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We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of 
charged-particle pseudorapidity density dNch/dη in p–Pb collisions at √sNN = 5.02 TeV with ALICE at 
the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. 
An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed 
at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed 
for high charged-particle multiplicities. The normalised average transverse momentum at forward and 
backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate 
multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, 
showing an increasing suppression of J/ψ production at forward rapidity with respect to backward 
rapidity for increasing charged-particle multiplicity.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Quarkonium states, such as the J/ψ meson, are prominent 
probes of the deconfined state of matter, the Quark–Gluon Plasma 
(QGP), formed in high-energy heavy-ion collisions [1]. A suppres-
sion of J/ψ production in nucleus–nucleus (AA) collisions with 
respect to that in proton–proton (pp) collisions has been ob-
served by several experiments [2–10]. A remarkable feature is 
that, for J/ψ production at low transverse momentum (pT) at 
the Large Hadron Collider (LHC), the suppression is significantly 
smaller than that at lower energies [5,7,10]. The measurements of 
J/ψ production in proton (deuteron)–nucleus collisions, where the 
formation of the QGP is not expected, are essential to quantify ef-
fects (often denoted “cold nuclear matter, CNM, effects”), present 
also in AA collisions but not associated to the QGP formation. At 
LHC energies, gluon shadowing/saturation is the most relevant ef-
fect which was expected to be quantified with measurements in 
p–Pb collisions [11,12]. Furthermore, a novel effect, coherent en-
ergy loss in CNM (medium-induced gluon radiation), was proposed 
[13].

The measurements in d–Au collisions at the Relativistic Heavy 
Ion Collider (RHIC) have underlined the role of CNM effects in 
J/ψ production at 

√
sNN = 200 GeV [14–16]. At the LHC, the first 

measurements of J/ψ production in minimum-bias p–Pb collisions 
at 

√
sNN = 5.02 TeV [17,18] showed that J/ψ production in p–Pb 

collisions is suppressed at forward rapidity with respect to the 
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expectation from a superposition of nucleon–nucleon collisions. 
The data have been further analysed to provide more differential 
measurements and discussed in comparison with several theoret-
ical models [19]. A fair agreement is observed between data and 
models including nuclear shadowing [12] or saturation [20,21]; 
also models including a contribution from coherent energy loss in 
CNM [13] describe the data. These measurements are also relevant 
with respect to J/ψ production in Pb–Pb collisions at the LHC [5,
7], currently understood to be strongly influenced by the presence 
of a deconfined medium. The measurements of ϒ production in 
minimum-bias p–Pb collisions at the LHC [22,23] are also consis-
tent with predictions based on CNM effects. Recent measurements 
of the ψ (2S) state in p–Pb collisions have revealed a larger sup-
pression than that measured for J/ψ production [24,25]. Such an 
observation was not expected from the available predictions based 
on CNM effects.

Concurrently, measurements of two-particle angular correla-
tions in p–Pb collisions at the LHC [26–32] revealed for high-
multiplicity events features that, in Pb–Pb collisions, have been 
interpreted as a result of the collective expansion of a hot and 
dense medium. Furthermore, the identified particle pT spectra [33]
show features akin to those in Pb–Pb collisions, where models in-
cluding collective flow, assuming local thermal equilibrium, agree 
with the data.

The measurement of J/ψ production as a function of centrality 
in p–Pb collisions at the LHC [34] showed that the nuclear effects 
depend on centrality. ϒ production has been studied as a func-
tion of charged-particle multiplicity in pp and p–Pb collisions by 
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the CMS Collaboration [35]. The yields of ϒ mesons increase with 
multiplicity, while a decrease of the relative production of ϒ(2S)
and ϒ(3S) with respect to ϒ(1S) is observed. The measurement 
of D-meson production as a function of event multiplicity in p–Pb 
collisions [36] exhibits features similar to those observed earlier in 
pp collisions, both for J/ψ [37] and D-meson [38] production.

In this Letter measurements of the inclusive J/ψ yield and aver-
age transverse momentum as a function of charged-particle pseu-
dorapidity density in p–Pb collisions at 

√
sNN = 5.02 TeV are pre-

sented. Performed in three ranges of rapidity for pT > 0 with the 
ALICE detector at the LHC, these measurements complement the 
studies of J/ψ and ψ(2S) production as a function of the event 
centrality estimated from the energy deposited in the Zero Degree 
Calorimeters (ZDC) [34,39]. A measurement as a function of the 
charged-particle multiplicity does not require an interpretation of 
the event classes in terms of the collision geometry. Importantly, 
it enables the possibility to study rare events where collective-
like effects may arise. The present data allow the investigation 
of events with very high multiplicities of charged particles, corre-
sponding to less than 1% of the hadronic cross section and estab-
lish as well a connection to the recent measurements of D-meson 
production as a function of event multiplicity [36]. A measurement 
of the forward-to-backward J/ψ nuclear modification factor ratio is 
also presented.

