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Abstract—This paper investigates the effect of relay ran-
domness on the end-to-end throughput in multi-hop wireless
networks using stochastic geometry. We model the nodes as
Poisson Point Processes and calculate the spatial average of the
throughput over all potential geometrical patterns of the nodes.
More specifically, for problem tractability, we first start with the
simple nearest neighbor (NN) routing protocol, and analyze the
end-to-end throughput so as to obtain a performance benchmark.
Next, note that the ideal equal-distance routing is generally not
realizable due to the randomness in relay distribution, we propose
a quasi-equal-distance (QED) routing protocol. We derive the
range for the optimal hop distance, and select the relays to
formulate a quasi-equidistant deployment. We analyze the end-to-
end throughput both with and without intra-route resource reuse.
Our analysis indicates that: (i) The throughput performance of
the proposed QED routing can achieve a significant performance
gain over that of the NN routing. As the relay intensity gets
higher, the performance of QED routing converges to that of
the equidistant routing. (ii) If the node intensity is a constant
over the network, then intra-route resource reuse is always
beneficial when the routing distance is sufficiently large. (iii)
With randomly distributed relays, the communication distance
can generally be extended. However, due to the uncertainty in
relay distribution, long distance communication is generally not
feasible with random relays. This implies that the existence of
a reasonably defined infrastructure is critical in effective long
distance communication. Our analysis is demonstrated through
numerical examples.

Index Terms—Multi-hop network, throughput, stochastic ge-
ometry, random relays.

I. INTRODUCTION

Multi-hop communication with relay assistance has become
a prominent scheme in today’s hybrid network design. The
main reason is that it can extend the communication distance in
wireless networks without the deployment of wired backhaul
facilities. In wireless networks, the geometric locations of the
nodes play a key role in determining the signal to interference
and noise ratio (SINR), and hence the probability of successful
transmission. In large scale multi-hop wireless networks, the
node locations, including the relay locations, are generally
random. The spatial randomness in node locations raises
significant challenges in network performance analysis.

An effective tool to characterize the spatial randomness in
wireless networks is stochastic geometry, for which the basic
idea is to model the nodes as Poisson Point Processes (PPPs)
and calculate the spatial averages of network performance
characteristics by averaging over all potential geometrical
patterns of the nodes [1]–[5].

In literature, stochastic geometry modeling has been utilized
to study multi-hop wireless networks. In [6], [7], the random
access transport capacity, which was defined as the spatially
normalized end-to-end data rate obtained by multi-hop relays,
was evaluated and optimized with respect to hop number.
In [8], the transport capacity was evaluated under delay
constraints. In [9]–[12], the end-to-end delay of multi-hop
wireless networks was characterized and optimized. In [13],
the dependence of interference among the relays along a
multi-hop route was discussed. It was shown that spatially
and temporally correlated interference would increase both
the mean and variance of the end-to-end delay. In most of
these approaches, the source nodes were modeled as PPPs,
however, the relay locations were assumed to be deterministic
and known, and were often approximated as equidistant. Note
that in large scale wireless networks, it is impractical to
optimize the relay locations for each source destination pair
as equidistant, and the overall relay distribution is generally
random rather than deterministic, hence, for more reasonable
performance evaluation, the relay randomness needs to be
taken into account more accurately.

Assuming random relay distribution, in [14], [15], different
hopping strategies were compared in terms of aggregate multi-
hop information efficiency. These approaches focused on the
efficiency of each individual hop in a multi-hop network, and
the end-to-end performance of the network needs to be further
exploited. Similarly, in [16]–[19], the performance analysis
was also focused on individual hops. In [20], the cost of
routing selection was evaluated under opportunistic geographic
routing strategies in a Poisson network. In [21], the end-to-end
delay was simulated in a Poisson multi-hop wireless network
using the time-space opportunistic routing. In [22], limited
random deviations of relays from their ideal locations in the
equidistant deployment were introduced. This model was more
practical than the equidistant one, but it required the relays
to be deployed within a small range around the equidistant
locations. In [23], the theoretical upper bounds were derived
for the throughput that could be achieved by any routing
algorithm assisted by dynamic routing selection. In [24], the
relays were modeled as a linear PPP along the route, and
the end-to-end delay was evaluated. While the randomness
of relays was taken into account in [24], there was no the
consideration on node stability or traffic overflow, and the end-
to-end throughput was not explicitly evaluated. In addition,
the results there only applied to the cases where the routing
distances were sufficiently long so that asymptotic analysis
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could be utilized.
As an effort to further explore the effect of relay randomness

on network performance, in this paper, we analyze the end-to-
end throughput of a general multi-hop route in a wireless net-
work with randomly located relays. In our analysis, we model
the relays as a linear PPP between the source and destination
following the TDMA medium access control (MAC) protocol,
and model the external interferers as an independent PPP over
the whole plane, following the ALOHA MAC protocol. We
assume that multi-hop transmissions are performed under an
interference limiting scenario, where the interference power is
much more significant than the noise power.

More specifically, in this paper, first, for problem tractabil-
ity, we start with a simple nearest neighbor routing protocol
where each relay will select the nearest node along the
direction to the destination as its next hop. We analyze the
end-to-end throughput in a relatively sparse network so as
to obtain a performance benchmark or lower bound. The
throughput is evaluated under both conventional TDMA with
fixed, uniform slot length, as well as TDMA with dynamic
slot length or resource allocation; the optimal relay density is
also discussed. Next, motivated by the observation that, while
the ideal equal-distance routing generally provides the optimal
network performance, it is generally not realizable due to the
randomness in relay distribution, we propose a quasi-equal-
distance (QED) routing protocol, where we derive the range
for the optimal hop distance, and select the relays to formulate
a quasi-equidistant deployment. We analyze the end-to-end
throughput both with and without intra-route resource reuse.
Our analysis indicates that, compared with the optimal end-
to-end throughput of NN routing, the proposed QED routing
obtains a significant performance improvement under the same
relay intensity and routing distance.

The main contributions of this paper can be summarized as
follows:

• First, to pave the way for throughput analysis, we derive
the distribution of the longest hop distance Lm under NN
routing for any given routing distance r. We formulate
the distribution of Lm as a continuous auto-regression
system, and solve it using the Laplace transform. It is
shown that the mean of Lm scales with O(ln r) as the
routing distance r → ∞, and the variance of Lm is
bounded. This implies that the throughput vanishes as
r →∞, hence multi-hop relaying with random relays is
infeasible for long distance communication.

• Second, we derive the average end-to-end throughput of
a multi-hop route under NN routing and TDMA MAC
with both fixed and flexible slot length. By expressing
the average end-to-end throughput as a function of the
routing distance r, we obtain the Laplace transform of
the throughput function. Under conventional TDMA with
fixed slot length, we obtain a closed-form expression
for the lower bound of the throughput, and derive the
range for the optimal relay intensity. We maximize the
throughput under TDMA, and show that the optimal slot
length varies from hop to hop and is determined by the
coverage probability of every hop. That is, TDMA with

flexible, properly selected slot length can increase the
system efficiency and lead to optimal throughput.

