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ABSTRACT

The increase in scale and heterogeneity of high-performance com-
puting (HPC) systems predispose the performance of Message Pass-
ing Interface (MPI) collective communications to be susceptible to
noise, and to adapt to a complex mix of hardware capabilities. The
designs of state of the art MPI collectives heavily rely on synchro-
nizations; these designs magnify noise across the participating pro-
cesses, resulting in significant performance slowdown. Therefore,
such design philosophy must be reconsidered to efficiently and ro-
bustly run on the large-scale heterogeneous platforms. In this paper,
we present ADAPT, a new collective communication framework
in Open MPI, using event-driven techniques to morph collective
algorithms to heterogeneous environments. The core concept of
ADAPT is to relax synchronizations, while maintaining the minimal
data dependencies of MPI collectives. To fully exploit the different
bandwidths of data movement lanes in heterogeneous systems, we
extend the ADAPT collective framework with a topology-aware
communication tree. This removes the boundaries of different hard-
ware topologies while maximizing the speed of data movements.
We evaluate our framework with two popular collective operations:
broadcast and reduce on both CPU and GPU clusters. Our results
demonstrate drastic performance improvements and a strong resis-
tance against noise compared to other state of the art MPI libraries.
In particular, we demonstrate at least 1.3x and 1.5X speedup for
CPU data and 2x and 10X speedup for GPU data using ADAPT
event-based broadcast and reduce operations.
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1 INTRODUCTION

The need to satisfy the scientific computing community’s increasing
computational demands leads to larger HPC systems with more elab-
orate architectures, many levels of memory, highly multi-threaded
hardware components, and complex high-speed network topologies.
Many of these scientific applications rely on collective data move-
ment patterns—namely, collective communications. In distributed-
memory systems, most of these parallel applications take advantage
of the Message Passing Interface (MPI) [13] paradigm to satisfy
their data transfer needs. Therefore, it is crucial for MPI libraries
to sustain the parallel applications by providing the most optimal
communication capabilities, including highly-optimized collective
routines. With the increasing scale and complexity of HPC systems,
performance scalability on such machines becomes more challeng-
ing. Overall, there are two challenges preventing the performance
scalability of collective operations in large HPC systems:
Propagation of noise. HPC systems tend to increase in size,
with thousands of computer nodes and millions of, potentially dif-
ferent, cores. In such large and heterogeneous systems, system noise
can be easily amplified with all types of synchronizations including
the implicit synchronizations within collective operations and dras-
tically hurts an application’s performance. Operating system noise
was studied in [2] [17] and [11]. With the increase in system size,
noise should be extended to include the delay caused by fault toler-
ance [12, 22], in situ-analytics [24], and power management [14].
As suggested in previous research [17], noise can dramatically slow
down large-scale parallel applications. For some applications, noise
of only 2.5% can drop the performance more than 400X on 500 nodes
and 1800 on 2500 nodes [10]. The main reason for the slowdown is
MPI collective operations. Noise occurring locally has little impact
by itself, but by delaying local communications it is being propa-
gated to other processes, and becomes magnified through certain
synchronizations within collective operations. Usually, a collective
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operation consists of many fine-grained MPI one-sided or two-
sided communication routines. Carelessly handling dependencies
of these point to point (P2P) routines brings extra synchronizations,
which potentially leads to noise propagation and amplification, and
therefore delivers sub-optimal performance.

Hardware heterogeneity and hierarchy. Another important
factor as we approach exascale is resource heterogeneity, resulting
in increasingly complex hardware hierarchies. A compute node on
such heterogeneous system usually contains multiple CPU sockets,
connected by high-speed inter-socket connections (e.g., Intel QPI
or AMD Hyper-transport). Scaling up, several compute nodes are
coupled together through the high-performance network interface
and organized into racks, then finally into super-computers.

Benefiting from massive parallelism with low power consump-
tion, HPC systems are increasingly incorporating accelerators
(NVIDIA GPUs, Intel KNL or specialized FPGA). Hence, more
and more applications, including traditional scientific applica-
tions [37] [41] and deep learning applications [38], are adopting
accelerators to boost their performance. However, embracing accel-
erators increases the already complicated architecture hierarchy, as
accelerators are connected to the host via PCI Express bus, and in
some cases such as GPUs connected to other GPUs via GPU-GPU
interconnects (NVLink). Clearly all these advancements at the hard-
ware level cause a drastic increase in performance and capability
differences between levels of the hierarchy. Communication time
between processes greatly varies depending on the physical dis-
tance and types of networks between them. Thus, maintaining good
network performance requires the holistic integration of process
placement and architecture capabilities. Recent advances in MPI col-
lectives implementations have demonstrated that such performance
issues can be partially solved by integrating hardware topology
information into collective operations [15, 19, 23]. However, the
insufficient cooperation of communications of different topology
levels (i.e., intra-socket, inter-socket, PCI bridges and inter-node
levels) leads to sub-optimal overlapping of communications at dif-
ferent levels. Also, the algorithms are not adaptable to fluctuating
network conditions. This calls for a collaborative approach, between
multiple levels of collective algorithms, dedicated to holistically
managing all levels of the network hierarchies.

Contributions. This work’s contributions are: an asynchronous
event-driven framework able to expose and take advantage of paral-
lelism between independent data movements composing collective
communications, a novel multi-level architecture aware implemen-
tation of some collective communications algorithms (reduce and
broadcast), an event-driven composition mechanism allowing mul-
tiple collective algorithms to be composed in a data-dependent hi-
erarchical manner, and the efficient integration of this event-driven
framework in the communication engine of Open MPI. More pre-
cisely, facing noise and complex hardware hierarchies, we propose
“ADAPT,” a new event-driven collective framework in Open MP]I,
which treats the completion of non-blocking P2P routines within
collective operations as events, and each event completion allowing
the high-level logic to unfold dependent P2P routines. With the
help of the event-driven design, we can relax synchronization de-
pendencies and only maintain the minimal data dependencies. By
relaxing synchronizations, our framework offers more potential to
absorb the system noise instead of propagating or even amplifying
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it further. Combining this feature with a carefully built topology-
aware tree, the ADAPT framework provides greater opportunities
to concurrently communicate over networks of different hierarchies
on heterogeneous systems. Specifically, the advantages of ADAPT
framework include:

e Relax the synchronizations in collective operations to allevi-
ate the effects of noise;

e Express a collective communication as a topology-aware
communication tree, to maximize the concurrent communi-
cations over different hardware levels;

o Enable highly efficient topology-aware NVIDIA GPU collec-
tive operations.

