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ABSTRACT.

To investigate the performance of quasi-harmonic electronic structure methods for modeling

molecular  crystals  at  finite  temperatures  and  pressures,  thermodynamic  properties  are

calculated  for  the  low-temperature  α  polymorph  of  crystalline  methanol.  Both  density

functional theory (DFT) and ab initio wavefunction techniques up to coupled cluster theory

with  singles,  doubles,  and  perturbative  triples  (CCSD(T))  are  combined  with  the  quasi-

harmonic  approximation  to  predict  energies,  structures,  and  properties.  The  accuracy,

reliability, and uncertainties of the individual  quantum-chemical methods are assessed via

detailed comparison of calculated and experimental data on structural properties (density) and

thermodynamic properties (isobaric heat capacity). Performance of individual methods is also

studied in context of the hierarchy of the quantum-chemical methods. The results indicate that

while  some  properties  such  as  the  sublimation  enthalpy  and  thermal  expansivity  can  be

modeled fairly well, other properties such as the molar volume and isobaric heat capacities are

harder to predict reliably. The errors among the energies, structures, and phonons are closely

coupled,  and  most  accurate  predictions  here  appear  to  arise  from  fortuitous  error

compensation  among  the  different  contributions.  This  study  highlights  how  sensitive

molecular crystal property predictions can be to the underlying model approximations and the

significant  challenges  inherent  in  first-principles  predictions  of  solid  state  structures  and

thermochemistry.

1. INTRODUCTION

Molecular  crystals  are  ubiquitous,  and  knowledge  of  their  thermodynamic  properties  is

indispensable  in  many  technological  applications.  Performing  calorimetric  experiments  is

typically  straightforward  at  ordinary  pressures  and  most  temperatures.  However,
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thermodynamic  data  is  much  scarcer  at  high  pressures  due  to  the  complexity  of  the

experiments  and  the  associated  uncertainties.  Therefore,  a  reliable  computational

methodology  capable  of  generating  thermodynamic  data  for  molecular  crystals,  even  at

extreme  conditions,1 would  help  to  generate  potentially  useful  data  or  to  explain

experimentally observed phenomena from the structural or molecular point of view. Most

computational studies of molecular crystals neglect thermal contributions to thermochemical

properties at  finite  temperatures and pressures,  since calculating static cohesive electronic

energies is much simpler than rigorously accounting for all relevant vibrational and thermal

terms. However, predicting the most stable phase or polymorph under certain thermodynamic

conditions  can  require  sub-kJ∙mol−1 accuracy,2,  3 in  which  case  factors  such  as  thermal

expansion of the crystal and the temperature dependence of the isobaric heat capacity can play

a key role. These effects can be captured only if the anharmonicity of the unit cell vibrations

is included in the computational model. 

Dynamical strategies, based mainly on molecular dynamics, represent perhaps the best

way of  calculating temperature-  and pressure-dependent  thermodynamic properties,  but in

practice the accuracy of such approaches is frequently limited by the quality of the potential

used  to  drive  the  dynamics.  Due to  a  prohibitively  high  computational  cost  of  ab  initio

molecular dynamics for most molecular crystal systems, such works generally use force-field-

based classical molecular dynamics or metadynamics, although pioneering studies using  ab

initio molecular dynamics4,  5 or path integral methods6 in this context have been published

recently.  Recent  examples  of  molecular  dynamics-based  studies  include  investigations  of

polymorphism,7-9 solubility10 and nucleation.11

Another  option for computing thermodynamic properties from first  principles is  to

combine static electronic structure computations with a statistical-thermodynamic model. The

quasi-harmonic  approximation12-14 has  emerged  as  a  versatile  and  often  reliable  protocol,

though some attempts have also been made to capture the anharmonicity more realistically.15,
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16 The quasi-harmonic approximation typically employs a standard harmonic description of

the crystal vibrations at a given unit cell volume with a simple model for estimating how

those vibrational  frequencies vary with changes in  the cell  volume.  These changes  in the

phonon frequencies incorporate some anharmonicity into the harmonic model. On the other

hand,  the  simple  quasi-harmonic  model  cannot  necessarily  describe  systems  with  highly

anharmonic vibrational modes or systems at high temperatures well, and the isotropic form of

the  quasi-harmonic  model  does  not  always  work  well  for  crystal  structures  exhibiting

considerable anisotropy.

Several  recent  studies  and  reviews  employ  the  quasi-harmonic  approximation  to

calculate the thermodynamic properties of molecular crystals and emphasize the importance

of the thermal terms for phenomena such as the thermal expansivity or polymorphism.2, 3,  17-19

The  results  of  those  studies  indicate  that  the  quasi-harmonic  approximation  sometimes

enables  calculation of  temperature-dependent  trends  in  properties  such as  molar  volumes,

sublimation  enthalpies,  or  Gibbs  energies  for  various  molecular  crystals  with  a  semi-

quantitative accuracy or better. This sometimes translates to sub-kJ mol−1 accuracy, which is

important for polymorph stability ranking18-20 and predicting of phase change properties.3, 12, 21

Quasi-harmonic  models  are  also  capable  of  capturing  anomalous  behavior  such  as  the

negative  thermal  expansion  of  some  systems2,  4 or  non-monotonic  sublimation  enthalpy

trends,3,  12 although several cases have been reported where the computational methodology

fails to reproduce experimental data.22 Other limitations of the quasi-harmonic approximation

arise from the high computational cost for large molecules/unit cells, flexible molecules, and

other cases where such high accuracy cannot practically be achieved.17 To date, most quasi-

harmonic calculations  in  molecule crystals  have relied on DFT,18,  19,  22-26 or  they have not

examined  the  uncertainty  and  sensitivity  of  the  calculated  thermodynamic  properties  in

detail.12,  13 A thorough study investigating the computational uncertainty and sensitivity of
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wavefunction-based  ab  initio quasi-harmonic  calculations  for  molecular  crystals  is  still

missing.

Calculations  of  thermodynamic  properties  depend  strongly  on  the  quality  of  the

vibrational  properties  used,  particularly  the  lattice  vibrational  mode  frequencies.  Several

recent works investigate the calculations of spectral and vibrational properties of molecular

crystals from first principles, aiming to estimate the uncertainty of such calculations.22,  27-30

These studies suggest that dispersion-corrected DFT calculations are capable of predicting the

vibrational frequencies semi-quantitatively. There are crystals for which the calculated and

experimental data are in a good agreement,  as well  as cases for which the differences of

experiment and theory range up to a few tens of cm−1.22 Moreover, harmonic DFT calculations

with  commonly-used  density  functionals  systematically  overestimate  the  intramolecular

vibrational frequencies for most organic molecules, due to both the neglect of anharmonicity

and errors inherent in the chosen functional/basis set.31-33 This means that dispersion-corrected

DFT calculations of phonons can impart considerable uncertainty to the evaluation of the

thermal  contributions  to  thermodynamic  properties.  Therefore,  the  reliability  of  ab  initio

wavefunction-based phonon calculations and practical implementations for them need to be

examined further.

