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ABSTRACT.

To investigate the performance of quasi-harmonic electronic structure methods for modeling
molecular crystals at finite temperatures and pressures, thermodynamic properties are
calculated for the low-temperature o polymorph of crystalline methanol. Both density
functional theory (DFT) and ab initio wavefunction techniques up to coupled cluster theory
with singles, doubles, and perturbative triples (CCSD(T)) are combined with the quasi-
harmonic approximation to predict energies, structures, and properties. The accuracy,
reliability, and uncertainties of the individual quantum-chemical methods are assessed via
detailed comparison of calculated and experimental data on structural properties (density) and
thermodynamic properties (isobaric heat capacity). Performance of individual methods is also
studied in context of the hierarchy of the quantum-chemical methods. The results indicate that
while some properties such as the sublimation enthalpy and thermal expansivity can be
modeled fairly well, other properties such as the molar volume and isobaric heat capacities are
harder to predict reliably. The errors among the energies, structures, and phonons are closely
coupled, and most accurate predictions here appear to arise from fortuitous error
compensation among the different contributions. This study highlights how sensitive
molecular crystal property predictions can be to the underlying model approximations and the
significant challenges inherent in first-principles predictions of solid state structures and

thermochemistry.

1. INTRODUCTION

Molecular crystals are ubiquitous, and knowledge of their thermodynamic properties is
indispensable in many technological applications. Performing calorimetric experiments is

typically straightforward at ordinary pressures and most temperatures. However,
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thermodynamic data is much scarcer at high pressures due to the complexity of the
experiments and the associated uncertainties. Therefore, a reliable computational
methodology capable of generating thermodynamic data for molecular crystals, even at
extreme conditions," would help to generate potentially useful data or to explain
experimentally observed phenomena from the structural or molecular point of view. Most
computational studies of molecular crystals neglect thermal contributions to thermochemical
properties at finite temperatures and pressures, since calculating static cohesive electronic
energies is much simpler than rigorously accounting for all relevant vibrational and thermal
terms. However, predicting the most stable phase or polymorph under certain thermodynamic
conditions can require sub-kJ-mol™ accuracy,> * in which case factors such as thermal
expansion of the crystal and the temperature dependence of the isobaric heat capacity can play
a key role. These effects can be captured only if the anharmonicity of the unit cell vibrations
is included in the computational model.

Dynamical strategies, based mainly on molecular dynamics, represent perhaps the best
way of calculating temperature- and pressure-dependent thermodynamic properties, but in
practice the accuracy of such approaches is frequently limited by the quality of the potential
used to drive the dynamics. Due to a prohibitively high computational cost of ab initio
molecular dynamics for most molecular crystal systems, such works generally use force-field-
based classical molecular dynamics or metadynamics, although pioneering studies using ab
initio molecular dynamics® * or path integral methods® in this context have been published
recently. Recent examples of molecular dynamics-based studies include investigations of
polymorphism,™ solubility'® and nucleation.™

Another option for computing thermodynamic properties from first principles is to
combine static electronic structure computations with a statistical-thermodynamic model. The
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quasi-harmonic approximation=* has emerged as a versatile and often reliable protocol,

though some attempts have also been made to capture the anharmonicity more realistically.>



1 The quasi-harmonic approximation typically employs a standard harmonic description of
the crystal vibrations at a given unit cell volume with a simple model for estimating how
those vibrational frequencies vary with changes in the cell volume. These changes in the
phonon frequencies incorporate some anharmonicity into the harmonic model. On the other
hand, the simple quasi-harmonic model cannot necessarily describe systems with highly
anharmonic vibrational modes or systems at high temperatures well, and the isotropic form of
the quasi-harmonic model does not always work well for crystal structures exhibiting
considerable anisotropy.

Several recent studies and reviews employ the quasi-harmonic approximation to
calculate the thermodynamic properties of molecular crystals and emphasize the importance
of the thermal terms for phenomena such as the thermal expansivity or polymorphism.? * =
The results of those studies indicate that the quasi-harmonic approximation sometimes
enables calculation of temperature-dependent trends in properties such as molar volumes,
sublimation enthalpies, or Gibbs energies for various molecular crystals with a semi-
quantitative accuracy or better. This sometimes translates to sub-kJ mol™ accuracy, which is
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important for polymorph stability ranking'®* and predicting of phase change properties.> !>

Quasi-harmonic models are also capable of capturing anomalous behavior such as the
negative thermal expansion of some systems* * or non-monotonic sublimation enthalpy
trends,* 2 although several cases have been reported where the computational methodology
fails to reproduce experimental data.”* Other limitations of the quasi-harmonic approximation
arise from the high computational cost for large molecules/unit cells, flexible molecules, and
other cases where such high accuracy cannot practically be achieved.'” To date, most quasi-
harmonic calculations in molecule crystals have relied on DFT,'® 1> 22¢ or they have not

examined the uncertainty and sensitivity of the calculated thermodynamic properties in

detail.'> 2 A thorough study investigating the computational uncertainty and sensitivity of
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wavefunction-based ab initio quasi-harmonic calculations for molecular crystals is still
missing.

Calculations of thermodynamic properties depend strongly on the quality of the
vibrational properties used, particularly the lattice vibrational mode frequencies. Several
recent works investigate the calculations of spectral and vibrational properties of molecular
crystals from first principles, aiming to estimate the uncertainty of such calculations.? %
These studies suggest that dispersion-corrected DFT calculations are capable of predicting the
vibrational frequencies semi-quantitatively. There are crystals for which the calculated and
experimental data are in a good agreement, as well as cases for which the differences of
experiment and theory range up to a few tens of cm™'.22 Moreover, harmonic DFT calculations
with commonly-used density functionals systematically overestimate the intramolecular
vibrational frequencies for most organic molecules, due to both the neglect of anharmonicity
and errors inherent in the chosen functional/basis set.>’2* This means that dispersion-corrected
DFT calculations of phonons can impart considerable uncertainty to the evaluation of the
thermal contributions to thermodynamic properties. Therefore, the reliability of ab initio
wavefunction-based phonon calculations and practical implementations for them need to be
examined further.

In this work, we investigate the low-temperature crystalline polymorph of methanol,
which is commonly referred to as a-methanol, in detail. The orthorhombic a-methanol crystal
structure (space group P2,2,2,, Z=4, Figure 1)* is fully ordered and stable at low temperatures
below 157.34 K,** and up to medium pressures roughly below 3.5 GPa.*® For this test case of
a-methanol crystal, we compare the performance of dispersion-corrected DFT and more
sophisticated ab initio wavefunction methods up to coupled cluster singles, doubles and
perturbative triples (CCSD(T)). Properties such as molar volume (V,) and isobaric heat
capacities (C,) are calculated as functions of both temperature and pressure. We examine the

interplay among the energy model, geometry optimization, and phonons, and we quantify the



sensitivity of predicted structural and thermodynamic properties to errors in the models. The
results highlight the challenges in predicting molecular crystal properties quantitatively from

first principles.

