffer. Since the CPU buffer is implicitly managed by Open MPI,

each P2P communication would use different CPU buffers, even

if it is transmitting the same data. This consumes a large amount

of CPU memory and PCI-Express bandwidth. To tackle the con-

gestion of PCI-Express in previous implementations, we allocate

an explicit CPU buffer for the node leader process to cache GPU

data. Non-root node leaders cache the received data into this CPU

buffer so that it can send the data to the next node and socket leader

directly from this cached CPU buffer, without pulling data from

GPU memory via PCI-Express again. Later, cached data is flushed

into the corresponding GPU memory via an asynchronous CUDA

copy. Root process also caches data in CPU memory to relax the

workload on the PCI-Express. Figure 6.c shows the optimized data

flow of the node leader process. As long as the NICs and GPUs are

not connected to the same PCI-Express switch, communications

between (1) NIC and explicit CPU buffer, (2) CPU buffer to GPU,

and (3) GPU to neighbor GPU will use different PCI-Express lanes.

Thus, they can be simultaneously progressed. With an explicit CPU

buffer, we are able to map intra-socket, inter-socket and inter-node

communications to use different physical networks, and achieve

communication overlapping.

4.2 Offload Reduction Operation on GPU

Reduction operations are mathematical operations on vectors, and

are embarrassingly parallel; thus, they are good candidates for GPU

execution, as each CUDA thread handles reduction operation on

few elements of the vector. However, as discussed in Section 6, the

current GPU-aware MPIs still use CPUs to perform the reduction,

which is not efficient because most MPI applications are still single-

threaded, CPU-bound reduction operations occupy scarce CPU

resources, and can potentially delay any other communications or

computations the application might have. With this in mind, we

offload the reduction operations1 to the GPU asynchronously by

using multiple CUDA streams. This allows us to seamlessly overlap

communications and reduction operations.

5 EXPERIMENTAL EVALUATION

In order to assess the capability of the ADAPT framework, we first

evaluate its two features: noise absorption and topology-aware de-

sign; second, we present an end-to-end evaluation with other state

of the art MPI libraries; last, we study the performance of collective

operations with an application. The first two parts are done with

Intel MPI Benchmark (IMB) using two collective operations: broad-

cast and reduce. The experiment is conducted on three clusters: (1)

Cori, a CPU cluster, on which each node is equipped with 2 Intel

Xeon E5-2689 v3 CPUs, and nodes are connected by Cray Aries; (2)

Stampede2, a CPU cluster, on which each node is equipped with 2

Intel Xeon 8160 CPUs, and nodes are connected by Intel Omni Path;

and (3) NVIDIA PSG K40 cluster, a GPU cluster with 10 nodes,

where each node is equipped with 4 K40 GPUs with CUDA 7.5 and

2 deca-core Intel Xeon E5-2690v2 Ivy Bridge CPUs, and nodes are

connected by 40Gb/s FDR IB. The MPI libraries compared are: Cray

MPI, Intel MPI, Open MPI 2.0 default (shown as “OMPI-default”),

MVAPICH2 (not support Cray Aries), and Open MPI 2.0 ADAPT

(shown as “OMPI-adapt”).

1We developed CUDA kernels for all pre-defined MPI reduction operations, but they
are outside the scope of this paper.
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Figure 6: Dataflow of non-root node leader MPI process

5.1 Component Evaluations

5.1.1 Noise Impact. The section studies the performance im-

pact of noise on ADAPT and other MPI libraries to demonstrate

ADAPT’s noise absorption abilities. The noise experiment is con-

ducted in the CPU cluster, since it has more nodes and is presumably

more impacted by the noise.

Figures 7a) and 7b) present the noise impact on the performance

of broadcast and reduce operations in different MPI implementa-

tions on the Cori and Stampede2 using 1024 and 1536 processes

respectively. In this experiment, message size is set to 4 MB to allow

enough segments to fill the pipeline and highlight the noise effects

on performance. As suggested in [10, 17], performance interference

usually has greater impact on larger systems. In order to show de-

lays of collective operations caused by noise with fewer processes,

we use a method similar to the one in [2] to randomly inject 0–10ms

(average 5%) and 0–20ms (average 10%) noise following a uniform

distribution with a fixed frequency of 10 Hz, since low-frequency,

long-duration noise has the greatest impact on performance [10].