The rest of this paper is organized as follows. Section 2 ana-
lyzes the noise propagation with two kinds of dependencies in
existing implementations of MPI collectives, describes the design
of the ADAPT collective operations framework, and explains its
noise-resistant capability; Section 3 describes how the proposed
framework builds a topology-aware tree from different levels in
the hardware hierarchy to support CPU topology-aware collective
operations; Section 4 presents two optimizations for the ADAPT
framework to better support GPU topology-aware collective opera-
tions; and Section 5 is dedicated to performance evaluation of the
ADAPT collectives for different systems, including CPU and GPU.
This work concludes with related works described in Section 6,
followed by a summary and future directions outlined in Section 7.

2 DESIGN

With the increasing scale of high-performance computers, there
are more and more sources of interference that can impact the
performance of applications. Even though local noise often causes
very little delay per process, such delays can affect the overall
performance of applications significantly when noise is propagated
to other processes through communications [17].

Compared with P2P communications, collective communica-
tions are easily affected by noise for two reasons. First, the noise
propagation raises with the number of participants in collective
communications. Since the number of processes is determined by
application developers, reducing the noise cannot be done by lim-
iting the number of processes. Second, there are many sequential
dependencies in the implementations of collective operations that
allow noise to propagate. In this section, we identify the dependen-
cies in the implementations of collectives operations in mainstream
MPI libraries and analyze how these dependencies propagate noise.
We then introduce the ADAPT collective operations framework,
which adopts an event-driven idea to relax dependencies.

2.1 Existing Implementations

In general, collective operations implemented in major MPI libraries
are based on P2P communications, either blocking or non-blocking.
Carelessly managing these P2P communications introduces un-
necessary sequential dependencies between them and such de-
pendencies bring synchronizations and order between otherwise
independent P2P communications. As discussed in [17], a delayed
process postpones its P2P communications, and further delays other
processes. Therefore, noise on one process delays the P2P commu-
nications, and then delayed P2P propagates noise to other P2P
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Figure 1: Implementation of MPI_Bcast using blocking P2P
communications. Red: noise source; Orange: affected P2P.
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communications via dependencies between them. Later, all delayed
P2P communications stall the processes participating in these P2P
communications. In this fashion, noise is propagated from a sin-
gle process to others and slows down the performance of entire
collectives.

We analyze two implementations of MPI_Bcast, one using block-
ing and one using non-blocking communications, to identify hidden
dependencies and highlight their noise propagation patterns.

2.1.1  Collectives Using Blocking Point-to-Point Communications.
Figure 1 presents a pipelined implementation of MPI_Bcast using
blocking P2P routines which can support any kind of tree-based
algorithms. In the figure, MPI_Send(x, y) means sending segment x
to child y and MPI_Recv(x) means receiving segment x from parent.
With pipelining, big messages are segmented into several pieces and
propagated in order. In this implementation, root process issues an
MPI_Send for each of its children to transfer a segment. After they
are finished, the same procedure applies on the following segments.
Intermediate processes post an MPI_Recv to receive a segment from
their parent, and then issue multiple MPI_Sends to send the received
segment to their children. After these MPI_Sends are done, they
start to receive the next segment until all segments are processed.
Leaf processes work similarly to intermediate processes without
delivering received segments.

Since blocking P2P communication routines involve synchroniza-
tions like handshakes between sender and receiver, noise on any
of these two processes can slow down the blocking P2P routines,
which further delays the process on the other side. When there are
dependencies between P2P routines, noise can be propagated from
one to others, resulting in slowdown of the entire collectives. In
the blocking P2P implementations of MPI_Bcast, we identify two
kinds of dependencies, which can propagate noise significantly:
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e Data Dependency. If input data of some P2P routines depends
on the output data of another P2P routine, then there is data de-
pendency between them. Thus, they have to be executed in order
to get the correct results. In the blocking P2P implementation of
MPI_Bcast, intermediate processes have to receive one segment
before sending it to their children. As in Figure 1, MPI_Recv(i)
must occur before MPI_Send(i, m) (m € [0, child_num — 1]) for
any segment i. This dependency is necessary for the correct-
ness of the broadcast operation. With data dependency, noise on
intermediate processes can be propagated to all their children.
Figure 2.a represents the noise propagation pattern caused by
data dependency with a binomial tree broadcast. If noise on pro-
cess d delays the MPI_Recv from b to d, then following MPI_Send
from d to g is delayed, leading to the delay of g.

e Synchronization Dependency. This kind of dependency is
caused by synchronizations between P2P routines. A blocking
P2P routine waits until the operation is done, which naturally
brings a hidden synchronization. Such synchronization leads
to a dependency between the blocking P2P routine and all fu-
ture routines, which is called Synchronization Dependency. This
dependency brings unnecessary ordering of the routines, and
can propagate noise to other processes. As in Figure 1, root and
intermediate processes always send any segment to child m be-
fore child n, for all m < n (i.e., MPI_Send(0, 0) always before
MPI_Send(0, 1)), even though there is no data dependency be-
tween them. Thus, if MPI_Send(0, 0) is delayed (marked red), all
the following MPI_Sends and MPI_Recvs are affected (marked or-
ange). Figure 2.b presents how noise is propagated from one pro-
cess to another as a result of this dependency. If noise on process
d delays the MPI_Recv of segment 0 from b to d (MPI_Recv(0)
on process d), then MPI_Send(0, d) on process b is also delayed
since noise can be propagated through blocking P2P commu-
nications, and thus the parent of process d—process b—is de-
layed. Later, because of synchronization dependency, the delay
of MPI_Send(0, d) on process b affects the MPI_Send(0, e) on pro-
cess b, resulting in the delay of process e, the sibling of process
d. Therefore, a delayed process can affect its siblings and parent
in this case.

Based on the analysis above, via data dependency, noise on a
process is propagated to its children and further to grandchildren,
which is not avoidable. However, unnecessary synchronization
dependency propagates noise to parent and siblings. With this noise
propagation pattern, noise can be propagated to grandchildren,
grandparents and descendants of grandparents, and consequently,
all processes could be affected by noise (Figure 2.c). Therefore, we
can conclude that the blocking P2P implementation of MPI_Bcast
is able to amplify noise.

