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ABSTRACT This paper considers network capacity and user coverage improvement in Internet of
Things (IoT)-oriented massive MIMO systems. In the literature, user grouping approaches have been used
in massive MIMO to improve the network capacity, where users are generally divided into non-overlapping
groups, and those users with less favorable channel conditions are dropped for capacity optimization. As a
result, users may suffer from unpredicted interruptions and delays, even long time disconnection from
the network. Moreover, non-overlapping user grouping also leads to unnecessary resource waste. As an
effort to overcome these limitations, in this paper, we introduce the concept of overlapping user grouping
by exploiting the favorable propagation property in massive MIMO. More specifically, we propose two
new user grouping approaches. First, we present a greedy search-based user grouping method by allowing
overlapping among the selected subgroups. Second, we introduce a new channel similarity measure, and
develop a low complexity overlapping user grouping approach based on the spectral clustering algorithm in
machine learning. Both the theoretical and numerical results demonstrate that: overlapping user grouping
can achieve much higher network capacity, and can ensure that at any given time, each IoT device will be
served in at least one subgroup.

INDEX TERMS Massive multiple-input multiple-output (MIMO), Internet of Things (IoT), overlapping

user grouping.

I. INTRODUCTION

In Internet of Things (IoT) oriented massive multiple input
and multiple output (MIMO) systems, where one base sta-
tion (BS) with an enormous number of antennas serves a
large group of single antenna devices simultaneously, channel
correlation among the users or devices has significant impact
on system capacity [1], [2]. More specifically, when applying
the beamforming technology, systems with improper user
selection may allocate users with high correlation into the
same beamforming subgroup, resulting in severe capacity
loss.

To maximize system capacity, a number of user selection
and user grouping methods have been proposed in literature.
The basic idea there is to select the subgroup of users that
can achieve the highest system aggregate capacity. For exam-
ple, in [3], Dimic et al. considered the case of more users
than transmit antennas, and proposed a suboptimal greedy
user selection algorithm in multiuser MIMO systems. The
algorithm iteratively selects the users that have the greatest

contributions to the aggregate capacity until no more increase
can be achieved. Although the computational complexity
is much lower than the exhaustive search-based approach,
it only achieves a fraction of the optimal capacity. In [4],
Wang et al. proposed a generalized greedy user selection
scheme based on sequential water-filling (SWF). This SWF
algorithm introduces the recursive LQ decomposition to sim-
plify the calculation of Moore-Penrose matrix inverse, and
achieves a higher sum rate than the conventional greedy user
selection method. In [5], Huang et al. proposed a greedy
user selection algorithm with swap (GUSS). Relying on the
“delete”” and “‘swap” operations, GUSS may escape from
potential local optimum and achieves a better performance
at the cost of increased number of iterations and higher
computational complexity. In [6], Nam ef al. proposed a two-
stage precoding strategy based on user grouping. In order
to reduce the overhead of channel estimation in MIMO sys-
tems, it partitions users into pre-beamforming subgroups,
then simplify the channel estimation and beamforming in the
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grouping stage. Furthermore, in [7], Shen et al. proposed a
branch-and-bound iterative user grouping algorithm named
SIEVE. By adjusting the sieve size K dynamically, in
each iteration, the SIEVE algorithm can achieve a trade-off
between search complexity and achievable capacity.

As can be seen, existing user selection approaches have
been focused on capacity maximization, but sort of over-
looked the user coverage problem: for each round, users with
favorable channel conditions will be selected, but those with
less favorable channel conditions will be dropped. This turns
out to be a major limitation with existing approaches, as users
may suffer from unpredicted interruptions and delays. For
fixed IoT devices with quasi-static channels, the situation can
be even worse. Some devices may not be served for a long
time since they might be dropped in every round.

Moreover, influenced by the traditional ‘“collision-free”
user division concept in wireless communications, existing
user grouping allows no overlapping among user groups.
However, we should note that a key property of the radio
channels in massive MIMO is favorable propagation [8],
which is defined as the mutual orthogonality among vector-
valued channels corresponding to each terminal. If we insist
that the user groups is non-overlapping, then we actually
cannot take the full advantage of the favorable propagation
property.

Motivated by these observations, in this paper, we intro-
duce the concept of ““overlapping user grouping”, aiming to
increase the system capacity and at the same time ensure full
user coverage. More specifically, we present two new user
grouping approaches. First, we propose a greedy search based
user grouping method by allowing overlapping among the
selected subgroups. Second, we introduce a new channel sim-
ilarity measure, and develop a low complexity overlapping
user grouping approach based on the spectral clustering algo-
rithm in machine learning. Both the theoretical and numeri-
cal results demonstrate that: with respect to non-overlapping
schemes, overlapping user grouping can achieve much higher
network capacity, and can ensure that at any given time, each
IoT device will be served in at least one subgroup.