In Figure 7a) and 7b), the bars show the average time to do a col-

lective operation and the numbers above red and green bars show

the performance slow down percentages after 5% and 10% noise

injection respectively. We note that after 10% noise injection, the

slowdown of MVAPICH is 868%, which is outside the scope of the

figure. MVAPICH’s reduce encounters segmentation fault with IMB

when message size is 4MB, so there is no results for the reduce

operation. As seen in the Figure 7a) and 7b), benefiting from the

event-driven design, OMPI-adapt relaxes synchronization depen-

dencies and thus is largely unaffected by the noise compared to

other MPI libraries. Therefore, OMPI-adapt only slows down up

to 24% and 16% on broadcast and reduce even with 10% noise in-

jected on both machines. The broadcast and reduce of OMPI-default

uses non-blocking P2P routines, so as analyzed in Section 2.1.2, it

contains synchronization dependency, which can propagate noise.

Thus, it slows down up to 59% and 99% on broadcast and reduce.

Since Cray and Intel MPI are not open-source, we do not know

their detailed implementations, but Cray MPI slows down up to

149% and 61%; the numbers for Intel MPI are 33% and 24%, which

are less noise-resistant than ADAPT.

5.1.2 Topology-Aware. This section evaluates the performance

of topology-aware broadcast and reduce operations in ADAPT

against state of the art topology-aware implementations. Figures 8b)

and 8a) present the performance of ADAPT (shown as OMPI-adapt)

with CPU data on Cori and Stampede2, compared with all the

topology-aware algorithms in Intel MPI. We also integrate the

topology-aware communication tree to the default collective mod-

ule of Open MPI (shown as “OMPI-default-topo”) to demonstrate

that ADAPT is better at network resource utilization. We notice

that Intel MPI performs much better on Stampede2 than Cori, and

we think this may be because the underlying network of Stampede2

is Intel Omni Path whereas Intel MPI has its own optimizations for

its hardware. Even so, on both machines, the topology-aware broad-

cast of ADAPT performs the best over others for big messages. For

messages smaller than 1MB, ADAPT’s broadcast performs a little

slower than Intel MPI on Stampede2; this is because the pipeline

topology-aware algorithms in ADAPT require enough segments

to fulfill the pipeline. For reduce operations on large messages,

ADAPT performs better than most topology-aware algorithms in

Intel MPI, except Shumulin’s. There may be two reasons: first, the

reduction operations in ADAPT do not have any vectorization opti-

mizations. Second, performance of collectives relies heavily on the

underlying P2P communications; the Shumulin’s algorithm may

be optimized for P2P over Intel Omni Path. This assumption is

made by comparing the performance of Shumulin’s on Stampede2

(with Omni Path) and Cori (without Omni Path). Compared with

OMPI-default-topo, ADAPT is able to support independent com-

munications over different networks; therefore, even though it has

the same topology-aware communication tree with OMPI-default-

topo, ADAPT still performs 20% better. Overall, ADAPT eliminates

boundaries between different hierarchies and supports independent

communications, and therefore it fully utilizes network resources

and delivers better performance than most topology-aware MPI

implementations especially for big messages.

5.2 End-to-End Evaluations

To study the overall impact of event-driven and topology-aware

design in ADAPT, we conduct two types of experiments with both

CPU and GPU data: first, the total number of processes is fixed and

we measure the performance for different message sizes; second,

we look at the strong scalability, which measures the performance

by varying the number of processes with a fixed message size.

5.2.1 Collective Communications with CPU Data. Figure 9a) and

Figures 9b) present the communication time of broadcast and reduce

of ADAPT compared with other state-of-the-art MPI implemen-

tations with different message sizes on the Cori and Stampede2
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machines. Cray MPI does not support Omni-Path interconnect, so

it is not tested on Stampede2. Similarly, MVAPICH does not sup-

port Aries interconnect, so it is not tested on Cori. The default

collective module in Open MPI is the tuned module, which can

switch algorithms based on different parameters. This is shown in

Figure 9a), where the OMPI-default broadcast algorithm changed

after 256KB. In OMPI-adapt, both the broadcast and the reduce op-

erations are pipelined algorithms, in which messages are split into

several segments. In order to better understand the performance

graph, we adopt Hockney’s cost model [16] to model the cost of

collective operations. This model assumes that the time to send a

message of size m between two nodes is T = α + βm, where α is

the latency (or startup time) per message, independent of message

size, and β is the transfer time per byte or reciprocal of network

bandwidth. For the reduction operation, we assume that the time

spent in computation on data in a message of sizem is γm, where γ
is computation time per byte. Therefore, the entire time of sending

a message of sizem between two processes is T = α + βm + γm.