2.1.2  Collectives Using Nonblocking Point-to-Point Communi-
cations. An improvement over the previous implementation is us-
ing non-blocking P2P communications (MPI_Isend, MPI_Irecv) in-
stead of blocking ones. Figure 3 presents the pipelined implementa-
tion of MPI_Bcast in Open MPI using non-blocking P2P routines.
MPI_Isend(x, y) means sending segment x to child y, MPI_Irecv(x)
means receiving segment x from parent, and Wait(x) means wait for
segment x. In this implementation, root process issues an MPI_Isend
for each of its children to transfer a segment and uses Waitall to
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wait for all the previous MPI_Isends. After they are finished, it starts
to send the next segment. A leaf process posts two MPI_Irecvs for
the first two segments, but only waits for the first one segment.
When it receives the first segment, it posts an MPI_Irecv for the next
segment and waits for the second segment. Intermediate processes
behave similarly to leaf processes except that they need to send
the received segment to its children in the same fashion as the root
process. The reason the non-root processes post two MPI_Irecvs
instead of one is to handle out of order segments.

Unlike blocking P2P communication routines, non-blocking rou-
tines are more noise resistant; if one process is delayed, the process
on the other side is still able to progress other non-blocking P2P
routines without hanging. Thus, in most cases, noise on one pro-
cess is less likely to be propagated to another via non-blocking
P2P routines [17], except when the other process has nothing to
work but waits for the delayed non-blocking P2P communication.
Even though non-blocking P2P communication has a higher po-
tential to absorb noise, in the non-blocking P2P implementation of
MPI_Bcast, there are still dependencies that can propagate noise.
The following describes the two dependencies and noise propaga-
tion patterns resulting from them:

e Data Dependency. It is the same as the blocking P2P implemen-
tation. This dependency is required for correctness of broadcast
operation. Therefore, like the blocking P2P implementation, noise
on intermediate processes can be propagated to their all children
with data dependency.

e Synchronization Dependency. As seen in Figure 3, by using
MPI_Isends, data movements from one process to all of its chil-
dren become independent and they can be progressed in any se-
quence by MPT’s progress engine. However, the Waitall and Wait
act as synchronizations that order P2P routines between them.
Thus, any delays on these two routines can affect the following
routines. This type of dependency can also propagate noise to
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siblings and parent. For example, in Figure 2, if noise on process
d delays the MPI_Irecv of segment 0 from b to d (MPI_recv(0) on
process d), then process b is not delayed directly since b can still
progress other MPI_Isend, such as MPI_Isend(0, e) on process b.
However, because of the Waitall, process b can be affected if all
other non-blocking P2P communications are completed, except
for the delayed one. In this case, Waitall on process b only waits
for the delayed P2P, and hence, process b is delayed. Later, be-
cause of synchronization dependency, the delay of Waitall on
process b affects the following MPI_Isend(1, e) on process b, re-
sulting the delay of Wait(I) on process e. Thus, process e, the
sibling of process d, is also delayed.

With the combination of data dependency and synchronization
dependency, noise can be propagated to all the processes. Compared
with the blocking P2P implementation discussed before, the non-
blocking implementation of MPI_Bcast is more tolerant to noise
since non-blocking routines offer out-of-order executions, instead
of waiting for delayed P2P routines. However, the Waitall and Wait
in the nonblocking version still bring heavy synchronizations, and
thus the nonblocking version is not sufficient to absorb noise and
minimize noise propagation.

2.2 ADAPT: Event-Driven Design

2.2.1 Implementation of ADAPT. In this section, to better ex-
ploit the available parallelisms in collectives and minimize noise
propagation, we present the ADAPT collective communication
framework. The key of ADAPT is to design collective communica-
tions algorithms with events and callbacks, which eliminates the
need to wait for P2P communications to complete. This type of pro-
gramming model is called “event-driven.” In a typical event-driven
program, there is an event loop to detect events, and when an event
occurs, the corresponding callback is triggered. In this way, the
execution flow of a program is determined by events and their
callbacks. To implement events and callbacks, ADAPT is deeply



ADAPT: An Event-Based Adaptive Collective Communication Framework

integrated with the communication engine in Open MPIL: we use
the completion of a non-blocking P2P communication as an event,
which triggers a detailed analysis of the state of the collective
algorithms, and we enable next data movements if necessary by
posting new non-blocking routines. One thing worth mentioning
is that the non-blocking P2P communications, where callbacks are
attached, are at a lower level than MPI_Isend/MPI_Irecv (shown
as “Isend/Irecv” in the following) since MPI_Isend/MPI_Irecv does
not support callbacks. Instead of waiting for each non-blocking
P2P, we create a request for each collective operation and do not
mark it as complete until the collective is done. Therefore, Open
MPT’s progress engine keeps progressing all the non-blocking P2P
routines until this request is completed.

The implementation of the ADAPT broadcast algorithm is shown
in Figure 4. Following the event-driven pattern, all segments are
propagated to all processes via a series of the Isends/Irecvs and their
callbacks.

e Root: the root process posts N Isends to send the first N segments
to each child, then uses set_Isend cb to attach a callback to each
of these Isends. When any Isend is completed, the Isend_cb will be
called to post another Isend to send the next available segment.

o Non-root: a non-root process posts M Irecvs to receive the first M
segments from its parents and attaches callbacks to these Irecvs
with set_Irecv_cb. When any Irecv is completed, Irecv_cb is called
to post another Irecv for receiving the next available segment. If
the process is an intermediate process, besides receiving the next
available segment, it posts multiple Isends to send the received
segment to its children in Irecv_cb.

In ADAPT, we issue N Isends to a single child and M Irecvs
from the parent to handle multiple segments simultaneously to
maximize the usage of the network resources and absorb noise (will
be discussed in 2.2.2). Usually, M is set to be larger than N. This
is because there is an issue of matching an Isend (of a segment)
to a corresponding Irecv: if the segment arrives on the receiver
side before the receiver posts a corresponding Irecv, the segment
will be considered “unexpected”” In this case, MPI needs to store it
into a temporary buffer and match it later when the corresponding
Irecv is posted by the receiver. This introduces significant latency,
as the procedure requires memory allocation and data copying;
thus, it is very important to ensure an Irecv is always posted before
the arrival of its corresponding segment. To address this issue, we
need to make sure M is bigger than N to minimize the chance of
unexpected segments.