2. Experiment and data sample

The ALICE central barrel detectors are located in a solenoidal 
magnetic field of 0.5 T. The main tracking devices in this region 
are the Inner Tracking System (ITS), which consists of six layers 
of silicon detectors around the beam pipe, and the Time Projec-
tion Chamber (TPC), a large cylindrical gaseous detector providing 
tracking and particle identification via specific energy loss. Tracks 
are reconstructed in the active volume of the TPC within the pseu-
dorapidity range |η| < 0.9 in the laboratory frame. The first two 
layers of the ITS (|η| < 2.0 and |η| < 1.4), the Silicon Pixel De-
tector (SPD), are used for the collision vertex determination and 
the charged-particle multiplicity measurement. The minimum-bias 
(MB) events are triggered requiring the coincidence of the two V0 
scintillator arrays covering 2.8 < η < 5.1 and −3.7 < η < −1.7, re-
spectively. The two neutron Zero Degree Calorimeters (ZDC), placed 
at 112.5 m on both sides of the interaction point, are used to re-
ject electromagnetic interactions and beam-induced background. 
The muon spectrometer, covering −4 < η < −2.5, consists of a 
front absorber, a 3 T · m dipole magnet, ten tracking layers, and 
four trigger layers located behind an iron-wall filter. In addition to 
the MB trigger condition, the dimuon trigger requires the presence 
of two opposite-sign particles in the muon trigger chambers. The 
trigger comprises a minimum transverse momentum requirement 
of pT > 0.5 GeV/c at track level. The single-muon trigger efficiency 
curve is not sharp; the efficiency reaches a plateau value of ∼96% 
at pT ∼ 1.5 GeV/c. The ALICE detector is described in more detail 
in [40] and its performance is outlined in [41].

The results presented in this Letter are obtained with data 
recorded in 2013 in p–Pb collisions at 

√
sNN = 5.02 TeV. MB 

events are used for the J/ψ reconstruction in the dielectron chan-
nel at mid-rapidity. The dimuon-triggered data have been taken 
with two beam configurations, allowing the coverage of both 
forward and backward rapidity ranges. In the period when the 
dimuon-triggered data sample was collected, the MB interaction 
rate reached a maximum of 200 kHz, corresponding to a maximum 
pile-up probability of about 3%. The MB-triggered events used for 
the dielectron channel analysis were collected in one of the beam 
configurations at a lower interaction rate (about 10 kHz) and con-
sequently had a smaller pile-up probability of 0.2%.

Due to the asymmetry of the beam energy per nucleon in p–Pb 
collisions at the LHC, the nucleon–nucleon center-of-mass rapidity 
frame is shifted in rapidity by �y = 0.465 with respect to the lab-
oratory frame in the direction of the proton beam. This leads to 
a rapidity coverage in the nucleon–nucleon center-of-mass system 
−1.37 < ycms < 0.43 for the MB events, while the coverage for 
the dimuon-triggered data for the two different beam configura-
tions is −4.46 < ycms < −2.96 (muon spectrometer located in the 
Pb-going direction) and 2.03 < ycms < 3.53 (muon spectrometer 
located in the p-going direction). The integrated luminosities used 
in this analysis are 51.4 ±1.9 μb−1 (mid-rapidity), 5.01 ±0.19 nb−1

(forward y) and 5.81 ± 0.20 nb−1 (backward y).

3. Charged-particle pseudorapidity density measurement

The charged-particle pseudorapidity density dNch/dη is mea-
sured at midrapidity, |η| < 1, and is based on the SPD informa-
tion. Tracklets, i.e. track segments built from hit pairs in the two 
SPD layers, are used together with the interaction vertex position, 
which is also determined with the SPD information [42]. Several 
quality criteria are applied to select only events with an accurate 
determination of the z coordinate of the vertex, zvtx. To ensure full 
SPD acceptance for the tracklet multiplicity Ntrk evaluation within 
|η| < 1, the condition |zvtx| < 10 cm is applied for the selection of 
the events.

During the data taking period about 8% of the SPD channels 
were inactive, the exact fraction being time-dependent. The im-
pact of the inactive channels of the SPD on the tracklet multiplicity 
measurement varies with zvtx. A zvtx-dependent correction factor 
is determined from data, as discussed in [37]. This factor also takes 
into account the time-dependent variations of the fraction of in-
active SPD channels. The correction factor is randomised on an 
event-by-event basis using a Poisson distribution in order to emu-
late the dispersion between the true charged-particle multiplicity 
and the measured tracklet multiplicities.

The overall inefficiency, the production of secondary parti-
cles due to interactions in the detector material, particle de-
cays and fake-tracklet reconstruction lead to a difference be-
tween the number of reconstructed tracklets and the true pri-
mary charged-particle multiplicity Nch (see details in [42])1. Using 
events simulated with the DPMJET event generator [43], the corre-
lation between the tracklet multiplicity (after the zvtx-correction), 
Ncorr
trk , and the generated primary charged particles Nch is deter-

mined. The correction factor β to obtain the average dNch/dη
value corresponding to a given Ncorr

trk bin is computed from a lin-
ear fit of the Ncorr

trk –Nch correlation. The charged-particle pseu-
dorapidity density value in each multiplicity bin is given rela-
tive to the event-averaged value and is calculated as: dNR

ch/dη =
dNch/dη/〈dNch/dη〉 = β · 〈Ncorr

trk 〉/ (�η · 〈dNch/dη〉), where �η = 2
and 〈dNch/dη〉 is the charged-particle pseudorapidity density for 
non-single diffractive (NSD) collisions, which was measured to be 
〈dNch/dη〉 = 17.64 ± 0.01 (stat.) ± 0.68 (syst.) [42]. The resulting 
values for the multiplicity bins are summarised in Tables 1 and 2
for forward and mid-rapidity, respectively. For the data at back-
ward rapidity, the values are well within the uncertainties of those 
at forward rapidity.