A perfect pipeline needs to meet two criteria: a large enough

segment size and a sufficient number of segments. If the segment

size is too small, message latency as α in Hockney’s model becomes

dominant, preventing the full utilization of network bandwidth.

If there are not enough segments, the pipeline initialization time

will be predominant and the overall performance will be affected.

Therefore, it is difficult for small messages to meet both criteria.

This means the ADAPT framework will show lesser improvement

over other implementations when the messages are small. For larger

messages, the benefit of concurrent communication in the ADAPT

framework becomes the dominant factor. On Cori, OMPI-adapt

provides 10×, 10× and 1.6× speedup against OMPI-default, Intel

MPI and Cray MPI for broadcast operations and 5×, 2× and 1.5×
speedup for reduction operations when the message size is 4MB. For

the same message size on Stampede2, compare with OMPI-default,

Intel MPI and MVAPICH, OMPI-adapt achieves 2.8×, 1.3× and 4.6×
speedup for broadcast. OMPI-adapt’s reduce operation is slower

than Intel MPI’s on Stampede 2 and the reason is explained in the

previous section.

Scalability is another important factor of MPI libraries. Figure 10

shows the performance of strong scaling for broadcast and reduc-

tion operations with a 4MB message on Cori. OMPI-adapt uses

the chain algorithm as the communication tree for all topology

levels groups based on [29]. Since ADAPT allows concurrent com-

munications over independent paths, the cost of broadcast and

reduction can be calculated through the longest chain in the com-

munication tree. Based on Hockney’s Model, the cost of chain is

T = (P + ns − 2) × (α + βm) [29] where P is number of processes

participating in a collective operation and ns is the number of

segments. If the message size is large enough to ignore the cost of

pipeline initialization, the cost of the chain algorithm can be treated

as T = ns × (α + βm). Thus, theoretically, performance does not

depend on the number of processes within the chain. Therefore,

as seen in Figure 10, the time of our broadcast and reduction does

not increase significantly with the number of processes, and the

operations tend to be stable as the number of nodes increases.

Compared with other MPIs, OMPI-adapt consistently achieves the

best strong scalability, thanks to its event-driven design and the

topology-aware communication tree.

5.2.2 Collective Communications with GPU Data. Figure 11a)

shows the time of broadcast and reduction operations with GPU

data on 8 nodes (32 GPUs in total). With the help of data caching

in CPU memory to minimize traffic over PCI-Express and the min-

imal dependencies in ADAPT’s design, OMPI-adapt outperforms

MVAPICH2 and OMPI-default by 2–3 times for broadcast. For the

reduction, in addition to the same advantages as broadcast, OMPI-

adapt benefits from the asynchronous reduction operations on

GPUs. As a result, OMPI-adapt reduction is almost 10 times faster

than the other two MPI libraries. It should also be noted that with

OMPI-adapt the CPU remains available for other computation, as

most of the operations are executed either by direct memory access

(DMA) engines or by the GPUs.

Figure 11b) presents the result of a strong scaling experiment for

broadcast and reduction with a fixed message size and a variable

number of nodes. Since each topology level occupies an indepen-

dent communication path, each level is able to achieve perfect

overlap. According to the Hockney model presented above and sim-

ilar to the CPU results, the performance of the GPU broadcast and

reduce should be unaffected by the increase in the number of GPUs.