In this work, we investigate the low-temperature crystalline polymorph of methanol,

which is commonly referred to as α-methanol, in detail. The orthorhombic α-methanol crystal

structure (space group P212121, Z=4, Figure 1)34 is fully ordered and stable at low temperatures

below 157.34 K,35 and up to medium pressures roughly below 3.5 GPa.36 For this test case of

α-methanol  crystal,  we  compare  the  performance  of  dispersion-corrected  DFT and  more

sophisticated  ab  initio wavefunction  methods  up  to  coupled  cluster  singles,  doubles  and

perturbative  triples  (CCSD(T)).  Properties  such  as  molar  volume  (Vm)  and  isobaric  heat

capacities (Cp) are calculated as functions of both temperature and pressure. We examine the

interplay among the energy model, geometry optimization, and phonons, and we quantify the

5



sensitivity of predicted structural and thermodynamic properties to errors in the models. The

results highlight the challenges in predicting molecular crystal properties quantitatively from

first principles.

2. COMPUTATIONAL METHODS

The electronic structure and energy of the unit cells and related properties were calculated in

parallel within the periodic DFT-D3 framework37 as implemented in VASP (version 5.4.1),38

and the hybrid many-body interaction (HMBI) model39 using Molpro (2012.1)40 for ab initio

calculations and Tinker (6.2)41 for Amoeba force-field42 calculations. All calculations initiated

from the experimental unit cell structure and atomic coordinates, reference code METHOL04

from the Cambridge Crystal Structure Database.43 Both atomic positions and unit cell vectors

were  optimized subject  to  space  group symmetry  constraints.  Having  found the  unit  cell

structure corresponding to a minimum on the energy hypersurface, the electronic energies of

the  optimized unit  cells  [Eel(V)]  were calculated  as  a  function  of  volume,  usually  for  15

discrete volume points around the energy minimum.14,  22 The specific manner in which the

volume expansion  occurs  differs  depending  on  the  software  package  used.  In  VASP, the

volumes were scaled by a given factor and then the system was relaxed subject to a fixed total

unit cell volume, which allows relaxation of the individual lattice constants. Data produced

from these VASP DFT geometries are labeled with a dagger (†). Fixed volume optimizations,

allowing the lattice constants to vary, have not been implemented in HMBI. Instead,  two

different strategies were employed. For most of the calculations, the cohesive energy curves

Eel(V) were mapped out by relaxing the crystal structures under fixed external pressure (circle-

labeled data sets,  ●), applying positive pressures for compression and negative pressures for

expansion.  For  comparison  purposes,  calculations  which  scale  the  lattice  constants

isotropically  and  hold  them  fixed  while  the  atomic  positions  were  relaxed  were  also

considered (star-labeled data sets, *). Allowing the unit cell dimensions to vary independently
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(instead of simply scaling the lattice parameters) when determining the electronic cohesive

energy incorporates some anisotropy into the quasi-harmonic model. 

2.1 Periodic DFT Calculations

Electronic  structure  of  the  unit  cells  was  calculated  using  the  projector-augmented  wave

(PAW)44 formalism, PBE functional45 and the semiempirical DFT-D3 dispersion correction,37

including the Becke-Johnson dumping (BJ).46-48 A plane wave energy cutoff of 700 eV was

used for the periodic DFT calculations, along with the so-called hard PAW potentials49 and the

Monkhorst−Pack sampling of the k-space.50 Phonon properties were calculated for supercells

(larger than 10 Å in all directions) created by replication of the optimized unit cells using a

finite displacement method51 and the program Phonopy.52 The phonon density of states was

calculated for each of five unit cell volumes, which enabled the construction of the Helmholtz

vibrational energy [Avib(T,V)] as a function of both temperature and volume as needed by the

quasi-harmonic approximation. Mode-specific Grüneisen parameters were evaluated from the

five  sets  of  frequencies  to  determine  each  vibrational  frequency  at  an  arbitrary  volume.

Separately, analytical Avib(V) forms were obtained by fitting the calculated Avib(V) values from

the five discrete volume points to a linear function.14  

2.2 HMBI Calculations

The  HMBI  model39,  53-56 represents  the  total  energy  of  the  crystal  in  terms  of  individual

molecules  (monomers)  and  their  interactions  with  other  monomers  via  the  many-body

expansion.57-63 The energies of monomers and spatially proximal dimers are computed via

electronic structure theory, while long-range dimers and clusters consisting of larger numbers

of molecules (many-body effects) are treated with a computationally inexpensive classical

polarizable force field. In this work, the treatment of individual dimers molecular pairs was

smoothly switched from quantum to classical over the intermolecular distance separation of 9

and 10 Å. Exploitation of space group symmetry reduces the number of fragments that need

to be calculated significantly, further reducing the computation cost.64 
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Ab  initio calculations  were  performed  using  counterpoise  correction65 and  second-order

Moller-Plesset perturbation theory (MP2) and CCSD(T)66 in the aug-cc-pVXZ correlation-

consistent basis sets (abbreviated avxz below).67 Unit cell optimizations and calculations of

the  Γ-point  vibrational  frequencies  were  performed  only  at  the  MP2/avdz  and  MP2/avtz

levels. In addition, single-point energies were evaluated at the MP2/avqz level, extrapolated

complete basis set (cbs) limit MP2,68 and the CCSD(T)/avtz level using the MP2/avtz unit cell

geometries.  CCSD(T)/cbs  energies  were  estimated  using  MP2/cbs,  MP2/avtz  and

CCSD(T)/avtz energies.69 As with the DFT calculations, phonon frequencies were evaluated at

five different unit cell volumes to enable evaluation of mode-specific Grüneisen parameters

and the Helmholtz vibrational energy.

2.3 Quasi-harmonic approximation

Summation of Eel(V) with Avib(T,V)14 yields total Helmholtz energy profiles [Acr(T,V)] for the

unit cell.14 Analytic volume-dependent Helmholtz energy profiles were subsequently obtained

by fitting Acr(T,V) to the Murnaghan equation of state70 separately for each temperature. The

molar volume is found by differentiating the fitted Helmholtz energy Acr(T,V) with respect to

volume at constant temperature and solving the standard thermodynamic relationship for V at

the desired temperature and pressure: 

cr ( , )
( , )

T

A T V
p T V

V

∂ = − ÷∂  . (1)

Thermodynamic properties such as the Gibbs energy [Gcr(T,p)]  and isobaric  heat  capacity

[Cp(T,p)] can then be evaluated using fundamental thermodynamic relations:

( , ) ( , ) ( , )
T

A
G T p A T V pV A T V V

V

∂ = + = −  ÷∂   ,  (2)

[ ]
2

2
( )p

p p

H G
C T G TS T

T T T

 ∂ ∂ ∂ = = + = −  ÷ ÷∂ ∂ ∂    . (3)
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Sensitivity  analysis  of  the  calculated  molar  volumes  and  isobaric  heat  capacities  on  the

uncertainties of the intermediate results such as the phonon frequencies or shape of the Eel(V)

were performed by scaling these intermediate quantities and observing the changes of the

final  thermodynamic  properties.  The quality  of  the fits  by Murnaghan equation and their

corresponding impacts on the final accuracy were also investigated.

3. RESULTS AND DISCUSSION

The first two sections describe the prediction of the basic ingredients for the quasi-harmonic

approximation:  the  energy-volume  curves  and  the  phonon  frequencies.  The  subsequent

sections  use  these  properties  to  predict  thermodynamic  observables—the  sublimation

enthalpy,  the  molar  volume,  and  the  isobaric  heat  capacity—that  are  compared  against

experiment.  

