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Abstract— Regenerating code is a class of distributed storage
codes that can optimally trade the bandwidth required to repair
a failed node with the amount of data stored per node. There
are two optimal points in the regeneration tradeoff curve: the
minimum storage regeneration code and the minimum band-
width regeneration code. However, in hostile networks where
the storage nodes may be compromised, the storage capacity
of the network can be significantly affected. In this paper, we
propose two optimal regenerating code constructions through
rate-matching to combat this kind of adversarial attacks in
hostile networks. We first develop a two-layer rate-matched
regenerating code construction. By matching the parameters of
the full rate code and the partial rate code, we can optimize
the overall storage efficiency while maintaining the corrupted
node detection probability. Through comprehensive analysis,
we show that the two-layer rate-matched regenerating code
can achieve 70% higher storage efficiency than the universally
resilient regenerating code. We then propose an optimal m-layer
regenerating code construction. While the principle remains the
same as the two-layer code, it is designed to optimize the total
number of detectable corrupted nodes of m layers from which the
errors can be corrected under the constraint of any given code
efficiency. Compared with the universally resilient regenerating
code with the same rate, our m-layer code can detect 50% more
corrupted nodes.

Index Terms— Optimal regenerating code, MDS code, error-
correction, adversary attack.

I. INTRODUCTION

ISTRIBUTED storage is a popular method to provide

reliable data storage. Instead of storing a file and its
replicas in multiple servers, we can break the file into compo-
nents and store the components into multiple servers. In this
way, while increasing data reliability, we can also achieve data
confidentiality without data encryption and key management
involved. A typical approach is to encode the file using an
(n, k) Reed-Solomon (RS) code and distribute the encoded
file into n servers. When we need to recover the file, we
only need to collect the encoded parts from any k servers,
which achieves a trade-off between reliability and efficiency.
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However, when repairing or regenerating the contents of a
failed node, the whole file has to be recovered first, which is
a waste of bandwidth.

The concept of regenerating code was introduced in [1],
where a replacement node is allowed to connect to some
individual nodes directly to regenerate a substitute of the
failed node, instead of first recovering the original data then
regenerating the failed component. Compared to the RS code,
regenerating code achieves the optimal trade-off between
bandwidth and storage within the minimum storage regenera-
tion (MSR) and the minimum bandwidth regeneration (MBR)
points.

However, when malicious behaviors exist in the network,
both the regeneration of the failed node and the reconstruction
of the original file could fail. The error resilience of the Reed-
Solomon code based regenerating code in the network with
errors and erasures was analyzed in [2]. In our previous work,
a Hermitian code based regenerating code [3] was proposed
to provide better error correction capability compared to the
Reed-Solomon code based approach.

Inspired by the great performance improvement of the
Hermitian code based regenerating codes, in this paper we
move a step forward to construct optimal regenerating codes
in distributed storage with structure similar to the Hermitian
code.

The main contributions of this paper are:

« We propose an optimal construction of 2-layer rate-
matched regenerating code. Both theoretical analysis and
performance evaluation show that this code can achieve
storage efficiency much higher than that of the universally
resilient regenerating code proposed in [2].

« We propose an optimal construction of m-layer rate-
matched regenerating code. The m-layer code can achieve
optimal error correction capability, which is much higher
than that of the code proposed in [2] and the Her-
mitian code based regenerating code proposed in [3].
Furthermore, the m-layered code is easier to understand
and has more flexibility than the Hermitian code based
regenerating code.

Here we will focus on malicious/compromised node locating
from which the error can be corrected in distributed data
regeneration and reconstruction. When no error occurs or no
malicious node exists, the data regeneration and reconstruction
should be processed the same as the existing works.

It is worth noting that although there are two types of
regenerating codes: MSR and MBR codes on the MSR and
MBR points, respectively, in this paper we will only focus
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on the optimization of the MSR code for the following two
reasons:

1) The processes and results of the optimization for these
two codes are similar. The optimization for the MSR
code can be directly applied to the MBR code with
similar optimization results.

2) The differences between the constructions of MSR and
MBR codes have little impact on the optimization pro-
posed in this paper.

The rest of this paper is organized as follows: in Section II,
we introduce the related work. In Section III, the preliminary
of this paper is presented. In Section IV, we propose two
component codes for the rate-matched regenerating codes.
We present and analyze the 2-layer rate-matched regenerating
code in Section V. Then we propose and study the m-layer
rate-matched regenerating code in Section VI. The paper is
concluded in Section VII.

II. RELATED WORK

When a storage node in the distributed storage network
that employs the conventional (n,k) RS code (such as
OceanStore [4] and Total Recall [5]) fails, the replacement
node connects to k nodes and recovers the whole file to
regenerate the symbols stored in the failed node. This approach
is a waste of bandwidth because the whole file has to be
downloaded to recover a fraction of it. To overcome this
drawback, Dimakis et al. [1] introduced the conception of
{n,k,d,a,p, B} regenerating code based on the network
coding. In the context of regenerating code, the replacement
node can regenerate the contents stored in a failed node
by downloading y help symbols from d helper nodes. The
bandwidth consumption for the failed node regeneration could
be far less than the whole file. A data collector (DC) can recon-
struct the original file stored in the network by downloading o
symbols from each of the k storage nodes. Dimakis et al. [1]
proved that there is a trade-off between the bandwidth y and
per node storage o. They found two optimal points: mini-
mum storage regeneration (MSR) and minimum bandwidth
regeneration (MBR) points. The existing work has largely
focused on the optimal regenerating codes design [6]-[18],
and implementation of the regenerating code [19], [20].

The regenerating code can be divided into functional regen-
eration and exact regeneration. In the functional regeneration,
the replacement node regenerates a new component that can
functionally replace the failed component instead of being the
same as the originally stored component. In [21], the data
regeneration was formulated as a multicast network coding
problem. The paper also constructed functional regenerating
codes. A random linear regenerating code for distributed
storage systems was implemented in [22]. It has been proved
that by allowing data exchange among the replacement nodes,
a better trade-off between repair bandwidth y and per node
storage a can be achieved [23]. Hou er al. [24] proposed a
functional regenerating code with less computational complex-
ity through binary operations. In the exact regeneration, the
replacement node regenerates the exact symbols of a failed
node. Wu and Dimakis [25] proposed to reduce the regenera-
tion bandwidth through algebraic alignment. A code structure
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for exact regeneration using interference alignment technique
was provided in [26]. In [27], an optimal exact constructions of
MBR codes and MSR codes under product-matrix framework
was presented. This is the first work that allows independent
selection of the node number 7 in the network. In [28], repair
performance of the Reed-Solomon codes was studied. A code
construction that could achieve performance better than space-
sharing between the minimum storage regenerating codes and
the minimum bandwidth regenerating codes was proposed
in [29].

However, none of these works considered code regeneration
under node corruption or adversarial manipulation attacks in
hostile networks. In fact, all these schemes will fail in both
regeneration and reconstruction if some nodes in the storage
cloud send out incorrect responses to the regeneration and
reconstruction requests.