This is proved by the almost ideal strong scalability result shown in

Figure 11b). When the number of nodes is larger than 1, inter-node

and intra-socket communication of the root process occupies the

same direction as the PCI-Express, leading to performance drops

if not correctly handled by the MPI library. As discussed in Sec-

tion 5.2.1, OMPI-default uses a decision tree to guide collective

algorithm selection; however, the decision tree strategy was not

designed for GPUs, thus it would not select the optimal algorithm

for multi-GPU settings, leading to significantly slower performance

compared to MVAPICH2 and OMPI-adapt. For example, when us-

ing only one node, OMPI-default does not use the chain algorithm

(which would be optimal), resulting in a significant performance

drop. With ADAPT’s design, we achieve better scalability over

OMPI-default and MVAPICH2.
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Figure 11: Performance of broadcast and reduce on PSG cluster
Table 1: Performance of ASP with 1K cores on Cori

Cray Intel MPI OMPI-adapt OMPI-tuned

Communication (s) 2.98 15.26 1.99 14.18

Total Runtime (s) 6.20 18.46 5.21 17.40

5.3 Application Performance

We choose ASP [30] to evaluate how OMPI-adapt performs in real

application. ASP uses the parallel Floyd-Warshall algorithm to solve

the all pairs shortest path problem. In the beginning of each itera-

tion, one process broadcasts a row of the square matrix representing

edges weight to all peers in the communicator, in order to distribute

the workload. The outer loop of the algorithm iterates on rows,

until the entire matrix is processed. Overall, if a matrix size is N , the

ASP contains N broadcast of N × type_size bytes each. Compare

to the light computation, the communication is dominant and the

MPI_Bcast takes the major time of the runtime of ASP.

Table 1 shows the performance of ASP with problem size equals

256K. For ADAPT, the communication takes 38% of the runtime.

This number rises to 48% for Cray MPICH, and more than 80% for

Intel MPI and OMPI-default. Therefore, the event-driven design

combined with topology-aware tree in OMPI-adapt shows a signifi-

cant improvement for this application, even with smaller message

sizes (1MB).

6 RELATEDWORK

6.1 Performance Interference

With the increasing scale of HPC systems and more potential

sources of performance interference, finding a way to alleviate

the effects of interference is crucial to large-scale parallel applica-

tion. One way is to eliminate the interference itself. Performance

interference introduced by system noise can be reduced by system

designers [2, 42]. There are also efforts to reduce other sources

of performance interference. In [43], the authors minimize inter-

ference between the simulation and the situ analytics by using

fine-grained scheduling to get idle resources. Another way is to al-

leviate the propagation of the performance interference. [35] shows

how system noise impacts the performance of the collective opera-

tion and [39] highlights how non-blocking collective operation has

potential to mitigate certain types of performance interference.

Despite in-depth research on the causes and impacts of perfor-

mance interference mentioned above, our work is the first to focus

on the implementation of MPI collective operation, which performs

well against such noise.

6.2 Topology-Aware Collective Operations

Several related works use the topology-aware idea for collective op-

erations to take advantage of communication difference among the

levels in the network. MagPIe [21] creates hierarchical algorithms

for clustered wide-area systems to minimize the data transfers on

the slowest links. MPICH2 [44] implements several collective oper-

ations that exploit knowledge of the underlying topology. But these

works only consider two network layers. Karonis et al. [20] extends

the previous work and presents a multi-level, topology-aware tree

to support more network layers. Later, MVAPICH2 [19, 33] intro-

duced neighbor-joining techniques to detect network topology on

switch levels, and adds one more level in the network hierarchy

for collective operations. However, all these approaches focus on

exploiting an increasing number of network topology levels. From

a performance standpoint, they provide increased levels of per-

formance compared with single-level approaches, but their inter-

and intra-level communications are dissociated and do not cooper-

ate tightly, leading to a deficit in communication overlap between

different topology levels.

Other researchers have tried to benefit from node-level shared

memory and propose hierarchical collective operations. Tipparaju

et al. [34] use shared memory as an intermediate buffer to reduce

the number of memory copies. Cheetah [15] is a hierarchical collec-

tive communication framework that constructs a directed acyclic

graph (DAG) based on the characteristics of communication topol-

ogy. Each node in the DAG is a collective operation. It can take
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advantage of shared memory for intra-node communications and

InfiniBand P2P or CORE-Direct for inter-node communications. Par-

sons et al. [28] decouples the choice of inter-node and intra-node

communication algorithms. However, all these previous works com-

pletely lack communication overlap between levels. HierKNEM [23]

enables tight collaboration between the collective algorithms per-

taining to different layers of the hierarchy. It combines KNEM (a

Linux kernel for memcopy in shared memory), pipelining, and

hierarchical ideas to allow overlap of inter-node and intra-node

communication. It only supports two topology levels and in each

level the tree is fixed.