2. COMPUTATIONAL METHODS

The electronic structure and energy of the unit cells and related properties were calculated in
parallel within the periodic DFT-D3 framework?’ as implemented in VASP (version 5.4.1),%*
and the hybrid many-body interaction (HMBI) model® using Molpro (2012.1)* for ab initio
calculations and Tinker (6.2)* for Amoeba force-field* calculations. All calculations initiated
from the experimental unit cell structure and atomic coordinates, reference code METHOL04
from the Cambridge Crystal Structure Database.* Both atomic positions and unit cell vectors
were optimized subject to space group symmetry constraints. Having found the unit cell
structure corresponding to a minimum on the energy hypersurface, the electronic energies of
the optimized unit cells [Ea(V)] were calculated as a function of volume, usually for 15

discrete volume points around the energy minimum.'* #

The specific manner in which the
volume expansion occurs differs depending on the software package used. In VASP, the
volumes were scaled by a given factor and then the system was relaxed subject to a fixed total
unit cell volume, which allows relaxation of the individual lattice constants. Data produced
from these VASP DFT geometries are labeled with a dagger (). Fixed volume optimizations,
allowing the lattice constants to vary, have not been implemented in HMBI. Instead, two
different strategies were employed. For most of the calculations, the cohesive energy curves
E.(V) were mapped out by relaxing the crystal structures under fixed external pressure (circle-
labeled data sets, *), applying positive pressures for compression and negative pressures for
expansion. For comparison purposes, calculations which scale the lattice constants

isotropically and hold them fixed while the atomic positions were relaxed were also

considered (star-labeled data sets, *). Allowing the unit cell dimensions to vary independently



(instead of simply scaling the lattice parameters) when determining the electronic cohesive
energy incorporates some anisotropy into the quasi-harmonic model.

2.1 Periodic DFT Calculations

Electronic structure of the unit cells was calculated using the projector-augmented wave
(PAW)* formalism, PBE functional® and the semiempirical DFT-D3 dispersion correction,*
including the Becke-Johnson dumping (BJ).*** A plane wave energy cutoff of 700 eV was
used for the periodic DFT calculations, along with the so-called hard PAW potentials** and the
Monkhorst—Pack sampling of the k-space.*® Phonon properties were calculated for supercells
(larger than 10 A in all directions) created by replication of the optimized unit cells using a
finite displacement method>" and the program Phonopy.”> The phonon density of states was
calculated for each of five unit cell volumes, which enabled the construction of the Helmholtz
vibrational energy [A.i(7,V)] as a function of both temperature and volume as needed by the
quasi-harmonic approximation. Mode-specific Griineisen parameters were evaluated from the
five sets of frequencies to determine each vibrational frequency at an arbitrary volume.
Separately, analytical A.is(¥) forms were obtained by fitting the calculated A.i(¥) values from
the five discrete volume points to a linear function.™*

2.2 HMBI Calculations

The HMBI model® ¢ represents the total energy of the crystal in terms of individual
molecules (monomers) and their interactions with other monomers via the many-body
expansion.”™ The energies of monomers and spatially proximal dimers are computed via
electronic structure theory, while long-range dimers and clusters consisting of larger numbers
of molecules (many-body effects) are treated with a computationally inexpensive classical
polarizable force field. In this work, the treatment of individual dimers molecular pairs was
smoothly switched from quantum to classical over the intermolecular distance separation of 9
and 10 A. Exploitation of space group symmetry reduces the number of fragments that need

to be calculated significantly, further reducing the computation cost.**



Ab initio calculations were performed using counterpoise correction® and second-order
Moller-Plesset perturbation theory (MP2) and CCSD(T)® in the aug-cc-pVXZ correlation-
consistent basis sets (abbreviated avxz below).”” Unit cell optimizations and calculations of
the I'-point vibrational frequencies were performed only at the MP2/avdz and MP2/avtz
levels. In addition, single-point energies were evaluated at the MP2/avqz level, extrapolated
complete basis set (cbs) limit MP2,% and the CCSD(T)/avtz level using the MP2/avtz unit cell
geometries. CCSD(T)/cbs energies were estimated using MP2/cbs, MP2/avtz and
CCSD(T)/avtz energies.”” As with the DFT calculations, phonon frequencies were evaluated at
five different unit cell volumes to enable evaluation of mode-specific Griineisen parameters
and the Helmholtz vibrational energy.

2.3 Quasi-harmonic approximation

Summation of Ea(¥) with Avi(T,V)* yields total Helmholtz energy profiles [Au(T,V)] for the
unit cell.™* Analytic volume-dependent Helmholtz energy profiles were subsequently obtained
by fitting A«(T,V) to the Murnaghan equation of state™ separately for each temperature. The
molar volume is found by differentiating the fitted Helmholtz energy A.(7,V) with respect to
volume at constant temperature and solving the standard thermodynamic relationship for V" at

the desired temperature and pressure:
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Thermodynamic properties such as the Gibbs energy [G.(T,p)] and isobaric heat capacity

p(TaV):_[

[CAT,p)] can then be evaluated using fundamental thermodynamic relations:
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Sensitivity analysis of the calculated molar volumes and isobaric heat capacities on the
uncertainties of the intermediate results such as the phonon frequencies or shape of the E«(V)
were performed by scaling these intermediate quantities and observing the changes of the
final thermodynamic properties. The quality of the fits by Murnaghan equation and their

corresponding impacts on the final accuracy were also investigated.

3. RESULTS AND DISCUSSION

The first two sections describe the prediction of the basic ingredients for the quasi-harmonic
approximation: the energy-volume curves and the phonon frequencies. The subsequent
sections use these properties to predict thermodynamic observables—the sublimation
enthalpy, the molar volume, and the isobaric heat capacity—that are compared against
experiment.

