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Abstract

Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shield-

ing tensors in molecular crystals with high accuracy and computational efficiency. Such

methods typically employ electrostatic embedding to mimic the crystalline environ-

ment, and the quality of the results can be sensitive to the embedding treatment. To

improve the quality of this embedding environment for fragment-based molecular crys-

tal property calculations, we borrow ideas from the embedded ion method to incorpo-

rate self-consistently polarized Madelung field effects. The self-consistent reproduction

of the Madelung potential (SCRMP) model developed here constructs an array of point

charges that incorporates self-consistent lattice polarization and which reproduces the

Madelung potential at all atomic sites involved in the quantum mechanical region of

the system. The performance of fragment- and cluster-based 1H, 13C, 14N and 17O

chemical shift predictions using SCRMP and density functionals like PBE and PBE0

are assessed. The improved embedding model results in substantial improvements in
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the predicted 17O chemical shifts and modest improvements in the 15N ones. Finally,

the performance of the model is demonstrated by examining the assignment of the

two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the

SCRMP-embedded NMR chemical shift predictions are on par with or more accurate

than those obtained with the widely used gauge-including projector augmented wave

(GIPAW) model.

1 Introduction

Solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful and versatile

tool for obtaining detailed chemical structure information in solids, with many applica-

tions in biology, pharmaceuticals, and materials. Mapping from an NMR spectrum to a

three-dimensional crystal structure can be challenging, but ab initio quantum chemistry

techniques can facilitate this process through chemical shift prediction. Indeed, the periodic

density functional theory (DFT)-based gauge-including projector augmented wave (GIPAW)

method1,2 has come to play a central role in NMR spectral assignment and structure eluci-

dation of crystalline systems.3

Recently, however, modern fragment methods4 have emerged as a viable alternative to

GIPAW for chemical shift prediction in molecular crystals.5–9 By decomposing a molecular

crystal into smaller fragments (often just monomers and dimers), these methods can reduce

both the total computational cost of chemical shift prediction and facilitate the highly par-

allel software implementations which enable chemical shifts of even complicated crystals to

be predicted within a few hours of wall time. Even more importantly, fragment methods

provide a route to higher-accuracy chemical shift predictions. Whereas GIPAW calculations

are limited to generalized gradient approximation (GGA) density functionals in practice,

fragment methods can employ hybrid density functionals or perhaps even post-Hartree-Fock

correlated wavefunction methods for chemical shift prediction.

Early fragment work predicting chemical shifts in molecular crystals used small, finite
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clusters in conjunction with point charge embedding schemes designed to approximate the

crystalline environment. For example, electrostatic embedding models such as the surface

charge representation of the electrostatic embedding potential (SCREEP)10 model and the

embedded-ion method (EIM)11,12 surround the molecular/cluster calculations with an array

of point charges that have been optimized to reproduce the Madelung potential at each atom

site in the crystalline system. Such models capture long-range electrostatic and polariza-

tion effects, but using a small cluster can miss important short- or medium-range quantum

mechanical interactions.

More recently, advances in computer processing power have made large cluster calcula-

tions that include all nearest-neighbors (often 10-15 molecules) tractable. For example, the

symmetry-adapted cluster (SAC) method uses symmetry considerations to perform NMR

chemical shielding calculations on a large finite cluster, effectively capturing local many-

body polarization effects.13,14 Augmenting a cluster approach with simple electrostatic em-

bedding models further improves accuracy by including long-range electrostatics.7 Fragment

methods which replace the large cluster calculation with many computationally inexpensive

monomer and dimer fragment calculations have also proven very effective in predicting chem-

ical shifts at much lower computational cost.6–9 The dimer fragments capture local quantum

mechanical interactions, while the electrostatic embedding helps incorporate long-range and

many-body polarization effects arising from the crystalline environment.

Recent benchmark studies involving 1H, 13C, 15N and 17O isotropic shielding predictions

have established that when the same density functional is used (e.g. PBE), embedded frag-

ment and cluster models often perform comparably well to the highly successful periodic

DFT GIPAW method.7,8 However, switching to hybrid density functionals like PBE0 or

B3LYP instead of GGAs like PBE or BLYP, which is routinely feasible with fragment meth-

ods, often enables one to predict chemical shifts with ∼20–30% higher accuracy than GIPAW