In [30], the Byzantine fault tolerance of regenerating codes
was studied. The amount of information that can be safely
stored against passive eavesdropping and active adversarial
attacks based on the regeneration structure was discussed
in [31]. To check data integrity of the regenerating code in
hostile networks, CRC code was adopted in [32]. Unfortu-
nately, the CRC checks can be easily manipulated by the
malicious nodes, resulting in the failure of the regeneration
and reconstruction. In [33], data integrity protection (DIP)
was designed under a mobile Byzantine adversarial model to
enable a client to verify the integrity of the outsourced data
against general or malicious corruptions in distributed stor-
age. Cachin and Tessaro [34] proposed to use erasure-coding
and threshold cryptography to achieve storage efficiency and
resilience. In [35], the verification cost for both the client
read and write operations in workloads with idle periods was
analyzed.

In [2], error resilience of the RS code based regener-
ating code in the network with both errors and erasures
was evaluated. They provided the theoretical error correction
capability. In [3], a Hermitian code based regenerating code
was proposed. This code can provide better error correction
capability under the same code efficiency. In [36], the uni-
versally secure regenerating code was developed to achieve
information theoretic data confidentiality. However, the paper
did not consider the extra computational cost and bandwidth
for this code. Li et al. [37] proposed to apply linear feed-
back shift register (LFSR) to protect the data confidentiality.
Tandon et al. [38] discussed the optimal trade-off between the
storage space and the repair bandwidth in the presence of two
types of wiretapper.

III. PRELIMINARY AND ASSUMPTIONS
A. Regenerating Code

Regenerating code introduced in [1] is a linear code over
finite field F, with a set of parameters {n,k,d,a, S, B}.
A file of size B is stored in n storage nodes, each of which
stores a symbols. A replacement node can regenerate the
contents of a failed node by downloading £ symbols from each
of d randomly selected storage nodes. So the total bandwidth
needed to regenerate a failed node is y = df. The data
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collector (DC) can reconstruct the whole file by downloading
o symbols from each of k < d randomly selected storage
nodes. In [1], the following theoretical bound was derived:

k—1

B < zmin{a, d —i)p). (1)

i=0

From equation (1), a trade-off between the regeneration band-
width y and the storage requirement a was derived. They
cannot be decreased at the same time. There are two special
cases: minimum storage regeneration (MSR) point in which
the storage parameter o is minimized:

( _ B Bd )
OMSR> YMSR) = (;, m) > (2)

and minimum bandwidth regeneration (MBR) point in which
the bandwidth y is minimized:

2Bd 2Bd
2 b 2 . (3)
2kd — k= +k 2kd —k*+k

(aMBR> YMBR) = (

B. System Assumptions and Adversarial Model

In this paper, we assume there is a secure server that is
responsible for encoding and distributing the data to storage
nodes. The secure server will initialize the replacement nodes.
The DC and the secure server can be implemented in the
same computer. We assume that this server will never be
compromised. We use the notation F/P to refer to either the
full/partial rate MSR code or a codeword of the full/partial
rate MSR code. The exact meaning can be clearly understood
according to the context.

Our adversary model is the same as [2]. We assume that
some network nodes may be corrupted due to hardware failure
or communication errors, and/or compromised by malicious
users which can take full control of up to 7 < n storage nodes
and collude to perform attacks. Since our proposed codes work
for all these cases, in the paper these nodes are referred to
as corrupted nodes without distinguishing the specific error
sources. As a result, upon request, these nodes may send
out incorrect responses to disrupt the data regeneration and
reconstruction.

The maximum number of corrupted nodes from which the
errors can be corrected is referred to as the error correction
capability.

IV. COMPONENT CODES OF RATE-MATCHED
REGENERATING CODE

In this section, we will introduce two different component
codes for rate-matched MSR code on the MSR point with
d = 2k —2. The code based on the MSR point with d > 2k —2
can be derived in the same way through truncating operations.
In the rate-matched MSR code, there are two types of MSR
codes with different code rates: full rate code and partial rate
code.
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A. Full Rate Code

1) Encoding: The full rate code {n,k,d,a,f5, BF} is
encoded based on the product-matrix code framework pro-
posed in [27]. According to equation (2), we have a = d/2,
S = 1 for one block of data with the size Bf = ka = (a+1)a.
The d x oo message matrix M is defined as

where S1 and Sy are o X a symmetric matrices, each of which
will contain Bp/2 data. We further define the n x d encoding
matrix ¥ as ¥ = [® AD], where

1 g g2 g%l
o=, . ) . ) 4)

i gn;l (gn;l)Z (gnfi)afl
is an n x o Vandermonde matrix and A = diag[41, A2, -+, 4,]
is an n x n diagonal matrix such that 4; € F, and 4; # 1;
for 1 <i,j <n,i # j, g is a primitive element in F,, and

any d rows of ¥ are linearly independent.
The codeword F is defined as

fi
F=[0® AD] [gﬂ —YMp=|: | 5)
fa

Each row f; = ¥; Mg (1 < i < n) of the codeword matrix F
will be stored in storage node i, where the encoding vector
¥, is the i'" row of P.

2) Regeneration: Suppose node z fails, the replacement
node z' will send regeneration requests to the rest of the
n — 1 helper nodes. Upon receiving the regeneration request,
helper node i will calculate and send out the help symbol
hi = fi¢! = ¥;Megp!, where ¢, is the " row of ® and
qSZT is the transpose of ¢,. For i < j, we define ¥;,; =

T
i

the first j symbols of MF(I)Z for convenience.

Suppose h; = h; + ¢; is the response from helper node i.
If e; € F,\{0}, then node i is corrupted since the response h;
has been modified. We can successfully regenerate the symbols
in node z when the total number of received help symbols
h’ being modified from the n — 1 helper nodes is less than
l(n—d —1)/2], where |x] is the floor operation of x, which
represents the greatest integer less than or equal to x. Without
loss of generality, we assume 1 <i <n — 1. z/ will perform
Algorithm 1 to regenerate the contents of the failed node z.

Algorithm 1: 7' regenerates symbols of the failed node z.

Step 1: Decode h' to he,, where W = [h), k), -+ k) 1T
can be viewed as an MDS code with parameters (n —
1,d,n —d) since ¥ (1) x=D =,
Step 2: Solve ¥ (4—1) - x(=1 = h., and compute f, =
¢.S1 + 29,5 as described in [27].
Proposition 1: For regeneration, the full rate code can
correct errors from |(n —d — 1)/2] corrupted nodes, where

|x] is the floor operation.

T ]’ j .
i1 ,1#]-] , and x) to be the vector containing
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3) Reconstruction: When the DC needs to reconstruct the
original file, it will send reconstruction requests to n storage
nodes. Upon receiving the request, node i will send out the
symbol vector ¢; to the DC. Suppose ¢, = ¢; + e; is the
response from storage node i. If e; € Fg\{0}, then node i is
corrupted since the response ¢; has been modified.