The fraction of the MB cross section contained in each multi-
plicity bin (σ/σMB , derived from the respective event counts in 
the multiplicity bins and total number of MB events) is reported 
in Tables 1 and 2. The softest MB events, which lead to absence 

1 In this context, we regard as primary charged-particles all prompt charged par-
ticles including all decay products except products from weak decays of light flavour 
hadrons and of muons.
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Table 1
Average charged-particle pseudorapidity density values (absolute and relative) in 
each multiplicity bin, obtained from Ncorr

trk measured in the range |η| < 1. The values 
correspond to the data sample used for the forward rapidity analysis. Only system-
atic uncertainties are shown since the statistical ones are negligible. The fraction of 
the MB cross section for each multiplicity bin is also indicated.
dNch/dη dNR

ch/dη σ/σMB

4.8 ± 0.2 0.27 ± 0.01 26.4%
10.9 ± 0.4 0.62 ± 0.03 14.3%
14.6 ± 0.5 0.83 ± 0.03 7.9%
17.8 ± 0.5 1.01 ± 0.04 9.6%
21.4 ± 0.7 1.22 ± 0.05 8.5%
25.0 ± 0.8 1.42 ± 0.06 7.2%
28.6 ± 0.8 1.62 ± 0.06 6.0%
32.7 ± 1.0 1.85 ± 0.07 6.7%
37.8 ± 1.1 2.14 ± 0.08 4.6%
44.2 ± 1.3 2.51 ± 0.10 4.2%
54.3 ± 1.6 3.08 ± 0.12 2.4%
71.4 ± 2.1 4.05 ± 0.16 0.3%

Table 2
As Table 1, but for the analysis of J/ψ production at mid-rapidity.

dNch/dη dNR
ch/dη σ/σMB

6.9 ± 0.2 0.39 ± 0.02 47.2%
22.9 ± 0.6 1.30 ± 0.05 39.7%
42.3 ± 1.1 2.40 ± 0.10 10.9%
64.4 ± 1.6 3.65 ± 0.15 1.0%

of tracklets in |η| < 1 are not accounted for in this analysis. They 
correspond to 1.2% of σMB for the MB-triggered events and 1.9% 
for the muon-triggered data; the difference is due to the different 
fraction of inactive channels in SPD and affects, albeit in a negligi-
ble way, only our first multiplicity bin.

The multiplicity selection in this analysis allows to sample the 
data in bins containing a small fraction of the MB cross section. 
Therefore, it gives the possibility to study the J/ψ production in 
rare high-multiplicity events which were not accessible in the 
centrality-based analysis [34] (where the most-central event class 
corresponds to the range 2–10% in σ/σMB ).

4. J/ψ measurement

For the J/ψ analysis at forward and backward rapidities, muon 
candidates are selected by requiring the reconstructed track in the 
muon chambers to match a track segment in the trigger chambers. 
Furthermore, the radial distance of the muon tracks with respect 
to the beam axis at the end of the front absorber is required to 
be between 17.6 and 89.5 cm. This criterion rejects tracks cross-
ing the high-density part of the absorber, where the scattering and 
energy-loss effects are large. A selection on the muon pseudora-
pidity −4 < η < −2.5 is also applied to reject muons at the edges 
of the spectrometer’s acceptance.

When building the invariant mass distributions, each dimuon 
pair (of a given pT and y) is corrected by the detector acceptance 
times efficiency factor 1/(A × ε(pT,y)). The A × ε(pT,y) map is ob-
tained from a particle-gun Monte Carlo (MC) simulation based on 
GEANT 3 [44] and simulating the detector response as in [18]. 
Since the A × ε-factor does not depend on the multiplicity for 
the event multiplicities relevant for the p–Pb analyses, the simu-
lated events only contain a dimuon pair at the generator level. The 
simulations assume an unpolarised J/ψ production. The same re-
construction procedure and selection cuts are applied to MC events 
and to real data. The extraction of the J/ψ signal in the dimuon 
channel is performed via a fit to the A × ε-corrected opposite-
sign (OS) dimuon invariant mass distributions obtained for pT <

15 GeV/c. The fitting procedure is similar to that used in a previ-
ous J/ψ analysis in p–Pb collisions [18]. The distributions are fitted 

using a superposition of J/ψ and ψ(2S) signals and a background 
shape. The resonances are parameterized using a Crystal Ball func-
tion with asymmetric tails while for the background a Gaussian
with its width linearly varying with mass is used. In the present 
analysis, the parameters of the non-Gaussian tails of the resonance 
shape are determined from fits of the MC J/ψ signal, and fixed in 
the data fitting procedure. Examples of fits of the A × ε-corrected 
dimuon invariant mass distributions for two selected bins, low and 
high multiplicities, are given in the left panel of Fig. 1.