PBE.7,8 The inclusion of exact exchange in hybrid density functionals improves the descrip-

tion of the electron density,15,16 which is key to understanding the chemical shielding. This
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higher accuracy translates to increased NMR discrimination between correct and incorrect

structural assignments in polymorphic crystals or other systems.9

Despite numerous successes of the fragment models for chemical shift prediction, limita-

tions have emerged in the existing implementations. The accuracy of 17O chemical shifts,

which are particularly sensitive to the electrostatic environment, is somewhat worse with

fragment methods compared to other nuclei. In the aforementioned 17O benchmarks, GI-

PAW PBE outperformed even combined cluster/fragment PBE0 calculations due to its more

complete treatment of long-range and many body effects.8

Previously, our cluster and fragment electrostatic embedding schemes relied upon atom-

centered point charges obtained from Gaussian distributed multipole analysis (GDMA). The

GDMA was carried out on isolated monomers and the resulting atom centered charges were

placed on all molecules within a 30 Å radius of the asymmetric unit.6–8 This simple em-

bedding model suffers from three main limitations. First, truncated GDMA schemes do

not always converge uniformly toward the complete multipolar expansion.17 Embedding

with GDMA charges and dipoles instead of charges only does not necessarily improve the

predicted chemical shieldings.6 Second, atom-centered charges derived from calculations in-

volving isolated monomers neglect polarization effects in the crystalline environment. Third,

a simple 30 Å cutoff radius does not always account for the long-range electrostatics in a

formally infinite lattice. This latter point is especially clear in crystals comprised of highly

charged monomers or polar unit cells like the γ-polymorph of glycine, which exhibits large

errors and poor convergence with regard to both the DFT self-consistent-field iterations and

the predicted chemical shifts as a function of the fragment and embedding cutoff parameters.

The present work adapts ideas from the SCREEP and EIM models to improve the electro-

static embedding environment employed in fragment-based chemical shielding calculations.

First, to avoid errors associated with truncated GDMA multipolar expansions, the GDMA

point charges for the individual molecules are replaced with charges from electrostatic poten-

tials using a grid-based method (CHELPG).18 Second, Ewald summation19 over the lattice
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of CHELPG charges is employed to capture long-range electrostatic effects on the potential.

Third, the key quantum mechanical (QM) fragment/cluster region is embedded with a set

of point charges. Similar to our previous work, charges close to the central region are set to

the CHELPG values. However, in the new model, more distant charges are fitted such that

the Madelung potential is accurately reproduced throughout the QM region. Finally, a self-

consistent embedding procedure20 is introduced wherein the atom-centered CHELPG charges

are re-computed in this crystalline embedding environment. The entire procedure repeats

until the embedding charges converge. This self-consistent reproduction of the Madelung po-

tential (SCRMP) model augments the high-quality QM treatment of local effects afforded by

fragment-based models with an improved treatment of lattice electrostatics and polarization

akin to that found in the SCREEP and EIM methods.

We first discuss the SCRMP embedding model before examining its performance in frag-

ment and cluster-based isotropic chemical shift calculations. In particular, we examine the

impact of the improved embedding model on the prediction of 1H, 13C, 15N and 17O experi-

mental chemical shifts in molecular crystals. Although the effects of the improved SCRMP

embedding model are minimal for 1H and 13C shifts and modest for 15N chemical shifts, it

significantly increases the statistical accuracy of the 17O chemical shifts versus experiment.

Finally, the benchmark data also provides a set of linear regression parameters for mapping

predicted chemical shieldings to the experimentally determined chemical shifts. We apply

SCRMP embedded fragment and cluster calculations along with the linear regression pa-

rameters to predict the 17O chemical shifts for the challenging γ-polymorph of glycine. The

combined cluster/fragment SCRMP methods improve upon both the pure fragment and

GIPAW results.
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2 Theory

2.1 Ab initio fragment-based shielding calculations

Fragment-based chemical shift prediction methods rely upon a many-body expansion for

the chemical shielding tensor, which can be derived via differentiation of the many-body

expansion for the energy with respect to the nuclear magnetic moment and the external

magnetic field,8

σ̃
A
i = σ

A
i +

∑

j

∆2
σ

A
ij +

∑

jk

∆3
σ

A
ijk + ... (1)

where σ̃
A
i is the chemical shielding tensor for atom A on molecule i in the full system

environment. Equation 1 decomposes σ̃
A
i into contributions from the shielding tensor for

the isolated molecule (σA
i ), pair-wise contributions (∆2

σ
A
ij) from each dimer, three-body

contributions ∆3
σ

A
ijk from each trimer, and contributions from higher-order terms.