• Third, we propose a quasi-equal-distance (QED) rout-
ing protocol for throughput optimization with random
relays. Under the proposed QED routing and conventional
TDMA, we analyze the average end-to-end throughput
with and without intra-route resource reuse, respectively.
Note that accurate expression of the throughput is hard to
derive, as an alternative, we obtain close approximations
of the throughput under different scenarios. The optimal
number of time slots is also analyzed when there is intra-
route resource reuse. It is shown that the proposed QED
routing protocol achieves a significant performance gain
over NN routing. It is also observed that the effect of
intra-route resource reuse depends on the network setup.
If the node intensity is a constant over the network,
then as expected, intra-route resource reuse is always
beneficial when the routing distance r is sufficiently large
(i.e. , as r → ∞). However, if the source-destination
pair density remains unchanged as the routing distance
increases, then intra-route resource reuse is no longer
beneficial for throughput improvement even if the routing
distance r →∞.

Our results are demonstrated through numerical examples.
Overall, our numerical results, together with the theoretical
analysis, show that: (i) The throughput performance of the
proposed QED routing can achieve a significant performance
gain over that of the NN routing. For network with sparse
random relays, compared with the ideal equidistant routing,
the performance loss of QED routing due to relay randomness
is not negligible. However, as the relay intensity gets higher,
the performance of QED routing converges to that of the
equidistant routing. (ii) If the node intensity is a constant over
the network, then intra-route resource reuse can increase the
network throughput when the routing distance r is sufficiently
large. (iii) With randomly distributed relays, the communica-
tion distance can generally be extended. However, due to the
uncertainty in relay distribution, long distance communication
is generally not feasible with random relays. This implies
that the existence of a reasonably defined infrastructure is
critical for effective long distance communication. The results
in this paper also echo our previous observations in [25]–[27]
that future network design would reflect the convergence of
centralized and ad hoc networks.

II. SYSTEM DESCRIPTION

A. Network Model

We consider a source node S, and a destination node D
located at a distance of R. A linear relay pattern is studied,
where the candidate relay nodes are distributed randomly
along the line segment between S and D. Without loss of
generality, we assume S is at the origin and D is located
at (R, 0). Thus the candidate relay nodes formulate a 1D
point process Φ = {Xi, i = 1, 2, ..., N}, where N is the
random variable (RV) denoting the number of relays, and
Xi is the location of the i-th relay along the line segment
between (0, 0) and (R, 0). In the remaining part of this paper,
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we model Φ as a 1D homogeneous PPP (HPPP) of intensity
λ. That is, for i = 1, 2, ..., N and letting X0 = S, the
distances between successive nodes, Li = |Xi −Xi−1|, are
exponentially distributed independent RVs of mean 1/λ [24].
The locations of the relays would keep static during packet
delivery. Considering a backlogged source S which has infinite
packets to transmit, we define the end-to-end throughput from
S to D as the number of packets initiated from source S that
are successfully received at destination D per time slot.

The route selects a subset Φ′ = {X ′1,X ′2, ...,X ′N ′} ⊆ Φ
as the actual relays to be used, following a specific routing
protocol, where X ′i denotes the location of the i-th selected
relay and N ′ the number of relays selected. Relay node X ′i
transmits the packets originated from the source S to the next
relay X ′i+1 along the direction to D in a decode-and-forward
manner. For tractable analysis, we assume that each relay node
has an infinite transmission buffer, and each packet relayed is
served in a first-in first-out fashion. The packet that fails in one
transmission would go back to the head of the transmission
queue, waiting for the opportunity of next transmission. The
nodes on the route follow the TDMA MAC protocol, where
each node will be assigned with at least one time slot in a
TDMA cycle and is allowed to transmit signals only at the
designated time slots.

We apply the decoupling technique in [24] to our network
model, where all the other nodes that are not along the S-
D path are modeled as an independent 2D point process Ψ
over R2 from Φ. Potentially, these nodes can be the external
interferers to the relays we study when they transmit over the
same spectrum and time slot. For the remaining part of this
paper, we model Ψ as a 2D HPPP of intensity µ. We assume
that the transmissions of the nodes in Ψ follow the ALOHA
protocol, where each node would transmit at each time slot
independently with a probability of pa.

As can be seen, the network model adopted here is actually
a combination of the models in [10] and [24]. More specif-
ically, we combine the random relay model in [24] with the
TDMA/ALOHA multi-hop network model in [10]. For the
tractability of the problem, in this paper, we mainly consider
the case where relays are deployed along the line segment
between S and D. However, the results obtained here actually
provide an upper bound on the more practical scenario where
relays are modeled as a 2D HPPP over an area surrounding
segment S−D. For example, in Fig. 1, the relays are deployed
randomly in a R ×W rectangle R whose widths intersect S
and D. A simple routing protocol is that each relay would
transmit to its nearest neighbor along the direction to D (the
x-coordinate). By projecting the relays to the x-coordinate,
we can find that the hop distances in the 2D case are lower
bounded by the hop distances in the 1D case. Thus, the
throughput in 1D case is an upper bound of the throughput
in 2D case.

B. Channel Model

Both large-scale path-loss and small-scale fading are consid-
ered. The received power of a signal transmitted at a distance
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Fig. 1. An illustration of relays randomly deployed over a 2D area

of x meters with transmit power PT is [1]

PR(x) =
PT ·H
c · xβ

, (1)

where H denotes channel gain, β the path-loss exponent,
and c a constant determined by the antenna gains and signal
wavelength. H is an exponentially distributed random variable
with mean 1, i.e., Rayleigh fading is considered. Independent
small scale fading is assumed for different transmitter-receiver
pairs in different time slots. The small scale fading from
location x1 to x2 at time slot k is represented by Hk

x1,x2
.

C. Routing Protocol

In this paper, we investigate two routing protocols: the
nearest neighbor (NN) routing protocol and the proposed
quasi-equal-distance (QED) routing protocol.

Nearest Neighbor Routing: For problem tractability, we
start with the simple NN routing protocol to obtain a perfor-
mance lower bound. In NN routing [14], each relay will select
the nearest node in Φ along the direction to the destination D
as its next hop. In this case, the selected relay set is the same
as the candidate relay set, i.e., Φ′ = Φ. So in the NN routing,
we use Φ′ and Φ interchangeably unless otherwise clarified.

The nearest neighbor routing protocol aims to guarantee the
link quality of each single hop by utilizing all the available
relays in Φ and minimizing the hop distances. When the node
intensity λ is large, nearest neighbor routing will degrade
the end-to-end throughput because of the extra delay and
bandwidth it takes. A simple variation of the NN routing
is to choose Φ′ by independently thinning [28, Proposition
1.3.5] the original relay set Φ, which can generate an HPPP
of intensity λ∗ < λ. The throughput analysis in this case is
the same as that of the original NN routing by replacing λ
with λ∗.