The rest of the paper is organized as follows. In Section II,
the system model is introduced and the problem is for-
mulated. In section III, the two proposed overlapping user
grouping approaches are presented. Capacity analysis and
complexity evaluation of the proposed approaches are carried
out in Section IV. Numerical simulation results are presented
in Section V and we conclude in Section VI.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

A. SYSTEM MODEL

Without loss of generality, we consider the downlink of a
centralized massive MIMO system, formed by an M -antenna
base station and K single antenna IoT devices. The transmit
antennas can have different geometric structures, e.g., being
placed along a line to form a uniform linear array (ULA),
or along a circle to form a uniform circular array (UCA).

14178

LetH = [hy, ..., hg]T € CK*M denote the actual channel
matrix, where ()T is the transposition of a matrix or vector,
and Ay the complex channel vector between the base station
and user k. We assume that the channels are quasi-static and
flat-fading, such that the matrix H can be taken as invariant
for a few time slots. Thus, the received signals of the K users
can be expressed as

y=HBd +n, 1)

where y € CK*! denotes the received data for all the K users
in a single time slot, B € CM*K the precoding matrix at the
base station, d € CK*! the data vector for all the K users,
and n ~ CN (0, Ix) the additive white Gaussian noise vector
of zero mean and unit variance. Throughout this paper, we
use bold upper case and lower case letters to denote matrices
and vectors, respectively; and use normal letters to represent
scalars.

B. CHANNEL CORRELATION MODEL

Consider a set of spatially correlated Rayleigh channels
with non-line-of-sight (NLOS) propagation. According to the
Kronecker correlation model [9], the channel matrix can be
expressed as

1 1
H =R, H;yRZ,, )

where H;;y € CK*M s an uncorrelated Rayleigh channel
matrix, whose elements are independent and identically dis-
tributed (i.i.d.) complex Gaussian random variables with zero
mean and unit variance. Rgy € CK*K and Ryy € CM*M
denote the spatial correlation matrix at the receiver and the
transmitter, respectively.

In practical downlink transmissions, base station is usually
free of local scattering, which may result in high correlation
among the transmit antennas. Let 6 be the azimuth angle
of the user location, S the distance between the base sta-
tion and the far field scatterer ring with the radius r, and
A the angle spread of the transmit signal, which can be
approximated as A =~ arctan(r/S). According to the one-ring
MIMO channel model shown in Fig. 1, which is also adopted
by [10] and [11], the spatial correlation coefficient between
transmit antennas 1 < p,q < M, can generally be

scatterer ring

Obstruction

\j

FIGURE 1. One-ring MIMO channel model with shadow fading.
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modeled as:

A
Rrxlpq = 5 /_ R )
Here g(a +0) = —2T”(c0s(a +0), sin(ee + 0))T is the vector
for a planar wave impinging the antennas with the Angle of
Arrival (AoA) a + 6 and the carrier wavelength A. u,, and u,
are the position of the transmit antennas p and g, respectively.
It can be verified that the spatial correlation matrix Rry is a
normal matrix with eigen decomposition:

[Rrx1p.g = Urx Zrx Uy, 4)

in which ()1 denotes the Hermitian transpose of a matrix,
Urx is a unitary matrix composed of the eigenvectors of Rry,
and X is a diagonal matrix whose diagonal elements are the
eigenvalues of Rry.

Furthermore, in IoT networks, devices or sensors located
in houses or buildings usually experience shadow fading,
that is, the signal power fluctuation due to obstacles on the
transmit path. It has been shown that the channels affected by
the same shadowing could be significant correlated when the
receivers are geographically close to each other, and this may
have a strong impact on system performance. In a random
shadowing environment obeying the NeSH model [12], the
correlation of channels between users i, j, where 1 <i,j < K,
is modeled as:

2 Id;

US
[Rrxlij = y
cor

 ldijl
e dcor ,

)

where |d; j| represents the distance between the two users, oy
is the standard deviation of shadow fading, and d_,; is defined
as the correlation distance corresponding to the distance at
which the correlation drops to 0.5. It also can be verified that
at the receiver, the spatial correlation matrix Rgrx is also a
normal matrix. It then follows from (2) that the actual channel
can be represented as
1 1

H = Upx Xz Hiig X 7 Urx. (6)
C. FORMULATION OF THE OVERLAPPING USER
GROUPING PROBLEM
1) MULTIUSER INTERFERENCE CANCELLATION
IN MASSIVE MIMO
To eliminate multi-user interference, zero-forcing beamform-
ing (ZFBF) is often used to achieve channel orthogonaliza-
tion. Let x = Bd denote the transmit signal, which is subject
to the transmit power constraint Py with E[||x|?] < Pr.
Zero-forcing beamforming eliminates the multi-user inter-
ference by choosing the proper beamforming weight matrix

B = [by, ..., bk ", to satisfy
i
iy =1 ™
0, ifi#j.