3.1 Electronic Energy-Volume Curves

Optimization  of  the  unit  cells  retains  the  experimental  crystal  packing  of  the  methanol

molecules, as can be seen in the structure overlays (Figure S1) and tabulated coordinates

(Table S1). Figure 2 compares the electronic cohesive energies for α-methanol as functions of

unit  cell volume.  The  Eel(V) curve calculated solely with the classical Amoeba force field

differs considerably from those predicted with electronic structure methods. It exhibits the

steepest  expansion branch,  while  its  compression branch is  less steep than expected.  The

shapes of the HMBI Eel(V) curves obtained using MP2 or CCSD(T) are qualitatively similar

to one another. However, several important details should be noted as they can considerably

affect the final thermodynamic properties. The MP2/avdz● Eel(V) curves from fixed-pressure

optimizations are very close to the constant-volume optimized PBE-D3(BJ)† ones. Increasing

the basis set from avdz to the cbs limit decreases the optimal volume by 9 % (or by 12 % if

using the fully isotropic HMBI model). Similar basis set behavior is observed in other crystals

such as carbon dioxide and ice.2,  12 When counterpoise-corrections are employed (as they are

here), larger basis sets typically lead to stronger intermolecular binding, which translates to
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smaller unit cell volumes. For a given basis set, switching from MP2 to CCSD(T) reduces the

optimal volume of Eel(V)  by 1.5%. If one shifts the various  Eel(V) curves laterally such that

they share a common minimum volume, it can be seen that increasing the basis set/level of

theory also leads to slightly steeper compression and expansion branches about the minimum.

Compared to MP2/avdz●, the slope of the CCSD(T)/cbs● Eel(V) curve is 1.9 times larger in the

compression branch and 1.6 times larger in the expansion branch. 

Figure 2 also contains valuable information about the dependence of the Eel(V) curve shape on

the source of the optimized unit cell geometry. The HMBI MP2/avtz curves obtained using

isotropic (*) and anisotropic (●) geometries are similar, with the anisotropic curve exhibiting a

slightly softer expansion slope (by 6%) due to the additional unit cell relaxation that model

allows. The differences between the isotropic and anisotropic Eel(V) curves is even smaller at

the CCSD(T)/cbs level, with slopes differing by only 5%. As will be discussed in Section 3.4,

the experimentally observed thermal expansion of α-methanol is only moderately anisotropic,

so it is not too surprising that the difference between these two modeling approaches on Eel(V)

is small.  

In  contrast,  performing  CCSD(T)/cbs  single-point  energies  on  the  periodic  PBE-D3(BJ)

geometries (labeled CCSD(T)/cbs†) yields appreciably different energy curves and minima

than the other two CCSD(T)/cbs (● and *) data sets. Using the PBE-D3(BJ) geometries shifts

the CCSD(T) minimum to larger volume, makes the compression branch steeper, and alters

the expansion branch such that the energy well is flatter near the minimum but steeper for

larger expansions. Visually, the CCSD(T)/cbs† curve on the PBE-D3(BJ) geometry roughly

mimics the average of the PBE-D3(BJ)† curve and the CCSD(T)/cbs● one.  This shape for

Eel(V) means that calculations based on the DFT-optimized unit cell geometries will produce

larger molar volumes than those using the MP2-optimized unit cells. 

The contrast between the results obtained from the MP2 and DFT geometry optimizations

raises the question of what the CCSD(T)-optimized  Eel(V) curve would look like if it were
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practical to compute. Some insight can be gained by examining the performance of PBE-

D3(BJ)  and  MP2  on  the  methanol  dimer  from  the  S66x8  test  set.  Comparing  against

complete-basis-set CCSD(T) benchmarks, both MP2 and PBE-D3(BJ) overbind the dimer, but

the  overbinding is  larger  with  DFT (root-mean-square  error  0.7 kJ/mol  for  MP2/cbs,  0.9

kJ/mol  for  PBE-D3(BJ)/avqz,  and  1.5  kJ/mol  for  PBE-D3(BJ)/PAW  over  the  eight

intermolecular  separations;  see  Table  S2).  Notably,  the  PBE-D3(BJ)  interaction  energy

weakens much more slowly as one moves away from equilibrium toward either shorter or

longer  intermolecular  separations.  This  erroneously  flatter  energy basin  around the  dimer

equilibrium geometry contributes to the softer compression and expansion branches seen in

the crystal. 

Further insight can be found in the predicted lattice energies, calculated for the optimized

geometries obtained by minimizing the electronic energy only, which are summarized in Table

1. In the small aug-cc-pVDZ basis set,  the MP2 lattice energy (in absolute value) is 45.4

kJ/mol, and it increases to 52.9 kJ/mol at the cbs limit. CCSD(T)/cbs increases it further, to

54.7 kJ/mol. This contrasts the S66x8 dimer geometry, for which the CCSD(T)/cbs interaction

energies  are  always  weaker  than  the  MP2/cbs  ones  (a  reminder  that  analysis  of  dimer

interactions alone has limitations in the context of the crystal71).  Regardless,  PBE-D3(BJ)

binds even stronger, at  57.4 kJ/mol,  while CCSD(T)/cbs† on those DFT geometries  binds

more weakly at 51.5 kJ/mol. The same holds true across the entire expansion and compression

curves — the CCSD(T)/cbs energies are more strongly bound for the MP2 geometries than

for  the  PBE-D3(BJ)  ones.  So  while  actual  CCSD(T)/cbs  energy  optimizations  are

computationally impractical,  this  data suggests that the MP2/avtz optimized structures are

closer  to  the  optimal  CCSD(T)  structures  than  the  PBE-D3(BJ)  geometries,  though  it  is

unclear  if  that  also  translates  to  the  MP2  geometries  producing  a  more  reliable  Eel(V)

curvature.
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Based on these  Eel(V)  curves,  it  can  be  concluded that  MP2 and CCSD(T)  yield  smaller

equilibrium unit cell volumes, predict less thermal expansion will occur (due to the steeper

expansion branch), and exhibit lower compressibility for α-methanol crystals compared to the

DFT calculations here.

3.2 Vibrational Frequencies

The temperature dependence of properties in quasi-harmonic crystalline solids arises through

the phonon contributions. Fundamental vibrational frequencies of α-methanol were calculated

using both many body expansion (HMBI coupled with MP2) and periodic DFT (PBE-D3(BJ))

calculations. This section compares results obtained from these calculations against each other

and experimental  data.  Vibrational  frequencies calculated in  ref.22 using periodic optPBE-

vdW72 calculations are also included for comparison.

Several experimental low-temperature spectroscopic studies for α-methanol can be found in

the  literature.73-81 Most  of  them  agree  on  the  vibrational  assignment  and  fundamental

frequencies of the intramolecular modes within the reported experimental uncertainty – a few

cm−1 for sharp strong peaks and up to 20 cm−1 for weak broad peaks. The main exceptions are

the frequencies of the internal methyl rotation modes, which exhibit scatter on the order of

several tens of cm−1. Several studies focus on the intermolecular (lattice) vibrational modes,76,

82, 83 though, a complete experimental assignment of individual modes has not been performed

to our knowledge. 