The two-body fragment approach achieves low computational cost by truncating Eq. 1 to

neglect long-range two-body terms and all three-body and higher terms.6–8 An electrostatic

embedding environment is introduced to account for polarization/electrostatic effects that

are neglected upon truncation of the expansion:

σ̃
A
i ≈ σ

A,emb.
i +

∑

j

∆2
σ

A,emb.
ij (2)

where σ
A,emb.
i and ∆2

σ
A,emb.
ij are the one and two-body contributions with each monomer

and dimer calculation carried out in an electrostatic embedding environment (discussed in

Section 2.2). In the context of a molecular crystal, a two-body fragment-based calculation

defines a cutoff radius RQM around the asymmetric unit, as illustrated in Figure 1. The

chemical shielding tensor for each atom in the asymmetric unit is then approximated by

calculating the monomer and two-body contributions for all dimers involving that monomer

and any other molecule whose atoms lie within RQM (typically 6 Å in practice).

Errors in the fragment approach may arise from the limitations of the embedding model
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2.2 The SCRMP model

The accuracy of Eq. 2 depends on the effective reproduction of the crystalline electrostatic en-

vironment. Our initial efforts6–8 employed a straightforward electrostatic embedding model

based upon fixed GDMA point charges obtained for isolated monomers in the asymmetric

unit.22–24 The monomer-derived GDMA charges were positioned at each atomic center for

every monomer within a user-defined charge embedding radius of molecule i in the central

unit cell (Rfix in Figure 1).

The SCRMP method adapts ideas from the embedded ion method to fragment-based

electronic structure calculations. It seeks to construct a point charge array which more ac-

curately mimics the many-body electrostatic environment in the infinite crystal. To improve

upon the sometimes poor representation of the electrostatic potential offered by GDMA

monopoles,17 it replaces GDMA charges with CHELPG ones. The CHELPG charges are

directly placed on crystal lattice atomic centers to construct the short- and medium-range

electrostatic embedding environment out to a distance Rfix. At long-range (beyond Rfix),

SCRMP surrounds these CHELPG charges with another shell of atom-centered charges

(shell thickness ∆Ropt) which are least-squares fitted such that the entire point-charge em-

bedding environment mimics the Madelung potential from the infinite lattice throughout

the QM region. This two-layer charge embedding scheme ensures that the QM fragments

are surrounded by physically appropriate charges for locally important interactions, while

also experiencing an overall electrostatic environment that closely approximates the infinite

lattice. Finally, the entire set of charges is computed self-consistently to incorporate the

many-body polarization effects that occur in the crystal lattice. More detailed description

of the procedure follows:

1. Compute CHELPG atom-centered charges for each isolated monomer in the unit cell.

In principle, one need only compute charges on monomers in the asymmetric unit and

then replicate those charges via the space group symmetry operators. However, the

current software implementation of the SCRMP construction only exploits translational
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symmetry between periodic images of the cell, and all monomer charges within the cell

are computed explicitly.

2. Use the atom-centered CHELPG charges to compute the Madelung potential (VMP (ri))

at N probe points within the probe region RQM according to the Ewald formalism19

under tin-foil boundary conditions:

VMP (ri) =
∑

n

N
∑

j

qj
erfc(

√
κ|ri − rj + n|)

|ri − rj + n| +
∑

k 6=0

N
∑

j

qj

( 4π

Ck2

)

eik·(ri−rj)e−k2/4κ (3)

where qj is the partial charge of the jth atom located at rj, C is the volume of the

unit cell, n is the real space vector and k represents the reciprocal space vector. Probe

points are placed at each atom center. Further increasing the number of probe points

via icosahedral grids surrounding the nuclei did not appreciably impact the subsequent

reproduction of the Madelung potential or the predicted chemical shifts.

3. Construct a two-layered array of point charges to reproduce the Madelung potential at

every probe point within RQM . In the inner layer, CHELPG point charges are placed

on all atoms within Rfix of the asymmetric unit (typically 30 Å and indicated by the

red and gray points in Figure 1). For the outer layer, an additional shell consisting of

N point charges is placed on a shell ∆Ropt of the N closest atoms beyond Rfix (black

charges in Figure 1). These outer N charges are optimized such that the sum of the

potentials from the fixed charges (Vfix) and the optimized charges (Vopt) approximates

the Madelung potential (VMP ) at every probe point ri:

VMP (ri) ≈ Vfix(ri) + Vopt(ri) (4)

The charge fitting in the outer shell is performed via least-squares minimization of the

objective function,
∣
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∣

∣
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|ri − rj|
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∣
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2

= ||b − Ax||2 (5)
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where rj is the position of charge qj in the outer shell. Numerical aspects of this fitting

are discussed below.