Quasi-Equal-Distance (QED) Routing: As is well known
[12], [29], equal-distance routing provides the optimal network
performance. However, limited by the randomness in relay
distribution, the ideal equal-distance routing generally cannot
be realized in practical systems. Therefore, in this paper, we
propose a QED routing protocol where we select the relays
Φ′ to be close to a equidistant relay deployment. In the QED
protocol, given a selected relay, instead of choosing the nearest
neighbor as the next hop, it will select the next hop to be the
first node which is at least l0 away along the direction to
the destination, where l0 is a parameter that can be tuned in
the protocol. That is, the QED routing aims to make the hop
distance of each hop close to l0. In this case, except for the
last hop, the hop distances should be at least l0. Note that if
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l0 is set to be 0, the QED routing will be reduced to the NN
routing. The optimal value of l0 can be obtained by optimizing
the end-to-end throughput, which will be discussed in Section
VI of this paper.

As the relay intensity λ → +∞, the distribution of the
selected relays will converge to an equidistant deployment, and
the performance of QED will converge to that of equidistant
relays.

III. PROBLEM FORMULATION

A fixed rate coding scheme is assumed in the physical layer,
where a packet can be successfully received if and only if the
received signal to interference and noise ratio (SINR) is above
a given threshold θ > 0. We consider an interference-limiting
scenario, where the noise power is negligible compared with
the interference power, so we use signal to interference ratio
(SIR) and SINR interchangeably. Without loss of generality,
we assume that each node in the network transmits with
unit power. Let binary RV B(X ′i−1, k) indicate whether relay
X ′i−1 is allowed by the MAC protocol to transmit signals at
time slot k. For i = 1, 2, ..., N ′+1 and let X ′N ′+1 = D, given
B(X ′i−1, k) = 1, the received SIR at relay X ′i on time slot k
can be expressed as

SIR(X ′i, k) =
Hk

X′i−1,X
′
i
|X ′i −X ′i−1|−β

Io(X ′i, k) + Iin(X ′i, k)
, (2)

where Io(X ′i, k) denotes the interference that the active ex-
ternal interferers in Ψ generates on relay X ′i at time slot k,
and Iin(X ′i, k) denotes the intra-route interference generated
by other relays in Φ′ transmitting over time slot k.

Let 1{A} denote the indicator variable of event A. So the
local throughput of link X ′i−1 →X ′i can be expressed as

Tlocal(X
′
i) = lim

K→∞

1

K

K−1∑
k=0

B(X ′i−1, k)1{SIR(X ′i, k) > θ} . (3)

According to the stability analysis in queuing theory, the
end-to-end throughput is determined by the hop with the
lowest throughput [30]. So the end-to-end throughput can be
expressed as

Tend = min
X′i∈Φ′∪{D}

Tlocal(X
′
i) . (4)

Our goal is to calculate the expectation of Tend over all the
possible realizations of the relay distribution Φ′ for any given
routing distance R = r, E{Tend | R = r}.

In general, the external interference Io(X ′i, k) can be rep-
resented as

Io(X
′
i, k) =

∑
Yj∈Ψ

B(Yj , k)Hk
Yj ,X′i

|Yj −X ′i|−β , (5)

where for any Yj ∈ Ψ, the binary RV B(Yj , k) indicates
whether the “external” node Yj would transmit at time slot k.
Under the ALOHA protocol, the distribution of external inter-
ferers in any given time slot can be viewed as an independent
thinning of Ψ with a retention probability of pa, i.e., an HPPP
with intensity µ′ = paµ. Following the same assumption in
[10], we make the following approximation.

Approximation 1. The distribution of external interferers are
approximated as independent across different time slots.

With the approximation above, for a given deployment of
relays Φ′, the distribution of Io(X

′
i, k) is independent of

time slot k. So we discard the time index k for the external
interference.

Given R and Φ′, B(X ′i−1, k) and Iin(X ′i, k) will depend on
the resource allocation scheme in the TDMA protocol. Here,
we discuss the NN and the QED routing respectively.

A. NN Routing

For the NN routing, we assume that each time slot in a
TDMA cycle will be allocated to at most one relay in Φ′ (Φ).
That is, no intra-route resource reuse is allowed in the NN
routing and Iin(X ′i, k) = 0 for all the possible i and k. This
is because in the NN routing, relays can be quite close to each
other, where a strong intra-route interference will possibly be
generated. In this case, SIR(X ′i, k) is independent of time slot
k given B(X ′i−1, k) = 1. So we discard the time index k and
let SIR(X ′i) denote the SIR at X ′i for an arbitrary time slot
where X ′i−1 is allowed to transmit signals.

Define Ai
4
= lim
K→∞

1
K

∑K−1
k=0 B(X ′i−1, k) as the normalized

slot length allocated to link X ′i−1 → X ′i . So the local
throughput Tlocal(X

′
i) can be rewritten as

Tlocal(X
′
i)= lim

K→∞

K−1∑
k=0

B(X ′i−1, k)

K

∑
B(X′i−1,k)=1

1{SIR(X ′i, k)>θ}∑K−1
k=0 B(X ′i−1, k)

.

(6)
From ergodicity, given the routing distance R and the relay
set Φ′, the local throughput

Tlocal(X
′
i) = Ai Pr{SIR(X ′i) > θ | R,Φ′} . (7)

From the stationarity of HPPP, the distribution of Io(X ′i)
will be independent of the location of X ′i . If we assume that
the distribution of the small scale fading HX′i−1,X

′
i

is inde-
pendent of the location of X ′i−1 and X ′i , then it follows from
(2) that the conditional probability Pr {SIR(X ′i) > θ | R,Φ′}
is a function of hop distance |X ′i −X ′i−1|. Define the cov-
erage probability of a hop distance of l with only external
interference as

Ps(l)
4
= Pr

{
Hl−β/Io > θ

}
, (8)

where Io denotes the external interference at an arbitrary
location. So we have

Pr {SIR(X ′i) > θ | R,Φ′} = Ps(|X ′i −X ′i−1|) . (9)

The coverage probability Ps(l) can be calculated using the
following lemma.

Lemma 1. Given a hop distance l, the coverage probability
for the hop is

Ps(l) = exp(−κl2) , (10)

where κ = 2πµ′ π
β sin(2π/β)θ

2/β .

Proof. See [16].
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So the end-to-end throughput can be expressed as

Tend = min
X′i∈Φ′∪{D}

AiPs(|X ′i −X ′i−1|) . (11)

B. QED Routing

In the QED routing, we analyze the throughput both with
and without intra-route resource reuse.

For the case without intra-route resource reuse, the analysis
follows that of the NN case, where the expression of the end-
to-end throughput is the same as (11).