3.1 Electronic Energy-Volume Curves

Optimization of the unit cells retains the experimental crystal packing of the methanol
molecules, as can be seen in the structure overlays (Figure S1) and tabulated coordinates
(Table S1). Figure 2 compares the electronic cohesive energies for a-methanol as functions of
unit cell volume. The Eu(}) curve calculated solely with the classical Amoeba force field
differs considerably from those predicted with electronic structure methods. It exhibits the
steepest expansion branch, while its compression branch is less steep than expected. The
shapes of the HMBI E.(V) curves obtained using MP2 or CCSD(T) are qualitatively similar
to one another. However, several important details should be noted as they can considerably
affect the final thermodynamic properties. The MP2/avdz® E.(V) curves from fixed-pressure
optimizations are very close to the constant-volume optimized PBE-D3(BJ)" ones. Increasing
the basis set from avdz to the cbs limit decreases the optimal volume by 9 % (or by 12 % if
using the fully isotropic HMBI model). Similar basis set behavior is observed in other crystals
such as carbon dioxide and ice.? > When counterpoise-corrections are employed (as they are

here), larger basis sets typically lead to stronger intermolecular binding, which translates to



smaller unit cell volumes. For a given basis set, switching from MP2 to CCSD(T) reduces the
optimal volume of E.(V) by 1.5%. If one shifts the various E.(V) curves laterally such that
they share a common minimum volume, it can be seen that increasing the basis set/level of
theory also leads to slightly steeper compression and expansion branches about the minimum.
Compared to MP2/avdz®, the slope of the CCSD(T)/cbs® Eu(V) curve is 1.9 times larger in the
compression branch and 1.6 times larger in the expansion branch.

Figure 2 also contains valuable information about the dependence of the E. (V) curve shape on
the source of the optimized unit cell geometry. The HMBI MP2/avtz curves obtained using
isotropic (*) and anisotropic (*) geometries are similar, with the anisotropic curve exhibiting a
slightly softer expansion slope (by 6%) due to the additional unit cell relaxation that model
allows. The differences between the isotropic and anisotropic E«(¥) curves is even smaller at
the CCSD(T)/cbs level, with slopes differing by only 5%. As will be discussed in Section 3.4,
the experimentally observed thermal expansion of a-methanol is only moderately anisotropic,
so it is not too surprising that the difference between these two modeling approaches on Eq(V)
is small.

In contrast, performing CCSD(T)/cbs single-point energies on the periodic PBE-D3(BJ)
geometries (labeled CCSD(T)/cbs") yields appreciably different energy curves and minima
than the other two CCSD(T)/cbs (* and *) data sets. Using the PBE-D3(BJ) geometries shifts
the CCSD(T) minimum to larger volume, makes the compression branch steeper, and alters
the expansion branch such that the energy well is flatter near the minimum but steeper for
larger expansions. Visually, the CCSD(T)/cbs’ curve on the PBE-D3(BJ) geometry roughly
mimics the average of the PBE-D3(BJ)" curve and the CCSD(T)/cbs® one. This shape for
E.(V) means that calculations based on the DFT-optimized unit cell geometries will produce
larger molar volumes than those using the MP2-optimized unit cells.

The contrast between the results obtained from the MP2 and DFT geometry optimizations

raises the question of what the CCSD(T)-optimized E«(V) curve would look like if it were
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practical to compute. Some insight can be gained by examining the performance of PBE-
D3(BJ) and MP2 on the methanol dimer from the S66x8 test set. Comparing against
complete-basis-set CCSD(T) benchmarks, both MP2 and PBE-D3(BJ) overbind the dimer, but
the overbinding is larger with DFT (root-mean-square error 0.7 kJ/mol for MP2/cbs, 0.9
kJ/mol for PBE-D3(BJ)/avqz, and 1.5 kJ/mol for PBE-D3(BJ)/PAW over the eight
intermolecular separations; see Table S2). Notably, the PBE-D3(BJ) interaction energy
weakens much more slowly as one moves away from equilibrium toward either shorter or
longer intermolecular separations. This erroneously flatter energy basin around the dimer
equilibrium geometry contributes to the softer compression and expansion branches seen in
the crystal.

Further insight can be found in the predicted lattice energies, calculated for the optimized
geometries obtained by minimizing the electronic energy only, which are summarized in Table
1. In the small aug-cc-pVDZ basis set, the MP2 lattice energy (in absolute value) is 45.4
kJ/mol, and it increases to 52.9 kJ/mol at the cbs limit. CCSD(T)/cbs increases it further, to
54.7 kJ/mol. This contrasts the S66x8 dimer geometry, for which the CCSD(T)/cbs interaction
energies are always weaker than the MP2/cbs ones (a reminder that analysis of dimer
interactions alone has limitations in the context of the crystal™). Regardless, PBE-D3(BJ)
binds even stronger, at 57.4 kJ/mol, while CCSD(T)/cbs’ on those DFT geometries binds
more weakly at 51.5 kJ/mol. The same holds true across the entire expansion and compression
curves — the CCSD(T)/cbs energies are more strongly bound for the MP2 geometries than
for the PBE-D3(BJ) ones. So while actual CCSD(T)/cbs energy optimizations are
computationally impractical, this data suggests that the MP2/avtz optimized structures are
closer to the optimal CCSD(T) structures than the PBE-D3(BJ) geometries, though it is
unclear if that also translates to the MP2 geometries producing a more reliable Eu(V)

curvature.
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Based on these Eu(V) curves, it can be concluded that MP2 and CCSD(T) yield smaller
equilibrium unit cell volumes, predict less thermal expansion will occur (due to the steeper
expansion branch), and exhibit lower compressibility for a-methanol crystals compared to the
DFT calculations here.

3.2 Vibrational Frequencies

The temperature dependence of properties in quasi-harmonic crystalline solids arises through
the phonon contributions. Fundamental vibrational frequencies of a-methanol were calculated
using both many body expansion (HMBI coupled with MP2) and periodic DFT (PBE-D3(BJ))
calculations. This section compares results obtained from these calculations against each other
and experimental data. Vibrational frequencies calculated in ref.** using periodic optPBE-
vdW? calculations are also included for comparison.

Several experimental low-temperature spectroscopic studies for a-methanol can be found in
the literature.”*' Most of them agree on the vibrational assignment and fundamental
frequencies of the intramolecular modes within the reported experimental uncertainty — a few
cm™' for sharp strong peaks and up to 20 cm™" for weak broad peaks. The main exceptions are
the frequencies of the internal methyl rotation modes, which exhibit scatter on the order of
several tens of cm™'. Several studies focus on the intermolecular (lattice) vibrational modes,”
8.8 though, a complete experimental assignment of individual modes has not been performed
to our knowledge.

Figure 3 shows the relative percentage deviations between the calculated intramolecular
frequencies and the experimental data from the most complete work.” Both DFT functionals
yield more accurate O-H and C-H stretching mode frequencies (deviations below 5%) than
MP2 (deviations ranging from 5 to 10%). Using the larger avtz basis set instead of avdz for
the MP2 calculations leads to a slight improvement for the stretching modes (deviation
decreases by 2 percentage points). All methods overestimate the frequencies of the stretching

modes, except DFT results for O-H stretches. Predicted harmonic frequencies are often larger
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than the anharmonic experimental values. Similar trends can be observed for the
intramolecular deformation and C-O stretching modes for which all deviations are lower than
5% in absolute value. Concerning the internal methyl rotation modes, both DFT functionals
significantly overestimate the frequencies (PBE-D3(BJ) by 25%), while MP2 exhibits smaller
lower deviations (5-10%). However, shifting to the larger avtz basis set increases the MP2
errors. Detailed comparison of calculated and experimental vibrational frequencies can be
found in Table S3 in the Supporting Information.