Figure  3  shows  the  relative  percentage  deviations  between  the  calculated  intramolecular

frequencies and the experimental data from the most complete work.74 Both DFT functionals

yield more accurate O-H and C-H stretching mode frequencies (deviations below 5%) than

MP2 (deviations ranging from 5 to 10%). Using the larger avtz basis set instead of avdz for

the  MP2  calculations  leads  to  a  slight  improvement  for  the  stretching  modes  (deviation

decreases by 2 percentage points). All methods overestimate the frequencies of the stretching

modes, except DFT results for O-H stretches. Predicted harmonic frequencies are often larger
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than  the  anharmonic  experimental  values.  Similar  trends  can  be  observed  for  the

intramolecular deformation and C-O stretching modes for which all deviations are lower than

5% in absolute value. Concerning the internal methyl rotation modes, both DFT functionals

significantly overestimate the frequencies (PBE-D3(BJ) by 25%), while MP2 exhibits smaller

lower deviations (5-10%). However, shifting to the larger avtz basis set increases the MP2

errors.  Detailed comparison of calculated and experimental vibrational frequencies can be

found in Table S3 in the Supporting Information.

To enable investigations of the sensitivity of the computational model on the uncertainty of

vibrational frequencies in Sections 3.4 and 3.5, we evaluated empirical scale factors for the

MP2/avtz  intramolecular  frequency  set.  The  intramolecular  frequencies  were  scaled

separately for the low (below 2000 cm−1) and high (above 2000 cm−1) wavelength regions, as

is  common when computing ideal  gas  properties.31,  84 The multiplicative  scale factors  are

intended to  shift  the  calculated  harmonic  frequencies  to  be  in  closer  agreement  with  the

anharmonic experimental data. By comparing the calculated and experimental74 frequencies of

the intramolecular vibrational modes and averaging over all  modes of the unit  cell,  scale

factors of 0.9682 below 2000 cm−1 and 0.9302 above 2000 cm−1 were obtained for this crystal.

Such  values  lie  within  the  typical  range  for  MP2 or  DFT calculations  of  intramolecular

fundamental frequencies.31-33,  84 Scaling reduces the mean and absolute percentage deviations

of the calculated intramolecular frequencies versus experiment from 4.8% and 5.8% to 0.1%

and 2.5%, respectively. These intramolecular vibrational frequency scaling parameters will be

used further in Sections 3.4 and 3.5.

Next, consider the intermolecular vibrational modes. Figure 4 illustrates the agreement of the

calculated fundamental frequencies of the lattice modes of α-methanol with experimental data

measured in ref.82 and further analyzed in ref.76 Again, data from ref.22 calculated using the

optPBE-vdW functional72 are included for comparison. In general, the calculated frequencies

of the lattice modes exhibit percentage deviations that are one order of magnitude higher than
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the intramolecular modes, which could be expected in context of the results from ref.22. For

nearly all the lattice modes, pure Amoeba calculations yield significantly higher frequencies

than  the  quantum chemical  calculations  do.  Among  the  electronic  structure  methods,  the

periodic  PBE-D3(BJ)  calculations  give  the  highest  frequency  values.  Methanol  crystals

contain  strong  hydrogen  bond  chains  whose  vibrational  modes  occur  at  relatively  high

wavelengths (above 300 cm−1). Their values are overestimated by all of the computational

methods used by up to 25%. Librational lattice modes are expected to be found in the middle

wavelength  region.  The  frequencies  of  these  modes  are  mostly  underestimated  by  the

quantum chemical  methods used here.  Translational lattice modes should be found in the

lowest  wavelength  region,  and  most  of  the  predicted  frequencies  in  this  region  are

overestimated  by  up  to  40%,  while  others  are  underestimated  by  almost  80%.  Together,

prevailing  overestimation  of  the  low-frequency  lattice  modes  translates  to  considerable

underestimation of calculated thermodynamic properties such as entropy or heat capacity for

this crystal with either PBE-D3(BJ) or MP2-based vibrational properties.

One might note that the experimental vibrational frequencies were obtained at 20 K,82 while

the predicted phonons were obtained for the unit cell structure corresponding to the electronic

energy minimum. The latter neglects expansion due to zero-point vibrational motion and the

small  amount  of  thermal  expansion  between  0  and  20  K,  which  can  lead  to  misleading

comparisons.27 To estimate the thermal and vibrational effects on the lattice-mode frequencies,

the frequencies were reevaluated using the calculated MP2 or PBE-D3(BJ) quasi-harmonic

unit cell volumes at 20 K and Grüneisen parameters for the individual modes. In this way,

temperature-dependent quasi-harmonic frequencies of the lattice modes can be approximated.

The resulting frequency values are listed in Table S4. With this correction, the mean absolute

percentage deviations of the lattice-mode frequencies changed from 13% to 16% and from

19% to 14% for HMBI MP2/avtz* and periodic PBE-D3(BJ)† frequencies, respectively. So
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while such expansion effects do impact the comparison between theory and experiment, they

do not appear to be the principal source of error in the predicted frequencies. 

Next, these calculated phonon properties were employed to compute vibrational Helmholtz

energy profiles for α-methanol at various temperatures as a function of unit cell volume and

interpolated via linear functions. Figure 5 compares these Avib(V) profiles at 0 K. Clearly, pure

Amoeba calculations yield an  Avib(V) line whose slope differs considerably from the other

models. In contrast, the MP2 and PBE-D3(BJ) Avib(V) lines differ primarily in their absolute

values (by about 6 kJ mol−1), rather than in their slopes. The PBE-D3(BJ)† Avib(V) lines exhibit

slopes that are 8% steeper than the MP2/avdz* ones and 2% steeper than the MP2/avtz* ones.

Including the anisotropy in MP2 HMBI calculations changes the slopes of  Avib(V) by 9%,

making them less  steep for MP2/avdz● and more steep for  MP2/avtz●.  The basis  set  size

clearly  impacts  the  vibrational  properties  appreciably,  which  will  translate  to  observable

differences in phenomena such as the thermal expansion. Unlike the slopes, absolute values of

Avib(V)  do not impact thermodynamic properties such as the density or heat capacity of a

single  phase.  However,  absolute  values  of  Avib(V)  become  extremely  important  when

comparing  properties  between  different  phases,  e.g.  Gibbs  energies  and  related  phase

equilibria. 

3.3 Sublimation Enthalpy

Now consider the sublimation enthalpy at 0 K. The differences in the zero-point vibrational

energy  (
ZPVE
sub E∆ )  between  the  crystal  and  ideal  gas  phase  were  calculated  within  the

harmonic  approximation  by  combining  the  phonon  results  obtained  using  the  HMBI

MP2/avdz, MP2/avtz and PAW/PBE-D3(BJ) levels of theory with the fundamental vibrational

frequencies  of  an  isolated  gas-phase  methanol  molecule  geometry  optimized at  the  same

levels of theory. No scaling factors were applied to the calculated vibrational frequencies for

this  purpose.  Sublimation energies ( sub H∆ )  were evaluated at  0 K coupling the cohesive
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energies  and  
ZPVE
sub E∆ terms,  both  evaluated  either  using  a  “static”  model  based  on  the

geometries corresponding to the minimum of the electronic energy (described in Section 3.1),

or a quasi-harmonic model based on the unit cell volumes corresponding to the minima of the

Helmholtz energy profiles at 0 K and zero pressure (using the quasi-anisotropic MP2/avtz●

phonon  data).  Table  1  lists  the  respective  cohesive  energies,  
ZPVE
sub E∆  terms  and  sub H∆

values. It compares them against the reference experimental value of 45.7±0.3 kJ mol−1, which

was extrapolated to 0 K and whose uncertainty was critically evaluated in ref.3. Both the static

and quasi-harmonic models  yield  comparable  
ZPVE
sub E∆  values.  The  sub H∆  values  exhibit

larger scatter due to variations in the underlying cohesive energies. Smaller basis set HMBI

MP2  calculations  underestimate  sub H∆ ,  and  increasing  the  basis  set  size  in  the  MP2

calculations  converges  the  calculated  sub H∆  towards  the  experimental  value.  The  static

MP2/cbs sub H∆  value matches experiment extremely well, overestimating it by only 0.5 kJ

mol−1, which is comparable to the experimental uncertainty. However, switching from MP2 to

CCSD(T) increases the α-methanol cohesive energy further, and the CCSD(T)/cbs  sub H∆

value is 2.2 kJ mol−1  larger than experiment. On the other hand, the CCSD(T)/cbs† sub H∆

value from the DFT geometry underestimates the experimental  value by 2.4 kJ  mol−1.  In

contrast, PBE-D3(BJ) † overestimates the sublimation enthalpy by an even larger 5 kJ mol−1.