That is, the beamforming vector for each user should be
orthogonal to the subspace spanned by the channel vectors
of all the other concurrent users in the same beamforming
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subgroup, ie., V; = span{hj|j € Group,j # i}. The
projection matrix of the orthogonal subspace Vil is denoted
by

P; = (I, — Vi'(V;V)™'V)), @®)

where P; € CM>*M and VHP, = 0. This implies that B is the
Moore-Penrose pseudo-inverse of the channel matrix [13]
B=H' = ;@AY )

The optimal power allocation which achieves the
maximum sum rate can be derived using the water-filling

scheme
e (b))

where B is the power allocation factor, Ay = ||thbk || is the
equivalent channel gain after beamforming and y is called the
water level, satisfying

(10)

an

keGroup

Since we have B = HT, the multiuser interference within
the beamforming subgroup can be eliminated by projecting
the intended user’s signal into the null space of all the other
concurrent users.

2) EXPLOITING THE FAVORABLE PROPAGATION

IN MASSIVE MIMO

As we know, the projection operation in zero-forcing beam-
forming may reduce the channel gain and result in capacity
decreasing [14]. The loss of the channel gain after projection
is illustrated in Fig. 2.

(a) (b) (©

FIGURE 2. Zero-forcing beamforming in two-dimensional channel vector
spaces. (a) Overlap channels. (b) General case. (c) Orthogonal channels.

Undoubtedly, the worst-case of the two channel vectors is
depicted in Fig. 2a, in which h; overshadows k; in the user
channel space, which makes it almost impossible to decode
the received signals. Fig. 2b shows a general case that the
angle between two channel vectors takes a certain value.
The channel gain of h; experiences a severe loss after being
projected into the the null space of channel 4; (see k). The
most favorable case is shown in Fig. 2c where channels are
orthogonal to each other, which is known as the favorable
propagation property in massive MIMO [8]. In this case, the
projected channel vector is equal to the original one, yielding
the highest channel gain.
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More specifically, favorable propagation is defined as the
mutual orthogonality among vector-valued channels corre-
sponding to each terminal [8]. Consider a massive MIMO
system where the base station transmits data simultaneously
and independently to K single antenna terminals. The base
station has M transmit antennas and all K terminals share the
same time-frequency resources. Let iy € CY*! denote the
channel vector between the base station and the kth terminal.
Under both independent Rayleigh fading case (i.e., when
there is no line-of-sight path) and uniform random LOS case,
it can be proved that

1

A—luhku2 =1

1 g :
thhj—>0, M — o0, k #j.

3) CAPACITY OPTIMIZATION BASED ON OVERLAPPING
USER GROUPING

The aggregate capacity of the system is largely determined
by the channel correlation among the users in the same
subgroup, and can be optimized with proper user grouping
method. Motivated by the approximate orthogonality in mas-
sive MIMO systems, in this research, we propose to exploit
favorable propagation to enable users to share the time-
frequency resources more efficiently, so as to achieve higher
capacity and full user coverage.

LetS = {k| k = 1,2, ..., K} denote the whole user set
and suppose that we have G subgroups. Fori = 1,2,..., G,
let S; denote the i-th subgroup, the sum capacity of each
subgroup can be obtained as

Ri(H,B) = ) " logy(1 + By lIh'by |- (12)
kESl‘

We define the optimal user grouping strategy as the one that
maximizes the sum rate. Note that the optimal user grouping
problem is determined by channel matrix H and power con-
straint Py. Let S*(H, Pr) = {S1, ..., Sg} denote the optimal
user grouping, and B*(H, Pr) E {B1,..., Bk} the power
allocation factor that yields the maximum sum rate under the
grouping strategy S*(H, Pr). Then the optimal user grouping
problem can be formulated as

G
{$*(H, Pr). B*(H, Pr)} = argmax ) _R;
i=1
G
subject to U Si=S,
i=1
K
Y B <Pr (13)
k=1
As can be seen, here we allow overlapping among subgroups
when solving the optimization problem. In the following, we
propose to solve the overlapping user grouping problem using
the greedy search based approach, and machine learning
based spectral clustering.
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Ill. THE PROPOSED OVERLAPPING USER

GROUPING APPROACHES

In this section, we introduce two overlapping user grouping
approaches: overlapping user grouping based on the greedy
algorithm (OUG-Greedy), and overlapping user grouping
based on spectral clustering (OUG-SC) in machine learning.

A. OVERLAPPING USER GROUPING BASED ON

THE GREEDY ALGORITHM

We first introduce a traditional greedy user selection method
called zero-forcing with selection (ZFS) which was proposed
in [3], then improve the method by performing ZFS iteratively
while allowing overlapping among the selected subgroups.