The DC will reconstruct the file as follows: Let
R = [f/lT,f’zT, ,f;T]T, we have
S S
R’:‘P[ 1}=[<I> ACD][ 1],
5 5
Ro" = o5;0" + AdS,@”. (6)
Let C = ®S;®7, D = 08,07, and R = R'®7, then
C+AD=R. (7

Since C, D are both symmetric, we can solve the non-diagonal
elements of C, D as follows:

bJ (8)

Because matrices C and D have the same structure, here we
only focus on C (corresponding to S1). It is straightforward to
see that if node i is corrupted and there are errors in the i’ row
of R’, there will be errors in the i’" row of R. Furthermore,
there will be errors in the i row and i’ column of C.

Define S{(I)T = :ST{ we have CD:ST{ = C. We can view each
column of C as an (n — 1, a, n — a) MDS code because @ is
a Vandermonde matrix. The length of the code is n — 1 since
the diagonal elements of C is unknown. Suppose node j is a
legitimate node, we can decode the MDS code to recover the
j™ column of C and locate the corrupted nodes. Eventually
C can be recovered. So the DC can reconstruct S using the
method similar to [3] and [27]. For S;, the recovering process
is similar.

Proposition 2: For reconstruction, the full rate code can
correct errors from |[(n — a — 1)/2] corrupted nodes.

B. Partial Rate Code

1) Encoding: For the partial rate code, we also have
o =d/2, p =1 for one block of data with the size

Txd(1 + xd), x € (0,0.5]
5 (@(a+1) 9)
+(x —0.5)d(1 + (x —0.5)d), x € (0.5,1],

Bp =

where x is the match factor of the rate-matched MSR code.
It is easy to see that the partial rate code will become the full
rate code when x = 1.

The data m = [m, ma, ..., mpp] € Fg" will be processed
as follows:

e When x < 0.5, the data will be arranged into a matrix
Sy of the size a x xd, where the first xd rows form a
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symmetric submatrix:
B mi my Mxd ]
mo Myd+1 M2xd—1
St = |Mxqg Mixa-1 ... mpp (10)
0 0 0
L 0 0 0 i
The codeword P is defined as
re,1 ri2 rl,0—xd
N .
P = |[D AD] 0 :
'n,1 Tn2 .. Tna—xd
= [¥Mp || R], (11

where 0 is the o x xd zero matrix, ®, A, ¥ are the same
as the full rate code, r; 1, ri2, ..., Fig—xa (1 <i < n)
are random numbers generated by the secure server,
R is the corresponding random number matrix, and ||
is the concatenation operator. Through the insertion of
the random numbers, codeword of partial rate code with
x < 0.5 will have the same appearance as the codeword
of the full rate code. This can prevent the attackers
from discriminating between the partial rate code and the
full rate code. And the random numbers can be easily
reproduced by the secure server for regeneration and
reconstruction, making the additional overhead negligible.
It is also interesting to point out that xd will be an integer
in the optimal selection according to equation (20) and
equation (21).

e« When x > 0.5, the first a(a 4+ 1)/2 data will be arranged
into an a x a symmetric matrix S;. The rest of the data
Mg (at1)/2415 - - - » M Bp Will be arranged into another a x o
symmetric matrix S:

Mg (a41)/2+1 My (a+1)/24+(x—0.5)d 0 ... 07
Ma(a+1)/242 . Mg(a+1)/242(x—0.5)d—1 0 ... 0

S2=| Mg (a+1)/2+(x—0.5)d --- mpp 0 ... 0f
0 0 0 ... 0

L 0 0 0 ... 0

(12)

The codeword P is defined the same as equation (5)
with the same parameters @, A and ¥. Then each row
p; (1 <i < n) of the codeword matrix P will be stored in
storage node i respectively, in which the encoding vector
¥; is the i'" row of ¥.

Proposition 3: The partial rate code can achieve the MSR
point in equation (2) since it is encoded under the product-
matrix MSR code framework in [27].

2) Regeneration: The regeneration for the partial rate code
is the same as the regeneration for the full rate code described
in Section IV-A.2 with only a minor difference. If we define
xU) as the vector containing the first j symbols of MpqSZT,
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there will be only xd nonzero elements in the vector. Accord-
ing to Wi_,_; -x"D = 1, the received symbol vector h’
for the partial rate code in Step 1 of Algorithm 1 can be
viewed as an (n — 1, xd,n — xd) MDS code. Since x < 1,
we can detect and correct more errors in data regeneration
using the partial rate code than using the full rate code.
For x < 0.3, the replacement node 7z’ can eliminate the
inserted random numbers for storage node i by subtracting
0,7i1,..., ri,a_xd]¢zT from the received help symbol, where
0 is the zero vector with length xd and ¢, is the 7" row of
@, before executing the regeneration algorithm.

Proposition 4: For regeneration, the partial rate code can
correct errors from | (n — xd — 1)/2] corrupted nodes.

3) Reconstruction: The reconstruction for the partial rate
code is similar to that of the full rate code described in
Section IV-A.3. Let R = [p' ,p'2,---,p'L17.

When the match factor x > 0.5, reconstruction for the
partial rate code is the same as that of the full rate code.

When x < 0.5, the inserted random numbers can be directly
ignored. Equation (6) can be written as:

oS =R (13)

So we can view each column of R’ as an (n,xd,n —xd + 1)
MDS code. After decoding R’ to R.,,, we can recover the data
matrix S7 by solving the equation ®S; = R.,,. Meanwhile, if
the i"* rows of R’ and R,,, are different, we can mark node i
as corrupted.

Proposition 5: For reconstruction, when the match factor
x > 0.5, the partial rate code can correct errors from
L(n — a — 1)/2] corrupted nodes. When the match factor x <
0.5, the partial rate code can correct errors from | (n — xd)/2]
corrupted nodes.

V. 2-LAYER RATE-MATCHED REGENERATING CODE

In this section, we will show our first optimization of the
rate-matched MSR code: 2-layer rate-matched MSR code.
In the code design, we utilize two layers of the MSR code:
the partial rate code for one layer and the full rate code
for the other. The purpose of the partial rate code is to
determine the optimized code efficiency while correcting the
erroneous symbols sent by corrupted nodes and locating the
corresponding corrupted nodes. Then we can treat the errors
in the received symbols as erasures when regenerating with
the full rate code. However, the rates of the two codes must
match to achieve the optimal performance. Here we mainly
focus on rate-matching for data regeneration. We can see in
the later analysis that the performance of data reconstruction
can also be improved with this design criterion.

We will first fix the error correction capabilities of the full
rate code and the partial rate code. Then we will derive the
rate matching criteria for optimal data storage efficiency under
the fixed error correction capability.

A. Rate Matching

From the analysis above, we know that during data regener-
ation, the partial rate code can correct up to [(n —xd — 1)/2]
errors, which is more than the number of errors | (n—d—1)/2]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

that the full rate code can correct. In the 2-layer rate-matched
MSR code design, our goal is to match the partial rate code
with the full rate code. The main task for the partial rate
code is to detect and correct errors, while the full rate code
is to maintain the storage efficiency. So if the partial rate
code can locate all the corrupted nodes, the full rate code can
simply treat the symbols received from these corrupted nodes
as erasures, which requires the minimum redundancy for the
full rate code. The full rate code can correctup ton —d — 1
erasures. Thus we have the following optimal rate-matching
equation:

lm—xd—1)/2]=n—d—1, (14)

from which we can derive the match factor x.