Next, we consider the case with intra-route resource reuse.
Assuming a TDMA scheme where the TDMA cycle consists
of M time slots, indexed from 0 to M − 1, the source node
will be assigned with slot 0, and relay i will be assigned with
slot i mod M . The nodes assigned with the same time slot
will transmit concurrently at the specified time slot, thus the
nodes will be subject to the intra-route interference generated.
The intra-route interference experienced by relay X ′i at time
slot k, Iin(X ′i, k), can be expressed as

Iin(X ′i, k) =
∑

Xm∈Φ′, m6=i

B(Xm, k)Hk
Xm,X′i

|Xm−X ′i|−β . (12)

Here, without loss of generality, we assume that each relay
will always transmit signals at its designated time slots. Note
that, given B(Xi−1, k) = 1, B(Xm, k) = 1 iff. m = i− 1 +
jM for some integer j 6= 0. So the intra-route interference is
independent of time index k, which can be expressed as

Iin(X ′i) =
∑
j∈Z\0,

X′i−1+jM∈Φ′

HX′i−1+jM ,X
′
i
|X ′i−1+jM −X ′i|−β . (13)

Similar to the NN case, we use SIR(X ′i) to denote the SIR at
X ′i for an arbitrary time slot.

The introduction of intra-route resource reuse greatly com-
plicates the throughput analysis because that: (i) the intra-route
interference is correlated with the distribution of the relays;
and (ii) the temporal correlation of intra-route interference
results in the correlation of transmission success probability
across time [31]. To make the problem tractable, we assume
M ≥ 2 and approximate the intra-route interference at X ′i as

Ĩin(X ′i)=
∑
j∈Z−

Hj |jMl0 + L′i|−β+
∑
j∈Z+

Hj |(jM − 1)l0|−β ,

(14)
where L′i = |X ′i −X ′i−1| and Hj , j = ±1,±2, ..., are inde-
pendent exponential RVs of mean 1. As hop distance is lower
bounded by l0 except for the last hop in the QED routing, it
follows that Pr{Ĩin(X ′i) ≥ x | Φ′} ≥ Pr{Iin(X ′i) ≥ x | Φ′}
for any x.

Define the corresponding lower bound of SIR(X ′i) as

S̃IR(X ′i) =
HX′i−1,X

′
i
|X ′i −X ′i−1|−β

Io(X ′i) + Ĩin(X ′i)
. (15)

We use S̃IR(X ′i) instead of SIR(X ′i) in the through-
put analysis under intra-route resource reuse. Assum-
ing M time slots per TDMA cycle, we have Ai =

lim
K→∞

1
K

∑K−1
k=0 B(X ′i−1, k) = 1/M . Given the routing dis-

tance R and the relay set Φ′, the local throughput of link
X ′i−1 →X ′i is

Tlocal(X
′
i)=

1

M
Pr
{

S̃IR(X ′i) > θ | R,Φ′
}
. (16)

Except for the hop distance L′i of link X ′i−1 → X ′i ,
Ĩin(X ′i) is independent of the distribution of other relays in
Φ. So following the definition of (8), we define the coverage
probability of a hop distance l with intra-route resource reuse
as

P ′s(l)
4
= Pr

{
Hl−β/(Io + Ĩin(l)) > θ

}
, (17)

where

Ĩin(l)=
∑
j∈Z−

Hj |jMl0 + l|−β+
∑
j∈Z+

Hj |(jM−1)l0|−β . (18)

Let function LIo(s) denote the Laplace transform of the
PDF of the external interference Io, and LĨin(l)(s) the Laplace
transform of the PDF of the intra-route inference Ĩin(l). We
have

P ′s(l) = LIo(θlβ)LĨin(l)(θl
β) . (19)

Since we assume that the locations of the active external inter-
ferers are independent across time, it follows that LIo(θlβ) =
Ps(l) = exp(−κl2) as defined in Lemma 1. LĨin(l)(s) can be
calculated as [32]∏

k∈Z+

1

s(kMl0 + l)−β + 1
· 1

s[(kM − 1)l0]−β + 1
. (20)

Combining (19) and (20), we have the following lemma on
the local throughput.

Lemma 2. Define function Pin(l) as

Pin(l)
4
=
∏
k∈Z+

1

θ(kM l0
l + 1)−β + 1

· 1

θ[(kM − 1) l0l ]−β + 1
.

(21)
In the QED routing with intra-route resource reuse, for a hop
distance of l, the coverage probability is

P ′s(l) = Ps(l)Pin(l) , (22)

where Ps(l) is defined in Lemma 1. A closed form lower bound
of Pin(l) can be calculated as

Pin(l) ≥ exp{− l

Ml0θ
− 1
β

B(
1

θ−1(M l0
l + 1)β + 1

; 1− 1

β
,

1

β
)

−
(

2 +
l

Ml0

)
ln

(
θ(M

l0
l

+ 1)−β + 1

)
− l

Ml0θ
− 1
β

B(
1

θ−1[(M − 1) l0l ]β + 1
; 1− 1

β
,

1

β
)

−(2− 1

M
) ln

(
θ[(M − 1)

l0
l

]−β + 1

)
} , (23)

where B(·; ·, ·) is the incomplete beta function.

Proof. Note that lnPin(l) can be expressed as

−
∞∑
k=1

ln

(
θ(kM

l0
l

+ 1)−β + 1

)
+ln

(
θ[(kM − 1)

l0
l

]−β + 1

)
.



2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2018.2806846, IEEE
Transactions on Signal and Information Processing over Networks

6

Since ln
(
θ(kM l0

l + 1)−β + 1
)

and ln(θ[(kM − 1) l0l ]−β + 1)
are both decreasing functions with respect to k for k ≥ 1, (23)
can be obtained by approximating the summation of series
with the integral of the corresponding function.

So the end-to-end throughput can be expressed as

Tend = min
X′i∈Φ′∪{D}

1

M
P ′s(|X ′i −X ′i−1|) . (24)

In the rest of this paper, we first derive the average end-to-
end throughput of the NN routing, followed by the case of the
QED routing.

IV. STOCHASTIC ANALYSIS ON HOP-DISTANCE UNDER
NN ROUTING

As a preparation for further throughput analysis, in this
section, we analyze the distribution of the longest hop distance
in the NN routing, denoted by Lm.

The longest hop distance Lm of Φ is of special interest for
two reasons. First, consider a simple TDMA where the relays
in Φ are assigned with a fixed slot length, i.e., Ai = 1/(N+1)
for i = 0, 1, ..., N , with N being the number of relays.
In this case, as the coverage probability Ps(l) is a non-
increasing function with respect to the hop distance l, the
end-to-end throughput will be the local throughput of the
hop with the longest hop distance. Second, for any MAC
protocol or resource allocation scheme employed, the end-to-
end throughput cannot exceed the coverage probability of the
longest hop distance, Ps(Lm). Thus, the stochastic analysis of
Lm sheds light on the theoretical upper bound of the end-to-
end throughput.

We have the following theorem on the distribution of Lm.

Theorem 1. Given the routing distance between source and
destination R = r, we have:

1) The conditional CDF of Lm, Pr{Lm ≤ l|R = r} = 1
for l ≥ r. Moreover, Pr{Lm = r|R = r} = e−λr and
Pr{Lm < r|R = r} = 1− e−λr.