In the dielectron decay channel, electrons and positrons are re-
constructed in the central barrel detectors by requiring a minimum 
of 70 out of maximally 159 track points in the TPC and a max-
imum value of 4 for the track fit χ2 over the number of track 
points. Furthermore, only tracks with at least two associated hits 
in the ITS, one of them in the innermost layer, are accepted. This 
selection reduces the amount of electrons and positrons from pho-
ton conversions in the material of the detector beyond the first 
ITS layer. In addition a veto cut on topologically identified tracks 
from photon conversions is applied. The electron identification is 
achieved by the measurement of the energy deposition of the 
track in the TPC, which is required to be compatible with that 
expected for electrons within 3 standard deviations. Tracks with 
specific energy loss being consistent with that of the pion or pro-
ton hypothesis within 3.5 standard deviations are rejected. These 
selection criteria are identical to those used in [34]. Electrons and 
positrons are selected in the pseudorapidity range |η| < 0.9 and in 
the transverse momentum range pT > 1 GeV/c.

The background in the OS invariant mass distribution is es-
timated with dielectron pairs formed with tracks from differ-
ent events (mixed-event background). The background shape is 
normalised such that its integral over ranges of the invariant 
mass in the sidebands of the J/ψ mass peak equals the num-
ber of measured OS dielectron pairs in the same ranges (typical 
ranges used are [3.2, 3.7] GeV/c2 and [2.0, 2.5] GeV/c2). The sig-
nal itself is extracted by counting the entries in the background-
subtracted invariant mass distribution (the standard range used is 
[2.92, 3.16] GeV/c2). Due to bremsstrahlung of the electron and 
positron in the detector material and radiative corrections of the 
decay vertex, the J/ψ signal shape has a tail towards lower invari-
ant masses. The standard range for the signal extraction contains, 
according to MC simulations, about 69% of the J/ψ signal. The 
number of reconstructed J/ψ mesons and its statistical uncertainty 
are derived from the mean obtained when varying the counting 
window for the signal extraction and the invariant mass ranges 
used for the normalisation of the background. The variations that 
are taken into account are the same as in [34]. Examples of the 
dielectron invariant mass distributions in data, for two selected 
analysis bins at low and high multiplicities, are given in the right 
panel of Fig. 1.

The correction for the acceptance and efficiency of the raw 
yields is based on simulated p–Pb collisions with the HIJING event 
generator [45] with an injected J/ψ signal. The dielectron decay is 
simulated with the EVTGEN package [46] using PHOTOS [47,48] to 
describe the final state radiation. The production is assumed to be 
unpolarised as in the muon decay channel analysis. The propaga-
tion of the simulated particles is done by GEANT 3 [44] and a full 
simulation of the detector response is performed. The same recon-
struction procedure and selection cuts are applied to MC events 
and to real data.

The inclusive J/ψ yield per event is obtained in each multi-
plicity bin as NJ/ψ = Ncorr

J/ψ /NMB, where Ncorr
J/ψ is the number of 

reconstructed J/ψ mesons corrected for the acceptance times ef-
ficiency factor. In the dimuon decay channel analysis, the number 
of MB events equivalent to the analysed dimuon sample (NMB) in 
each multiplicity bin is obtained from the number of dimuon trig-
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Fig. 1. Opposite-sign invariant mass distributions of selected muon (left panel, for the forward rapidity) and electron (right panel) pairs, for selected multiplicity bins. In the 
left panel, the distributions are corrected for A × ε. The curves show the fit functions for signal, background and combined signal with background (see text for details). In 
the right panel, the background is evaluated with the event-mixing technique, and the overlaid signal is obtained from Monte Carlo (see text for details).
gers (NDIMU), through the normalisation factor of dimuon-triggered 
to MB-triggered events F2μ/MB, as NMB = F2μ/MB · NDIMU. This fac-
tor is computed using two different methods, as discussed in [34]. 
The J/ψ cross section values for minimum-bias events obtained in 
the dimuon channel at forward and backward rapidities, and in the 
dielectron channel at mid-rapidity are compatible with those pre-
sented in [18] and [19], respectively. The results presented here 
are provided relative to the yield in NSD events, 〈dN J/ψ/dy〉. The 
event-averaged yield is normalised to the NSD event class; the nor-
malisation uncertainty is 3.1% [42].