B. Encoding

To encode a file with size B using the 2-layer rate-matched
MSR code, the file will first be divided into 6 blocks of data
with the size B and 0p blocks of data with the size Bp, where
the parameters should satisfy

B = 6 BF + 0p Bp. (15)

Then the 6 blocks of data will be encoded into codeword
matrices F, ..., Fg. using the full rate code and the p blocks
of data will be encoded into codeword matrices P, ..., Py,
using the partial rate code. To prevent the malicious nodes
from corrupting the full rate code only, the secure server will
randomly concatenate all the matrices together to form the
final n x a (6 4 6p) codeword matrix:

C = [Perm(Fy,...,Fge, P1, ..., Pg)l,

where Perm denotes a random matrix permutation operation.
The secure sever will also record the order of the permutation
for future code regeneration and reconstruction. Then each row
¢; = [Perm(fy;, ..., fori, P1,is ..., Pop,i)] (1 <@ < n) of the
codeword matrix C will be stored in storage node i, where f i
is the i row of F;i (1 <j <6fF), and p;; is the i'" row of
P; (1 < j < 6p). The encoding vector ¥; for storage node
i is the i row of ¥ in equation (5). Therefore, we have the
following Theorem.

Theorem 1: The encoding of 2-layer rate-matched MSR
code can achieve the MSR point in equation (2) since both
the full rate code and the partial code are MSR codes.

Remark 1: The permutation operation is designed to pre-
vent the adversaries from identifying the full rate code. For the
application scenarios where the errors are caused by hardware
failures or communication errors, we can directly concatenate
all the codeword matrices without the permutation operation.

(16)

C. Regeneration

Suppose node z fails, the security server will initialize a
replacement node z” with the permutation information of the
partial rate code and the full rate code in the 2-layer rate-
matched MSR code. Then the replacement node z” will send
regeneration requests to the rest of the n—1 helper nodes. Upon
receiving the regeneration request, helper node i will calcu-
late and send out the help symbols Perm(fl,,-qSZT, e, ng,,-qSlT,
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pl,i(bZT, ey pgpji(bZT). z' will perform Algorithm 2 to regen-
erate the contents of the failed node z. After the regeneration
is finished, z’ will erase the permutation information imme-
diately. So even if 7/ was compromised later, the adversary
would not get the permutation order of the partial rate code
and the full rate code.

Algorithm 2: 7' regenerates symbols of the failed node z
for the 2-layer rate-matched MSR code.

Step 1: According to the permutation information, regenerate
all the symbols related to the 6p data blocks encoded
by the partial rate code. If errors are detected in
the symbols sent by node i, it will be marked as
a corrupted node.

Regenerate all the symbols related to the 6 data
blocks encoded by the full rate code. During the
regeneration, all the symbols sent from nodes marked
as corrupted nodes will be replaced by erasures ®.

It is easy to see that Algorithm 2 can correct errors and
locate corrupted nodes using the partial rate code while
achieving high storage efficiency using the full rate code. We
summarize the result as the following Theorem.

Theorem 2: For regeneration, the 2-layer rate-matched
MSR code can correct errors from | (n — xd — 1)/2] corrupted
nodes.

An illustrative example of the 2-layer rate-matched MSR
code with parameters n = 7,d = 4,x = 1/2 is shown in
Fig. 1. In this example, there are two malicious nodes (Node 2
and Node 5) which will send manipulated responses for the
data regeneration of Node 1. According to Proposition 4,
during the regeneration of Node 1, the partial rate code can
detect and correct the errors in the responses of Node 2 and
Node 5. With the malicious nodes information provided by
the partial rate code, the full rate code could be regenerated
correctly thereafter. Through this design we could get an
optimal trade-off between the error correction capability and
the storage efficiency, while for the universally resilient MSR
code, improving the error correction capability will cause a
much lower storage efficiency.

Step 2:

D. Parameter Optimization

We have the following design requirements for a given
distributed storage system applying the 2-layer rate-matched
MSR code:

o The maximum number of corrupted nodes 7 that the
system can detect and locate using the partial rate code.
We have

l(n —xd — 1)/2] = 1. (17)

o We use Py to represent the probability that the system
can detect all the corrupted nodes. The detection will be
successful if each corrupted node modifies at least one
help symbol corresponding to the partial rate code and
sends it to the replacement node. Suppose the probability
with which each help symbol is modified by either errors
or malicious manipulations is P, then we have

(1—(1=P)P)" > Pyer. (18)
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Define the storage efficiency ds as the ratio between the
actual size of data to be stored and the total storage space
needed by the encoded data. Then we have:

O Br + 0p Bp B

Bk + Op)na (O + 6p)na’
There is a trade-off between fp the number of data blocks
encoded by the partial rate code and 6 the number of data
blocks encoded by the full rate code. If we encode using
too much full rate code, we may not meet the detection
probability Pger requirement. If we employ too much partial
rate code, the redundancy of the code may be too high. We can
calculate the optimized parameters x, d, g, fp by maximizing
equation (19) under the constraints defined by equations (14),
(15), (17), (18). That is:

N 19)

B

OF + Op)na’
subject to equation (14): |[(n—xd —1)/2] =n—d —1,

equation (15): B = 6gBr + 6pBp,
equation (17): [(n —xd —1)/2] ==,
equation (18) : (1 —(1- 77)'9")[ > Pt

maximize equation (19): ds =

For this optimization, d and x can be determined by
equation (14) and (17):

d=n—17-1,
x=m-2t=-1)/(n—1—1).

(20)
(21
Since B is constant, to maximize Jg is equivalent to minimize
Oe+0p. So we can rewrite the optimization problem as follows:
minimize 0 + Op,
subject to equation (15): B = 6 Br + 6p Bp,

equation (18): (1 — (1 — P)QP)T > Pet- (22)

This is a simple linear programming problem. It is straight-
forward to derive the optimization results directly:

1/t
HP = log(lfp) (1 — Pde/[ ) .
Or = (B — 6pBp)/BF.

(23)
(24)

In this paper we assume that we are storing large files, which
means B > OpBp. So an optimal solution for the 2-layer
rate-matched MSR code can always be found. We have the
following theorem:

Theorem 3: When the number of blocks of the partial rate
code fp equals to log_p,) (1 — Pse/tr) and the number of
blocks of the full rate code f¢ equals to (B — 6pBp)/BF,
the 2-layer rate-matched MSR code can achieve the optimal
storage efficiency.

E. Reconstruction

When DC needs to reconstruct the original file, it will send
reconstruction requests to n storage nodes. Upon receiving the
request, node i will send out the symbol vector ¢;. Suppose

¢, = c¢; + e is the response from the i’" storage node.

1
If e ¢ IE‘Z(QPJrHF)\{O}, it means the response ¢; has been

modified, therefore, the node i is corrupted. Since DC has
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Fig. 1. An illustrative example of the 2-layer rate-matched MSR code

the permutation information of the partial rate code and the
full rate code, similar to the regeneration of the 2-layer rate-
matched MSR code, DC will perform reconstruction using
Algorithm 3.

Algorithm 3: DC reconstructs the original file for the
2-layer rate-matched MSR code.