Comparing the static and quasi-harmonic sub H∆  results, one observes that the larger unit cell

volume of the quasi-harmonic model (due to expansion from zero-point vibrational energy)

slightly destabilizes the cohesive energy of the crystal (by 0.2 – 0.4 kJ mol−1 depending on the

curvature of given Eel(V) curves). However, the larger volume also decreases the ZPVE in the

crystal, leading to a less negative 
ZPVE
sub E∆  term. Thus, the two contributions counteract one
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another and the static and quasi-harmonic models yield  sub H∆ values for α-methanol that

differ by less than 0.3 kJ mol−1 at 0 K.

3.4 Molar Volume

Directly measurable thermodynamic properties such as density or isobaric heat capacity can

be  obtained  from  the  calculated  Eel(V)  and  Avib(V)  curves.  The  appropriateness  of  the

computational model for calculation of the structural properties can be assessed by comparing

the calculated and experimental molar volumes at the standard pressure. The quasi-harmonic

approximation enables quantification of the thermal expansion, meaning that the temperature-

dependence of the molar volume can be discussed as well.

To our knowledge, only five references report information on experimental molar volumes at

standard pressure.34,  85-88 In Figure 6, it can be seen that these points exhibit a non-negligible

scatter which obscures the actual extent of thermal expansion and hinders drawing strong

conclusions  about  the  accuracy  of  the  calculated  thermal  expansivity.  Qualitatively,  the

calculated  Vm(T)  trends are generally in reasonable agreement with the experimental data.

Figure 6 illustrates the performance of the same hierarchy of quantum chemistry levels of

theory for predicting the molar volume. The trends in the molar volume of α-methanol mimic

those seen above for the  Eel(V) curves. Switching from DFT or small-basis MP2 to larger

basis  sets  and/or  CCSD(T)  yields  smaller  equilibrium  molar  volumes.  Compared  to

experimental data near 0 K, the MP2/avdz● molar volume is overestimated by 8%, while the

CCSD(T)/cbs● molar  volume is  underestimated  by 3.9% (by 4.3% for  the  fully  isotropic

CCSD(T)/cbs* model). Increasing the basis set systematically decreases the molar volume, as

seen  previously.2,  12 At  the  complete  basis  set  limit,  MP2  already  underestimates  the

experimental molar volume, and switching to CCSD(T) reduces the molar volume further in

this system.

The  closest  agreement  between  theory  and  experiment  in  the  low  temperature  region  is

observed for MP2/avqz● and CCSD(T)/cbs†, which differ from the experimental data by less
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than 0.5% and 0.2%, respectively. Of course, the good agreement with experiment for these

two particular levels of theory represents a fortuitous compensation of errors: MP2/avqz● uses

a large but still incomplete basis, while the CCSD(T)/cbs† result is based on a geometry that is

further  from  the  true  CCSD(T)/cbs  minimum  (as  measured  by  energy  and  discussed  in

Section  3.1).  Including  the  anisotropy  into  the  computational  model  (through  unit  cell

geometry optimizations) increases the molar volume by 0.4 % at the vicinity of 0 K and by

1.7% around the α-β phase transition temperature157.34 K.35 Though these changes are small,

the  rate  of  thermal  expansion  from  the  anisotropic  model  appears  slightly  closer  to  the

experimentally observed result.

Since the MP2/avtz, MP2/avqz, MP2/cbs, and CCSD(T)/cbs data sets all utilize the

MP2/avtz  phonons,  the  differences  among the  molar  volumes  obtained at  these  levels  of

theory arise solely from the differences in the Eel(V) curves. The slope of the CCSD(T)/cbs●

Vm(T) curve for α-methanol is 36% less steep than those of the MP2/avtz● curve (47% less

steep for CCSD(T)/cbs*), as a result of a steeper (by 22% and 29%) expansion branches of

the  Eel(V) curve, respectively. Clearly, a compensation of errors in the calculated  Eel(V) and

Avib(V) functions can result in a very good agreement of theory and experiment, e.g. too a

steep  Eel(V)  can  be  compensated  for  by  a  slower  decline  of  Avib(V)  or  vice  versa.  This

phenomenon can also be observed when comparing the Amoeba and MP2/avdz● data sets in

Figures 2, 5, and 6. Despite predicting much steeper potential energy curves, Amoeba yields a

molar volume that is  comparable to the MP2/avdz one.  Closer inspection reveals that the

MP2/avtz level of theory best reproduces the experimental slope of the Vm(T) curve. Higher

levels of theory damp the thermal expansivity and yield less realistic Vm(T) slopes. Notably,

the  Vm(T) slope of the CCSD(T)/cbs*, CCSD(T)/cbs● and CCSD(T)/cbs† data sets are 49%,

38% and 10% underestimated when compared to experimental data, respectively. 

Table  2  summarizes  the  experimental  and  calculated  lattice  parameters  for  the

temperatures  of  the  experimental  determination.  Experimental  unit  cell  parameters  of  α-
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methanol at 15 K and 122 K were determined in two literature studies.34, 88 Note that both this

study and ref.34 align the hydrogen bonds along cell vector  a, while ref.88 aligns them along

cell  vector  b).  The  experimental  data  suggests  that  α-methanol  undergoes  moderately

anisotropic thermal expansion between 15 K and 122 K, expanding 0.1%, 1.1%, and 2.0% in

the  a,  b,  and  c directions,  respectively.  The  anisotropy  reflects  the  fact  that  the  thermal

expansion preferentially occurs in directions orthogonal to the hydrogen bonds (i.e. along the

b and c vectors).

Obviously, the fully isotropic model employed here (star labeled data sets from HMBI

calculations on isotropic MP2/avtz geometries), fails to capture the anisotropic expansion ,

and  it  predicts  comparable  elongation  of  all  three  unit  cell  vectors  during  the  thermal

expansion (see Table 2). In contrast, both quasi-anisotropic models (dagger and circle labeled

data sets) correctly predict larger expansion along the  b and  c vectors and less expansion

along the  a vector. However, both the HMBI and DFT quasi-anisotropic models incorrectly

predict larger expansion along the b vector instead of the c vector. 