1) ZERO-FORCING WITH SELECTION

The optimal user grouping can be achieved through exhaus-
tive search or combinatorial search algorithms. However,
the combinatorial nature of these problems make it compu-
tationally infeasible due to the large number of users and
antennas in massive MIMO systems [15]. Therefore, many
suboptimal schemes have been proposed for user selection
and one typical method is the ZFS algorithm. ZFS is a greedy
algorithm which adopts the forward selection strategy. That
is, in each iteration of ZFS, the algorithm selects one user that
can yield the largest increase to the sum capacity until the
number of selected users reaches the number of antennas, or
no more improvement can be achieved on the sum capacity.
To simplify the presentation of the proposed OUG-Greedy
algorithm, we rewrite the ZFS algorithm in a recursive way,
which is summarized in Table 1, where the function Czrgr(X)
calculates the sum capacity of user set X using zero-forcing
beam forming. For initialization, we set input S = # and
C={1,2,...,K}.

TABLE 1. Zero-forcing with selection algorithm [3].

Algorithm ZFS(S;,C, H, ;)

S;: The set of users that have been selected in the current
subgroup.
C: The set of remaining users that have not been selected.
H: The channel matrix of all the users.
Bi: The power constraint for this group.
S7: The set of users that are finally selected.
C*: The set of remaining users after current iteration.
If C==0o0r |S;|=M /*M: The number of antennas at
base station */

Return S;
Else

kopt M%Iréax CzreF(S; Uk),

€

Input:

Output:

Step 1:

B
where CzppF(Si) = max logz(l + I(Hgiﬂs:}]]kvk)

keS;
st. X Bk =PBi

keS;
/*Bi is power allocation factor for the k-th user in set S; */
If Czrpr(SiU{kopr}) > CzrBF(Si)
Return S} =S; U{kopr}, C* = Clkop:
Else
Return S;f, c*

Step 2:

Based on the ZFS, in [4], Wang et al. proposed the sequen-
tial water-filling (SWF) algorithm, which is a generalized
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and simplified version of ZFS joint with water-filling power
allocation. The computational complexity of SWF is reduced
to O(KM?) per subgroup.

2) THE PROPOSED ALGORITHM
In our proposed algorithm, we resolve the following two
issues that were not addressed in the existing user grouping
methods:
o To ensure at any given time, each IoT device is served
by at least one subgroup.
« To further increase the sum rate by allowing overlapping
among the subgroups.

TABLE 2. Overlapping user grouping based on the greedy algorithm.

Algorithm 1 OUG-Greedy(C;, H, Pr)

Input: Ci: The set of candidate users to be grouped in the i-th
iteration .
H: The channel matrix of all the users.
Pr: The total power constraint.

Output: So = {S1,0,---,5G,0 }: The sets of users of all the

overlapping beamforming subgroups.

Bo = {B1.0s---.BG,0 }: The power allocation factor

for overlapping beamforming subgroups.
Initializationl: i« 1 /*i: Tteration index */

Loopl: While C; #0
S; « ZFS(0,C;, H, B;)
/* Perform ZFS algorithm for group i */
/*Bi can be obtained by the water-filling scheme, see
(10) */
Civ1 < Ci\S;
Initialization2: i« 1
Loop2: Ifi>1Andi <G
i-1
Si,o &« ZFS(S;, _U1 S, H, Bi)
j=
ie—i+1
Return: So = {Sl,o’ s SG,o}s Bo = {ﬁl,oa .- -’ﬁG,o}

The proposed OUG-Greedy algorithm is an iterative
greedy search algorithm and summarized in Table 2. Let the
whole user set be denoted as S and the set of users which
have not been assigned into any subgroup in the i-th iteration,
be denoted as C;. Start with the first iteration i = 1 and
C; =S, which means no user has been grouped, we perform
the typical ZFS algorithm [3] in each iteration until all the
users have been grouped. More specifically, in the i-th itera-
tion, the proposed OUG-Greedy algorithm selects the bunch
of users out from C; to form the subgroup S;, which yields the
maximum sum rate with the water-filling power allocation,
ie.

Si = argmax{ max Y logy(1 + Bl D} (14)
AcC; P ke A

where B denotes the power allocation factor for user k.
For the next iteration, we first remove the users in group S;
from C;, i.e.

Cit1 = C\S;. (15)

We then move on to the (i + 1)-th iteration to select the next
subgroup S;;1 from the remaining user set C;1 using ZFS,

VOLUME 5, 2017

and continue the process until all the users have been assigned
to a subgroup.

After the user selection for each subgroup using ZFS,
we extend the searching space of subgroup S;, where
i = 2,...,G, to the users that have been assigned to the
previous subgroups. That is, for the i-th subgroup S; obtained
from the previous steps, we reset the searching space as

i—1
Cio =S (16)
j=1

to perform the overlapping user selection. Such that, when-
ever possible, users with favorable channel conditions (that
is, the channel vectors of these users are approximately
orthogonal to all the other users), can be reselected and
assigned to multiple beamforming subgroups simultaneously.