Step 1: According to the permutation information,
reconstruct each of the 6p data blocks encoded
by the partial rate code and locate the corrupted
nodes.

Reconstruct each of the data blocks encoded by
the full rate code. During the reconstruction, all the
symbols sent from corrupted nodes will be replaced
by erasures ®.

In Section V-D, we optimize the parameters for the data
regeneration, considering the trade-off between the successful
corrupted node detection probability and the storage efficiency.
For data reconstruction, we have the following theorem:

Theorem 4 (Optimal Parameters): When  the  number
of blocks of the partial rate code 6p equals to
log(;_p) (1 — Pje/f) and the number of blocks of the
full rate code g equals to (B — OpBp)/Bg, the 2-layer rate-
matched MSR code can guarantee that the same constraints
for data regeneration (equation (17) and equation (18)) be
satisfied for the data reconstruction.

Proof: The maximum number of corrupted nodes that can
be detected for data reconstruction is calculated as follows:

o If x > 0.5, the number is |[(n —a — 1)/2]. We have
ln—a—1)/2] > [(n —xd —1)/2] = <.

Step 2:

o If x < 0.5, the number is [(n —xd)/2]. We have
l(n —xd)/2] = [(n —xd — 1)/2] =t.
Therefore, in both cases, we can detect the maximum number
of corrupted nodes 7.
The probability for corrupted node to be detected success-
fully in data reconstruction can be calculated as:

(1= =P))" > (1= (1=P)*")" > Pyer.

0

Although the rate-matching equation (14) does not apply
to the data reconstruction, the reconstruction strategy in
Algorithm 3 can still benefit from the different rates of the
two codes. When x < 0.5, the partial rate code can detect and
correct | (n — xd)/2] corrupted nodes, which are more than
L(n —d/2 — 1)/2] corrupted nodes that the full rate code can
detect. When x > 0.5, the full rate code and the partial rate
code can detect and correct the same number of corrupted
nodes: [(n —a —1)/2].

From the analysis above we can see that the optimized
parameters obtained for the data regeneration can also achieve
the optimized trade-off between the corrupted node detection
and storage efficiency for data reconstruction.

F. Performance Evaluation

From the analysis above, we know that for a distributed
storage system with n storage nodes, out of which at most 7
nodes are corrupted, the 2-layer rate-matched MSR code
can guarantee detection and correction of these nodes during
data regeneration and reconstruction with the probability at
least Pe.
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As an example, for a distributed storage system with n = 30,
7 = 11 and P = 0.2, suppose we have a file with the size
B = 14000 symbols to be stored in the system. According
to the parameter optimization discussed above, we have the
match factor x = 7/18, partial rate code block size Bp = 28
and full rate code block size B = 90. The number of the
partial rate code blocks dp and the number of the full rate
code blocks G for different detection probabilities Pge, are
shown in Fig. 2. From the figure we can see that the number
of partial rate code blocks will increase when the detection
probability becomes larger. Accordingly, the number of full
rate code blocks will decrease.

In Fig. 3, the number of the partial rate code blocks 6p and
the number of the full rate code blocks G for different symbol
corruption probabilities P and fixed detection probability
Paet = 0.99 are shown. The number of partial rate code blocks
will decrease when the symbol corruption probability becomes
larger.

To compare the performance of the 2-layer rate-matched
MSR code with the universally resilient MSR code constructed
in [2], the storage efficiency of the universally resilient MSR
code with the same regeneration performance (error correction
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capability during regeneration) as the 2-layer rate-match MSR
code can be calculated as

,S:a’(a/—i—l):a’—i—l:xd/Z—i—l

/ , (25)
a'n n n

where a’ is the regeneration parameter o of the universally
resilient MSR code. In Fig. 4 we show the efficiency ratios
1 = ds/dg between the 2-layer rate-matched MSR code and
the universally resilient MSR code under different corrup-
tion probabilities P. From the figure we can see that the
2-layer rate-matched MSR code has a higher efficiency than
the universally resilient MSR code. In fact, even when the
corruption probability is P = 0.05, the efficiency of
the 2-layer rate-matched MSR code is about 40% higher than
the universally resilient MSR code. In Fig. 5 we also show the
efficiency ratios under different detection probabilities Pgyes.
When the successfully corrupted nodes detection probability
is 0.999999, the efficiency of the 2-layer rate-matched MSR
code is about 70% higher than the universally resilient MSR
code.
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VI. m-LAYER RATE-MATCHED REGENERATING CODE

In this section, we will show our second optimization of
the rate-matched MSR code: m-layer rate-matched MSR code.
In the code design, we extend the design concept of the 2-layer
rate-matched MSR code to any m layers. Instead of encoding
the data using two MSR codes with different match factors,
we utilize m layers of the full rate MSR codes with different
parameters d’s, written as d; for layer L;, 1 <i < m, which
satisfy

di<dj, V1<i<j<m. (26)
The data will be divided into m parts and each part will be
encoded by a distinct full rate MSR code. According to the
analysis above, the code with a lower code rate has better
error correction capability. The codewords will be decoded
layer by layer in the order from layer L; to layer L,,. That
is, the codewords encoded by the full rate MSR code with a
lower d will be decoded prior to those encoded by the full
rate MSR code with a higher d for both regeneration and
reconstruction. If errors were found by the full rate MSR code
with a lower d, the corresponding nodes would be marked as
corrupted. The symbols sent from these nodes would be treated
as erasures in the subsequent decoding of the full rate MSR
codes with higher d’s. The purpose of this arrangement is
to locate as many corrupted nodes as possible using full rate
MSR codes with lower rates and correct the corresponding
erroneous symbols using the full rate MSR codes with higher
rates. However, the rates of the m-layer MSR codes must
match to achieve an optimal performance. Here we mainly
focus on rate-matching for data regeneration. We can see in
the later analysis that the performance of data reconstruction
can also be improved with this design criterion.

In summary, the main idea of this optimization is to opti-
mize the overall error correction capability by matching the
code rates of different full rate MSR codes.

A. Rate Matching and Parameter Optimization

According to Section IV-A.2, the full rate MSR code F; for
layer L; can be viewed as an (n — 1,d;, n — d;j) MDS code
for 1 < i < m during regeneration. In the optimization, we
set the summation of the d’s of all the layers to a constant dy:

m
Zdi = dp.
i=1

Here we will show the optimization through an illustrative
example first. Then we will present the general result.

1) Optimization for m = 3: There are three layers of full
rate MSR codes for F, F» and F3.

The first layer code F; can correct #; errors:

27)

n=In-d-10/2=0—-d —1-¢e)/2, (28)

where ¢ = 0 or 1 depending on whether (n — d; — 1)/2 is
even or odd.

By treating the symbols from the #; nodes where errors are
found by F as erasures, the second layer code F; can correct

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

tr errors [39]:

h=|m—dy—1—-11)/2]+1
=Mm-d—1-t—e)/2+n

=QRn—d))+n—d; —2ey—¢e1—3)/4, 29)

where ¢p = 0 or 1, with the restriction that n —dr — 1 > 11,

which can be written as:

—dy+2dr <n+e — 1. (30)

The third layer code F3 also treat the symbols from the #,
nodes as erasures. F3 can correct #3 errors:
Bn=n-ds—1-0)/2]+n

=m-d3—1-n—e)2+0n

=@ —d3)+2(n—dr) +n—di—4e3 —2ep —e1 — 7 /8,

(€29)

where ¢3 = 0 or 1, with the restriction that n —d3 — 1 > 17,

which can be written as:
—dy —2dr +4d3 <n+e1+2e — 1. (32)

According to the analysis above, the d’s of the three layers
satisfy:

di—d» <0,

dr —d; < 0.