2) Define g(l, r)
4
= Pr{Lm ≤ l|R = r} and denote the

Laplace transform (LT) of g(l, r) with respect to r by
G(l, s), then

G(l, s) =
1− e−(λ+s)l

s+ λe−(λ+s)l
. (25)

Proof. 1) This part follows directly from the properties of PPP.
2) For 0 < l < r, consider the conditional probability of

Lm given that the first relay X1 is located at (x, 0), Pr{Lm ≤
l|R = r, |X1| = x}. Since the distribution of the points of Φ
in disjoint intervals are independent, basing on the Palm theory
of PPP1, given |X1| = x, the remaining relay nodes within the
interval (x, r) is still a 1D PPP of intensity λ. The distribution
of the longest hop distance for the relays within (x, r) should

1For a PPP, given that one node is located at a particular point, the
conditional distribution of all other nodes is still a PPP, which is known as
Slivnyak-Mecke Theorem [28, Theorem 1.4.5].

be the same as that for R = r−x. Since |X1| is exponentially
distributed for x < r, we have

Pr{Lm ≤ l|R = r}

=

∫ l

0

f|X1|(x) Pr{Lm ≤ l|R = r, |X1| = x}dx

=

∫ l

0

λe−λx Pr{Lm ≤ l|R = r − x}dx . (26)

Consider the following integral∫ +∞

l

Pr{Lm ≤ l|R = r}e−srdr

=

∫ +∞

l

∫ l

0

λe−λx Pr{Lm ≤ l|R = r − x}e−srdxdr

=

∫ l

0

λe−λx

(∫ l+x

l

Pr{Lm ≤ l|R = r − x}e−srdr

+

∫ +∞

l+x

Pr{Lm ≤ l|R = r − x}e−srdr
)

dx

=
e−sl

s
(1− e−λl)− λe−sl

s(λ+ s)
(1− e−(λ+s)l)

+
λ

λ+ s
(1− e−(λ+s)l)[G(l, s)− 1− e−sl

s
] . (27)

Note that we also have∫ +∞

l

Pr{Lm ≤ l|R = r}e−srdr = G(l, s)− 1− e−sl

s
.

(28)
Following (27) and (28), we get G(l, s) = 1−e−(λ+s)l

s+λe−(λ+s)l .

Moreover, we have the following result about the region of
convergence (ROC) of G(l, s).

Corollary 1. The ROC of G(l, s) includes the imaginary axis.
More specifically, g(l, r) is absolutely integrable, i.e.,∫ +∞

−∞
|g(l, r)|dr < +∞ . (29)

Proof. See Appendix A in the supplementary file.

Following Theorem 1 and Corollary 1, the conditional
CDF of Lm given R = r can be computed numerically by
calculating the inverse Fourier Transform (FT) of G(l, jω).

To obtain a closed form expression for the CDF of Lm,
instead of fixing the routing distance R = r, we can model
R as an exponentially distributed RV of mean 1

ν . Basing on
Theorem 1, the CDF of Lm can be calculated as

Pr{Lm ≤ l} =
ν(1− e−(λ+ν)l)

ν + λe−(λ+ν)l
, ∀l ≥ 0 . (30)

Basing on Theorem 1, we can also evaluate the mean and
variance of Lm with respect to the routing distance.

Theorem 2. For a fixed relay intensity λ, as r approaches
+∞, E{Lm | R = r} ∼ O(ln(r)). More specifically, for
r > 0, let mLm(r)

4
= E{Lm | R = r}, we have

mLm(r) =

∫ r

0

1− e−λx

λx
dx , (31)
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whose LT is
MLm(s) =

1

sλ
ln(

λ

s
+ 1) . (32)

Moreover, for any given λ, the conditional variance of Lm
under R = r, D{Lm | R = r}, satisfies

lim
r→∞

D{Lm | R = r} =
π2

6λ2
. (33)

Proof. See Appendix B in the supplementary file.

Remark 1. From Theorem 2, we can see that for a fixed relay
intensity λ, the conditional mean of the longest hop distance
E{Lm | R = r} ∼ O(ln(r)) as the routing distance r → +∞,
and its variance is bounded. Unlike the case with evenly
deployed relays where the per hop distance stays constant
with respect to the routing distance, for randomly distributed
relays, the longest hop distance would go to infinity as the
routing distance approaches infinity, i.e., the throughput of the
worst hop would approach zero. This shows that long distance
communication is not feasible in randomly deployed networks.

V. THE AVERAGE END-TO-END THROUGHPUT UNDER NN
ROUTING

In this section, we derive the average end-to-end throughput
under NN routing over all the possible realizations of relays
Φ. We discuss two different resource allocation schemes: a
conventional TDMA scheme with fixed slot length and a
dynamic TDMA scheme with flexible slot length.

A. Throughput Analysis under NN Routing with fixed slot
length

We consider a conventional TDMA resource allocation
scheme where a TDMA cycle would consist of N + 1 time
slots, each of which would be allocated to one relay node or
the source node. Following (11), the end-to-end throughput
can be expressed as

Tend = min
X′i∈Φ′∪{D}

Ps(|X ′i −X ′i−1|)
N + 1

=
Ps(Lm)

N + 1
, (34)

where the second equation follows from the fact that Ps(·) is
a non-increasing function.

Given the coverage probability function Ps(·), the average
coverage probability of the longest hop, E{Ps(Lm)}, should
depend on the intensity of the relays, λ, and the routing
distance R. For this reason, we define p(x, r)

4
= E{Ps(Lm) |

λ = x,R = r}. Then, we have the following theorem on the
end-to-end throughput.

Theorem 3. For a relay intensity λ, given the routing distance
R, the average end-to-end throughput is given by

E{Tend | R} =
e−λR

λ

∫ λ

0

eRx p(x,R)dx . (35)

Proof. See Appendix C in the supplementary file.

Note that the function p(x, r) can be computed numer-
ically, which only depends on the marginal distribution of
Lm. Following Theorem 3, we can calculate E{Tend | R}
without deriving the joint probability density function (PDF)

of N and Lm explicitly. With the following Lemma, we can
further reduce the computational complexity by calculating the
Laplace transform of E{Tend | R = r} with respect to r.

Lemma 3. Taking the relay intensity Λ as a random variable
and let fLm|Λ,R(l | x, r) denote the conditional PDF of the
longest hop distance Lm given the relay intensity Λ = x and
routing distance R = r. Define

q(l, λ, r)
4
=
e−λr

λ

∫ λ

0

erx fLm|Λ,R(l | x, r) dx , (36)

then the Laplace transform of q(l, λ, r) with respect to r is

Q(l, λ, s) =
(s+ λ)

λ+ e(s+λ)ls
. (37)

This lemma follows directly from the Laplace transform of
fLm|Λ,R(l | x, r) and we skip the proof for brevity. Basing on
Lemma 3, we have the following result on E{Tend | R = r}.