4. New CHELPG calculations are carried out for each molecule in the unit cell in the

presence of the optimized charge array obtained in Step 3. Evaluation of these charges

within the embedding potential incorporates polarization due to the crystal lattice.

The resulting embedded monomer atomic charges are compared to those used in Step

2.

Steps 2–4 are repeated until self-consistency is achieved and the new charges differ from

the previous ones by no more than root-mean-square (RMS) deviations of 10−3 atomic charge

units. This procedure typically converges in about 5 iterations.

The SCRMP approach is very similar to the embedded ion method.11,12 The two key

differences lie in the size of the QM region and the method of least squares fitting of the

outer charges. With the 2-body fragment or cluster/fragment methods, one can readily

treat comparatively larger QM regions with low computational cost. Adapting to fragment

calculations requires consideration of how to treat the atoms in the QM region that are not

present in a particular fragment contribution. In addition to surrounding the QM region

with the SCRMP embedding charges, the self-consistent CHELPG point charges are also

placed on all atoms within the QM region that are not explicitly included in a given QM

fragment.

For the least-squares charge fitting, the matrix A in Eq 5 is typically highly rank-deficient,

with condition numbers on the order of 1015 for systems we have investigated. Therefore,

the least-squares problem does not have a unique solution in the absence of additional con-

straints. The ill-conditioned least-squares fitting frequently leads to excessively large, un-

physical charges. The embedded ion method constrains the solution space by minimizing

the norm of the solution vector.11,12 Here, we solve the least-squares problem via singular

value decomposition and remove the linear dependencies via a low-rank approximation for

A. Specifically, we effectively limit the condition number to 106 by neglecting all singular
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values λi that are less then 10−6λmax. Using this approach, the SCRMP model charge array

reproduces the Madelung potential throughout the QM region to within a root-mean-square

error of ∼0.001 kcal mol−1 au−1, which is well-below the threshold for influencing chemical

shift calculations. The resulting fitted charges have magnitudes of no more than a few atomic

charge units.

3 Computational Methods

3.1 Chemical shielding calculations

The performance of the models is assessed on four test sets containing a total of 63 molecular

crystals, with 169 13C, 80 1H, 51 15N, and 28 experimental 17O isotropic chemical shifts.

Optimized crystal structures for the 1H, 13C, 15N and 17O test sets were taken from Ref 8.

The experimental crystal structure for the γ polymorph of glycine was obtained from the

Cambridge Structure Database (CSD), reference code GLYCIN34.25 The lattice parameters

were fixed at their experimental values and all atoms in the unit cell were relaxed using the

freely available, open-source Quantum Espresso software package.26 Geometry optimization

was carried out using the PBE27 density functional and the D2 dispersion correction,28

ultrasoft pseudopotentials with a plane wave cutoff of 80 Ry, and a 5×5×5 Monkhorst-Pack

k-point grid. We used the pseudopotentials H.pbe-rrkjus.UPF, C.pbe-rrkjus.UPF, N.pbe-

rrkjus.UPF and O.pbe-rrkjus.UPF from http://www.quantum-espresso.org. This protocol

is identical to the one previously applied to all the crystals in the test sets.8

Molecular crystal fragmentation through two-body was performed using our hybrid many-

body interaction (HMBI) code.29–31 Shielding calculations for individual fragments were

carried out using Gaussian 0932 with the B3LYP, BLYP, PBE0 and PBE density functionals.

PBE is very widely used in GIPAW. The other functionals were selected based on our previous

benchmark studies that found that hybrid functionals PBE0 and B3LYP perform similarly to

one another and appreciably better than their related GGA functionals PBE and BLYP.7,8
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Calculations were performed using a locally dense basis set33,34 and the gauge-including

atomic orbital (GIAO) approximation.35 All calculations used a 6-311+G(2d,p) basis36–39

for atoms in the asymmetric unit, a 6-311G(d,p) basis for neighboring atoms out to 4 Å,

and a 6-31G40,41 basis for all atoms beyond 4 Å. This locally dense basis set combination,

referred to here as our “mixed basis,” has proved effective in previous studies. The use of

smaller basis sets on distant atoms has minimal impact on the predicted chemical shieldings

for the central atoms of interest,21 while the errors introduced by basis set incompleteness in

the shieldings on the atoms of interest is compensated for by the chemical shift referencing

strategy described below.7 A large DFT integration grid consisting of 150 radial and 974