(33)
(34)
To maximize the error correction capability of the m-layer
rate-matched MSR code for m = 3, we have to maximize
t3, the number of errors that the third layer code F3 can
correct, since #3 has included all the corrupted nodes from
which errors are found by the codes of the first two layers.
With all the constraints listed above, the optimization problem
can be written as:
maximize equation (31): 3 =@4n —d3)+2(n—dy) +n
—dy —4e3 — 26 —e1—7)/8,
subject to equation (27) : di + d2 + d3 = do,
equation (33): dy —dr <0,
equation (34) : d» —d3z <0,
—dy +2dr <n—+e —1,
—dy —2dr +4d3 <n+ ¢
+2ep — 1.

equation (30) :
equation (32) :
(35)

We can define slack variables si, 52, ..
the following linear equations:

dy = do—dy — da,

s1 =dy—dy,

s2» =d3 —dy =dy —2dr — dj,

s3=n—1-2d)+dy + e,

s4 =n—1—4dy + 6dy + 5dy + 2¢3 + €1,

S5 :n—l—dl—el,

s¢ = (n—1—=2dr+d| —2¢er+¢1)/2,

s7=(m—1—4dy+ 6d> + 5d — 4e3 + 263 + €1) /4,

t3 = (Tn =7 —4dy +2dy +3d) — 4e3 — 267 — 1) /8.

., s7 and establish

(36)
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Apparently this linear programming is feasible with a basic
feasible solution (BFS). We solve it using the SIMPLEX
algorithm [40]. To maximize f3, we can increase d; in equa-
tion (36), which is a Gaussian elimination of d; in #3. It is
easy to know that as long as d; does not exceed d, then after
the substitution is complete, we will have a new dictionary
and a new improved BFS. The updated linear system can be
expressed as follows:

d3 =do —di — da,
di = dy —s1,
s2 = dy — 3dr + 51,
s3=n—1—dy+¢; —s1,
s4 =n—1—4dy+ 11dy + 23 + &1 — 551,
ss=n—1—dy—¢e1+ 51,
s =n—1—dy—2e 4+ —51)/2,
s7=Mm—1—4dy+ 11dy — 4e3 + 2e> + &1 — 551) /4,
t3 = (Tn—7—4dy+ 5d» — 4e3 — 26y — &1 + 351)/8.
(37)

Repeat this process for dp, we get

dz = dy—dy — dy,

dy =dy —si,

dy = (do — 52 +51)/3,

s3 = 0Bn—3—dy+3e1 + 53 —4s1)/3,

s4 = Bn —3 —dy+ 66y + 3¢ — 115y — 4s1)/3,

ss = Bn—3 —do—3e1 + 52+ 2s1)/3,

s6¢ = Bn —3 —do— 6ey+ 3¢ + 50 — 4s51) /6,

s7=0Bn—3—dy— 12e3 + 66 +3e1 — 11sy —4s1)/12,

t3 = 2In — 21 — Tdy — 12e3 — 662 — 3¢ — 550 — 4s1)/24.
(38)

Since all the coefficients of #3 are negative, the value of 13
cannot be further increased. Therefore, this is the optimal value
of 3. The corresponding BFS is s =5 =0,d) =dy =d3 =
round(dy/3) = d, and the m-layer rate-matched MSR code
can correct errors from at most

3= (In—7d —4e3—2es —e1 —7)/8

> (Tn —7d — 14)/8 (worst case) (39)
corrupted nodes, where round is the rounding operation.

2) Evaluation of the Optimization for m = 3: The uni-
versally resilient MSR code with the same code rate can be
viewed as an (n — 1,d,n — d) MDS code which can correct
errors from at most (n —d — 1)/2 corrupted nodes (best case)
during regeneration. The comparison of the error correction
capability between m-layer rate-matched MSR code form = 3
and universally resilient MSR code is shown in Fig. 6. In this
comparison, we set the number of storage nodes in the network
as n = 30. From the figure we can see that the m-layer rate-
matched MSR code for m = 3 improves the error correction
capability more than 50%.
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3) General Optimal Result: For the general m-layer rate-
matched MSR code, the optimization process is similar.
For the m-layer rate-matched MSR code, we have:

m
> di = do, (40)
i=1
and
di_1—d; <0, for2<i<m. 41)

The first layer code F; can correct ¢; errors as in equa-
tion (28). For 2 < i < m, by treating the symbols from the
t;—1 nodes where errors are found by F;_; as erasures, the i th
layer code can correct #; errors:

ti=1n—di—1—1t;-1)/2] +1ti
=m—di—1—ti-1—¢)/2+1i

i i
D2 m—dpy - D 20 ey -2+ 1) /2, (42)
j=1 j=1
where ¢; = 0 or 1, with the restriction that n —d; — 1 > t;_1,
which can be written as:

i—1 i—1
=D 207 42 <+ D 2T e - 1 (43)
j=I j=l

We can maximize the error correction capability of the m-
layer rate-matched MSR code by maximizing #,. With all
the constrains listed above, the optimization problem can be
written as:

m
maximize equation (42): t, = (Z 27— dy)
i=1

n .
_Zzl—lgi _ 2"1 + 1)/2)‘",
i=1
m

subject to equation (40) : Zd,- = d,
i=1
equation (41):di—1 —d; <0, 2 <i <m,
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i—1
—> 277 427 <
j=1

i—1
+> 217 1,
j=1

equation (43):

2<i<m.

(44)

For this linear programming problem, the optimization
result can be summarized as follows:

Theorem 5: For the regeneration of m-layer rate-matched
MSR code, when

d; = round(do/m) =d for 1 <i <m, (45)
it can correct errors from at most
m
((2'" ~Dr—d—1)- ) 2" )/2’"
i=1
> (2" = 1)(n —d —2)) /2" (worst case)  (46)

corrupted nodes.
Proof: The proof of this theorem is very similar to m = 3.
In fact, in the SIMPLEX algorithm process described from

equation (36) to equation (38), only the constraints doy = Z d;

=1
and d; < d; for i < j have been directly used. Therefore we
can define the followmg linear equation systems:

dm = do — zdh

s1 = dz—dl,
s2 =d3 —da,
m—2
Sm—1 = dm —dp—1 =do —mdy_1 + Z isi,

i=1
ty = ((2'" — D —1)—2""q,

m—1
+> @ =2 e - Zzll )/2'" (47)
i=1

Since the coefficient of d; is the largest, using SIMPLEX
algorithm, we will eliminate d; from d,, using Gaussian
elimination based on di = d» — s1. We have the following
updated linear equation systems:

dm —d()_zdz»

d —d2—51,
s2 =d3 —d,

m—2
Sm—1 = dpm — dpm—1 =do —mdp_1 + Z is;,
i=1
t = ((2'" “ D —1) = 2"y + (2 Lgm=1

2 ) m—1 )
_ 2211)d2 + Z(ZM71 _ 2171)dl‘
i=3
_ 221 1 (2m 1)S1)/2m.