Although  it  neglects  the  anisotropic  expansion,  the  isotropic  MP2/avtz*  model

fortuitously predicts the overall unit cell volume the most accurately. The quasi-anisotropic

MP2/avtz● model produces flatter Eel(V) and steeper Avib(V) curves, which translates to larger

unit  cell  volumes  than  those  from MP2/avtz*.  On the  other  hand,  counterpoise-corrected

MP2/avtz typically overestimates unit cell volumes due to basis set incompleteness2,  12 (see

Figure 6). Using a larger basis set would decrease the volume, moving it in the direction of

improved agreement with experiment. Of course, the molar volumes computed with larger-

basis MP2 and CCSD(T) single points hint that the molar volume may well become too small

if full optimizations were performed at higher levels of theory. 

While the thermal expansivity derives from the expansion branch of the Eel(V) curve,

the compressibility of the crystal involves both branches of Eel(V). Therefore, the comparison

of a calculated Vm(p) trend at a given temperature with experimental data should provide more
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insight  into  the  consistency and accuracy  of  the  theoretical  model.  Figure  7  illustrates  a

comparison of  Vm(p) trends for the various computational models against experimental data

from ref.86 at 153.2 K. Unfortunately, experimental thermodynamic data in the high-pressure

region are rather scarce, and the comparison has to be limited to the sub GPa range. In Figure

7, all calculated  Vm(p) curves qualitatively capture the convex decline of the volume with

increasing pressure. Again, improving the basis set and correlation treatment leads to lower

molar  volumes.  MP2/avdz● yields  molar  volumes  overestimated  by  6.0%,  while

CCSD(T)/cbs* and CCSD(T)/cbs● underestimate the volume by 6.2% and 5.7%, respectively.

The best agreement in terms of slopes of the calculated Vm(p) curves is achieved for the quasi-

anisotropic  CCSD(T)/cbs† and  CCSD(T)/cbs● data  sets,  with  slopes  differing  from  the

experimental data by only 10% and 4% on average, respectively. The isotropic CCSD(T)/cbs*

data set underestimates the slope by 16% relative to the experimental data. At higher pressures

around 1 GPa, both CCSD(T)/cbs* and CCSD(T)/cbs● predict similar Vm(p) curves, indicating

that the anisotropy plays a smaller role in the compression of α-methanol than it does in the

thermal expansion. Figure S2 illustrates calculated molar volumes at selected temperatures in

the high pressure region. Because the curvature of the isotropic Eel(V) curve is flatter, lower

molar  volumes  are  obtained  with  CCSD(T)/cbs* for  the  compression  regime at  pressures

above 2 GPa at 0 K (this pressure threshold increases with rising temperature). 

Given that errors exist in both the predicted Eel(V) curves and quasi-harmonic phonon

frequencies, it is interesting to investigate how uncertainty in those fundamental quantities

translates into uncertainties in the predicted molar volumes and thermal expansivity. To study

the sensitivity of these cell volume properties to the uncertainty in the phonon frequencies, we

used  the  CCSD(T)/cbs*  data  set  and  scaled  the  MP2/avtz*  fundamental  vibrational

frequencies. Two cases were considered: (1) scaling all modes by 0.92, or (2) scaling lattice

modes with values ranging from 0.8 to 0.6, low-frequency intramolecular modes (below 2000

cm−1) by 0.9682, and high-frequency intramolecular modes (above 2000 cm−1) by 0.9302 (the

20



scaling parameters obtained in Section 3.2). These multiple scale factors were developed in

the same way as in ref.31: by comparing calculated and experimental fundamental vibrational

frequencies for individual modes and aiming to bring the scaled calculated frequencies into as

close agreement with their experimental counterparts as possible. As expected, down-scaling

the phonon frequencies leads to a steeper decline of the Avib(V) functions, which translates to

decreased molar  volumes that  underestimate  the experimental  values  even more.  In  other

words, scaling the phonon frequencies down shifts the molar volumes in the wrong direction,

even though the intramolecular harmonic frequencies of are obviously overestimated relative

to the anharmonic experimental values and scale factors lower than unity are appropriate. On

the other hand, frequency scaling does partially correct the slopes of the Vm(T) curves relative

to experiment. Without a complete experimental assignment of the lattice vibrational modes,

it is difficult to assess the appropriate scaling of those modes more carefully. Illustration of

how the frequency scaling affects the calculated molar volumes is given in Figure 8 (left

column). Notably, the frequency scalings considered here affect the molar volumes by less

than 2%, which is considerably less than the difference between theory and experiment. 

An analogous procedure was performed to study the sensitivity of molar volumes on

the steepness of the  Eel(V) curve. A single scale factor ranging from 0.8 to 1.2 was used to

scale the whole  Eel(V) curve, adjusting the slopes of its branches without altering its shape.

Figure 8 (right column) shows that modifying the steepness of the  Eel(V) curve affects the

molar volume more significantly than frequency scaling, namely up to 5%, which is already

comparable with the percentage deviation of the CCSD(T)/cbs* molar volume results from

experimental  data.  As  expected,  making the  Eel(V)  curve  less  steep  amplifies  the  thermal

expansivity of the crystal and vice versa. Making the Eel(V) curve 20% less steep almost fully

corrects the slope of the Vm(T) curves to the experimental value although it does not correct

the volume offset  at  zero temperature.  Making the energy well  even flatter  will  result  in

unnaturally  steep  V(T)  curves  pointing  to  strongly  overestimated  thermal  expansivity.  It
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means that the correct volume trends cannot be simply reached by scaling the energy well

only as volume is affected by a complex interplay of both the shape/position of the electronic

energy well and the phonon properties.

Another  potential  source  of  computational  uncertainty lies  in  the fitting procedure

which is used to interpolate the discrete points of the Helmholtz energy profiles to obtain

Helmholtz energy as a function of volume in an analytical form. Recent works14, 22 have used

the simple model Murnaghan equation70 which, however, was not developed or optimized for

molecular crystals.  Therefore,  imperfect fits  can occur for more complex shapes of  Eel(V)

curves, and those fitting errors would impact the Helmholtz energy. This can subsequently

introduce considerable uncertainty into the resulting thermodynamic properties. It should be

noted  that  even small  root-mean-square  errors  (RMSE) ranging in  the  order  of  tenths  of

kJ∙mol−1 can  be  problematic  when  sub-kJ∙mol−1 accuracy  is  required.  For  details  on  a

comparison of selected functional forms used for fitting of total Helmholtz energy, such as

Birch-Murnaghan equation,  empirical equations or splines, see Figure S3 and Table S5 in

Supporting Information. The Vm(T) curves differ by a few percentage units depending on the

functional forms used in the fit. Although splines can fit the Eel(V) data perfectly in terms of

RMSE, their use cannot be recommended for this purpose because they usually do not smooth

any numerical noise in the discrete energy points obtained from the quantum calculations.

This  noise  can  lead  to  sudden,  artificial  changes  of  trends  or  even  peaks  in  the  final

thermodynamic properties. Such computational artifacts occur mostly in the vicinity of the

nodal points where a transformation between two spline functions occurs.

To summarize, the quasi-harmonic calculations predict the rate of thermal expansion

with  decent  accuracy, especially  when  quasi-anisotropic  models  are  used  for  the  energy-

volume curves.  However,  predicting  the  actual  molar  volume is  more  difficult,  with  the

nominally best models of theory underestimating it by several percent. Sensitivity analysis

suggests that the shape of the Eel(V) curve has a larger impact on the thermal expansivity than
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the magnitudes  of  the phonon frequencies.  However, simple scaling of  either  the energy-

volume  curve  or  the  phonons  does  not  bring  the  predicted  molar  volume  curves  into

quantitative agreement with experiment.