Lebedev angular points was used to approach rotational invariance and mitigate numerical

noise in the fragment calculations, as described previously.6

The embedding environment was constructed using atom-centered monopoles computed

using CHELPG as implemented in Gaussian 09. Atom-centered charges were calculated

using the same density functional and 6-311+G(2d,p) basis set as the chemical shielding

calculation. Point charges were placed on all molecules lying within Rfix = 30 Å of any

atom in the asymmetric unit. In the SCRMP implementation, an additional set of N point

charges were placed at atom centers directly surrounding the 30 Å shell and optimized

according to the procedure outlined in Section 2.2. Results which employ GDMA point

charge embedding were taken from earlier studies.7,8

Some results which include self-consistent embedding (SCE) but omit the Madelung po-

tential portions of the SCRMP model are reported for comparison with the SCRMP results.

In that case, CHELPG charges are computed for each monomer in the asymmetric unit,

and then replicated on all other monomers out to 30 Å (akin to the GDMA embedding used

previously8). The CHELPG charges are then recomputed in that embedding environment,

and the process is repeated until the CHELPG charges converge.
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3.2 Chemical shift referencing

Chemical shifts reported here are referenced relative to neat TMS under magic angle spinning

(MAS) conditions for 1H and 13C, solid NH4Cl under MAS for 15N, and liquid water for 17O.

Mapping between computed absolute shieldings σi and the experimentally observed chemical

shift δi was carried out using the linear regression scheme42 shown in Eq. 6.

δi = Aσi + B (6)

Obtaining regression parameters A and B using carefully constructed test sets8 helps miti-

gate systematic errors inherent in the chemical shielding calculations. For example, for the

oxygen test set and the basis sets used here, basis set superposition error (BSSE) typically

causes isotropic 17O shieldings on atoms in the asymmetric unit to be deshielded by a little

more than half a ppm on average for the crystals considered here. However, because the

BSSE is systematic, the linear regression compensates for a significant fraction of this effect.

In the end, compensating for BSSE would alter the shifts by root-mean-square 0.3 ppm, and

the overall root-mean-square error versus experiment by a negligible 0.01 ppm.

Linear regression models of the form presented in Eq. 6 were applied separately to each

model/cutoff combination using the experimental isotropic shifts for the respective test sets.

This approach provides transferable regression parameters which can be used to scale pre-

dicted shifts obtained for compounds not included in the test set. In Section 4.3, the 17O

chemical shift regression parameters are applied to γ-glycine, which was not included in the

17O test set used to fit Eq 6.

4 Results and Discussion

Because 17O chemical shifts are sensitive to electrostatic embedding, we first assess the

performance of the different electrostatic embedding models on the isotropic shifts in the
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Figure 2: Performance of the (a) 2-body fragment and (b) cluster/fragment models for comput-
ing 17O isotropic chemical shifts as a function of the 2-body cutoff distance with fixed GDMA
charges, fixed CHELPG charges, self-consistent embedding (SCE) CHELPG charges, and the
SCRMP model. Shifts calculated at the PBE0/mixed basis level, with a 4 Å cluster for clus-
ter/fragment. The gray line indicates the performance of GIPAW PBE for the same test set.8

17O test set. We then compare the SCRMP model results against experiment and the widely

used GIPAW method for 1H, 13C, 15N and 17O chemical shifts. Linear regression parameters

across all four nuclei and several commonly used density functionals are provided. Finally, we

apply fragment/cluster methods and the linear regression parameters to predict 17O isotropic

shifts in the challenging case of γ-glycine.

4.1 Improved accuracy 17O isotropic shielding predictions

Figure 2 illustrates the RMS errors in the 17O isotropic chemical shifts relative to experi-

ment with different embedding models as a function of two-body cutoff distance for both

fragment and cluster/fragment models. For each model/cutoff combination, linear regression

models of the form presented in Eq 6 were fitted separately against the experimental oxygen

test set. For ease of comparison, previously reported values for GDMA fragment, GDMA

cluster/fragment (orange) and GIPAW calculations (gray line) are included.8

Similar to previous findings,8 a substantial reduction in the 17O isotropic shift RMS

error is observed in Figure 2a once the two-body cutoff is large enough to capture all

nearest-neighbor molecules (∼4 Å). Nevertheless, both the fragment (Figure 2a) and clus-

ter/fragment (Figure 2b) results with simple fixed GDMA or CHELPG point-charge em-
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bedding exhibit distinct, somewhat oscillatory variation in the RMS error as the 2-body

cutoff is increased. In contrast, the chemical shift calculations employing self-consistent em-

bedding (SCE) without the Madelung potential fits or the full SCRMP embedding show

much less sensitivity to the 2-body cutoff, with negligible variations once the cutoff exceeds

4–5 Å. Furthermore, because the SCE and SCRMP models incorporate lattice polarization,

they improve the treatment of many-body effects and reduce the discrepancies between the

fragment and cluster/fragment results.