In previous analyses, e.g. [19], the J/ψ yield was extracted in pT
bins, and the resulting distribution was fitted to extract the 〈pT〉
value. The present analysis aims at studying effects that may arise 
at high charged-particle multiplicities, where the usual method is 
no longer suitable due to statistical limitations. The method pre-
sented here does not require to sample the data in pT bins, hence 
allowing the analysis in finer multiplicity bins. The extraction of 
the average transverse momentum of J/ψ mesons is done via a fit 
to the dimuon mean transverse momentum as a function of the 
invariant mass, 〈pμ+μ−

T 〉(mμ+μ− ). A correction for the acceptance 
times efficiency has to be applied when building these distribu-
tions. Hence, the contribution of each dimuon pair with a certain 
pT and y in a given invariant mass bin is weighted with the 
two-dimensional A × ε(pT,y). In order to extract the J/ψ 〈pT〉, the 
A × ε-corrected 〈pμ+μ−

T 〉(mμ+μ− ) distributions, which are shown 
in Fig. 2, are fitted using the following functional shape:

〈pμ+μ−
T 〉(mμ+μ−) = α J/ψ(mμ+μ−) × 〈p J/ψ

T 〉
+ αψ(2S)(mμ+μ−) × 〈pψ(2S)

T 〉
+

(
1− α J/ψ(mμ+μ−) − αψ(2S)(mμ+μ−)

)

× 〈pbkg
T 〉 (1)

Fig. 2. Average transverse momentum of opposite-sign muon pairs as a function of 
the invariant mass at forward rapidity, for two multiplicity bins. The curves are fits 
of the background and combined signal and background (see text).

where α(mμ+μ− ) = S(mμ+μ− )/(S(mμ+μ− ) + B(mμ+μ− )); the sig-
nal (S) and background (B) dependence on the dimuon invariant 
mass is extracted from the corrected invariant mass spectrum fits 
mentioned above. The J/ψ and ψ(2S) average transverse momenta, 
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Table 3
The relative systematic uncertainties of the relative J/ψ yield measurement in the three rapidity ranges. The values in 
parentheses correspond to the absolute yield measurement when different from the relative ones. The ranges represent 
the minimum and maximum values of the uncertainties over the multiplicity bins. For the vertex quality selection, the 
uncertainties marked with ∗ refer only to the lowest-multiplicity bin; for all other bins the value is 0.3%. The trigger, 
tracking and matching efficiency uncertainties are not listed in the table.
Source 2.03 < ycms < 3.53 −4.46 < ycms < −2.96 −1.37 < ycms < 0.43

Sig. Extr. 0.6–1.9% 0.5–1.8% 3.2–8.4%
F2μ/MB method 0.3–3.9% 0.3–3.9% Not applicable
A × ε/bin-flow 1–5.9% 1.4–3.9% 3.1–9.9%
Pile-up 1–4% 1–1.5% Negligible
Signal tails 0.5% (2%) 0.5% (2%) Not applicable
Vertex quality sel. 0.3%–0.6%∗ (0.9%∗) 0.3%–0.6%∗ (0.9%∗) Negligible

Total 2.1–8.3% (3.0–8.6%) 2.1–6.0% (2.9–6.4%) 4.5–13%
〈p J/ψ
T 〉 and 〈pψ(2S)

T 〉, respectively, are fit parameters assumed to 
be independent of the invariant mass, while the background one, 
〈pbkg

T 〉, is parameterized with a second order polynomial function. 
Note that, as for the yield extraction, the quantity 〈pψ(2S)

T 〉 is not 
a measurement of the ψ(2S) mean transverse momentum, since 
the A × ε is obtained only from J/ψ signals in the simulation. The 
〈pT〉 results presented here for bins in multiplicity are relative to 
the value obtained for inclusive events, 〈pT〉MB [19].

5. Systematic uncertainties

The systematic uncertainty of the overall average charged-
particle pseudorapidity density was estimated to be 3.8% [42]. 
This includes effects related to the uncertainties in the simula-
tions, detector acceptance and event selection efficiency, and it is 
dominated by the normalisation to the NSD event class. Possible 
correlation between the average multiplicity and that evaluated in 
a given bin would lead to a partial cancellation of certain sources 
of uncertainty when computing the relative multiplicity. As a con-
servative estimate, the uncertainty on the relative multiplicity is 
considered to be equal to the uncertainty on the overall charged-
particle pseudorapidity density.

The influence of variations of the η distribution in the calcula-
tion of the β correction factors, is estimated from the difference 
between the average number of tracklets obtained in the data 
taken with the two different beam configurations. The correspond-
ing uncertainty on the multiplicity determination amounts to 1%. 
The uncertainties arising from the fit procedure of the Ncorr

trk –Nch
correlation in simulated events, used to obtain the correction fac-
tors, are also included. This uncertainty ranges between 0.2% (at 
high multiplicity) and 2% (at low multiplicity). The event selec-
tion related to the vertex quality has a 1% effect on the average 
multiplicity in the lowest multiplicity bin and a negligible effect 
for the other bins. Due to the uncertainty on the determination of 
the multiplicity of the individual events, there could be a migra-
tion of events among the multiplicity bins (bin-flow). This bin-flow 
effect is determined by running the analysis several times with dif-
ferent seeds for the random factor of the multiplicity correction 
(bin-flow test). The bin-flow uncertainties are obtained from the 
dispersion of the average multiplicity values in the bin-flow tests 
for each multiplicity bin. Finally, the effect of pile-up is studied 
using a toy model that reproduces the main features of the multi-
plicity determination, and takes into account the mis-identification 
of multiple collisions in the same event. The contributions of bin-
flow and pile-up to the measured multiplicities are found to be 
negligible for all the data sets (taken at different interaction rates). 
The bin-dependent uncertainty is added in quadrature to the 3.8% 
uncertainty of 〈dNch/dη〉, resulting in a systematic uncertainty of 
the relative charged-particle multiplicity of 4–4.5% depending on 
the multiplicity bin.