3.5 Heat Capacity

Structural properties of condensed phase systems (like molar volumes) are usually easier to

predict  theoretically  than  thermodynamic  properties.  This  proves  to  be  the  case  for  α-

methanol and its  isobaric heat capacities.  Experimental  Cp(T)  data were taken from ref.35,

which reports  Cp uncertainties not exceeding 0.5 J∙K−1∙mol−1. There are also older works89,  90

reporting data on Cp which agree very well with ref.35 

Figure  9  shows  that  CCSD(T)/cbs† calculations  yield  a  Cp(T)  trend  being  in  the  closest

agreement to the experimental data. Still,  the relative percentage deviation of this data set

amounts to 12%, equivalent to 7 J∙K−1∙mol−1 at 150 K. In case of the quasi-anisotropic HMBI

based  Cp(T) results, using larger basis sets and CCSD(T) instead of MP2 only worsens the

agreement  between  theory  and  experiment.  For  example,  MP2/avdz● and  CCSD(T)/cbs●

underestimate  Cp(T)  by  21%  and  29%  at  higher  temperatures,  respectively  (isotropic

CCSD(T)/cbs* Cp(T) even by 32%). Such deviations largely exceed the tolerable uncertainty

threshold for calculated Cp(T) for applications requiring sub-kJ∙mol−1 accuracy. The fact that

all calculated  Cp(T) are significantly underestimated suggests that the calculated vibrational

frequencies, especially the lattice modes, are significantly overestimated by theory. To analyze

the sensitivity of  Cp(T)  on the uncertainty of vibrational frequencies and the shape of the

Eel(V)  curve,  the  same  procedure  consisting  in  scaling  the  intermediate  properties  was

performed as in the case of the molar volumes. 

Figure 10 (left  column) reveals that heat capacities are significantly more sensitive to the

uncertainty of the vibrational frequencies than the molar volumes were. By varying the scale

factor used for the lattice modes, we found that an optimal value around 0.70 is capable of

bringing the  Cp(T)  trend obtained at the CCSD(T)/cbs* level to close agreement with the
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experimental  data  in  temperature  region  below  60  K.  This  result  suggests  a  substantial

computational uncertainty in the vibrational frequencies of the lattice modes of α-methanol.

At higher  temperatures,  other  uncertainty  sources  prevail  since further  lowering  the scale

factor below 0.70 does not improve the quality of the calculated  Cp(T). Obviously, higher-

frequency  modes,  especially  methyl  rotations,  become  important  above  60  K.  Thermal

expansion  also  contributes  more  appreciably  to  the  isobaric  heat  capacity  at  higher

temperatures.

Sensitivity trends for Cp(T) are reversed compared to those for the molar volume, since Cp(T)

depends much more on the uncertainty of the vibrational frequencies than the uncertainty of

the  Eel(V) curve. As can be seen in Figure 10 (right column), the shape of the  Eel(V) curve

becomes relevant in the temperature region above 60 K. However, scaling the Eel(V) curve by

a factor 0.80 causes a 10% change in Cp at 150 K, corresponding to 4 J∙K−1∙mol−1. Figure S4

illustrates calculated Cp at selected temperatures in the high pressure region.

Because CCSD(T)/cbs● is assumed to be the highest level of theory used in this work, its

massive underestimation of Cp  merits closer analysis. As Cp is significantly affected by both

vibrational frequencies and the thermal expansivity, errors in both parameters accumulate to

give a 30% underestimation of Cp. Anisotropic CCSD(T)/cbs● data on both Cp(T) and Vm(T)

are in closer agreement with experiment than the corresponding isotropic CCSD(T)/cbs* data

sets. The quasi-anisotropic model softens the overly steep CCSD(T)/cbs* expansion branch,

improving the quality of the calculated thermal expansivity. Still, the CCSD(T)/cbs● Eel(V)

curve  is  burdened  with  some  uncertainty  as  it  is  constructed  only  using  single  point

CCSD(T)/cbs calculations on MP2/avtz● geometries, not on CCSD(T)/cbs geometries. When

combined with the errors in the MP2/avtz● phonon frequencies, the resulting CCSD(T)/cbs●

Cp exhibits one of the largest deviations from the experimental data among all of the levels of

theory employed here (larger than lower-level MP2 providing less steep Eel(V) curves). Using

higher-level methods makes the Eel(V) well steeper and attenuates the already underestimated
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thermal expansion, causing the higher-level methods to yield  Cp in worse agreement with

experiment. In contrast, CCSD(T)/cbs† predicts  Cp much better (percentage deviation more

than halved related to CCSD(T)/cbs●), possibly due to partial compensation of errors of the

phonons and thermal  expansivity. This  result  contradicts  the  methanol  dimer  benchmarks

described earlier, where MP2 provided a much better description of both the binding energy

and the shape of the potential energy well. In other words, it once again appears that error

cancellation between the calculated lattice energy, unit  cell  volume,  and phonons plays  a

significant role in the quality of the thermodynamic and structural predictions.

4. CONCLUSIONS

We calculated  vibrational,  structural  and  thermodynamic  properties  of  α-methanol  using

wavefunction-based ab initio methods in the HMBI formalism and periodic DFT calculations,

both  coupled  with  the  quasi-harmonic  approximation.  The results  of  this  study provide  a

mixed picture. On the one hand, experimental properties such as the sublimation enthalpy at 0

K and the thermal expansivity are reproduced fairly well by the higher levels of theory. On the

other  hand,  other  properties  prove  more  problematic  to  be  predicted  reliably.  The

intramolecular  vibrational  frequencies  are  often  significantly  overestimated,  as  one  might

expect  from  a  harmonic  vibrational  model.  The  intramolecular  modes  can  be  corrected

somewhat  through  frequency  scaling.  However,  the  errors  in  the  lattice  phonons  are

proportionally  much  larger  and  vary  more  in  sign  and  magnitude,  which  is  particularly

troublesome given the large impact these modes have on many finite-temperature properties.

Using MP2/avtz instead of DFT does not provide appreciable improvements in the predicted

phonons  for  α-methanol.  Although  the  models  predict  the  rate  of  thermal  expansion

reasonably, the best calculations underestimate the unit cell volume appreciably, suggesting

that the models overbind the crystal somewhat (which is also supported by the sublimation

enthalpies). The isobaric heat capacity is substantially underestimated as well.
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Sensitivity analysis was performed to investigate how errors in the fundamental computed

quantities  affect  the  observed  properties.  We find  that  crystal  phase  densities  are  more

sensitive to the shape of  Eel(V)  curve,  while  isobaric  heat  capacities depend more on the

quality  of  the  vibrational  frequencies.  The  shapes  of  the  Eel(V)  curves  do  converge  with

increasing  basis  set/level  of  theory. The assumption  of  isotropic  crystal  expansion in  the

model, leading to artificially steep walls on the CCSD(T)/cbs* curve, can impact the resulting

structural  thermodynamic  properties  by  attenuating  the  thermal  expansion.  This  can  be

partially  corrected  by  allowing  the  unit  cell  to  expand  anisotropically, though  the  quasi-

anisotropic model used for the CCSD(T)/cbs● and CCSD(T)/cbs† data sets is not capable of

capturing the anisotropic effects completely (because the phonons depend only on the cell

volume, rather than the specific cell  shape).  Even though the quasi-anisotropic results are

always in a closer agreement with experimental data than the isotropic data are, the magnitude

of the computational errors observed here cannot be fully explained by the crystal anisotropy.