Comparison of the SCE and SCRMP models highlights the benefit of accurately treating

long-range electrostatic effects in 17O isotropic chemical shift calculations. Both fragment

and cluster/fragment methods show a ∼1 ppm reduction in RMS error versus experiment

when Ewald techniques are employed using the SCRMP model. Overall, the SCRMP embed-

ding model clearly improves the accuracy of fragment-based chemical shielding calculations.

A computationally inexpensive PBE0 two-body fragment calculation using a 4 Å two-body

cutoff yields well-converged 17O isotropic chemical shift predictions with an accuracy com-

parable to both cluster PBE0 and GIPAW PBE methods. The statistical differences among

the three methods are within the ∼0.5 ppm or larger uncertainties that are typical for ex-

perimental 17O chemical shifts.

The box plots in Figure 3a–c compare the distribution of errors across the entire oxygen

test set for fragment, cluster, cluster/fragment and GIPAW methods. These error distribu-

tions closely mirror trends in the RMS errors reported in Figure 2. Examining the range of

errors of both the middle 50% of the data (the colored boxes) and the largest errors (box plot

whiskers) shows improved accuracy for all models when SCRMP embedding is used. The

largest improvement stemming from the SCRMP embedding treatment occurs for two-body

fragment methods (Figure 3a), once again highlighting the better treatment of local many-

body effects in SCRMP. Similar to previous findings,7–9 Figure 3d shows that hybrid density

functionals (PBE0 and B3LYP) provide a noticeable improvement over their GGA-based

counterparts (PBE and BLYP).
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Figure 3: Distribution of errors relative to experiment for 28 predicted 17O isotropic shifts and
different embedding schemes with (a) a two-body fragment model, (b) an embedded cluster model
(c) a combined cluster/fragment model. (d) Compares results for several different density func-
tionals with the two-body fragment model and SCRMP embedding. 4 Å cluster and 6 Å 2-body
cutoffs were employed. RMS errors (ppm) versus experiment are reported in bold.

The fragment approaches employing SCRMP are competitive with planewave GIPAW

PBE. Two-body fragment PBE with SCRMP exhibits slightly larger 17O isotropic chemical

shifts errors (RMS 7.9 ppm) than GIPAW PBE (RMS 7.2 ppm). The difference between

these is comparable in magnitude to the ∼0.5 ppm experimental uncertainties in 17O chemical

shifts. Switching to the PBE0 functional reduces the RMS errors to 7.5 (2-body only) and

7.2 ppm (cluster/fragment).
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Table 1: Root-mean-square errors and recommended linear regression parameters (Eq 6) for
the 1H, 13C, 15N and 17O test sets using either a two-body fragment model (6 Å cutoff) or a
cluster/fragment model (4 Å cluster + 6 Å 2-body cutoff). Calculations employ the mixed basis
and either the earlier GDMA7,8 or current SCRMP electrostatic embedding models.

Two-body Fragment Cluster/Fragment
Nucleus Functional RMSE Slope Intercept RMSE Slope Intercept

1H PBE/GDMA 0.34 -0.9335 29.05 0.36 -0.9260 28.78
PBE/SCRMP 0.34 -0.9311 29.00 0.34 -0.9274 28.84
PBE0/GDMA 0.34 -0.9169 28.69 0.35 -0.9111 28.49
PBE0/SCRMP 0.33 -0.9154 28.66 0.34 -0.9114 28.50

13C PBE/GDMA 2.09 -1.0273 180.43 2.12 -1.0240 180.25
PBE/SCRMP 2.03 -1.0258 180.35 2.08 -1.0235 180.20
PBE0/GDMA 1.48 -0.9676 179.58 1.47 -0.9661 179.49
PBE0/SCRMP 1.46 -0.9666 179.53 1.46 -0.9658 179.44