The yields reported here are provided relative to the event-
average yield and the uncertainties are estimated for this ratio. The 
systematic uncertainties related to trigger, tracking and matching 
efficiency are correlated between the multiplicity-differential and 
the integrated determinations. They cancel out to a large extent.

In the dimuon analysis, a combined systematic uncertainty 
which includes the A × ε variations due to the uncertainty of the 
J/ψ pT and rapidity input distributions used in the simulation and 
multiplicity bin-flow effects is derived. Due to the multiplicity bin-
flow, and the fact that the invariant mass and 〈pμ+μ−

T 〉(mμ+μ− )

spectra are weighted by A × ε, these uncertainties can not be 
computed separately. The combined uncertainty is obtained from 
the r.m.s. of the relative yield values obtained running the analy-
sis several times with different seeds for the random factor of the 
multiplicity correction. In addition the systematic uncertainty for 
the signal extraction is estimated as the r.m.s. of the results ob-
tained using different fitting assumptions for a given bin-flow test. 
The fit procedure is varied by adopting a pseudo-Gaussian func-
tion for the signal, a polynomial times an exponential function for 
the background and by using two additional fitting ranges. The un-
certainty due to the determination of the parameters of the signal 
tails is estimated by using several sets of parameters from differ-
ent MC simulations. The uncertainty related to the computation 
method of the relative F2μ/MB is estimated considering the dif-
ference between the two available methods to measure the factor 
in multiplicity bins [34]. The effect of the vertex quality selection 
is estimated from the difference of the obtained yields with and 
without this selection. Finally, in order to determine the pile-up 
effect on the measured yield in each multiplicity bin, the pile-up 
toy model is extended by including the production of J/ψ using 
as input the measured yields as a function of multiplicity. The 
difference between the measured and toy MC yields is taken as 
systematic uncertainty. All these effects are uncorrelated within a 
given multiplicity bin, hence they are added quadratically to obtain 
the systematic uncertainty of the relative yield in a multiplicity 
bin. Also, these systematic uncertainties are considered as uncor-
related between the different rapidity intervals. A summary of the 
maximum and minimum relative yield systematic uncertainties is 
shown in Table 3. In addition, the 3.1% uncertainty of the event-
average yield normalisation to NSD, is reported separately.

The systematic uncertainties are computed also for the absolute 
yields in multiplicity bins at forward and backward rapidities. The 
absolute yields are used to compute the ratio of the nuclear mod-
ification factors at forward and backward rapidities. The values of 
the uncertainties on the absolute yields are shown in parentheses 
in Table 3, when they are different from the ones obtained for the 
relative yield. In addition, for the absolute yield measurement, the 
muon tracking, trigger and matching efficiency uncertainties need 
to be taken into account [18]. They amount to 4% (6%), 3% (3.4%) 
and 1% (1%) at forward (backward) rapidities.
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Table 4
The systematic uncertainties for the relative 〈pT〉 measurement at forward and 
backward rapidities. The values represent the minimum and maximum values of 
the uncertainties over the multiplicity bins. The uncertainties marked with ∗ only 
refer to the two highest-multiplicity bins.
Source 2.03 < ycms < 3.53 −4.46 < ycms < −2.96

Sig. extr. 0.2–1.2% 0.2–0.5%
A × ε/bin-flow 0.5–2.0% 0.7–2.7%
Pile-up 0.2–0.7%∗ 0.2–0.8%∗

Total 0.6–2.4% 0.7–2.9%

For the dielectron decay channel, the signal extraction uncer-
tainty is derived based on the r.m.s. value of the different signal 
yield ratios obtained for the variations of the background and the 
signal integration window as in [34]. The uncertainty is largest for 
the highest multiplicity bins. Since the pT distribution of J/ψ may 
depend on multiplicity, the unmeasured pT spectrum leads to a 
multiplicity-dependent uncertainty, determined as in [34]. As ex-
plained in section 2, the pile-up contamination is very low and 
the induced uncertainty is negligible for all the multiplicity in-
tervals. The uncertainty related to bin-flow is estimated with the 
same method as in the dimuon analysis. The total systematic un-
certainty varies as a function of multiplicity between 4.5% and 13%, 
see Table 3.