2.2.2  Analysis of Dependencies in ADAPT. As discussed in Sec-
tion 2.1, in existing broadcast implementations, there are two types
of dependencies (data dependency and synchronization depen-
dency). In this section, we demonstrate how the ADAPT framework
relaxes synchronization dependencies and minimizes noise propa-
gation by making every segment and every child independent of
each other using an event-driven design.

Data Dependency. Any process needs to receive the data be-
fore starting to send the data to its children. This dependency is
necessary for the correctness of the broadcast operation.

Synchronization Dependency. In ADAPT, the completion of
a non-blocking P2P routine triggers a callback, then posts another
non-blocking routine. For example, on root process, Isend(N, 0) can
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only be issued after the earliest one of Isend(i, 0) (i € [0, N — 1]) is
completed. This leads to a synchronization dependency between
these two P2P routines. However, this synchronization dependency
can hardly propagate noise because of the following two reasons.
First, in ADAPT, segments can be handled in any order (segment
independence). Take the root process for example. All segments
are put into a virtual “segment pool” in the beginning. The root
process then posts N Isends to send the first N segments to child
0 (Isend(i, 0) (i € [0, N — 1])). If any of them are done, its Isend_cb
issues another Isend to send the next available segment from the
segment pool. Thus, there are N concurrent Isends between root
and each child. If any one is delayed, segments can be re-balanced to
other Isends. Therefore, delay of one segment can hardly delay the
communication of other segments between root and one child—and
thus, noise can be absorbed. Second, each child can transfer data
segments independently from each other (child independence). In
the existing implementations of MPI_Bcast, a process always waits
for a segment to be transferred to all its children before transferring
the next segment. While in ADAPT, every child keeps its own state
and transfer data segments independently. In this way, noise cannot
be propagated to a process’s siblings. In a word, in ADAPT, segment
independence absorbs the noise magnitude and child independence
limits the range of noise propagation, and thus the synchronization
dependency in ADAPT can hardly propagate noise.

Based on the above analysis, we can conclude that, benefits from
the event-driven design, ADAPT relaxes synchronization depen-
dencies, and minimizes noise propagation.

2.2.3 Extend ADAPT to other collective operations. From the
three implementations of tree-based MPI_Bcast mentioned above,
we can notice that there is a common communication pattern: a
process sends data to its children or receives data from its parents,
which we call basic building block. In the blocking P2P version,

Algorithm 1: Blocking P2P Implementation

1 fori« 0 tok do
2 | MPI_Send(i)/MPI_Recv(i);

the basic building block can be shown as Algorithm 1, where k
is the number of needed P2P communications. A similar pattern
appears in the implementation of collective operations in MPICH
and MVAPICH. In the non-blocking P2P version, the basic building

Algorithm 2: Nonblocking P2P Implementation

1 fori < 0tok do
2 | MPI_Isend(i)/MPI_Irecv(i);

3 Waitall()

block becomes Algorithm 2; this pattern exists in MVAPICH and
Open MPIL. Compared to the blocking version, it provides more
parallelism by adopting MPI_Isend/MPI_Irecv. The basic building
block of ADAPT is Algorithm 3, which uses non-blocking P2P
as Algorithm 2 and reduces synchronizations by removing the
Waitall. For the MPI_Bcast algorithms are not based on trees, the
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Algorithm 3: Adapt Implementation

1 fori < 0 tokdo
2 L Isend(i)/Irecv(i);
3

set_Isend_cb(i)/set_Irecv_cb(i);

event-driven design can still be used as long as the basic building
blocks exist in the algorithms. For example, a scatter followed by
an allgather is a common algorithm to do big message MPI_Bcast.
In the scatter phase, a process may send data to multiple other
processes which is similar to the MPI_Bcast discussed above and
the same technique can be applied to it. For other one-to-all, all-
to-one and some all-to-all collectives, a process always need to
send or receive data from other processes. In this way, the basic
building block is a common part in various collectives, and thus
the event-driven design can be extended to them.

2.2.4  Support Different Collectives with Multiple Communication
Trees. In collective operations, the relationship of parents-children
forms a communication tree. In ADAPT, the communication tree of
a collective operation can be any type of tree, e.g., a chain, binary
tree, binomial tree, or other advanced trees [31]. The design of the
ADAPT framework allows most operations to be independent of
the underlying communication tree. Therefore, it is easy to adapt
the trees based on network topology to boost performance, which
is discussed in Section 3.

3 TOPOLOGY-AWARE SUPPORT IN ADAPT

This section describes how to equip the ADAPT framework with
topology-aware capabilities in order to handle complex hardware
hierarchies in heterogeneous systems.

3.1 Topology-Aware Collectives with
Multi-Level Communicators

Existing methods of implementing hierarchical collective opera-
tions use multiple communicators to group processes based on
topology [1, 19, 33]. A communicator is created for each group.
Take a broadcast operation, for example: a broadcast starts from
the top level communicator and the next level cannot start until
the upper-level broadcast is finished. Thus, a broadcast consists of
several broadcasts within multiple levels’ communicators. In this
way, this method is suboptimal for large messages, since the upper-
level broadcast and lower-level broadcast do not overlap with each
other.

3.2 Topology-Aware Collectives with a Single
Communicator

To eliminate the boundaries between multiple levels, we present
a new topology-aware collective operation based on a topology-
aware tree, which “virtually” groups all processes in a single com-
municator instead of dividing the processes into multiple commu-
nicators.

3.2.1 Build Topology-Aware Communication Tree. As discussed
in Section 2, the ADAPT framework can be plugged in with a
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Figure 5: Topology-aware communication tree of a broad-
cast algorithm on a multi-core cluster (4 cores per socket and
2 sockets per node)

carefully built communication tree to provide topology-aware capa-
bilities. This section describes how to build such a topology-aware
tree. The following description assumes the topology information
and that the placement of each process is known. In Open MPI, this
information is available to all processes and can be extracted from
the PMIx runtime using Portable Hardware Locality (hwloc) [4].