15N PBE/GDMA 5.48 -1.0808 197.53 5.83 -1.0609 197.72
PBE/SCRMP 5.18 -1.0607 196.78 5.53 -1.0541 197.40
PBE0/GDMA 4.20 -1.0201 197.84 4.06 -0.9997 197.15
PBE0/SCRMP 3.86 -1.0106 197.46 4.22 -0.9992 196.71

17O PBE/GDMA 11.56 -1.1440 262.61 8.79 -1.1291 264.15
PBE/SCRMP 8.24 -1.1134 261.05 7.87 -1.1140 263.78
PBE0/GDMA 9.80 -1.0607 270.18 7.55 -1.0502 271.60
PBE0/SCRMP 7.47 -1.0320 268.50 7.17 -1.0361 271.11

4.2 Performance for other nuclei and linear regression parameters

To examine the performance of SCRMP more broadly, Table 1 presents benchmark data

on all 63 molecular crystals and 328 isotropic 1H, 13C, 15N and 17O chemical shifts from

the four test sets.7,8 These shifts span a reasonably broad range of chemical shifts typical

for organic molecular crystals. In addition to assessing the performance of different elec-

trostatic embedding models, these benchmark studies provide linear regression models that

convert predicted shieldings to chemical shifts for each nucleus under investigation. Such lin-

ear regression models partially correct for systematic errors in the chemical shift prediction

and streamline the referencing of chemical shieldings computed for other crystals. Because

GIAO-based fragment and cluster calculations are equally applicable to both periodic and

non-periodic systems, these regression models are transferable to a wide variety of problems.
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Linear regression parameters from our previous benchmark studies7,8 have subsequently been

used to solve the crystal structure of photodimerized 9-tertbutyl anthracene ester,43 to dis-

tinguish crystal polymorphs,9 and to elucidate features of the catalytic mechanism in the

enzyme tryptophan synthase.44,45

From Table 1, we observe the original GDMA and new SCRMP embedding models per-

form similarly for both 1H and 13C nuclei, with negligible differences in the root-mean-square

errors and regression parameters for a given functional. The fragment and cluster/fragment

results also perform similarly. Errors in the predicted 15N isotropic shifts vary up to a few

tenths of a ppm between the two embedding models. Surprisingly, the 15N cluster/fragment

model results are actually often a few tenths of a ppm worse than those from the 2-body

fragment model. Nevertheless, 17O nuclei clearly exhibit the most pronounced sensitivity to

the embedding environment, with 2–3 ppm reduction in errors for the SCRMP embedded

models and substantially smaller discrepancies between the fragment and cluster/fragment

model performances.

For the 17O and 15N sets in particular, the fitted slopes for the SCRMP results are closer

to the ideal value of -1 than with the older fixed-charge GDMA model. With the GDMA

model, constraining the slope to -1 in the 17O regression increases the root-mean-square

errors from 9.8 (2-body) and 7.6 ppm (cluster/fragment) to 11.0 and 8.6 ppm, respectively.

With the SCRMP model on the other hand, the errors only increase marginally from 7.5 (2-

body) and 7.2 (cluster/fragment) ppm to 7.9 and 7.8 ppm, respectively. This data indicates

that the SCRMP model is providing a more robust description of the chemical shielding with

less systematic error that the regression needs to compensate for.

Although employing the SCRMP model for 1H, 13C, and 15N nuclei does not have sub-

stantial effects on the statistical accuracy of the resulting chemical shifts, the additional

computational costs it introduces are modest, and it does provide an improved physical

description of the crystalline environment, especially for polar unit cells. We therefore rec-

ommend its use for all nuclei.
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4.3 γ-Glycine 17O chemical shielding predictions

Finally, we apply the SCRMP model and the linear regression parameters from Section 4.2 to

predict the 17O isotropic chemical shifts in γ-glycine. This polymorph exhibits zwitterionic

monomers and a non-zero net dipole moment in the unit cell, making careful treatment of the

electrostatic environment essential to accurate shift prediction. As shown in Figure 4, the two

oxygens occupy different hydrogen bonding environments: O1 has two nearby ammonium

groups (labeled 1A and 1B), while O2 has three (2A, 2B, and 2C). The experimentally

measured isotropic shifts for O1 and O2 differ by about 8 ppm (280 and 272 ppm, respec-

tively), with the smaller isotropic shift for O2 being consistent with its stronger hydrogen

bonding.46 Earlier B3LYP calculations on a 12-molecule cluster with no electrostatic embed-

ding overestimated the isotropic shifts by 30–40 ppm (B3LYP/Cluster in Table 2).46 Those

calculations also failed to distinguish the two hydrogen bonding environments, predicting

only a 2 ppm separation between the shifts and reversing the ordering of the assignments.