For the relative J/ψ 〈pT〉, the effects of the uncertainty on the 
determination of A ×ε, the 〈pT〉 extraction procedure and bin-flow 
are computed together following the same procedure as for the 
relative yield. The 〈pT〉 extraction uncertainty is obtained from the 
dispersion of the results using different fit combinations, including 
variations of the invariant mass signal and background parame-
terisations, fitting range and the use of a second order polynomial 
times an exponential function for the 〈pT〉 of background dimuons. 
The effect of considering the J/ψ 〈pT〉 as independent of the invari-
ant mass in the 〈pμ+μ−

T 〉 fits is found to be negligible. The impact 
of fixing the signal and background parameters during the fitting 
procedure is observed to be negligible as well. The events removed 
by the vertex quality selection do not have reconstructed J/ψ and 
therefore the 〈pT〉 remains unmodified. Finally, using a pile-up toy 
model, it is shown that the pile-up has no effect on the 〈pT〉 mea-
surement, except for the two bins corresponding to the largest 
multiplicities. All these effects are considered as uncorrelated in a 
given multiplicity bin and hence their respective uncertainties are 
added quadratically to obtain the relative 〈pT〉 systematic uncer-
tainty in each multiplicity bin. These systematic uncertainties are 
considered as uncorrelated between the different rapidity intervals. 
The results of the uncertainties entering in the relative 〈pT〉 mea-
surement are reported in Table 4.

6. Results and discussion

The dependence of the relative J/ψ yield on the relative 
charged-particle pseudorapidity density for three J/ψ rapidity 
ranges is presented in Fig. 3. An increase of the relative yield with 
charged-particle multiplicity is observed for all rapidity domains, 
with a similar behaviour at low multiplicities. At multiplicities 
beyond 1.5–2 times the event-average multiplicity, two different 
trends are observed. The relative yields at mid-rapidity and back-
ward rapidity keep growing with the relative multiplicity in p–Pb 
collisions similarly to the observation in pp collisions at 7 TeV 
[37]. At forward rapidity the trend is different. In this rapidity 
window a saturation of the relative yield sets in for high mul-
tiplicities. In lack of theoretical model calculations, it is unclear 
at the moment what is the cause of this observation. We recall 
that the explored Bjorken x ranges in the forward rapidity region 

Fig. 3. Relative yield of inclusive J/ψ mesons, measured in three rapidity regions, 
as a function of relative charged-particle pseudorapidity, measured at mid-rapidity. 
The error bars show the statistical uncertainties, and the boxes the systematic ones. 
The dashed line is the first diagonal, plotted to guide the eye.

Fig. 4. Relative yield of inclusive J/ψ mesons as a function of relative charged-
particle pseudorapidity density, measured at mid-rapidity, in comparison to D 
mesons (average of D0, D+ , and D∗+ species), for the pT interval 2–4 GeV/c [36]. 
The error bars show the statistical uncertainties, and the boxes the systematic ones 
(additional systematic uncertainties due to the b feed-down contributions and the 
event normalisation are not shown for the D mesons).

are in the domain of shadowing/saturation, and that a variety of 
models [12,13,49,20,21] are fairly successful in describing the re-
cent centrality-integrated and differential measurements of ALICE 
[19,34], which correspond in terms of our relative multiplicities to 
dNch/dη/〈dNch/dη〉 � 2.5 at most.

In Fig. 4 the J/ψ measurement at mid-rapidity is compared to 
that for prompt D mesons (average of D0, D+ , and D∗+ species) 
for the pT range 2–4 GeV/c [36]. Similar trends are seen for the 
J/ψ and D mesons, as observed earlier in pp collisions [38].

The nuclear modification factor for J/ψ production in p–Pb col-
lisions (RpPb) as a function of centrality was presented in [34]. 
The relationship between geometry-related quantities, that quan-
tify the centrality of the collision, and experimental observables in 
p–Pb collisions may be subject to a selection bias [50] which needs 
care in interpretation. By performing the ratio of the nuclear mod-
ification factors at forward and backward rapidities as a function 
of multiplicity, the dependence on geometry-related quantities is 
eluded. The forward-to-backward nuclear modification factor ratio 
is defined as:

RFB = RpPb(2.03 < ycms < 3.53)

RpPb(−4.46 < ycms < −2.96)
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Fig. 5. RFB of inclusive J/ψ in p–Pb collisions at √sNN = 5.02 TeV as a function 
of relative charged-particle pseudorapidity density, measured at mid-rapidity. The 
filled box at unity represents the global uncertainty. The error bars show the statis-
tical uncertainties, and the boxes the systematic ones.

= Y J/ψ
pPb (2.03 < ycms < 3.53)

Y J/ψ
pPb (−4.46 < ycms < −2.96)

× dσ J/ψ
pp /dy(−4.46 < ycms < −2.96)

dσ J/ψ
pp /dy(2.03 < ycms < 3.53)

(2)

Since the average charged-particle multiplicities and their uncer-
tainties are consistent with each other for the two sets of data, the 
values of RFB are shown versus the average value of the two in 
each multiplicity bin. Note that, differently than for the case of the 
nuclear modification factor measurement in [18], for the present 
measurement the rapidity ranges are not symmetric with respect 
to ycms = 0 to take advantage of all the signal yield, allowing the 
study up to high multiplicities. The values of the reference pp cross 
section were obtained by means of an interpolation procedure us-
ing measurements at center-of-mass energies of 2.76 and 7 TeV 
[51]. The resulting backward-to-forward ratio of J/ψ production 
cross sections in pp collisions is 0.691 ± 0.048, leading to a global 
uncertainty on the RFB measurement of 6.9%.