With a carefully built topology-aware tree, our collective frame-

work can support multiple topology levels, and each level can select

a different algorithm based on the characteristics of the level, such

as the number of processes, message size, available bandwidth, and

other hardware characteristics.

6.3 CUDA-Aware Collective Operations

State-of-the-art MPI libraries such as Open MPI [40] and MVA-

PICH2 [32, 36] provide CUDA-aware P2P and collective communi-

cations. But they never consider offloading reduction operations

into GPU; therefore, they are not able to exploit the GPU paral-

lelism to handle large parallel reduction operations. Later, Chu et

al. [5] and Oden et al. [26] proposed CUDA-aware reduce oper-

ations by leveraging CUDA kernels to handle reduction. Chu et

al. [6] present a hardware multicast-based broadcast which benefits

from IB hardware multicast. However, none of them encompasses

network hierarchical topology for heterogeneous GPU-based clus-

ters. NVIDIA introduced The NVIDIA Collective Communications

Library (NCCL) [25], which targets multi-GPU platforms. However,

their broadcast and reduce only use chain algorithms, are not able

to adapt based on topology, and they are not really equivalent to the

MPI collective. Awan et al. [1] integrated NCCL into MVAPICH2 to

provide hierarchical broadcast operations by using NCCL to handle

intra-node communications. However, similar to MVAPICH2 in

CPU clusters discussed before, there is no communication overlap

between different topology levels. Our topology-aware framework

has been extended to GPU clusters and provides communication

overlap between different levels, as discussed in Section 4.

6.4 Event-driven Collective Operation

Event-driven programming is a long existing programming model

which is used to solve various problems, including decreasing

the memory overhead in embedded systems [9], achieving high

throughput in server applications [27] and forming service objects

across a mobile network [7]. This model is also used to handle I/O

operations (event-driven I/O [3] [8]). Normally, I/O operations are

extremely slow compared to the processing of data, therefore, the

CPU’s computing power is wasted if it is blocked to wait for I/O

operations. Alternatively, with the event-driven design, instead of

waiting for I/O operations, CPU can continues to work on other

jobs until it gets a notification of an I/O operation is completed.

In this paper, we use event-driven design to implement MPI col-

lective operations. To the best of our knowledge, the only paper

related to this is [18]. In this paper, the authors define GOAL, an

abstract domain-specific language able to dynamically represent a

collective operation as a set of scheduled operations and then exe-

cute the DAG using a scheduler. We use a similar idea to break down

the collective operation into P2P operations, but our framework

is the first to use the event-driven idea to alleviate the effects of

performance interference and integrate the event-driven collective

framework with the topology-aware tree to enable efficient, het-

erogeneous topology-aware collective operation. Also compared

to previous work, we control concurrent communication, allow

segmentation of a message to achieve better performance and we

never build the entire collective schedule description.

7 CONCLUSION

MPI implementations need to adapt to the increasing scale and

complexity of HPC systems to fulfill users’ expectations. In this

paper, we address this problem by presenting ADAPT, a collective

communication framework in Open MPI based on an event-driven

infrastructure. Through events and callbacks, ADAPT relaxes syn-

chronization dependencies and maintains the minimal data depen-

dencies. This approach provides more tolerance to system noise.

Adding to this capability, ADAPT supports fine-grained, multi-level

topology-aware collective operations which is able to exploit the

parallelism of heterogeneous architectures. We demonstrate experi-

mentally that (1) our framework is less affected by noise than other

state-of-the-art MPI libraries; (2) it outperforms most state-of-the-

art MPI libraries on heterogeneous architectures using CPU and

GPU data; and (3) it demonstrates an almost ideal strong scalability

as the number of nodes increases. We are now looking at increasing

the collective communications coverage, enabling non-blocking

collective communications with asynchronous progress, and inte-

grating network switch level information to further improve its

adaptability.
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