We revisit this system with the fragment approaches and GIPAW PBE. The SCRMP

embedding is essential in the fragment models due to the polar unit cell. Fragment calcu-

lations without SCRMP converge poorly with respect to both the DFT self-consistent field

iterations and the fragment model cutoffs. The PBE-D2 optimized atomic positions in the

unit cell agree excellently with experiment, with the key hydrogen bond distances matching

neutron diffraction data25 to within ∼0.04 Å. Table 2 lists the predicted 17O isotropic shifts

relative to experiment for both O1 and O2. The fragment and cluster/fragment shieldings

were translated to chemical shifts via the SCRMP-derived linear regression parameters from

Table 1, while the GIPAW PBE results use the regression parameters from our earlier work.8

Compared to the earlier simple B3LYP/Cluster calculations, the embedded two-body

fragment model with either PBE or PBE0 reduces the errors in the chemical shifts signifi-

cantly. Still, O2 appears particularly problematic, with a 29 ppm error for PBE. The hybrid

PBE0 functional helps, reducing that error to 19 ppm (and the O1 error down to only 2

ppm). Nevertheless, neither set of two-body fragment model predictions orders the two
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particularly strong many-body effects beyond what are captured in the embedding model,

especially for O2. To investigate these effects, the three-body contributions to the absolute

isotropic shielding were computed for the monomers that interact most strongly with O1

and O2 (Figure 4). The three-body contribution to O1 and its two nearby monomers 1A

and 1B is a fairly strong 2.2 ppm. However, the three-body contributions to O2 and its

neighbors 2A–2C are much stronger at 3–5 ppm each.

The 2-body fragment model omits these and other 3-body contributions, which explains

the particularly large errors for O2. In fact, augmenting the 2-body fragment model with

just these four three-body terms would be sufficient to order the two oxygen chemical shifts

correctly. Unlike the 2-body model, both GIPAW and the cluster/fragment model capture

those contributions naturally, which explains the more uniform-quality treatment of O1 and

O2 in those models. In practice, we believe the cluster/fragment approach is preferable

to a model that includes local three-body terms. The cluster implicitly sums the local

interactions up through all n bodies in the cluster, without any of the potential numerical

precision errors that can arise when summing many small, higher-order contributions.48 The

additional computational cost for a cluster calculation compared to a three-body model at

the DFT level is modest for a typical 4 Å cluster containing ∼15-molecules.

This strong many-body contribution outside what is captured by the embedding model

appears to be somewhat unusual, probably due to the high concentration of charged func-

tional groups in spatial proximity. In γ-glycine, the difference between the 2-body frag-

ment and cluster/fragment shifts is 15 ppm. In contrast, the root-mean-square difference in

isotropic shift between the 2-body fragment and cluster/fragment models for the 17O test

set discussed in Section 4.1 is only 1.5 ppm, with a max difference of 3.9 ppm.
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5 Conclusion

In summary, an improved, self-consistent reproduction of the Madelung potential embedding

model has been developed for fragment-based NMR chemical shift prediction. This model

combines an inner layer of explicit atomic charges on molecules close to the QM region with

a second layer of more distant point charges optimized to reproduce the overall Madelung

potential in the QM region. To incorporate polarization in the crystal lattice, the point

charges are determined self-consistently.

This SCRMP embedding model is particularly important for treating 17O (and 15N to a

lesser extent) chemical shifts and for crystals with polar unit cells. Employing the SCRMP

model substantially narrows the performance gap between 2-body fragment and cluster-type

models, which means that inexpensive 2-body fragment models can be used more often.

The γ-polymorph of glycine demonstrates that many-body effects missed by the embedded

2-body fragment model can still be important, but such cases appear somewhat atypical.

Overall, combining SCRMP-embedded fragment or cluster/fragment calculations with

the hybrid PBE0 functional allows one to predict chemical shifts with accuracy that matches

(17O) or exceeds (1H, 13C, and 15N) the accuracy of the widely used GIPAW PBE model. The

linear regression parameters that map predicted chemical shieldings to observable isotropic

shifts reported here should be generally applicable to molecular crystals and non-periodic sys-

tems modeled with the same fragment approaches. Future work will examine the treatment

of chemical shielding anisotropies and other magnetic properties with these techniques.
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