Using the topology information for all processes, we can build
a topology-aware communication tree. We start by grouping pro-
cesses bottom-up. Figure 5 presents an example of the topology-
aware tree. There are three groups: node, socket, and core. Since
the network within a group is homogeneous, the way processes
communicate with each other within each group can be decided,
optimally, by existing approaches [29]. Also, because the network of
each group is independent from others, processes within different
groups can communicate using a different pattern. As in Figure 5,
P4, P5, P6 and P7 form a group and communicate using a chain
fashion. PO and P4 form a chain in the upper-level group and P4
glues these two chains together.

3.2.2 ADAPT vs. Blocking/Non-Blocking P2P Collectives. The
blocking/non-blocking P2P implementations of one-to-all and all-to-
one collectives (discussed in Section 2.1) can also support different
kinds of tree algorithms; it is possible to plug the topology-aware
tree discussed above into blocking/non-blocking implementations
of collectives to make them topology-aware. It is known that the
nonblocking performs better than the blocking version because it
can relax the dependencies and exploit more parallelism by posting
several MPI_Isends, and these MPI_Isends may transfer data con-
currently if they occupy different physical networks. For example,
in the broadcast operation of the tree in Figure 5, PO posts three
MPI_Isendsto P1, P4 and P8—which occupy inter-node, inter-socket
and intra-socket communication channels—and can be progressed
independently at different speeds. However, the Waitall in the non-
blocking version forces the three MPI_Isends to complete at the
same time, and thus, they all run at the slowest speed of the three
inter-connections, which is the inter-node communication. There-
fore, the non-blocking P2P implementations of collectives are not
able to fully utilize the network’s resources.

The ADAPT framework removes the Waitall, so in the previous
example, the three Isends can be progressed independently and
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data can be propagated at full network speed. Therefore, the event-
driven design of ADAPT utilizes network resources more efficiently.

4 SUPPORT FOR HETEROGENEOUS
ARCHITECTURES

Most GPU-aware MPI implementations assume each MPI process
is bound to one GPU, transforming inter-process communications
to/from GPU memory to inter-GPU communications. With its re-
lease of CUDA version 4.0, NVIDIA introduced CUDA Inter-Process
Communication (IPC) to allow GPU remote direct memory access
(RDMA) between two GPUs within the same socket. For communi-
cations between GPUs across the socket, there are two approaches:
going through CPU memory, or using GPUDirect (starting from
CUDA 5.0) by going through a third-party device—in general an
InfiniBand (IB) adapter—attached to each socket. Most machines are
not equipped with multiple InfiniBand adapters, thus, using Infini-
Band for inter-socket communications delays inter-node communi-
cations because they will be sharing the same InfiniBand adapter
and the same PCI-Express bus. In this paper, we assume inter-socket
communications go through CPU memorys; for inter-node commu-
nication, it can use either GPUDirect or go through intermediate
CPU memory; but both approaches occupy Network Interface Con-
trollers (NICs), which in our case is InfiniBand. Therefore, collective
operations on GPU data need to handle multiple types of networks,
including PCI-Express, InfiniBand, and CPU memory bus. To handle
communications over such contrasting networks, topology-aware
collectives are more efficient than traditional collective algorithms.
Therefore, in this section, we describe how we extended and opti-
mized ADAPT to efficiently handle GPU data.

4.1 Minimize Communications over
PCI-Express

As seen in Figure 5, for broadcast operations, the node leader is
the busiest MPI process of the entire communications because it re-
ceives data from the previous node leader and sends data to the next
node leader, the next socket leader, and the next process within the
same socket. All of these communications go through PCI-Express,
and might introduces heavy congestions on the node’s PCI-Express.
Figure 6.a shows the movements of the data on the node leader
when using GPUDirect. Communications between node leaders
go through NICs via PCI-Express (red line). When the node leader
sends the data to a socket leader, data goes through an implicit
intermediate CPU buffer to the next socket leader’s GPU. Such data
movement uses the PCI-Express and Intel QuickPath Interconnect
(QPI) bus (purple line). When the node leader sends data to the next
GPU within the same socket, data flows through the PCI-Express
as well (blue line). Since these three communications occupies the
same direction on PCI-Express, only one third of the PCI-Express’s
bandwidth can be available for each communication. As shown
in Figure 6.b, when GPUDirect is disabled, inter- and intra-socket
communications do not change, but inter-node communications
need to take an extra step to go through an intermediary CPU
buffer. Since the CPU buffer is implicitly managed by Open MPI,
each P2P communication would use different CPU buffers, even
if it is transmitting the same data. This consumes a large amount
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of CPU memory and PCI-Express bandwidth. To tackle the con-
gestion of PCI-Express in previous implementations, we allocate
an explicit CPU buffer for the node leader process to cache GPU
data. Non-root node leaders cache the received data into this CPU
buffer so that it can send the data to the next node and socket leader
directly from this cached CPU buffer, without pulling data from
GPU memory via PCI-Express again. Later, cached data is flushed
into the corresponding GPU memory via an asynchronous CUDA
copy. Root process also caches data in CPU memory to relax the
workload on the PCI-Express. Figure 6.c shows the optimized data
flow of the node leader process. As long as the NICs and GPUs are
not connected to the same PCI-Express switch, communications
between (1) NIC and explicit CPU buffer, (2) CPU buffer to GPU,
and (3) GPU to neighbor GPU will use different PCI-Express lanes.
Thus, they can be simultaneously progressed. With an explicit CPU
buffer, we are able to map intra-socket, inter-socket and inter-node
communications to use different physical networks, and achieve
communication overlapping.

4.2 Offload Reduction Operation on GPU

Reduction operations are mathematical operations on vectors, and
are embarrassingly parallel; thus, they are good candidates for GPU
execution, as each CUDA thread handles reduction operation on
few elements of the vector. However, as discussed in Section 6, the
current GPU-aware MPIs still use CPUs to perform the reduction,
which is not efficient because most MPI applications are still single-
threaded, CPU-bound reduction operations occupy scarce CPU
resources, and can potentially delay any other communications or
computations the application might have. With this in mind, we
offload the reduction operations! to the GPU asynchronously by
using multiple CUDA streams. This allows us to seamlessly overlap
communications and reduction operations.