To enable investigations of the sensitivity of the computational model on the uncertainty of
vibrational frequencies in Sections 3.4 and 3.5, we evaluated empirical scale factors for the
MP2/avtz intramolecular frequency set. The intramolecular frequencies were scaled
separately for the low (below 2000 cm™) and high (above 2000 cm™) wavelength regions, as

is common when computing ideal gas properties.* ¥

The multiplicative scale factors are
intended to shift the calculated harmonic frequencies to be in closer agreement with the
anharmonic experimental data. By comparing the calculated and experimental™ frequencies of
the intramolecular vibrational modes and averaging over all modes of the unit cell, scale
factors of 0.9682 below 2000 cm™ and 0.9302 above 2000 cm™' were obtained for this crystal.
Such values lie within the typical range for MP2 or DFT calculations of intramolecular
fundamental frequencies.*=* # Scaling reduces the mean and absolute percentage deviations
of the calculated intramolecular frequencies versus experiment from 4.8% and 5.8% to 0.1%
and 2.5%, respectively. These intramolecular vibrational frequency scaling parameters will be
used further in Sections 3.4 and 3.5.

Next, consider the intermolecular vibrational modes. Figure 4 illustrates the agreement of the
calculated fundamental frequencies of the lattice modes of a-methanol with experimental data
measured in ref.** and further analyzed in ref.”® Again, data from ref.? calculated using the

optPBE-vdW functional” are included for comparison. In general, the calculated frequencies

of the lattice modes exhibit percentage deviations that are one order of magnitude higher than
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the intramolecular modes, which could be expected in context of the results from ref.?. For
nearly all the lattice modes, pure Amoeba calculations yield significantly higher frequencies
than the quantum chemical calculations do. Among the electronic structure methods, the
periodic PBE-D3(BJ) calculations give the highest frequency values. Methanol crystals
contain strong hydrogen bond chains whose vibrational modes occur at relatively high
wavelengths (above 300 cm™). Their values are overestimated by all of the computational
methods used by up to 25%. Librational lattice modes are expected to be found in the middle
wavelength region. The frequencies of these modes are mostly underestimated by the
quantum chemical methods used here. Translational lattice modes should be found in the
lowest wavelength region, and most of the predicted frequencies in this region are
overestimated by up to 40%, while others are underestimated by almost 80%. Together,
prevailing overestimation of the low-frequency lattice modes translates to considerable
underestimation of calculated thermodynamic properties such as entropy or heat capacity for
this crystal with either PBE-D3(BJ) or MP2-based vibrational properties.

One might note that the experimental vibrational frequencies were obtained at 20 K,* while
the predicted phonons were obtained for the unit cell structure corresponding to the electronic
energy minimum. The latter neglects expansion due to zero-point vibrational motion and the
small amount of thermal expansion between 0 and 20 K, which can lead to misleading
comparisons.” To estimate the thermal and vibrational effects on the lattice-mode frequencies,
the frequencies were reevaluated using the calculated MP2 or PBE-D3(BJ) quasi-harmonic
unit cell volumes at 20 K and Griineisen parameters for the individual modes. In this way,
temperature-dependent quasi-harmonic frequencies of the lattice modes can be approximated.
The resulting frequency values are listed in Table S4. With this correction, the mean absolute
percentage deviations of the lattice-mode frequencies changed from 13% to 16% and from

19% to 14% for HMBI MP2/avtz* and periodic PBE-D3(BJ)" frequencies, respectively. So
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while such expansion effects do impact the comparison between theory and experiment, they
do not appear to be the principal source of error in the predicted frequencies.

Next, these calculated phonon properties were employed to compute vibrational Helmholtz
energy profiles for a-methanol at various temperatures as a function of unit cell volume and
interpolated via linear functions. Figure 5 compares these A.in(V) profiles at 0 K. Clearly, pure
Amoeba calculations yield an A4.i(V) line whose slope differs considerably from the other
models. In contrast, the MP2 and PBE-D3(BJ) Ai(¥) lines differ primarily in their absolute
values (by about 6 kJ mol™), rather than in their slopes. The PBE-D3(BJ)" 4.i(¥) lines exhibit
slopes that are 8% steeper than the MP2/avdz* ones and 2% steeper than the MP2/avtz* ones.
Including the anisotropy in MP2 HMBI calculations changes the slopes of A.i(V) by 9%,
making them less steep for MP2/avdz® and more steep for MP2/avtz®. The basis set size
clearly impacts the vibrational properties appreciably, which will translate to observable
differences in phenomena such as the thermal expansion. Unlike the slopes, absolute values of
Avi(V) do not impact thermodynamic properties such as the density or heat capacity of a
single phase. However, absolute values of A.iw(})) become extremely important when
comparing properties between different phases, e.g. Gibbs energies and related phase
equilibria.

3.3 Sublimation Enthalpy

Now consider the sublimation enthalpy at 0 K. The differences in the zero-point vibrational

ZPVE
energy (swb £ ) between the crystal and ideal gas phase were calculated within the

harmonic approximation by combining the phonon results obtained using the HMBI
MP2/avdz, MP2/avtz and PAW/PBE-D3(BJ) levels of theory with the fundamental vibrational
frequencies of an isolated gas-phase methanol molecule geometry optimized at the same

levels of theory. No scaling factors were applied to the calculated vibrational frequencies for
. o . A H . .
this purpose. Sublimation energies (~ "~ ) were evaluated at 0 K coupling the cohesive
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ZPVE
energies and s terms, both evaluated either using a “static” model based on the

geometries corresponding to the minimum of the electronic energy (described in Section 3.1),
or a quasi-harmonic model based on the unit cell volumes corresponding to the minima of the

Helmholtz energy profiles at 0 K and zero pressure (using the quasi-anisotropic MP2/avtz*

. AZPVE E A H
phonon data). Table 1 lists the respective cohesive energies, ~su terms and s

values. It compares them against the reference experimental value of 45.7+0.3 kJ mol™', which

was extrapolated to 0 K and whose uncertainty was critically evaluated in ref.2. Both the static

. . . NEp A H o
and quasi-harmonic models yield comparable ~su values. The ~s® " values exhibit

larger scatter due to variations in the underlying cohesive energies. Smaller basis set HMBI
MP2 calculations underestimate A H , and increasing the basis set size in the MP2
calculations converges the calculated A H towards the experimental value. The static

MP2/cbs A H value matches experiment extremely well, overestimating it by only 0.5 kJ

mol™!, which is comparable to the experimental uncertainty. However, switching from MP2 to

A, H

sub

CCSD(T) increases the a-methanol cohesive energy further, and the CCSD(T)/cbs

value is 2.2 kJ mol™' larger than experiment. On the other hand, the CCSD(T)/cbs’ A H

value from the DFT geometry underestimates the experimental value by 2.4 kJ mol™. In

contrast, PBE-D3(BJ)  overestimates the sublimation enthalpy by an even larger 5 kJ mol .