(48)
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Repeat from d; to d,—1, we have

m—1
dy = do— Y di,
i=1

di = dy — 51,
dy = d3 — 52,
dm—2 = dp—1 — Sm—2,

m—2

Sm—1 = dm —dy—1 =do—mdp_1 + z is;,
i=1

Im = ((2m - D -1)— 2m_1d()
m )
- ((m _oy.omly 1) du-t+— > 27 g
i=1
m—2

-3 (i gm=l _gm=2 4 1) s,-)/z'".

i=1

(49)

Finally, from d,,,—1 to s,,—1. We have

m—1
dy = do— D di,
i=1
dy = dy — 51,

dn—2 = dn_1 — sm—2,

m—2
= (do + Z is; — Sml)/m,
i=1
tm = ((2'" - —1)— (2'"1 + l((m —2)2m1
m

m—2

+1)) do — izf—lei -> (2'"—1
i=1

i=1

1
_Z((zm 1)+2l l) _pm= 2+1) 5i

— %((m —22m 4 1)sm1)/2m. (50)

From equation (50) we can see that the SIMPLEX algorithm

should stop. The optimal solution of #,, can be achieved when
d; = round(dy/m) = d for 1 <i<m.

Moreover, we have

((2m—1)(n— —1)—221 ! )/2'"
> (2" -~ 1)(n —d —2)) /2'"

The worst case is achieved when ¢; =1 fori =1,...,m.
It is easy to derive the following corollary.
Corollary 1: The optimal error correction capability of the
m-layer rate-matched MSR code increases with the number of
layers m.
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Proof: From equation (46), the error correction capability
can be further written as:

() r-m(2) 3 =
(-2 ()

where both sides increase with m, and the difference between
the two sides is at most 1. Based on this observation, it is easy
to prove that 7,, also increases with m. (]

Remark 2: Although the m-layer rate-matched MSR code
shares the same principle with the 2-layer code, it is not a
direct extension of the 2-layer code for three reasons: First,
the application scenario and optimization goals for the m-
layer rate-matched MSR code are different from the 2-layer
rate-matched MSR code. The 2-layer code is designed to
optimize the storage efficiency under the constraint of any
predetermined error correction capability, while the m-layer
code is designed to optimize the overall error correction
capability under the constraint of any giving code efficiency.
Second, under the same comparable optimization constrains,
the error correction capability of the 2-layer code is much
worse than the m-layer rate-matched MSR code. Third, the
m-layer rate-matched MSR code is more secure under mali-
cious attacks than the direct generalization from the 2-layer
code due to the more diversified structure.

4) Optimal Code Rate - Dual of Optimal Error Correction:
During the optimization, we set the code rate of the rate-
matched MSR code to a constant value and maximize the error
correction capability. To optimize the rate-matched MSR code,
we can also set the error correction capability ¢; for i = m in
equation (42) to a constant value

by = (i 271 — di) — iZi_le

i=1 i=l

(51

—om g 1) /2" = 1o,

(52)

and maximize the code rate during regeneration. The problem
can be written as:

m
maximize Zdi’
i=1
i—1
- sz—ld, +27 g <
j=1

i—1
+ ZZj_lsj
i=1

equation (41):di—1 —d; <0, 2<i<m,
(53)

subject to equation (43) :

-1, 2<i<m,

equation (52) : t,, = fo.

The optimization result is the same as that of equation (44).
That is when all the d{s for 1 <i < m are the same, the code
rate is maximized. More specifically, we have:

d; :n—l—(tho+22’ )/(2’"

m

o

v

n—2-— ] (worst case). (54)
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B. Evaluation of the Optimization

1) Comparison with the Hermitian Code Based MSR Code
in [3]: The Hermitian code based MSR code (H-MSR code)
n [3] has better error correction capability than the universally
resilient MSR code. However, because the structure of the
underlying Hermitian code is predetermined, the error correc-
tion capability may not be optimal. Fig. 7 shows the maximum
number of corrupted nodes from which the errors can be
corrected by the H-MSR code. Here we set the parameter ¢
of the Hermitian code [41] from 4 to 16 with a step of 2.
In the figure, we also plot the performance of the m-layer
rate-matched MSR code with the same code rates as the
H-MSR code. The comparative result demonstrates that the
rate-matched MSR code has a better error correction capability
than the H-MSR code. Moreover, the rate-matched code is
easier to understand and has more flexibility than the H-MSR
code. Even if there is an adversary that corrupts everything in
the storage nodes, which neutralizes the gain of the correlated
layered decoding, the performance of the rate-matched MSR
code will be at least the same with the H-MSR code and the
universally resilient MSR code.

2) Number of Layers and Error Correction Capabil-
ity: Since we have seen the advantages of the rate-matched
MSR code over the universally resilient MSR code in
Section VI-A.2, here we will mainly discuss how the number
of layers can affect the error correction capability. The error
correction capability of the m-layer rate-matched MSR code
is shown is Fig. 8, where we set n = 30 and dyp = 50. We also
plot the error correction capability of the universally resilient
MSR code with the same code rates for comparison. From the
figure we can see that when n and dj are fixed, the optimal
error correction capability will increase with the number of
layers m as we have proved in Corollary 1.

3) Optimal Storage Capacity: The optimal condition in
equation (45) also leads to maximum storage capacity besides
the optimal error correction capability. We have the following
theorem:

Theorem 6: The m-layer rate-matched MSR code can
achieve the maximum storage capacity if the parameter d;’s
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Fig. 8. The optimal error correction capability of the m-layer rate-matched
MSR code under different m for 2 <m < 16

of all the layers are the same, under the constraint in equa-
tion (27).

Proof: The code of the i’" layer can store one block
of data with the size B; = a;(a; + 1) = (d;/2)(d;/2 + 1).
So the m-layer code can store data with the size B =
m
> (di/2)(d;/2 + 1). Our goal here is to maximize B under

i=

the constraint in equation (27).
We can use Lagrange multipliers to find the point of
maximum B. Let

AL, ... dw,7) =D (di/2)(di/2+ 1) + A(Zdi —~ do).
i=1 i=1

(55)

We can find the maximum value of B by setting the partial
derivatives of this equation to zero:

oA  di+1

= +1=0, VI<i<m.

od; 2
Here we can see that when all the parameter d’s of all the
layers are the same, we can get the maximum storage capac-
ity B. This maximization condition coincides with the optimal
condition in achieving the goal of this section: optimize the
overall error correction capability of the rate-matched MSR
code. t

(56)

C. Practical Consideration of the Optimization

So far, we implicitly presume that there is only one data
block of the size B; = a;(a; + 1) for each layer i. In practical
distributed storage, it is the parameter d; that is fixed instead
of dy, the summation of d;. However, as long as we use m
layers of MSR codes with the same parameter d = d, we will
still get the optimal solution for dy = md. In fact, the m-layer
rate-matched MSR code here becomes a single full rate MSR
code with parameter d = d and m data blocks. And based on
the dependent decoding idea we describe at the beginning of
Section VI, we can achieve the optimal performance.