5 EXPERIMENTAL EVALUATION

In order to assess the capability of the ADAPT framework, we first
evaluate its two features: noise absorption and topology-aware de-
sign; second, we present an end-to-end evaluation with other state
of the art MPI libraries; last, we study the performance of collective
operations with an application. The first two parts are done with
Intel MPI Benchmark (IMB) using two collective operations: broad-
cast and reduce. The experiment is conducted on three clusters: (1)
Cori, a CPU cluster, on which each node is equipped with 2 Intel
Xeon E5-2689 v3 CPUs, and nodes are connected by Cray Aries; (2)
Stampede2, a CPU cluster, on which each node is equipped with 2
Intel Xeon 8160 CPUs, and nodes are connected by Intel Omni Path;
and (3) NVIDIA PSG K40 cluster, a GPU cluster with 10 nodes,
where each node is equipped with 4 K40 GPUs with CUDA 7.5 and
2 deca-core Intel Xeon E5-2690v2 Ivy Bridge CPUs, and nodes are
connected by 40Gb/s FDR IB. The MPI libraries compared are: Cray
MPI, Intel MPI, Open MPI 2.0 default (shown as “OMPI-default”),
MVAPICH2 (not support Cray Aries), and Open MPI 2.0 ADAPT
(shown as “OMPI-adapt”).

'We developed CUDA kernels for all pre-defined MPI reduction operations, but they
are outside the scope of this paper.
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5.1 Component Evaluations

5.1.1 Noise Impact. The section studies the performance im-
pact of noise on ADAPT and other MPI libraries to demonstrate
ADAPT’s noise absorption abilities. The noise experiment is con-
ducted in the CPU cluster, since it has more nodes and is presumably
more impacted by the noise.

Figures 7a) and 7b) present the noise impact on the performance
of broadcast and reduce operations in different MPI implementa-
tions on the Cori and Stampede2 using 1024 and 1536 processes
respectively. In this experiment, message size is set to 4 MB to allow
enough segments to fill the pipeline and highlight the noise effects
on performance. As suggested in [10, 17], performance interference
usually has greater impact on larger systems. In order to show de-
lays of collective operations caused by noise with fewer processes,
we use a method similar to the one in [2] to randomly inject 0-10ms
(average 5%) and 0-20ms (average 10%) noise following a uniform
distribution with a fixed frequency of 10 Hz, since low-frequency,
long-duration noise has the greatest impact on performance [10].
In Figure 7a) and 7b), the bars show the average time to do a col-
lective operation and the numbers above red and green bars show
the performance slow down percentages after 5% and 10% noise
injection respectively. We note that after 10% noise injection, the
slowdown of MVAPICH is 868%, which is outside the scope of the
figure. MVAPICH’s reduce encounters segmentation fault with IMB
when message size is 4MB, so there is no results for the reduce
operation. As seen in the Figure 7a) and 7b), benefiting from the
event-driven design, OMPI-adapt relaxes synchronization depen-
dencies and thus is largely unaffected by the noise compared to
other MPI libraries. Therefore, OMPI-adapt only slows down up
to 24% and 16% on broadcast and reduce even with 10% noise in-
jected on both machines. The broadcast and reduce of OMPI-default
uses non-blocking P2P routines, so as analyzed in Section 2.1.2, it
contains synchronization dependency, which can propagate noise.
Thus, it slows down up to 59% and 99% on broadcast and reduce.
Since Cray and Intel MPI are not open-source, we do not know
their detailed implementations, but Cray MPI slows down up to
149% and 61%; the numbers for Intel MPI are 33% and 24%, which
are less noise-resistant than ADAPT.

5.1.2  Topology-Aware. This section evaluates the performance
of topology-aware broadcast and reduce operations in ADAPT
against state of the art topology-aware implementations. Figures 8b)
and 8a) present the performance of ADAPT (shown as OMPI-adapt)
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with CPU data on Cori and Stampede2, compared with all the
topology-aware algorithms in Intel MPI. We also integrate the
topology-aware communication tree to the default collective mod-
ule of Open MPI (shown as “OMPI-default-topo”) to demonstrate
that ADAPT is better at network resource utilization. We notice
that Intel MPI performs much better on Stampede2 than Cori, and
we think this may be because the underlying network of Stampede2
is Intel Omni Path whereas Intel MPI has its own optimizations for
its hardware. Even so, on both machines, the topology-aware broad-
cast of ADAPT performs the best over others for big messages. For
messages smaller than 1MB, ADAPT’s broadcast performs a little
slower than Intel MPI on Stampede2; this is because the pipeline
topology-aware algorithms in ADAPT require enough segments
to fulfill the pipeline. For reduce operations on large messages,
ADAPT performs better than most topology-aware algorithms in
Intel MPI, except Shumulin’s. There may be two reasons: first, the
reduction operations in ADAPT do not have any vectorization opti-
mizations. Second, performance of collectives relies heavily on the
underlying P2P communications; the Shumulin’s algorithm may
be optimized for P2P over Intel Omni Path. This assumption is
made by comparing the performance of Shumulin’s on Stampede2
(with Omni Path) and Cori (without Omni Path). Compared with
OMPI-default-topo, ADAPT is able to support independent com-
munications over different networks; therefore, even though it has
the same topology-aware communication tree with OMPI-default-
topo, ADAPT still performs 20% better. Overall, ADAPT eliminates
boundaries between different hierarchies and supports independent
communications, and therefore it fully utilizes network resources
and delivers better performance than most topology-aware MPI
implementations especially for big messages.

5.2 End-to-End Evaluations

To study the overall impact of event-driven and topology-aware
design in ADAPT, we conduct two types of experiments with both
CPU and GPU data: first, the total number of processes is fixed and
we measure the performance for different message sizes; second,
we look at the strong scalability, which measures the performance
by varying the number of processes with a fixed message size.