Comparing the static and quasi-harmonic A H results, one observes that the larger unit cell
volume of the quasi-harmonic model (due to expansion from zero-point vibrational energy)
slightly destabilizes the cohesive energy of the crystal (by 0.2 — 0.4 kJ mol™" depending on the

curvature of given E.(}) curves). However, the larger volume also decreases the ZPVE in the

ZPVE
crystal, leading to a less negative ~su term. Thus, the two contributions counteract one

16



another and the static and quasi-harmonic models yield A Hvalues for a-methanol that
differ by less than 0.3 kJ mol™ at 0 K.

3.4 Molar Volume

Directly measurable thermodynamic properties such as density or isobaric heat capacity can
be obtained from the calculated Eu(V) and A.iw(})) curves. The appropriateness of the
computational model for calculation of the structural properties can be assessed by comparing
the calculated and experimental molar volumes at the standard pressure. The quasi-harmonic
approximation enables quantification of the thermal expansion, meaning that the temperature-
dependence of the molar volume can be discussed as well.

To our knowledge, only five references report information on experimental molar volumes at
standard pressure.** % In Figure 6, it can be seen that these points exhibit a non-negligible
scatter which obscures the actual extent of thermal expansion and hinders drawing strong
conclusions about the accuracy of the calculated thermal expansivity. Qualitatively, the
calculated Vw(7) trends are generally in reasonable agreement with the experimental data.
Figure 6 illustrates the performance of the same hierarchy of quantum chemistry levels of
theory for predicting the molar volume. The trends in the molar volume of a-methanol mimic
those seen above for the Eu(V) curves. Switching from DFT or small-basis MP2 to larger
basis sets and/or CCSD(T) yields smaller equilibrium molar volumes. Compared to
experimental data near 0 K, the MP2/avdz® molar volume is overestimated by 8%, while the
CCSD(T)/cbs® molar volume is underestimated by 3.9% (by 4.3% for the fully isotropic
CCSD(T)/cbs* model). Increasing the basis set systematically decreases the molar volume, as
seen previously.> * At the complete basis set limit, MP2 already underestimates the
experimental molar volume, and switching to CCSD(T) reduces the molar volume further in
this system.

The closest agreement between theory and experiment in the low temperature region is

observed for MP2/avqz® and CCSD(T)/cbs’, which differ from the experimental data by less
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than 0.5% and 0.2%, respectively. Of course, the good agreement with experiment for these
two particular levels of theory represents a fortuitous compensation of errors: MP2/avqz*® uses
a large but still incomplete basis, while the CCSD(T)/cbs result is based on a geometry that is
further from the true CCSD(T)/cbs minimum (as measured by energy and discussed in
Section 3.1). Including the anisotropy into the computational model (through unit cell
geometry optimizations) increases the molar volume by 0.4 % at the vicinity of 0 K and by
1.7% around the a-B phase transition temperature157.34 K.** Though these changes are small,
the rate of thermal expansion from the anisotropic model appears slightly closer to the
experimentally observed result.

Since the MP2/avtz, MP2/avqz, MP2/cbs, and CCSD(T)/cbs data sets all utilize the
MP2/avtz phonons, the differences among the molar volumes obtained at these levels of
theory arise solely from the differences in the Eu(V) curves. The slope of the CCSD(T)/cbs®
Vi(T) curve for a-methanol is 36% less steep than those of the MP2/avtz® curve (47% less
steep for CCSD(T)/cbs*), as a result of a steeper (by 22% and 29%) expansion branches of
the Eu(V) curve, respectively. Clearly, a compensation of errors in the calculated E. (V) and
Avi(V) functions can result in a very good agreement of theory and experiment, e.g. too a
steep Eu(V) can be compensated for by a slower decline of A4.i(}) or vice versa. This
phenomenon can also be observed when comparing the Amoeba and MP2/avdz® data sets in
Figures 2, 5, and 6. Despite predicting much steeper potential energy curves, Amoeba yields a
molar volume that is comparable to the MP2/avdz one. Closer inspection reveals that the
MP2/avtz level of theory best reproduces the experimental slope of the Vin(7T) curve. Higher
levels of theory damp the thermal expansivity and yield less realistic Vm(7) slopes. Notably,
the Vin(T) slope of the CCSD(T)/cbs*, CCSD(T)/cbs® and CCSD(T)/cbs' data sets are 49%,
38% and 10% underestimated when compared to experimental data, respectively.

Table 2 summarizes the experimental and calculated lattice parameters for the

temperatures of the experimental determination. Experimental unit cell parameters of a-
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methanol at 15 K and 122 K were determined in two literature studies.** * Note that both this
study and ref.** align the hydrogen bonds along cell vector a, while ref.® aligns them along
cell vector b). The experimental data suggests that o-methanol undergoes moderately
anisotropic thermal expansion between 15 K and 122 K, expanding 0.1%, 1.1%, and 2.0% in
the a, b, and ¢ directions, respectively. The anisotropy reflects the fact that the thermal
expansion preferentially occurs in directions orthogonal to the hydrogen bonds (i.e. along the
b and ¢ vectors).

Obviously, the fully isotropic model employed here (star labeled data sets from HMBI
calculations on isotropic MP2/avtz geometries), fails to capture the anisotropic expansion ,
and it predicts comparable elongation of all three unit cell vectors during the thermal
expansion (see Table 2). In contrast, both quasi-anisotropic models (dagger and circle labeled
data sets) correctly predict larger expansion along the b and c¢ vectors and less expansion
along the a vector. However, both the HMBI and DFT quasi-anisotropic models incorrectly
predict larger expansion along the b vector instead of the ¢ vector.

Although it neglects the anisotropic expansion, the isotropic MP2/avtz* model
fortuitously predicts the overall unit cell volume the most accurately. The quasi-anisotropic
MP2/avtz® model produces flatter E.(}) and steeper 4.in(?) curves, which translates to larger
unit cell volumes than those from MP2/avtz*. On the other hand, counterpoise-corrected
MP2/avtz typically overestimates unit cell volumes due to basis set incompleteness™ * (see
Figure 6). Using a larger basis set would decrease the volume, moving it in the direction of
improved agreement with experiment. Of course, the molar volumes computed with larger-
basis MP2 and CCSD(T) single points hint that the molar volume may well become too small
if full optimizations were performed at higher levels of theory.