LetS; , denote the newly obtained subgroup i with overlap-
ping. As we will show in Section IV, fori =1, ..., G, S;, is
always larger than or equal to the corresponding subgroup
obtained with non-overlapping user group. It then follows
that, the overall sum rate achieved by all the users in S; ,, is
greater than or equal to that in S;.

As can be seen, our approach breaks the collision-free
barrier in existing user grouping algorithms and increases the
overall capacity by exploiting favorable propagation property
and allowing overlapping among the subgroups.

B. OVERLAPPING USER GROUPING BASED ON

SPECTRAL CLUSTERING

To explore the trade-off between performance and complex-
ity, instead of using the forward selection strategy as in the
greedy based approaches, we propose an alternative way of
overlapping user grouping based on spectral clustering in
machine learning.

1) METHOD DESCRIPTION

In zero-forcing beamforming, multi-user interference is can-
celed by projecting the channel vector of each user onto the
null space of the channel vectors of all the other concurrent
users in the same subgroup. As discussed in Section II-C,
if the angle between the channel vectors of two concurrent
users is too small, i.e., the two channel vectors are approx-
imately in the same direction in Euclidean space, these two
users may cause significant interference to each other. Thus,
instead of optimizing the sum capacity directly, we propose
to optimize the difference between the directions of channel
vectors of concurrent users. More specifically, the steps of the
proposed OUG-SC algorithm are listed as follow:

e Cluster the users such that the channel vectors of the
users from the same cluster lie in the same direction
in Euclidean space, while the channel vectors of users
from different clusters lie in relatively different direc-
tions.

e Generate beamforming subgroups by selecting one
user from each cluster. This implies the users which
are assigned into the same subgroup hold relatively
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different directions and guarantees the multi-user inter-
ference within each subgroup is maintained at a lower
level. Note that the cluster number should be smaller
than or equal to the number of antennas M.

2) ALGORITHM DESIGN

Spectral clustering refers to a class of clustering methods that
approximate the problem of partitioning nodes in a weighted
graph as eigenvalue problems. The weighted graph represents
a similarity matrix between the objects associated with the
nodes in the graph.

To perform the proposed spectral clustering based user
grouping, the first step is to define the similarity measure,
more specifically, the similarity matrix between the channel
directions. Then to identify and cluster users automatically
based on their channel direction similarities in Euclidean
space, which is a typical scenario of spectral clustering
[16], [17]. Let w; ; be the similarity measure between the i-th
and j-th channel vectors. We choose the generalized Fubini-
Study distance [18]

| ik |

an
i | 12

Wij = dFS(hi, hj) = arccos
as the similarity measure. This Fubini-Study distance first
calculates the projection of auto-correlation between different
channel vectors as the similarity measure of the channel
directions, then performs normalization and amplifies the
difference with the inverse cosine function. Note that the
inverse cosine operation makes it more sensitive to the small
angle deference between two channel vectors, in which case
these two users may suffer from significant interference.

With the similarity measure defined in (17), we will cluster
channel vectors into C clusters, denoted by Ay, Ay, ..., Ac,
note that C < M. Recall that the whole user set S =
{k|k =1,2,..., K}, the optimization problem of the spectral
clustering algorithm is defined as
1 XC: Dichejzhe Wi

., Ac} = argmin —
BN A

subjectto A, CS forl <c<C
A;NA;j =0 foranyi#j

{A1, Ag, ..

c
JAc=s. (18)
c=1

Define the degree of the i-th channel vector as

K
di= E Wij-
j=1

The degree matrix D is defined as the diagonal matrix with
the degrees di, da, . . ., dx on the diagonal, and the weighted
adjacency matrix is defined as W = [w;j]; j=1,2,...k. Then
the unnormalized graph Laplacian matrix can be obtained as

L=D-W.
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Due to the symmetric structure of the Laplacian matrix L,
it is positive semi-definite, and for an arbitrary vector

f =100, ....fxl.f € CE¥1 matrix L satisfies
| K
S =2 3 wiilfi =5 (19)
ij=1

As we can see, Eqn. (19) holds the same structure as
the objective function in optimization problem (18) when
(i =) =@

With the arguments above, the optimization problem (18)
is converted to a RatioCut minimization problem

F* =arg min Tr(F'LF)

A1 Ay, Ac

subject to F = [f; jli=1,... .k j=1.....C>
1/,/|Aj| ifi € Aj
0

; (20)
otherwise.

where f; j =

Note that the columns in F are orthonormal to each other,
which means FTF = I. The problem is then relaxed to

F* = arg min Tr(F'LF)
FeRKxC
subject to F'F = 1, 201

whose solution F* can be obtained by selecting the first C
eigenvectors (in the ascending order of eigenvalues) of L as its
columns. In order to satisfy the constraints on F in the original
optimization problem, k-means clustering [19] is then applied
on the row vectors of F*, where each row corresponds to
one user. After the clustering, we build the beamforming
subgroup by picking only one user in each cluster. User k in
cluster A, forc = 1,2, ..., C,israndomly selected with the
probability py to form each beamforming subgroup. py can be
determined by the channel state information, requirements of
QoS or fairness measures, which should satisfy the constraint
Zpk ca Pk = 1. Power allocation for each user can also
be performed using the water-filling scheme as discussed in
Section III-A. A detailed description of OUG-SC is listed
in Table 3.