For the RFB ratio, the systematic uncertainties of the absolute 
yields in p–Pb collisions (Table 3) are considered as uncorrelated 
between forward and backward rapidities, and therefore added in 
quadrature. The uncorrelated systematic uncertainties of the pro-
duction cross sections in pp collisions are the same as a function 
of multiplicity, so they are added in quadrature to the global un-
certainty (quadratic sum of muon tracking, trigger and matching 
efficiency uncertainties) of the p–Pb data, resulting in a total rela-
tive uncertainty of 11%.

The RFB ratio is shown as a function of the relative charged-
particle pseudorapidity density in Fig. 5. In multiplicity-inclusive 
collisions for symmetric y ranges at forward and backward ra-
pidities [18], RFB is smaller than unity and described by theoreti-
cal models. The present measurement shows that the suppression 
of J/ψ production at forward rapidity with respect to backward 
rapidity increases significantly with charged-particle multiplicity, 
since RFB reaches values as low as 0.34 ± 0.06 (stat.) ± 0.05 
(syst.). A forward–backward asymmetry can be noticed for in-
clusive charged-particle production studied in [50]. Even though 
the range of relative charged-particle multiplicities probed in that 
measurement is not as large as in the present measurement of 
J/ψ production, the apparent similarity of the trend seen in Fig. 5
to soft particle production is intriguing.

In Fig. 6 the relative 〈pT〉 of J/ψ mesons at backward and 
forward rapidity is shown as a function of the relative charged-
particle pseudorapidity density. The results are similar at forward 

Fig. 6. Relative 〈pT〉 of J/ψ mesons for backward and forward rapidity as a function 
of the relative charged-particle pseudorapidity density, measured at mid-rapidity. 
The bars show the statistical uncertainties, and the boxes the systematic ones. The 
data for charged particles (h±) [52] are included for comparison. The latter are for 
|ηcms| < 0.3 and with pT in the range 0.15 to 10 GeV/c and have an additional 
normalisation uncertainty of 3.4%.

and backward rapidities. An increase of the relative 〈pT〉 with mul-
tiplicity at low charged-particle multiplicity is observed, but for 
multiplicities beyond 1.5 times the average multiplicity it satu-
rates. For backward rapidity, the simultaneous increase of the yield 
and the saturation of the relative 〈pT〉 could be an indication of 
J/ψ production from an incoherent superposition of parton–parton 
interactions, as suggested by data on correlations of jet-like yields 
per trigger particle [32].

The pT broadening observed in the analysis of J/ψ production 
in p–Pb collisions as a function of centrality [34] is well described 
by initial and final-state multiple scattering of partons within the 
nuclear medium [53]. The comparison of data to model calcula-
tions, performed in [34], corresponds in terms of relative mul-
tiplicities to a range up to roughly dNch/dη/〈dNch/dη〉 = 2.5. It 
remains to be seen whether such models can explain the satu-
ration observed in the relative 〈pT〉 of the J/ψ mesons for events 
with higher multiplicities.

It is interesting to contrast the observed saturation of 〈pT〉
for J/ψ mesons with the monotonic increase of 〈pT〉 for charged 
hadrons (dominated by pion production) [54] with the multiplicity 
measured at mid-rapidity also shown in Fig. 6. Note that this mea-
surement is for particles in |ηcms| < 0.3 and with pT in the range 
0.15 to 10 GeV/c, and it is relative to events with at least one 
particle in this kinematic range (for which 〈Nch〉 = 11.9 ± 0.5 and 
〈pT〉 = 0.696 ± 0.024 GeV/c [54]). Although the different kinematic 
regions may play a role and care is needed in the interpretation, it 
is apparent that the two observables, characterised by rather dif-
ferent production mechanisms (and momentum-transfer) exhibit 
different patterns in the multiplicity dependence of the average 
transverse momentum.

7. Conclusions

Measurements of the relative J/ψ yield and average transverse 
momentum as a function of the relative charged-particle pseudo-
rapidity density in p–Pb collisions at the LHC at 

√
sNN = 5.02 TeV

have been presented in this letter. The measurements were per-
formed with ALICE in three ranges of rapidity. The charged-particle 
multiplicity was measured at mid-rapidity; multiplicities up to 4 
times the value of NSD events were reached, corresponding to 
rare events of less than 1% of the total hadronic interaction cross 
section. An increase of the relative J/ψ yield with the relative mul-
tiplicity is observed, with a trend towards saturation at high mul-
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tiplicity for the forward rapidity (proton-going direction). For the 
J/ψ data at mid-rapidity, a comparison to corresponding measure-
ments of D-meson yields is performed, revealing similar patterns 
for the two meson species. At forward and backward rapidities, 
the relative average transverse momenta exhibit a saturation above 
moderate values of relative multiplicity.

The present data are expected to constitute a stringent test for 
theoretical models of J/ψ production in p–Pb collisions and help 
to understand the effects associated with the production of a de-
confined medium in Pb–Pb collisions.
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I. Králik 55, A. Kravčáková 39, M. Krivda 55,104, F. Krizek 87, E. Kryshen 89, M. Krzewicki 41, A.M. Kubera 18, 
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