While the thermal expansivity derives from the expansion branch of the Eu(V) curve,
the compressibility of the crystal involves both branches of E«(V). Therefore, the comparison

of a calculated Vi(p) trend at a given temperature with experimental data should provide more
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insight into the consistency and accuracy of the theoretical model. Figure 7 illustrates a
comparison of Vu(p) trends for the various computational models against experimental data
from ref.*® at 153.2 K. Unfortunately, experimental thermodynamic data in the high-pressure
region are rather scarce, and the comparison has to be limited to the sub GPa range. In Figure
7, all calculated Va(p) curves qualitatively capture the convex decline of the volume with
increasing pressure. Again, improving the basis set and correlation treatment leads to lower
molar volumes. MP2/avdz® yields molar volumes overestimated by 6.0%, while
CCSD(T)/cbs* and CCSD(T)/cbs*® underestimate the volume by 6.2% and 5.7%, respectively.
The best agreement in terms of slopes of the calculated Vi(p) curves is achieved for the quasi-
anisotropic CCSD(T)/cbs’ and CCSD(T)/cbs® data sets, with slopes differing from the
experimental data by only 10% and 4% on average, respectively. The isotropic CCSD(T)/cbs*
data set underestimates the slope by 16% relative to the experimental data. At higher pressures
around 1 GPa, both CCSD(T)/cbs* and CCSD(T)/cbs® predict similar Vi (p) curves, indicating
that the anisotropy plays a smaller role in the compression of a-methanol than it does in the
thermal expansion. Figure S2 illustrates calculated molar volumes at selected temperatures in
the high pressure region. Because the curvature of the isotropic Eu(V) curve is flatter, lower
molar volumes are obtained with CCSD(T)/cbs” for the compression regime at pressures
above 2 GPa at 0 K (this pressure threshold increases with rising temperature).

Given that errors exist in both the predicted E. (V) curves and quasi-harmonic phonon
frequencies, it is interesting to investigate how uncertainty in those fundamental quantities
translates into uncertainties in the predicted molar volumes and thermal expansivity. To study
the sensitivity of these cell volume properties to the uncertainty in the phonon frequencies, we
used the CCSD(T)/cbs* data set and scaled the MP2/avtz* fundamental vibrational
frequencies. Two cases were considered: (1) scaling all modes by 0.92, or (2) scaling lattice
modes with values ranging from 0.8 to 0.6, low-frequency intramolecular modes (below 2000

cm™") by 0.9682, and high-frequency intramolecular modes (above 2000 cm™) by 0.9302 (the
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scaling parameters obtained in Section 3.2). These multiple scale factors were developed in
the same way as in ref.?: by comparing calculated and experimental fundamental vibrational
frequencies for individual modes and aiming to bring the scaled calculated frequencies into as
close agreement with their experimental counterparts as possible. As expected, down-scaling
the phonon frequencies leads to a steeper decline of the A.i(¥) functions, which translates to
decreased molar volumes that underestimate the experimental values even more. In other
words, scaling the phonon frequencies down shifts the molar volumes in the wrong direction,
even though the intramolecular harmonic frequencies of are obviously overestimated relative
to the anharmonic experimental values and scale factors lower than unity are appropriate. On
the other hand, frequency scaling does partially correct the slopes of the Viu(7) curves relative
to experiment. Without a complete experimental assignment of the lattice vibrational modes,
it is difficult to assess the appropriate scaling of those modes more carefully. Illustration of
how the frequency scaling affects the calculated molar volumes is given in Figure 8 (left
column). Notably, the frequency scalings considered here affect the molar volumes by less
than 2%, which is considerably less than the difference between theory and experiment.

An analogous procedure was performed to study the sensitivity of molar volumes on
the steepness of the E.(}) curve. A single scale factor ranging from 0.8 to 1.2 was used to
scale the whole E. (V) curve, adjusting the slopes of its branches without altering its shape.
Figure 8 (right column) shows that modifying the steepness of the E. (V) curve affects the
molar volume more significantly than frequency scaling, namely up to 5%, which is already
comparable with the percentage deviation of the CCSD(T)/cbs* molar volume results from
experimental data. As expected, making the E.(V) curve less steep amplifies the thermal
expansivity of the crystal and vice versa. Making the E. (V) curve 20% less steep almost fully
corrects the slope of the Vu(7) curves to the experimental value although it does not correct
the volume offset at zero temperature. Making the energy well even flatter will result in

unnaturally steep V(7) curves pointing to strongly overestimated thermal expansivity. It
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means that the correct volume trends cannot be simply reached by scaling the energy well
only as volume is affected by a complex interplay of both the shape/position of the electronic
energy well and the phonon properties.

Another potential source of computational uncertainty lies in the fitting procedure
which is used to interpolate the discrete points of the Helmholtz energy profiles to obtain

14,22 have used

Helmholtz energy as a function of volume in an analytical form. Recent works
the simple model Murnaghan equation” which, however, was not developed or optimized for
molecular crystals. Therefore, imperfect fits can occur for more complex shapes of Eu(V)
curves, and those fitting errors would impact the Helmholtz energy. This can subsequently
introduce considerable uncertainty into the resulting thermodynamic properties. It should be
noted that even small root-mean-square errors (RMSE) ranging in the order of tenths of
kJ'-mol™" can be problematic when sub-kJ-mol™ accuracy is required. For details on a
comparison of selected functional forms used for fitting of total Helmholtz energy, such as
Birch-Murnaghan equation, empirical equations or splines, see Figure S3 and Table S5 in
Supporting Information. The Vin(7) curves differ by a few percentage units depending on the
functional forms used in the fit. Although splines can fit the E.(V) data perfectly in terms of
RMSE, their use cannot be recommended for this purpose because they usually do not smooth
any numerical noise in the discrete energy points obtained from the quantum calculations.
This noise can lead to sudden, artificial changes of trends or even peaks in the final
thermodynamic properties. Such computational artifacts occur mostly in the vicinity of the
nodal points where a transformation between two spline functions occurs.

To summarize, the quasi-harmonic calculations predict the rate of thermal expansion
with decent accuracy, especially when quasi-anisotropic models are used for the energy-
volume curves. However, predicting the actual molar volume is more difficult, with the
nominally best models of theory underestimating it by several percent. Sensitivity analysis

suggests that the shape of the E. (V) curve has a larger impact on the thermal expansivity than
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the magnitudes of the phonon frequencies. However, simple scaling of either the energy-
volume curve or the phonons does not bring the predicted molar volume curves into
quantitative agreement with experiment.