Note that after spectral clustering, the number of elements
in each cluster may not be the same. Those users that have
fewer neighbors within their clusters are the ones with more
favorable channels. That is, they would have more chances
to be selected and assigned into more than one beamform-
ing subgroups while the multiuser interference in these sub-
groups can be kept at a rather low level. As we can see,
this approach is intrinsically an overlapping user grouping
algorithm.

IV. CAPACITY AND COMPLEXITY ANALYSIS FOR
OVERLAPPING USER GROUPING

In this section, we provide a detailed capacity and complexity
analysis to illustrate the effectiveness of the proposed over-
lapping user grouping approaches.
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TABLE 3. Overlapping user grouping based on spectral clustering.

Algorithm 2 OUG-SC(S, H)

Input: S: The set of user indices to be grouped.
H: The channel matrix of all the users..
Output: S = {Sy,...,Sg }: The sets of user indices i in each
beamforming subgroup.
Initialization: W = (w; j); j=1,.. K
kR jh*f*h,-\
Wij = Wi = ATCCOS TR ]
/* Generate the similarity matrix W using the gener-
alized Fubini-Study distance */
Laplacian d; = zj’; \wij» D= diag{d;}
Matrix: L=D-W
Lyw =D7'L=1-D"'w
Loym =D ZLD ™2 =1-D 2 WD "2
/* Ly and Lgy,;, are normalized Laplacians called
random walk and symmetric matrix, respectively. */
Eigen- up...,uc < Lsym\rwu =Au
Decomposition: F = (flT, .. .,fg)T =(uy,...,uc) € CKxC
/*F is formed by the eigenvectors of L as columns */
K-means: Ay, Ay, ..., Ac « K-means(fy, ..., fc)
/* K-means clustering in respect of F */
Return: Si &5 kg, kelky € AL .. ke € Ac),

fori=12...,.G
/* Pick one user in each cluster to form subgroup */

A. CAPACITY ANALYSIS
In this subsection, we will show that the proposed overlapping
user grouping approaches can achieve better performance
than the non-overlapping user grouping approaches in terms
of the sum capacity. The proof is broken down into two steps:
o First, we prove that the greedy user selection achieves
higher sum capacity than that of random user picking.
e Second, we prove that the overlapping among multiple
subgroups will further improve the sum capacity.

1) THE SUPERIORITY OF GREEDY USER SELECTION

OVER RANDOM USER PICKING

We demonstrate the superiority of the greedy user selection
by proving that when selecting a certain number / of users
from the user set S of size K, the greedy user selection can
achieve higher capacity than random user picking does. Let
H; denote the channel matrix of the current group S;, with the
zero-forcing beamforming in (9), the achieved sum rate can
be written as

Ri(H;, B;) = Y logy(1 + Billhsbi )
kESi

B >
= 1 1+—), (22
2 °g2< EHY en ) &7

kESi

where [-] k) denotes the k-th diagonal element in the matrix.
Since the optimal power allocation for random user picking
is not necessarily the optimal one for the proposed grouping
approach, it suffices to show the effectiveness by proving that
Rgrouping = Rrandom under the optimal power allocation 8 for
random user picking.

Following (22), for user k in S;, the effective channel
gainis 1 /[(H;H) ™ 1. Since the elements of H; are i.i.d.
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complex Gaussian random variables with zero-mean and unit
variance, it is known that Hin-’I is central complex Wishart
distributed [20], i.e. HH}' ~ WS (M, L) Then (HH})™!
is complex inverse Wishart distributed with M degrees of
freedom. According to [21], when the users in this subgroup
are randomly selected, 1 / [(HiH?)_l](k,k) is a chi-square
distributed random variable with 2(M — |S;| + 1) degrees
of freedom. If [ = |S;| = M users are to be selected, the
expectation of the channel gain of user k is

1 2
E| ————| =E 2M — S|+ 1) =2. (23
[[(HiH,H)l](k,k)] [x*QM —ISil + 1))] (23)

So that for each group, the capacity of the random user
picking algorithm can be written as

Rrandom = Z 10g2 <1 + Z,Bk)-

kESi

(24)