5.2.1 Collective Communications with CPU Data. Figure 9a) and
Figures 9b) present the communication time of broadcast and reduce
of ADAPT compared with other state-of-the-art MPI implemen-
tations with different message sizes on the Cori and Stampede2
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machines. Cray MPI does not support Omni-Path interconnect, so
it is not tested on Stampede2. Similarly, MVAPICH does not sup-
port Aries interconnect, so it is not tested on Cori. The default
collective module in Open MPI is the tuned module, which can
switch algorithms based on different parameters. This is shown in
Figure 9a), where the OMPI-default broadcast algorithm changed
after 256KB. In OMPI-adapt, both the broadcast and the reduce op-
erations are pipelined algorithms, in which messages are split into
several segments. In order to better understand the performance
graph, we adopt Hockney’s cost model [16] to model the cost of
collective operations. This model assumes that the time to send a
message of size m between two nodes is T = « + ffm, where « is
the latency (or startup time) per message, independent of message
size, and f is the transfer time per byte or reciprocal of network
bandwidth. For the reduction operation, we assume that the time
spent in computation on data in a message of size m is y m, where y
is computation time per byte. Therefore, the entire time of sending
a message of size m between two processesis T = a + fm + ym.
A perfect pipeline needs to meet two criteria: a large enough
segment size and a sufficient number of segments. If the segment
size is too small, message latency as @ in Hockney’s model becomes
dominant, preventing the full utilization of network bandwidth.
If there are not enough segments, the pipeline initialization time
will be predominant and the overall performance will be affected.
Therefore, it is difficult for small messages to meet both criteria.
This means the ADAPT framework will show lesser improvement
over other implementations when the messages are small. For larger
messages, the benefit of concurrent communication in the ADAPT
framework becomes the dominant factor. On Cori, OMPI-adapt
provides 10X, 10x and 1.6X speedup against OMPI-default, Intel
MPI and Cray MPI for broadcast operations and 5%, 2x and 1.5X
speedup for reduction operations when the message size is 4MB. For
the same message size on Stampede2, compare with OMPI-default,
Intel MPI and MVAPICH, OMPI-adapt achieves 2.8%, 1.3X and 4.6X
speedup for broadcast. OMPI-adapt’s reduce operation is slower
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than Intel MPT’s on Stampede 2 and the reason is explained in the
previous section.

Scalability is another important factor of MPI libraries. Figure 10
shows the performance of strong scaling for broadcast and reduc-
tion operations with a 4MB message on Cori. OMPI-adapt uses
the chain algorithm as the communication tree for all topology
levels groups based on [29]. Since ADAPT allows concurrent com-
munications over independent paths, the cost of broadcast and
reduction can be calculated through the longest chain in the com-
munication tree. Based on Hockney’s Model, the cost of chain is
T =(P+ ns—2)x (a+ fm) [29] where P is number of processes
participating in a collective operation and ng is the number of
segments. If the message size is large enough to ignore the cost of
pipeline initialization, the cost of the chain algorithm can be treated
as T = ng X (a + fm). Thus, theoretically, performance does not
depend on the number of processes within the chain. Therefore,
as seen in Figure 10, the time of our broadcast and reduction does
not increase significantly with the number of processes, and the
operations tend to be stable as the number of nodes increases.
Compared with other MPIs, OMPI-adapt consistently achieves the
best strong scalability, thanks to its event-driven design and the
topology-aware communication tree.

5.2.2 Collective Communications with GPU Data. Figure 11a)
shows the time of broadcast and reduction operations with GPU
data on 8 nodes (32 GPUs in total). With the help of data caching
in CPU memory to minimize traffic over PCI-Express and the min-
imal dependencies in ADAPT’s design, OMPI-adapt outperforms
MVAPICH2 and OMPI-default by 2-3 times for broadcast. For the
reduction, in addition to the same advantages as broadcast, OMPI-
adapt benefits from the asynchronous reduction operations on
GPUs. As a result, OMPI-adapt reduction is almost 10 times faster
than the other two MPI libraries. It should also be noted that with
OMPI-adapt the CPU remains available for other computation, as
most of the operations are executed either by direct memory access
(DMA) engines or by the GPUs.

Figure 11b) presents the result of a strong scaling experiment for
broadcast and reduction with a fixed message size and a variable
number of nodes. Since each topology level occupies an indepen-
dent communication path, each level is able to achieve perfect
overlap. According to the Hockney model presented above and sim-
ilar to the CPU results, the performance of the GPU broadcast and
reduce should be unaffected by the increase in the number of GPUs.
This is proved by the almost ideal strong scalability result shown in
Figure 11b). When the number of nodes is larger than 1, inter-node
and intra-socket communication of the root process occupies the
same direction as the PCI-Express, leading to performance drops
if not correctly handled by the MPI library. As discussed in Sec-
tion 5.2.1, OMPI-default uses a decision tree to guide collective
algorithm selection; however, the decision tree strategy was not
designed for GPUs, thus it would not select the optimal algorithm
for multi-GPU settings, leading to significantly slower performance
compared to MVAPICH2 and OMPI-adapt. For example, when us-
ing only one node, OMPI-default does not use the chain algorithm
(which would be optimal), resulting in a significant performance
drop. With ADAPT’s design, we achieve better scalability over
OMPI-default and MVAPICH2.
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Table 1: Performance of ASP with 1K cores on Cori

Cray Intel MPI OMPI-adapt OMPI-tuned
Communication (s)  2.98 15.26 1.99 14.18
Total Runtime (s)  6.20 18.46 5.21 17.40

5.3 Application Performance

We choose ASP [30] to evaluate how OMPI-adapt performs in real
application. ASP uses the parallel Floyd-Warshall algorithm to solve
the all pairs shortest path problem. In the beginning of each itera-
tion, one process broadcasts a row of the square matrix representing
edges weight to all peers in the communicator, in order to distribute
the workload. The outer loop of the algorithm iterates on rows,
until the entire matrix is processed. Overall, if a matrix size is N, the
ASP contains N broadcast of N X type_size bytes each. Compare
to the light computation, the communication is dominant and the
MPI_Bcast takes the major time of the runtime of ASP.

Table 1 shows the performance of ASP with problem size equals
256K. For ADAPT, the communication takes 38% of the runtime.
This number rises to 48% for Cray MPICH, and more than 80% for
Intel MPI and OMPI-default. Therefore, the event-driven design
combined with topology-aware tree in OMPI-adapt shows a signifi-
cant improvement for this application, even with smaller message
sizes (1MB).