3.5 Heat Capacity

Structural properties of condensed phase systems (like molar volumes) are usually easier to
predict theoretically than thermodynamic properties. This proves to be the case for a-
methanol and its isobaric heat capacities. Experimental C,(7) data were taken from ref.®,
which reports C, uncertainties not exceeding 0.5 J-K '-mol™". There are also older works®" %
reporting data on C, which agree very well with ref.*

Figure 9 shows that CCSD(T)/cbs’ calculations yield a C,(7) trend being in the closest
agreement to the experimental data. Still, the relative percentage deviation of this data set
amounts to 12%, equivalent to 7 J-K"-mol™" at 150 K. In case of the quasi-anisotropic HMBI
based C,(7) results, using larger basis sets and CCSD(T) instead of MP2 only worsens the
agreement between theory and experiment. For example, MP2/avdz® and CCSD(T)/cbs®
underestimate C,(7) by 21% and 29% at higher temperatures, respectively (isotropic
CCSD(T)/cbs* C,(T) even by 32%). Such deviations largely exceed the tolerable uncertainty
threshold for calculated C,(T) for applications requiring sub-kJ-mol™ accuracy. The fact that
all calculated C,(7) are significantly underestimated suggests that the calculated vibrational
frequencies, especially the lattice modes, are significantly overestimated by theory. To analyze
the sensitivity of C,(7) on the uncertainty of vibrational frequencies and the shape of the
Ea(V) curve, the same procedure consisting in scaling the intermediate properties was
performed as in the case of the molar volumes.

Figure 10 (left column) reveals that heat capacities are significantly more sensitive to the
uncertainty of the vibrational frequencies than the molar volumes were. By varying the scale
factor used for the lattice modes, we found that an optimal value around 0.70 is capable of

bringing the C,(7) trend obtained at the CCSD(T)/cbs* level to close agreement with the
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experimental data in temperature region below 60 K. This result suggests a substantial
computational uncertainty in the vibrational frequencies of the lattice modes of a-methanol.
At higher temperatures, other uncertainty sources prevail since further lowering the scale
factor below 0.70 does not improve the quality of the calculated C,(7). Obviously, higher-
frequency modes, especially methyl rotations, become important above 60 K. Thermal
expansion also contributes more appreciably to the isobaric heat capacity at higher
temperatures.

Sensitivity trends for C,(7) are reversed compared to those for the molar volume, since C,(7)
depends much more on the uncertainty of the vibrational frequencies than the uncertainty of
the E.(V) curve. As can be seen in Figure 10 (right column), the shape of the E. (V) curve
becomes relevant in the temperature region above 60 K. However, scaling the E. (V) curve by
a factor 0.80 causes a 10% change in C, at 150 K, corresponding to 4 J-K"-mol™". Figure S4
illustrates calculated C, at selected temperatures in the high pressure region.

Because CCSD(T)/cbs® is assumed to be the highest level of theory used in this work, its
massive underestimation of C, merits closer analysis. As C, is significantly affected by both
vibrational frequencies and the thermal expansivity, errors in both parameters accumulate to
give a 30% underestimation of C,. Anisotropic CCSD(T)/cbs® data on both C,(7) and Vw(T)
are in closer agreement with experiment than the corresponding isotropic CCSD(T)/cbs* data
sets. The quasi-anisotropic model softens the overly steep CCSD(T)/cbs* expansion branch,
improving the quality of the calculated thermal expansivity. Still, the CCSD(T)/cbs® Eu(V)
curve is burdened with some uncertainty as it is constructed only using single point
CCSD(T)/cbs calculations on MP2/avtz® geometries, not on CCSD(T)/cbs geometries. When
combined with the errors in the MP2/avtz® phonon frequencies, the resulting CCSD(T)/cbs®
C, exhibits one of the largest deviations from the experimental data among all of the levels of
theory employed here (larger than lower-level MP2 providing less steep E«(V) curves). Using

higher-level methods makes the E« (V) well steeper and attenuates the already underestimated
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thermal expansion, causing the higher-level methods to yield C, in worse agreement with
experiment. In contrast, CCSD(T)/cbs® predicts C, much better (percentage deviation more
than halved related to CCSD(T)/cbs®), possibly due to partial compensation of errors of the
phonons and thermal expansivity. This result contradicts the methanol dimer benchmarks
described earlier, where MP2 provided a much better description of both the binding energy
and the shape of the potential energy well. In other words, it once again appears that error
cancellation between the calculated lattice energy, unit cell volume, and phonons plays a

significant role in the quality of the thermodynamic and structural predictions.

4. CONCLUSIONS

We calculated vibrational, structural and thermodynamic properties of o-methanol using
wavefunction-based ab initio methods in the HMBI formalism and periodic DFT calculations,
both coupled with the quasi-harmonic approximation. The results of this study provide a
mixed picture. On the one hand, experimental properties such as the sublimation enthalpy at 0
K and the thermal expansivity are reproduced fairly well by the higher levels of theory. On the
other hand, other properties prove more problematic to be predicted reliably. The
intramolecular vibrational frequencies are often significantly overestimated, as one might
expect from a harmonic vibrational model. The intramolecular modes can be corrected
somewhat through frequency scaling. However, the errors in the lattice phonons are
proportionally much larger and vary more in sign and magnitude, which is particularly
troublesome given the large impact these modes have on many finite-temperature properties.
Using MP2/avtz instead of DFT does not provide appreciable improvements in the predicted
phonons for a-methanol. Although the models predict the rate of thermal expansion
reasonably, the best calculations underestimate the unit cell volume appreciably, suggesting
that the models overbind the crystal somewhat (which is also supported by the sublimation

enthalpies). The isobaric heat capacity is substantially underestimated as well.
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Sensitivity analysis was performed to investigate how errors in the fundamental computed
quantities affect the observed properties. We find that crystal phase densities are more
sensitive to the shape of Eu(V) curve, while isobaric heat capacities depend more on the
quality of the vibrational frequencies. The shapes of the E.(}) curves do converge with
increasing basis set/level of theory. The assumption of isotropic crystal expansion in the
model, leading to artificially steep walls on the CCSD(T)/cbs* curve, can impact the resulting
structural thermodynamic properties by attenuating the thermal expansion. This can be
partially corrected by allowing the unit cell to expand anisotropically, though the quasi-
anisotropic model used for the CCSD(T)/cbs® and CCSD(T)/cbs’ data sets is not capable of
capturing the anisotropic effects completely (because the phonons depend only on the cell
volume, rather than the specific cell shape). Even though the quasi-anisotropic results are
always in a closer agreement with experimental data than the isotropic data are, the magnitude
of the computational errors observed here cannot be fully explained by the crystal anisotropy.
Nevertheless, anisotropy affects both the cohesive energy and vibrational frequencies and is a
non-negligible source of the computational uncertainty for the structural and thermodynamic
properties for molecular crystals. A three-dimensional extension of the quasi-harmonic
approximation which would allow a rigorous treatment of the anisotropic expansion would
provide an interesting topic for future work.