So when the file size B is larger than one data block size B
of the single full rate MSR code with parameter d = d,
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Fig. 9. The optimal error correction capability for 2 <m < 8

we will divide the file into [B/ E] data blocks and encode
them separately. If we decode these data blocks dependently,
we can get the optimal error correction capability.

1) Evaluation of the Optimal Error Correction Capability:
In practical case, d could be fixed. So here we will study
the relationship between the number of dependently decoding
data blocks m and the error correction capability, which is
shown in Fig. 9. In the figure, we set n = 30 and d =
5, 10, respectively. From the figure we can see that although
the error correction capability will become higher with the
increasing of dependently decoding data blocks m, the amount
of improvement will be negligible for m > 5. Actually when
m =5 the capability has already achieved the upper bound.

On the other hand, there exist parallel algorithms for fast
MDS code decoding [42]. We can decode blocks of MDS
codewords in parallel a pipeline fashion to accelerate the
overall decoding speed. The more blocks of codewords we
decode in parallel, the faster we will finish the whole decoding
process. For large files that could be divided into a large
amount of data blocks (@ blocks), we can get a trade-off
between the optimal error correction capability and the decod-
ing speed by setting the number of dependent decoding data
blocks m and the number of parallel decoding data blocks p
under the constraint § = mp.

D. Encoding

From the analysis above we know that to encode a file
with size B using the optimal m-layer rate-matched MSR
code is to encode the file using a full rate MSR code with
predetermined parameter d = 2a = d. First the file will be
divided into 8 blocks of data with size B, where § = [B/B].
Then the 6 blocks of data will be encoded into codeword
matrices Fy,...,Fyp and form the final n x a6 codeword
matrix: C = [Fy,...,Fp]l. Each row ¢; = [f1;,...,f5.],
1 <i < n, of the codeword matrix C will be stored in storage
node i, where fj,,- is the i'" row of Fi,1 <j <0. The
encoding vector ¥; for storage node i is the i th row of ¥ in
equation (5).

Theorem 7: The encoding of m-layer rate-matched MSR
code can achieve the MSR point in equation (2) since each
layer of the code is an MSR code.
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Fig. 10. Lattice of received help symbols for regeneration

E. Regeneration

Suppose node z fails, the replacement node 7z will send
regeneration requests to the rest of n — 1 helper nodes. Upon
receiving the regeneration request, helper node i will calculate
and send out the help symbols f1,i¢g, e, fg,,-¢ZT.

As we have discussed before, combining both dependent
decoding and parallel decoding can achieve the trade-off
between optimal error correction capability and decoding
speed. Although all # blocks of data are encoded with the
same MSR code, 7' will place the received help symbols into
a 2-dimension lattice with size m x p as shown in Fig. 10.
In each grid of the lattice there are n — 1 help symbols
corresponding to one data block, received from n — 1 helper
nodes. We can view each row of the lattice as related to a
layer of an m-layer rate-matched MSR code with p blocks of
data, which will be decoded in parallel. We also view each
column of the lattice as related to m layers of an m-layer rate-
matched MSR code with one block of data each layer, which
will be decoded dependently. 7' will perform Algorithm 4 to
regenerate the contents of the failed node z.

Arrange the received help symbols according to Fig. 10.
Repeat the following steps from Layer 1 to Layer m:

Algorithm 4: 7' regenerates symbols of the failed node z
for the m-layer rate-matched MSR code.

Step 1: For a grid, if errors are detected in the symbols sent
by node i in previous layers of the same column,
replace the symbol sent from node i by an erasure
.

Regenerate all the symbols related to p data blocks
in parallel using the algorithm similar to Algorithm 1
with only one difference: Decode in parallel all the
p MDS codes in Step 1 of Algorithm 1.

The error correction capability of the regeneration is
described in Theorem 5.

Step 2:

F. Reconstruction

When DC needs to reconstruct the original file, it will send
reconstruction requests to n storage nodes. Upon receiving the
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request, node i will send out the symbol vector ¢;. Suppose
c; = ¢; + e; is the response from the i th storage node. If e; €
IFZ‘Q\{O}, then node i is corrupted since ¢; has been modified.
The strategy of combining dependent decoding and parallel
decoding for reconstruction is similar to that of regeneration.
DC will place the received symbols into a 2-dimension lattice
with size m x p. The only difference is that in a grid of the
lattice, there are n symbol vectors f;,l, ey f/j,n corresponding
to data block j, received from n storage nodes. DC will
perform reconstruction using Algorithm 5.

Arrange the received symbols similar to Fig. 10. Here we
place the received codeword matrix F’, into grid j instead
of help symbols received from n — 1 help nodes. Repeat the
following steps from Layer 1 to Layer m:

Algorithm 5: DC reconstructs the original file for the m-
layer rate-matched MSR code.

Step 1: For a grid, if errors are detected in the symbols sent
by node i in previous layers of the same column,
replace symbols sent from node i by erasures &.
Regenerate all the symbols of the p data blocks in
parallel using the algorithm similar to Section IV-A.3
with only one difference: Decode in parallel all the
MDS codes in Section IV-A.3.

For data reconstruction, we have the following theorem:

Theorem 8 (Optimal Parameters): For reconstruction of
the m-layer rate-matched MSR code, when

Step 2:

d; = round(dy/m) = dforl<i<m,

the number of corrupted nodes from which the errors can be
corrected is maximized.

Proof: From Section VI-A we know that for regener-
ation of an optimal m-layer rate-matched MSR code, the
parameter d’s of all the layers are the same, which implies
the parameter o’s of all layers are also the same. Since
optimization of regeneration is derived based on the decoding
of n — 1,d,n — d) MDS codes and in reconstruction we
have to decode (n — 1, a, n — a) MDS codes, if the parameter
a’s of all the layers are the same, we can achieve the same
optimization results for reconstruction. 0

VII. CONCLUSION

In this paper, we develop two rate-matched regenerating
codes for corrupted nodes detection and correction in hostile
networks: 2-layer rate-matched regenerating code and m-
layer rate-matched regenerating code. We propose encoding,
regeneration and reconstruction algorithms for both codes.
For the 2-layer rate-matched code, we develop the optimal
parameter for data regeneration, considering the trade-off
between the corrupted nodes detection probability and the
storage efficiency. Theoretical analysis shows that the code
can successfully detect and correct corrupted nodes using
the optimized parameters. Our analysis also shows that the
code has higher storage efficiency compared to the universally
resilient regenerating code (70% higher for the detection
probability 0.999999). Then based on the same motivation
of “previous errors could be viewed as current erasures”, we
propose the m-layer code and develop parameters to optimize
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the overall error correction capability by matching the code
rate of each layer’s regenerating code. Theoretical analysis
shows that the optimized parameter could also achieve the
maximum storage capacity under the same constraint, which
is consistent with the optimization goal of the 2-layer code.
Furthermore, analysis shows that compared to the universally
resilient regenerating code, our m-layer code can improve the
error correction capability more than 50%.
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