In [4], Wang et al. prove that the greedy user selection in
the proposed user grouping algorithm is a special case of the
asymptotically optimal G-greedy (AOG) algorithm and show
that the effective channel gain for user k has the lower bound

(aj + 2)b;
aj(l + a)>M=) +2

Il (25)

Vg =
where j is the iteration number in AOG algorithm, a; and b;
are positive constant parameters which satisfy the following
conditions:
1) limg— o0 aj = 0 and limg o0 @} log K > ¢ > 0 for
some positive c,
2) limg— 100 bj = 1 and limg— 400 K1 7% = +00.
As the channel vectors of different user are independent

and converge to complex Gaussian vectors with distribution
CN(0,1,,), we have

K1—1>Too E[Rgrouping] — IES: 10g2(1 + B log K) =0. (26)

Combine (24) and (26), we can conclude that, when K,
the size of the whole user set, is large enough, even without
overlapping among subgroups, the sum rate achieved by the
proposed grouping approach is greater than that achieved by
random user picking.

2) THE IMPROVEMENT INTRODUCED BY OVERLAPPING
USER GROUPING
We next show that the overlapping user grouping can fur-
ther improve the sum capacity over the non-overlapping
approaches. Let Si,...,Sg be the subgroups obtained
by the greedy based non-overlapping user grouping, and
S1,05---,5¢,, the subgroups obtained using the overlapping
user grouping as described in Section III-A, we now prove
that

sum_rate(H, S; o, B; ,) = sum_rate(H, S;, B;).  (27)
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where sum_rate(H, S; ,, B i.0) Means the overall capacity that
can be achieved for all the users in subgroup S; , with power
allocation ﬂi’u, and sum_rate(H, S;, B;) is defined similarly.

Recall that S;, is obtained from S; by re-searching over
the set C;, = U]’;} S;, the search is carried out through
an iterative procedure as before. In each step of overlapping
searching, for subgroup S; and any user k € UJ’;: S;, it will be
added to S; to obtain S; ,, only if the overall sum rate achieved
by adding user k is larger than that without it. The iteration
goes on until all the users in C; , = U]’;} S; are explored.
It then follows that S; C S;, and sum_rate(H, S; ,, B; ,) >
sum_rate(H, S;, B;).

More specifically, suppose we have grouped K users and
we are selecting users for the current subgroup S; from the
remaining user set C; of size K. By using the greedy user
selection algorithm, we sequentially select the users from C;
which can maximize the sum-capacity for the current group.
The selection will stop if no capacity improvement can be
achieved by adding any additional user into the current group.
In [4], it has been proved that the user selection process will
stop with a probability upper bounded by

Pr{stop} < e (1=e Y15 log MK (28)
When we introduce the overlapping among subgroups by
extending the searching space from C; to C;,, we actually
increase K in (28), the size of searching space, from K
to K1 + K>, so that the upper bound of the stop searching
probability will decrease. It means that S; , can select more
users with higher probability and is always larger than or
equal to the corresponding subgroup S;. Furthermore, by (26),
for sufficiently large K, especially in IoT oriented massive
MIMO systems, the achievable capacity of user grouping
algorithm can be approximated by

ERguping] ~ 3 logy (1+ filogK).  (29)
keSg

Clearly, based on (29), when extending the searching space,
it always results in larger achievable capacity.

It can then be concluded that, by exploiting the orthogo-
nality of users in massive MIMO and assigning them into
multiple subgroups simultaneously, the overlapping among
subgroups introduces new degrees of freedom while the
multi-user interference is kept within a lower level. As a
result, the overall capacity is further increased with overlap-
ping user grouping.

B. COMPLEXITY ANALYSIS
Computational complexity is also a primary concern in
IoT systems due to the very limited energy budget of IoT
devices. In this subsection, we will analyze the computa-
tional complexity of the proposed overlapping user grouping
approaches.

In each iteration of the OUG-Greedy algorithm, the system
needs to select C < M out of K users which yield the
the largest sum rate. With the simplified algorithm proposed
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in [3], it evaluates the 2-norm of matrix kg P, ;a} for (K —
C+1) times in a single iteration. Each evaluation of 2 P ih?
involves a vector-matrix multiplication with 1 x M vector
and M x M matrix. The complexity of this step is O(M?).
Repeating this over O(K) users in at most O(M) steps (since
in each group, it can select at most M users, i.e. C < M),
hence, the computational complexity for selecting one sub-
group is limited by O(KM?). To accommodate all the users,
OUG-Greedy algorithm has to assign at least [K /M| beam-
forming subgroups. Therefore, the computational complexity
of OUG-Greedy is at least O(K 2M?), which is of the same
order as that of the SWF with only a linear increase.