Proposition 1. For a fixed relay intensity λ, define Tend(r)
4
=

E{Tend|R = r} as the average end-to-end throughput given
routing distance R = r. The Laplace transform of Tend(r),
Tend(s), can be calculated as

Tend(s) =

∫ +∞

0

Ps(l)
s+ λ

λ+ e(s+λ)ls
dl . (38)

Proof. Recall that p(x, r) = E{Ps(Lm) | λ = x,R = r},
where Ps(Lm) is the coverage probability of the longest hop,
then p(x, r) can be calculated as

p(x, r) =

∫ +∞

0

Ps(l) fLm|Λ,R(l | x, r)dl . (39)

So Tend(r) can be expressed as

Tend(r) =
e−λr

λ

∫ λ

0

erx
∫ +∞

0

Ps(l) fLm|Λ,R(l | x, r)dldx

=

∫ +∞

0

Ps(l) q(l, λ, r) dl . (40)

Basing on Lemma 3, (38) can be obtained accordingly.

Following Proposition 1 and Corollary 1, the mean of the
throughput can be computed numerically through the inverse
Fourier transform of Tend(jω).

As shown in Proposition 1, a closed-form expression of the
end-to-end throughput is hard to derive. In order to further
analyze the impacts of different network parameters on the
network performance, we derive the following lower bound
on end-to-end throughput.

Proposition 2. For a given relay intensity λ and routing
distance r, the end-to-end throughput Tend(r) is lower bounded
by Tend,L(r), i.e., Tend(r) ≥ Tend,L(r), where

Tend,L(r) =
1−e−λr

λr
exp(− κλ−2

1−e−λr
[ln2(λr)+2B(λr) ln(λr)

+ 2C(λr)+ c− e−λr
(
A(λr)2 + (2 + c)λr + c

)
]), (41)

with c = max
t∈(0,1)

[
ln2 t

(1−t)2 − ln2 t
]
≈ 1.51, A

4
=
∫ +∞

0
l2e−l

1−e−l dl ≈

2.404, B(x)
4
=

∫ 1

0
1−e−u
u du −

∫ x
1
e−u

u du, C(x)
4
=∫ x

1
lnu e

−u

u du−
∫ 1

0
lnu 1−e−u

u du .
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For λr � 1, the lower bound Tend,L(r) approximates

Tend,L(r) ≈ 1

λr
exp

(
−κλ−2[ln2(λr) + 2B ln(λr) + 2C + c]

)
,

(42)
where B = lim

x→+∞
B(x) ≈ 0.577, C = lim

x→+∞
C(x) ≈ 0.989 .

Proof. See Appendix D in the supplementary file.

In the following, we consider to optimize the lower bound
Tend,L(r) with respect to the relay intensity λ.

Corollary 2. For λr � 1, the optimal relay intensity λ∗ that
maximizes Tend,L(r) should satisfy λ1 < λ∗ < λ2, where

λ1 =
1

r
exp

(
1

r
√

2κ
exp

(
−W−1(− 1

r
√

2κ
)

))
, (43)

λ2 =
1

r
exp

(
e−
√

2C+c−B

r
√

2κ
exp

(
−W−1(−e

−
√

2C+c−B

r
√

2κ
)

))
,

(44)
and W−1(·) is the real branch of Lambert W function over
(−∞,−1) [33].

Proof. See Appendix E in the supplementary file.

B. Throughput Analysis under NN Routing with flexible slot
length

In TDMA, it may be unwise to allocate equal time slots
to each hop since the time resources may be wasted at the
relay nodes whose arrival rates are much lower than their
service rates. Recall that Ai denotes the normalized slot length
allocated to hop i and Li denotes its hop distance. Given the
relay deployment Φ, we can formulate the resource allocation
problem as

Maximize min
i

(AiPs(Li)) (45)

s.t.
∑
i

Ai = 1 .

It follows that the optimal Ai = 1/
[
Ps(Li)

∑
j 1/Ps(Lj)

]
,

and the optimized throughput is

Tend = 1/

(∑
i

1/Ps(Li)

)
. (46)

Note that the end-to-end throughput (46) is a function of hop
distances Li for i = 1, 2, ..., N + 1. Our goal is to evaluate
the mean of (46) with respect to the distribution of Φ.

Define the RVs Yi and Y as

Yi
4
= 1/Ps(Li) , Y

4
=
∑
i

Yi = 1/Tend . (47)

We first derive the distribution of Y and then calculate the
mean of its reciprocal, i.e., the average end-to-end throughput.

Define function gY (y, r)
4
= fY |R(y|r), the conditional PDF

of Y given routing distance R = r. For a given location of
the first relay, following a similar derivation as in the proof of
Theorem 1, we have

fY |R(y|r) = Pr{|Φ| = 0} fY1|L1
(y | r) +∫ r

0
fL1

(x)
∫ y

0
fY1|L1

(τ | x)fY |R(y − τ |r − x)dτdx . (48)

Since Yi is a deterministic function of Li, we have fY1|L1
(y |

x) = δ(y − 1/Ps(x)). The 2D Laplace transform of gY (y, r)
can be expressed as

GY (s1, s2) =
FY1,L1(s1, s2)

λ(1− FY1,L1
(s1, s2))

, (49)

where

FY1,L1
(s1, s2) =

∫ +∞

0

λe−(λ+s2)re−
s1

Ps(r) dr , (50)

is the 2D Laplace transform of fY1,L1
(y, x). We have the

following theorem on the average end-to-end throughput:

Theorem 4. Denote the average throughput with dynamic
resource allocation given routing distance r, E{Tend | R = r},
by function Tend(r). The Laplace transform of Tend(r) is

Tend(s) =

∫ +∞

0

GY (u, s)du , (51)

where GY (u, s) is defined in (49).

This theorem follows directly from the property of Laplace
transform.

VI. THE AVERAGE END-TO-END THROUGHPUT UNDER
QED ROUTING

In this section, we evaluate the average end-to-end through-
put of the proposed QED routing under fixed-length TDMA,
both with and without intra-route resource reuse.

A. Throughput Analysis under QED Routing without Intra-
Route Resource Reuse

In this scheme, each relay in Φ′ is allocated with a time
slot of fixed length. Let L′m denote the longest hop distance
in the relay set Φ′. Following (34), the end-to-end throughput
can be expressed by

Tend =
1

N ′ + 1
Ps(L

′
m) . (52)

where N ′ is the number of relays in Φ′. Unfortunately, as Φ′ is
not a PPP anymore, it is hard to derive an accurate expression
of the end-to-end throughput for QED routing as we did for
the NN routing. In order to make the end-to-end throughput
analysis tractable, the following approximation is made.

Approximation 2. Given routing distance R = r, the average
end-to-end throughput is approximated by

E{Tend | R = r} =
Ps(E{L′m | R = r})
E{N ′ | R = r}+ 1

. (53)

The validity of this approximation is verified by simulation,
as shown in Section VII. In addition, we make the following
approximation on E{N ′ | R = r}.