For the heat capacities, uncertainties in the frequencies are particularly apparent at low
temperatures (below 60 K for methanol). At higher temperatures, uncertainty in the thermal
expansivity contributes appreciably to the errors in as C, well. These issues cause an
underestimation of the calculated isobaric heat capacities that reaches 30% for the
CCSD(T)/cbs® level of theory, easily exceeding the acceptable levels of uncertainty for
applications requiring sub-kJ-mol™ accuracy. Reducing the uncertainty in C, would require

simultaneously improving the quality of the vibrational frequencies and the thermal
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expansivity trends which are dominated by E. (V) as well as accounting for the anisotropy of
all such contributions properly.

One of the interesting observations here is how much compensation of errors among the
different electronic energy, geometry, and phonon properties impacts the final results. Despite
evidence that the CCSD(T) results based on the MP2 geometries are probably superior to
those on the DFT geometries, properties such as the heat capacities predicted from the DFT
geometries actually agree more closely with experiment. Ideally, one would compute all
properties at the large-basis CCSD(T) limit, but of course that is computationally infeasible in
practice. Employing single-point energies with the higher electronic structure methods did
clearly improve the quality of the predicted sublimation energies and are probably
worthwhile. In contrast, MP2 phonons did not appear to provide significant improvements
over the DFT ones, so one might reduce the computational effort required by computing
phonons with DFT (potentially on unit cells predicted with either DFT or MP2) instead of
MP2. That said, the limited accuracy of the harmonic phonons from either method remains a
significant issue. The fact that one can compute thermodynamic properties in molecular
crystals at such high levels of theory represents how much theoretical progress has been made
in recent years. Nevertheless, it is clear that additional theoretical advances are needed before
crystal properties can consistently be predicted quantitatively at finite-temperature and
pressure properties. The errors among energies, volumes, and frequencies are all closely
coupled, and improving the treatment of the phonons and the crystal expansion could

significantly impact all of the predicted properties.
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TABLE 1

Cohesive energies (Econ, in kJ-mol™) and sublimation enthalpies

calculated using various levels of theory.

Asub[_[ (O K)

of o-methanol

Level of theory Eooi® APVEE A H ., Eor? APVEE A LH
MP2/avdz® 45.44 -6.72 38.72 -45.13 -6.31 38.82
MP2/avtz® -50.00 -6.77 4323 -49.62 -6.29 43.33
MP2/avqz® -51.68 ) 44.82 -51.34 -6.47 44.87
MP2/cbs® 5203 - 16.16 -52.61 -6.60 46.01
CCSD(T)/avtz* -51.77 - 45.00 -5147 -6.46 45.02
CCSD(T)/cbs* -54.63 - 4786 -54.37 -6.77 47.59
PBE-D3(BJ)' 57.42 -6.96 50.46 -57.01 *6.65 5036
CCSD(T)/cbs' -50.21 i 43.25 -49.80 -6.83 42.97
Experiment? - ) 457 - ) 457

* Values calculated for the unit cell geometries obtained by optimization of electronic energy.

® Values calculated for the unit cell volumes obtained by the quasi-anisotropic quasi-harmonic model.

TABLE 2

Comparison of experimental and calculated unit cell parameters and volumes for a-methanol

(in A) at selected temperatures illustrating the anisotropy of its thermal expansion.

Data set T a b c %
Experiment™ 15K 46411° 4.8728° 8.8671  200.53
PAW/PBE-D3(BJ) 4.45 521 9.26 215.13
PAW/0optPBE-vd W2 4.60 5.15 9.33 221.23
HMBI MP2/avtz" 458 491 9.06 203.68
HMBI MP2/avtz® 455 4.95 9.12 205.45
Experiment® 12K 46469 49285 9.0403  207.04
PAW/PBE-D3(BI) 447 5.33 930  221.73
PAW/optPBE-vdW2 4.61 522 9.43 227.29
HMBI MP2/avtz" 4.64 497 9.17 211.39
HMBI MP2/aviz* 4.56 5.09 9.17 212.55

* Ref.® uses a different system of axes where a and b vectors are interchanged.

® Fully isotropic expansion quasi-harmonic model used (star labeled in text).

¢ Anisotropy of the electronic cohesive energy included in the quasi-harmonic model (circle labeled in

text).
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FIGURE 1. Unit cell structure orthorhombic o-methanol with marked two antiparallel

hydrogen bond chains passing through a unit cell.

FIGURE 2. Comparison of electronic energies of a unit cell of a-methanol calculated by
various quantum chemical levels of theory: left — convergence towards the CCSD(T)/cbs

limit; right — effect of the underlying geometries on CCSD(T) energy single point

calculations.
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FIGURE 3. Relative percentage deviations of calculated (v.) fundamental intramolecular

vibrational frequencies calculated at selected levels of theory from experimental frequencies

(Ve).
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FIGURE 4. Relative percentage deviations of calculated (v.) fundamental lattice vibrational

frequencies calculated at selected levels of theory from experimental frequencies (ve).
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FIGURE 5. Vibrational Helmholtz energies of a-methanol at 0 K as functions of unit cell

volume calculated by selected quantum chemical levels of theory.
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FIGURE 6. Comparison of temperature-dependent molar volumes of a-methanol at standard

pressure calculated by various quantum chemical levels of theory.
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FIGURE 7. Comparison of pressure-dependent molar volumes of a-methanol at 153.2 K

calculated by various quantum chemical levels of theory.
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FIGURE 8. Analysis of sensitivity of temperature dependent molar volumes of a-methanol at
standard pressure to 1) left— scaling of the frequencies of the lattice, low intramolecular and

high intramolecular vibrational modes; ii) right — scaling of the Ee(V,) curve.

T T X L I
—_—100, —_— 0921, 32| ==—080El (V) wm—090E V) -
| =—0801,09682: ;09302 — ) — . .
32 — .70 “ 0.9682 v, ; 0.9302 v, :n o _:'2: Eﬁ‘(z) _:V?E Eﬁ'(:)
- — 0,60 v; 0.9682 v, ;0.9302 v, ) 3‘( ! oY) L 4
I & Eieiiont L 3 1—| 120 E(V) 4 Experiment ¢
o * e
= £
)
o
£ e
2 1)
c =
= N
28
0 150 0 150
7K 7K

36



FIGURE 9. Comparison of isobaric heat capacities (C,) of a-methanol at standard pressure

calculated by various quantum chemical levels of theory.
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FIGURE 10. Analysis of sensitivity of temperature dependent isobaric heat capacity of a-

methanol at standard pressure to 1) left— scaling of the frequencies of the lattice, low

intramolecular and high intramolecular vibrational modes; ii1) right — scaling of the Eu(Vn)

curve.
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