For OUG-SC user grouping approach, the computational
complexity roughly equals to that of the spectral clustering.
In the step of the graph construction, the spectral clustering
algorithm needs to calculate the similarity measure w;; for
each pair of users (actually, the computation could be reduced
by half since the weighted adjacency matrix is symmetric),
which has the complexity on the order of O(K?). Then the
algorithm moves on to the eigen-decomposition of Laplacian
matrix with the complexity on the order of O(K 3 1221,
followed by the K-means clustering based on the Lloyd’s
algorithm, which is of linear complexity O(K) [19]. From
the analysis above, the computational complexity of OUG-
SC algorithm is on the order of OK3 4+ K?* +K) = O(K?),
which is at least one order of magnitude lower than that of
the greedy based user grouping methods. The computational
complexities of these user grouping algorithms are summa-
rized in Table 4.

TABLE 4. Comparison of computational complexity.

User Grouping Algorithm | Computational Complexity
Capacity Based ZFS O(KM?>)
SWF O(KM?)
OUG-Greedy O(K*M?)
OUG-SC O(K?)

V. SIMULATION RESULTS
In this section, the numerical results are presented. To evalu-
ate the effectiveness of the proposed approaches, we com-
pare the achieved sum rate of the proposed OUG-Greedy
algorithm and OUG-SC algorithm with that of the Sequential
Water-Filling (SWF) algorithm proposed in [4] and the Ran-
dom User Picking (RUP) method discussed in [2]. For system
set-up, we adopt the one-ring MIMO channel model [10] with
the NeSH shadowing model [12], and the elements of the
channel correlation matrix can be derived from equations (3)
and (5). System parameters used in the simulation are listed
in Table 5. The simulation of each user grouping algorithm
is performed by averaging over 500 random channel realiza-
tions generated with the Monte-Carlo method.

Assuming that the base station in a massive MIMO system
has 100 omni-directional antennas, serving a total number of
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TABLE 5. System parameters in simulations.

parameters value parameters | value
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FIGURE 3. Sum rate comparison under uncorrelated MIMO channels.

300 IoT users, we generate the user families according to
geometric modeling. First, we evaluate the proposed over-
lapping user grouping algorithms in the scenario of rich-
scattering Rayleigh environment where users are mutually
independent. Fig. 3 shows the sum capacity comparison of
the proposed algorithms and the existing algorithms. It can
be seen that the proposed OUG-Greedy outperforms the other
three algorithms, and OUG-SC achieves approximately the
same capacity as SWF [4] algorithm with a lower complexity.
This is because that when all the channels are uncorrelated,
the directions of channel vectors in Euclidean space obey the
uniform distribution. In this case, the similarity measures for
any two-user pairs are independent, and it may be difficult
for the spectral clustering algorithm to partition users into
clusters. It is also observed that the random user picking
has a relatively high capacity since the angle between two
channel vectors may be rather large due to the channel mutual
independence. In such case, the capacity improvement of the
proposed approaches is mainly achieved by the overlapping
among subgroups.

Next, we consider the scenario with correlated shadow fad-
ing and evaluate the performance of the proposed approaches.
It can be seen in Fig. 4 that both the proposed OUG-Greedy
and OUG-SC algorithms achieve significant improvement
on sum capacity over the existing RUP [2] and SWF [4]
algorithms. This is because that the random user picking may
assign users with high correlation into the same subgroup,
in which case those users would generate strong interfer-
ence to each other. In addition, the proposed user grouping
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FIGURE 4. Sum rate comparison under correlated MIMO channels.

approaches allow overlapping between user subgroups,
enable users with favorable propagation to be served in
more than one beamforming subgroup without generating
much interference to the concurrent users, which greatly
enhances the sum capacity. We can also note that the OUG-
Greedy algorithm outperforms the OUG-SC algorithm. This
is because that the OUG-Greedy optimizes the sum capacity
directly while the OUG-SC uses the indirect metric of the
similarity measure. However, when the antenna number is
large at the base station, the OUG-SC has a much lower com-
putational complexity than the OUG-Greedy, and achieves a
trade-off between complexity and performance.

VI. CONCLUSIONS

In this paper, we propose two new overlapping user grouping
approaches by exploiting the favorable propagation property
in IoT oriented massive MIMO systems. First, we propose a
greedy search based user grouping method that allows over-
lapping between different beamforming subgroups. In this
algorithm, system selects the users with more favorable chan-
nel conditions and assign them into multiple subgroups. As a
result, OUG-Greedy algorithm improves the system capac-
ity with the same order of computational complexity as the
existing non-overlapping algorithms. To further reduce the
complexity, we introduce a new channel similarity measure
and develop a low complexity user grouping method based
on the spectral clustering algorithm in machine learning.
Both the theoretical and numerical results demonstrate that,
with the proposed overlapping user grouping approaches, the
0T oriented massive MIMO system can achieve much higher
network capacity, and ensures that at any given time, each IoT
device will be served in at least one subgroup.
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