Approximation 3. Given routing distance R = r, the average
number of relays selected by QED routing, N ′ = |Φ′| is
approximated by

E{N ′ | R = r} =
r

l0 + 1/λ
. (54)
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The reason behind this approximation is that, if an infinite
routing distance is assumed, the average routing distance per
hop under QED routing is l0 + 1/λ. Also, according to the
ergodicity, N ′ will approach its mean almost surely as r →
+∞.

We have the following theorem on the distribution of the
longest hop distance L′m for Φ′.

Theorem 5. Define g′(l, r)
4
= Pr{L′m ≤ l | R = r} as

the condition CDF of L′m given routing distance R = r.
Denote its Laplace transform with respect to r by G′(l, s) =∫ +∞

0
g′(l, r)e−srdr for l > l0, we have

G′(l, s) =
1

s
− (λ+ s)e−(s+λ)·l+λl0

s{λ · [1 + e−(s+λ)·l+λl0 − e−s·l0 ] + s}
. (55)

As r → +∞, the conditional mean of L′m given routing
distance R = r, E{L′m | R = r}, satisfies

lim
r→+∞

E{L′m | R = r} −
[

1

λ

(
ln

λr

λl0 + 1
+B

)
+ l0

]
= 0 .

(56)
where constant B ≈ 0.577 is defined the same as Proposition
2.

Proof. See Appendix F in the supplementary file.

Basing on Theorem 5, we can make the following approxi-
mation on L′m.

Approximation 4. Then conditional mean of L′m given R =
r � l0 is approximated by

E{L′m | R = r} ≈ 1

λ

(
ln

λr

λl0 + 1
+B

)
+ l0 . (57)

Basing on the approximations above, we have the following
theorem on the end-to-end throughput of QED routing.

Theorem 6. The average end-to-end throughput of QED
routing for routing distance r � l0, E{Tend | R = r}, can
be approximated by

l0 + 1/λ

r + l0 + 1/λ
exp

{
−κ
[

1

λ

(
ln

λr

λl0 + 1
+B

)
+ l0

]2
}
. (58)

Routing parameter l0 can be optimized to maximize the end-
to-end throughput (58) by calculating its derivative, by which
the following Corollary is obtained.

Corollary 3. For a routing distance r � max(l0, 1/λ), the
optimal l0 satisfies l0 < l∗0 < l0, where

l0 =

√
(lnλr +B)

2
+ 2λ2

κ − (lnλr +B)

2λ
, (59)

l0 =

√
B2 + 2λ2

κ −B
2λ

. (60)

B. Throughput Analysis under QED Routing with Intra-Route
Resource Reuse

Recall that in Lemma 2, we derived the coverage probability
function P ′s(l) for the intra-route resource reuse, which is a
non-increasing function with respect to the hop distance l.
Following (24), the end-to-end throughput of QED routing
with the intra-route resource reuse can be expressed as

Tend = min
X′i∈Φ′∪{D}

1

M
P ′s(|X ′i−X ′i−1|) =

1

M
P ′s(L

′
m) , (61)

where M is the number of time slots in a TDMA cycle.
Following Approximation 2 where the RV L′m is replaced by
its mean, we have the following theorem on the average end-
to-end throughput.

Theorem 7. Given the routing distance r, the average end-
to-end throughput of QED routing with intra-route resource
reuse can be approximated by

E{Tend | R = r} =
1

M
P ′s(E{L′m | R = r}) , (62)

where E{L′m | R = r} is given in Approximation 4.

The effect of slot number M on the network performance
is two fold. First, a smaller M allows a larger number of
concurrent transmissions on the route, by which a larger
equivalent bandwidth can be obtained, whereas a stronger
intra-route interference is introduced. Second, consider a large
scale wireless network which consists of a number of multi-
hop links, the increase of concurrent transmissions on each
route, which results from the decrease of M , will also generate
a stronger inter-route interference on other routes. That is, the
selection of M also affects the intensity of the active external
interferers. Since the number of concurrent transmissions on
a route is linearly proportional to 1/M , we assume that the
intensity of active external interferers µ′ satisfies µ′ = µ′1/M ,
where µ′1 denotes the intensity of active interferers for M = 1.
For a given µ′1, we discuss the selection of M for different
routing distance r under two scenarios: 1) the node intensity
is constant; and 2) the source-destination pair intensity is
constant.

1) Constant node intensity: In this case, µ′1 is assumed to
be constant for different r, denoted by µ′1 = µ̄ for a constant µ̄.
Then we have the following corollary on the optimal number
of time slots M .

Corollary 4. As the routing distance r → ∞, the optimal
number of time slots M∗(r) for routing distance r that
maximizes the end-to-end throughput scales with

M∗(r) ∼ O(κ̄E2{L′m | R = r}) , (63)

where κ̄ = 2πµ̄ π
β sin(2π/β)θ

2/β .

Proof. See Appendix G in the supplementary file.

2) Constant source-destination pair intensity: In this case,
we consider a multi-hop wireless network formed by multiple
source-destination pairs, where the intensity of the source-
destination pairs is assumed to be a constant and their routing
distances are the same as r. So for a given r, µ′1 will be
linearly proportional to the average hop number per route,
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E{N ′ + 1 | R = r}, which is linearly proportional to
r as shown in Approximation 3. For simplicity, with other
parameters being fixed, we assume that µ′1 = µ̄r for a constant
µ̄. So the intensity of the active external interferers can be
denoted by µ′ = µ̄r/M .

Corollary 4 still holds for this case by replacing κ̄ with
κ̄r, i.e., M∗(r) ∼ O(κ̄rE2{L′m | R = r}). However, since
the average hop number E{N ′ + 1 | R = r} is linearly
proportional to r, for r → +∞, we have

M∗(r) > E{N ′ + 1 | R = r} . (64)

That is, the number of time slots in a TDMA cycle is greater
than the number hops on the route, which implies that each
time slot will be allocated to at most one hop on the same
route. Thus, we have the following corollary.

Corollary 5. In a network with random relays and a finite
relay intensity λ, for a fixed source-destination pair intensity,
as the routing distance r → +∞, the intra-route resource
reuse should not be adopted for the end-to-end throughput
optimization.

Remark 2. It is interesting to note that when the relay intensity
λ =∞, the intra-route resource reuse would still be beneficial
even for fixed source-destination pair intensity. In fact, when
λ = ∞, the relays selected by the QED routing converge
to a equidistant deployment with a hop distance of l0. From
Corollary 4 and the discussions above, the optimal number of
time slots for the equidistant relays scales with O(κ̄rl20) as
the routing distance r → +∞. Since the hop number of the
equidistant relays is r/l0, as long as r/l0 � κ̄rl20, i.e., κ̄l30 �
1, the intra-route resource reuse is still beneficial. Comparing
with the result in Corollary 5, we can see that this is another
difference between equidistant relays and random relays.