Nevertheless, anisotropy affects both the cohesive energy and vibrational frequencies and is a

non-negligible source of the computational uncertainty for the structural and thermodynamic

properties  for  molecular  crystals.  A  three-dimensional  extension  of  the  quasi-harmonic

approximation which would allow a rigorous treatment of the anisotropic expansion would

provide an interesting topic for future work.

For  the  heat  capacities,  uncertainties  in  the  frequencies  are  particularly  apparent  at  low

temperatures (below 60 K for methanol). At higher temperatures, uncertainty in the thermal

expansivity  contributes  appreciably  to  the  errors  in  as  Cp well.  These  issues  cause  an

underestimation  of  the  calculated  isobaric  heat  capacities  that  reaches  30%  for  the

CCSD(T)/cbs● level  of  theory,  easily  exceeding  the  acceptable  levels  of  uncertainty  for

applications requiring sub-kJ∙mol−1 accuracy. Reducing the uncertainty in  Cp would require

simultaneously  improving  the  quality  of  the  vibrational  frequencies  and  the  thermal
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expansivity trends which are dominated by Eel(V) as well as accounting for the anisotropy of

all such contributions properly.

One of the interesting observations here is  how much compensation of errors  among the

different electronic energy, geometry, and phonon properties impacts the final results. Despite

evidence that the CCSD(T) results based on the MP2 geometries are probably superior to

those on the DFT geometries, properties such as the heat capacities predicted from the DFT

geometries  actually  agree  more  closely  with  experiment.  Ideally, one  would  compute  all

properties at the large-basis CCSD(T) limit, but of course that is computationally infeasible in

practice.  Employing single-point energies with the higher electronic structure methods did

clearly  improve  the  quality  of  the  predicted  sublimation  energies  and  are  probably

worthwhile. In contrast,  MP2 phonons did not appear to provide significant improvements

over  the DFT ones,  so one might  reduce the computational  effort  required by computing

phonons with DFT (potentially on unit cells predicted with either DFT or MP2) instead of

MP2. That said, the limited accuracy of the harmonic phonons from either method remains a

significant  issue.  The  fact  that  one  can  compute  thermodynamic  properties  in  molecular

crystals at such high levels of theory represents how much theoretical progress has been made

in recent years. Nevertheless, it is clear that additional theoretical advances are needed before

crystal  properties  can  consistently  be  predicted  quantitatively  at  finite-temperature  and

pressure  properties.  The  errors  among  energies,  volumes,  and  frequencies  are  all  closely

coupled,  and  improving  the  treatment  of  the  phonons  and  the  crystal  expansion  could

significantly impact all of the predicted properties.
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TABLE 1 

Cohesive energies (Ecoh, in kJ∙mol−1) and sublimation enthalpies  sub (0K)H∆  of α-methanol

calculated using various levels of theory. 

Level of theory Ecoh
a ZPVE

sub E∆ a subH∆ a Ecoh
b ZPVE

sub E∆ b subH∆ b

MP2/avdz● -45.44 -6.72 38.72 -45.13 -6.31 38.82

MP2/avtz● -50.00
-6.77

43.23
-49.62 -6.29 43.33

MP2/avqz● -51.68
-

44.82
-51.34 -6.47 44.87

MP2/cbs● -52.93
-

46.16
-52.61 -6.60 46.01

CCSD(T)/avtz● -51.77
-

45.00
-51.47 -6.46 45.02

CCSD(T)/cbs● -54.63
-

47.86
-54.37 -6.77 47.59

PBE-D3(BJ)† -57.42
-6.96

50.46 -57.01
-6.65

50.36

CCSD(T)/cbs† -50.21
-

43.25 -49.80
-6.83

42.97

Experiment3 -
-

45.7 -
-

45.7

a Values calculated for the unit cell geometries obtained by optimization of electronic energy.
b Values calculated for the unit cell volumes obtained by the quasi-anisotropic quasi-harmonic model.

TABLE 2 

Comparison of experimental and calculated unit cell parameters and volumes for α-methanol

(in Å) at selected temperatures illustrating the anisotropy of its thermal expansion. 

Data set T a b c V

Experiment88 15 K 4.6411a 4.8728a 8.8671 200.53

PAW/PBE-D3(BJ)
4.45 5.21 9.26 215.13

PAW/optPBE-vdW22 4.60 5.15 9.33 221.23

HMBI MP2/avtzb 4.58 4.91 9.06 203.68

HMBI MP2/avtzc 4.55 4.95 9.12 205.45

Experiment34 122 K
4.6469 4.9285 9.0403 207.04

PAW/PBE-D3(BJ)
4.47 5.33 9.30 221.73

PAW/optPBE-vdW22 4.61 5.22 9.43 227.29

HMBI MP2/avtzb 4.64 4.97 9.17 211.39

HMBI MP2/avtzc 4.56 5.09 9.17 212.55

a Ref.88 uses a different system of axes where a and b vectors are interchanged. 
b Fully isotropic expansion quasi-harmonic model used (star labeled in text).
c Anisotropy of the electronic cohesive energy included in the quasi-harmonic model (circle labeled in 
  text). 
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FIGURE  1.  Unit  cell  structure  orthorhombic  α-methanol  with  marked  two  antiparallel

hydrogen bond chains passing through a unit cell.

FIGURE 2.  Comparison of electronic energies of a unit  cell  of α-methanol calculated by

various  quantum chemical  levels  of  theory:  left  –  convergence towards  the  CCSD(T)/cbs

limit;  right  –  effect  of  the  underlying  geometries  on  CCSD(T)  energy  single  point

calculations.
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FIGURE 3. Relative  percentage  deviations  of  calculated  (νc)  fundamental  intramolecular

vibrational frequencies calculated at selected levels of theory from experimental frequencies

(νe).

FIGURE 4. Relative percentage deviations of calculated (νc) fundamental lattice vibrational

frequencies calculated at selected levels of theory from experimental frequencies (νe).
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FIGURE 5. Vibrational Helmholtz energies of α-methanol at 0 K as functions of unit cell 

volume calculated by selected quantum chemical levels of theory.

FIGURE 6. Comparison of temperature-dependent molar volumes of α-methanol at standard 

pressure calculated by various quantum chemical levels of theory.
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FIGURE 7. Comparison of pressure-dependent molar volumes of α-methanol at 153.2 K 

calculated by various quantum chemical levels of theory.

FIGURE 8. Analysis of sensitivity of temperature dependent molar volumes of α-methanol at

standard pressure to i) left− scaling of the frequencies of the lattice, low intramolecular and

high intramolecular vibrational modes; ii) right − scaling of the Eel(Vm) curve. 
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FIGURE 9. Comparison of isobaric heat capacities (Cp) of α-methanol at standard pressure 

calculated by various quantum chemical levels of theory.

FIGURE 10. Analysis of sensitivity of temperature dependent isobaric heat capacity of  α-

methanol  at  standard  pressure  to  i)  left−  scaling  of  the  frequencies  of  the  lattice,  low

intramolecular and high intramolecular  vibrational modes; ii) right  − scaling of the  Eel(Vm)

curve.
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