6 RELATED WORK

6.1 Performance Interference

With the increasing scale of HPC systems and more potential
sources of performance interference, finding a way to alleviate
the effects of interference is crucial to large-scale parallel applica-
tion. One way is to eliminate the interference itself. Performance
interference introduced by system noise can be reduced by system
designers [2, 42]. There are also efforts to reduce other sources
of performance interference. In [43], the authors minimize inter-
ference between the simulation and the situ analytics by using
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fine-grained scheduling to get idle resources. Another way is to al-
leviate the propagation of the performance interference. [35] shows
how system noise impacts the performance of the collective opera-
tion and [39] highlights how non-blocking collective operation has
potential to mitigate certain types of performance interference.

Despite in-depth research on the causes and impacts of perfor-
mance interference mentioned above, our work is the first to focus
on the implementation of MPI collective operation, which performs
well against such noise.

6.2 Topology-Aware Collective Operations

Several related works use the topology-aware idea for collective op-
erations to take advantage of communication difference among the
levels in the network. MagPle [21] creates hierarchical algorithms
for clustered wide-area systems to minimize the data transfers on
the slowest links. MPICH2 [44] implements several collective oper-
ations that exploit knowledge of the underlying topology. But these
works only consider two network layers. Karonis et al. [20] extends
the previous work and presents a multi-level, topology-aware tree
to support more network layers. Later, MVAPICH2 [19, 33] intro-
duced neighbor-joining techniques to detect network topology on
switch levels, and adds one more level in the network hierarchy
for collective operations. However, all these approaches focus on
exploiting an increasing number of network topology levels. From
a performance standpoint, they provide increased levels of per-
formance compared with single-level approaches, but their inter-
and intra-level communications are dissociated and do not cooper-
ate tightly, leading to a deficit in communication overlap between
different topology levels.

Other researchers have tried to benefit from node-level shared
memory and propose hierarchical collective operations. Tipparaju
et al. [34] use shared memory as an intermediate buffer to reduce
the number of memory copies. Cheetah [15] is a hierarchical collec-
tive communication framework that constructs a directed acyclic
graph (DAG) based on the characteristics of communication topol-
ogy. Each node in the DAG is a collective operation. It can take
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advantage of shared memory for intra-node communications and
InfiniBand P2P or CORE-Direct for inter-node communications. Par-
sons et al. [28] decouples the choice of inter-node and intra-node
communication algorithms. However, all these previous works com-
pletely lack communication overlap between levels. HierKNEM [23]
enables tight collaboration between the collective algorithms per-
taining to different layers of the hierarchy. It combines KNEM (a
Linux kernel for memcopy in shared memory), pipelining, and
hierarchical ideas to allow overlap of inter-node and intra-node
communication. It only supports two topology levels and in each
level the tree is fixed.

With a carefully built topology-aware tree, our collective frame-
work can support multiple topology levels, and each level can select
a different algorithm based on the characteristics of the level, such
as the number of processes, message size, available bandwidth, and
other hardware characteristics.

6.3 CUDA-Aware Collective Operations

State-of-the-art MPI libraries such as Open MPI [40] and MVA-
PICH2 [32, 36] provide CUDA-aware P2P and collective communi-
cations. But they never consider offloading reduction operations
into GPU; therefore, they are not able to exploit the GPU paral-
lelism to handle large parallel reduction operations. Later, Chu et
al. [5] and Oden et al. [26] proposed CUDA-aware reduce oper-
ations by leveraging CUDA kernels to handle reduction. Chu et
al. [6] present a hardware multicast-based broadcast which benefits
from IB hardware multicast. However, none of them encompasses
network hierarchical topology for heterogeneous GPU-based clus-
ters. NVIDIA introduced The NVIDIA Collective Communications
Library (NCCL) [25], which targets multi-GPU platforms. However,
their broadcast and reduce only use chain algorithms, are not able
to adapt based on topology, and they are not really equivalent to the
MPI collective. Awan et al. [1] integrated NCCL into MVAPICH2 to
provide hierarchical broadcast operations by using NCCL to handle
intra-node communications. However, similar to MVAPICH?2 in
CPU clusters discussed before, there is no communication overlap
between different topology levels. Our topology-aware framework
has been extended to GPU clusters and provides communication
overlap between different levels, as discussed in Section 4.

6.4 Event-driven Collective Operation

Event-driven programming is a long existing programming model
which is used to solve various problems, including decreasing
the memory overhead in embedded systems [9], achieving high
throughput in server applications [27] and forming service objects
across a mobile network [7]. This model is also used to handle I/O
operations (event-driven I/O [3] [8]). Normally, I/O operations are
extremely slow compared to the processing of data, therefore, the
CPU’s computing power is wasted if it is blocked to wait for I/O
operations. Alternatively, with the event-driven design, instead of
waiting for I/O operations, CPU can continues to work on other
jobs until it gets a notification of an I/O operation is completed.
In this paper, we use event-driven design to implement MPI col-
lective operations. To the best of our knowledge, the only paper
related to this is [18]. In this paper, the authors define GOAL, an
abstract domain-specific language able to dynamically represent a
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collective operation as a set of scheduled operations and then exe-
cute the DAG using a scheduler. We use a similar idea to break down
the collective operation into P2P operations, but our framework
is the first to use the event-driven idea to alleviate the effects of
performance interference and integrate the event-driven collective
framework with the topology-aware tree to enable efficient, het-
erogeneous topology-aware collective operation. Also compared
to previous work, we control concurrent communication, allow
segmentation of a message to achieve better performance and we
never build the entire collective schedule description.

7 CONCLUSION

MPI implementations need to adapt to the increasing scale and
complexity of HPC systems to fulfill users’ expectations. In this
paper, we address this problem by presenting ADAPT, a collective
communication framework in Open MPI based on an event-driven
infrastructure. Through events and callbacks, ADAPT relaxes syn-
chronization dependencies and maintains the minimal data depen-
dencies. This approach provides more tolerance to system noise.
Adding to this capability, ADAPT supports fine-grained, multi-level
topology-aware collective operations which is able to exploit the
parallelism of heterogeneous architectures. We demonstrate experi-
mentally that (1) our framework is less affected by noise than other
state-of-the-art MPI libraries; (2) it outperforms most state-of-the-
art MPI libraries on heterogeneous architectures using CPU and
GPU data; and (3) it demonstrates an almost ideal strong scalability
as the number of nodes increases. We are now looking at increasing
the collective communications coverage, enabling non-blocking
collective communications with asynchronous progress, and inte-
grating network switch level information to further improve its
adaptability.
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