VII. NUMERICAL RESULTS

In this section, we evaluate the end-to-end throughput
performance with random relay deployment through numerical
results. Unless otherwise clarified, we will use the following
parameters: the interferer intensity µ = 5 × 10−4 /m2, the
ALOHA access probability pa = 0.1, the path-loss exponent
β = 4, the SINR threshold for successful transmission
θ = 10 dB. We first start with the case of NN routing and
then simulate the performance of QED routing.

A. Numerical Results of NN Routing

Example 1: End-to-end throuhgput of NN routing with
fixed slot length In this example, we evaluate the end-to-end
throughput with random relays using NN routing and fixed slot
length. Fig. 2 shows the average end-to-end throughput versus
relay intensity λ for different routing distance r. It can be ob-
served that: even without an optimized deployment of relays,
the end-to-end throughput can still be obviously improved
compared with the case of direct connection. For example, if
a minimum end-to-end throughput of 1×10−2 packets/slot is
required, the maximum communication range is around 75 m
without the relays, while the communication range expands to
more than 250 m with multi-hop relays. It can be observed

Relay intensity 6 (relays/m)
0 0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

lo
t)

10-4

10-3

10-2

10-1

100

r=50 m
r=75 m
r=100 m
r=150 m
r=200 m
r=250 m

Fig. 2. Average end-to-end throughput versus relay intensity under NN routing
with fixed slot length.
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Fig. 3. Throughput comparison with fixed slot length: random relays under
NN routing versus equidistant relays

that the optimal relay intensity λ increases as r increases, on
the contrary to the equidistant relays where the optimal relay
distance stays constant2.

Example 2: Performance comparison with equidistant
relays In this example, we compare the end-to-end throughput
between equidistant and random relays using NN routing with
fixed slot length. Fig. 3 shows the optimal end-to-end through-
put of random relay deployment and that of equidistant relays
under different routing distance r and SINR threshold θ. The
relay intensity λ is optimized for each routing distance. The
random relay deployment suffers a significant performance
loss compared to the ideal case. For instance, with a SINR
threshold θ of 10 dB under the network configuration, there is
a 48% throughput loss at r = 50 m and a 70% performance
loss at r = 130 m, which are not negligible for system
evaluation.

Example 3: End-to-end throughput with flexible slot
length In this example, we test the end-to-end throughput
with flexible slot length in NN routing. Fig. 4 shows the
end-to-end throughputs of different schemes under different
relay intensities and routing distances. We can observe that a

2Here, we refer to the upper bound of end-to-end throughput for equidistant
relays, d

r
Pcov(d), where d is the per hop distance, and the optimal d is

independent of r.
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Fig. 4. Throughput comparison under NN routing: fixed slot length versus
flexible slot length

significant performance improvement is achieved by dynamic
resource allocation compared with the fixed slot length. Using
a flexible slot length, the performance loss from the equidistant
case also degrades much slower than the case of fixed slot
length with the increase of routing distance.

B. Numerical Results of QED routing

Example 4: End-to-end throughput under QED routing
without intra-route resource reuse In this example, we
evaluate the average end-to-end throughput of the QED routing
without intra-route resource reuse, and compare it with that
of the NN routing as well as that of the equidistant relays.
Fig. 5 shows the average end-to-end throughputs of the QED
routing and the NN routing for different routing distances.
For each routing distance, the relay intensity λ is the same
for both the NN and the QED routing, which is optimized
with respect to the average end-to-end throughput of the
NN routing. In terms of the selection of parameter l0 in
the QED routing, we choose l0 = (l0 + l0)/2 as defined
in Corollary 3. First, it can be observed that the average
end-to-end throughput derived in Theorem 6 provides a very
close approximation to the simulation results, substantiating
the validity of the approximations we made. In addition, a
significant performance improvement can be achieved by the
QED routing, compared with the NN routing. However, there
is still a non-negligible performance loss compared with the
equidistant relays for the selected relay intensities.

Example 5: End-to-end throughput under QED routing
with intra-route resource reuse In this example, we evaluate
the end-to-end throughput with the intra-route resource reuse
for the QED routing. We set l0 = 15 m and λ = 0.2 /m. As is
discussed in the previous section, we consider both the case of
constant node intensity and that of constant source-destination
pair intensity. We use µ̄ = 5 × 10−4 for the constant node
intensity and µ̄ = 3×10−6 for the constant source-destination
pair intensity. The results are compared with the end-to-end
throughput of the QED routing without the intra-route resource
reuse, where we set the intensity of the interferers the same as
the case of M = E{N ′+1 | R = r}. The numerical results of
the two cases are shown in Fig. 6 and Fig. 7 respectively. First,
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Fig. 5. Throughput comparison: QED versus NN
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Fig. 6. The average end-to-end throughput under QED routing with the intra-
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it can be observed that there is a gap between the end-to-end
throughput derived in Theorem 7 and the simulation results
for small M ’s. This is because we approximate the intra-
route interference by a very conservative upper bound of it.
However, as M becomes larger and the intra-route interference
becomes less significant, the approximation values become
very close to the simulation results. Second, the numerical
results verify our theoretical analysis on the effect of intra-
route resource reuse. That is, generally, intra-route resource
reuse can lead to an increase in the throughput; however, if the
source-destination pair density is approximately time-invariant
or does not change significantly, then it is not beneficial to
apply intra-route resource reuse for long distance routing.

VIII. CONCLUSIONS & DISCUSSIONS

In this paper, we investigated the effect of relay randomness
on the end-to-end throughput in multi-hop wireless networks
using stochastic geometry. We modeled the relays as a linear
Poisson Point Process between the source and destination,
and the external interferers as an independent Poisson Point
Process. We first evaluated the end-to-end throughputs under
nearest neighbor routing and TDMA MAC with fixed and flex-
ible slot length, respectively. Then we proposed a quasi-equal-
distance (QED) routing protocol, and analyzed its end-to-end
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Fig. 7. The average end-to-end throughput under QED routing with the intra-
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throughputs with and without intra-route resource reuse. The
optimal number of time slots was also analyzed for intra-route
resource reuse. The analysis was further demonstrated through
numerical examples. Both the theoretic and numerical results
indicated that: (i) The throughput performance of the proposed
QED routing can achieve a significant performance gain over
that of the NN routing. For network with sparse random relays,
compared with the ideal equidistant routing, the performance
loss of QED routing due to relay randomness is not negligible.
However, as the relay intensity gets higher, the performance
of QED routing converges to that of the equidistant relays;
(ii) The effect of intra-route resource reuse depends on the
network setup. If the node intensity is a constant over the
network, then as expected, intra-route resource reuse is always
beneficial when the routing distance r is sufficiently large. (iii)
With randomly distributed relays, the communication distance
can generally be extended. However, due to the uncertainty in
relay distribution, long distance communication is generally
not feasible with random relays. This implies that the existence
of a reasonably defined infrastructure needs to be ensured
for effective long distance communication. The results in
this paper also echoed our previous observation in [25]–[27]
that future network design would reflect the convergence of
centralized and ad hoc networks.
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