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This letter presents the first measurement of jet mass in Pb–Pb and p–Pb collisions at √sNN = 2.76 TeV 
and √sNN = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to 
jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider 
energies. Jets are reconstructed from charged particles using the anti-kT jet algorithm and resolution 
parameter R = 0.4. The jets are measured in the pseudorapidity range |ηjet| < 0.5 and in three intervals 
of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central 
Pb–Pb collisions is compared to the jet mass as measured in p–Pb reference collisions, to vacuum 
event generators, and to models including jet quenching. It is observed that the jet mass in central 
Pb–Pb collisions is consistent within uncertainties with p–Pb reference measurements. Furthermore, the 
measured jet mass in Pb–Pb collisions is not reproduced by the quenching models considered in this 
letter and is found to be consistent with PYTHIA expectations within systematic uncertainties.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

This letter presents the first measurement of jet mass in Pb–Pb
and p–Pb collisions at 

√
sNN = 2.76 TeV and 

√
sNN = 5.02 TeV, 

respectively. Both the jet energy and the jet mass are expected 
to be sensitive to jet quenching in the hot Quantum Chromody-
namics (QCD) matter, the Quark–Gluon–Plasma (QGP), created in 
ultra-relativistic nuclear collisions. Scattering processes with large 
momentum transfer, Q 2, between the quarks and the gluons (par-
tons) constituents of colliding nucleons occur early in the collision 
(at a time < 1 fm/c). Outgoing partons carry a net color charge 
and evolve from high to low virtuality producing parton show-
ers, which eventually hadronize into collimated sprays of particles, 
called jets. Interactions of the outgoing partons with the hot and 
dense QGP created in heavy-ion collisions may modify the angular 
and momentum distributions of hadronic jet fragments relative to 
jets fragmenting in vacuum. This process, known as jet quenching, 
can be used to probe the properties of the hot QCD medium [1–4].

Jet quenching has been investigated at the Relativistic Heavy 
Ion Collider (RHIC) [5–9] and at the Large Hadron Collider (LHC) 
[10–20] via measurements of high-pT hadrons and fully recon-
structed jets in nucleus–nucleus (AA) collisions and pp (vacuum) 
collisions. These measurements have shown a suppression of 
hadron and jet yields in AA collisions and modest modifications 
of the longitudinal fragment distribution and the radial profile of 
jets relative to jets produced in pp collisions within the typical 
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jet cone of 0.3–0.4 at the LHC. The jet mass is sensitive to the 
initial virtuality of the parton at the origin of the shower [21]. 
Energy-momentum exchange with the hot QCD medium may tem-
porarily increase the virtuality of the propagating partons, leading 
to a larger gluon radiation probability [22–25]. This would result in 
a broadening of the jet profile and an increase of the jet mass, if a 
significant amount of the radiated gluons are captured within the 
jet cone used for reconstruction. However, the virtuality increase is 
temporary and it is expected that the leading parton traversing hot 
QCD matter experiences substantial virtuality (or mass) depletion 
along with energy loss [21].

The jet mass of inclusive jets and of jets in dijet events has been 
previously measured in high-energy pp collisions at 

√
s = 7 TeV at 

the LHC [26,27]. Perturbative QCD predictions using higher-order 
matrix-elements for parton production combined with a Monte 
Carlo (MC) parton shower were found to be in good agreement 
with the data. The commonly used leading-order event generators 
with full shower evolution, PYTHIA [28,29] and HERWIG [30], re-
produce the jet mass distribution in pp collisions reasonably well 
in the pT region 200–600 GeV/c previously studied, however they 
consistently under- and over-predict the data, respectively, by a 
slight amount.

In this letter, measurements of the charged-jet mass are re-
ported. Charged jets are jets clustered using only charged particles, 
reconstructed in the ALICE tracking system, opposed to full jets, 
reconstructed with both charged and neutral particles. The four 
momentum of the jet is defined as the sum of constituent four 
momenta. The jet mass is calculated from the jet four-momentum,
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M =
√
E2 − p2

T − p2
z , (1)

where E is the jet energy, pT the transverse and pz the longitudi-
nal momentum of the jet.

The measurement is performed in Pb–Pb and p–Pb collisions 
and in three intervals of jet transverse momentum. Data-driven 
jet-by-jet background subtraction schemes are used to correct the 
jet mass for the contribution of the Pb–Pb underlying event. In 
contrast, the p–Pb background is included in the response ma-
trix and corrected for in the unfolding, as discussed in detail in 
Sec. 3.1 and 3.2. The data are compared at detector level to a sim-
ulated reference without jet quenching effects. Furthermore, the 
measurement is corrected to particle level via a two-dimensional 
unfolding technique, accounting for the remaining effect of back-
ground fluctuations and detector effects. The fully corrected jet 
mass distribution in central Pb–Pb collisions is compared to mod-
els and to the jet mass distribution measured in p–Pb collisions.

2. Data sample

The Pb–Pb collision data were recorded during the 2011 LHC 
Pb–Pb run at 

√
sNN = 2.76 TeV. This analysis used minimum-bias 

(MB) events, selected online by requiring a signal in the forward 
V0 detectors, two arrays of scintillator tiles covering the full az-
imuth within 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C). An 
online centrality trigger selected the 10% most-central Pb–Pb colli-
sions using the centrality determination as described in [31], with 
100% efficiency for the 0–8% centrality interval, and 60% efficiency 
for the 8–10% interval. The number of Pb–Pb events used in this 
analysis, after the event selection described below, is 17 million in 
the 0–10% centrality interval.

Collisions of proton and lead beams were provided by the LHC 
in the first months of 2013. The beam energies were 4 TeV for the 
proton beam and 1.58 TeV per nucleon for the lead beam, result-
ing in collisions at a center-of-mass energy of 

√
sNN = 5.02 TeV. 

The nucleon–nucleon center-of-mass system moves relative to the 
laboratory frame with rapidity 0.465 in the direction of the pro-
ton beam [32]. In the following, η refers to the pseudorapidity 
in the laboratory frame. The V0 detectors were used for online 
minimum bias event triggering and offline event selection. The 
minimum bias trigger required a signal from a charged particle in 
both the V0A and the V0C. The total integrated luminosity of the 
minimum bias event sample is 37 μb−1. In addition, events trig-
gered by an online jet trigger using the electromagnetic calorime-
ter (EMCal) [33,34] were used. The online jet patch covered an 
area of approximately 0.2 sr and required an integrated patch en-
ergy of at least 20 GeV. The transverse momentum distributions of 
charged jets in the triggered sample was compared to the min-
imum bias one, showing that the trigger was fully efficient for 
pT,ch jet � 60 GeV/c. The minimum bias and triggered sample were 
used for unfolded pT,ch jet < 80 GeV/c and pT,ch jet ≥ 80 GeV/c, re-
spectively. The triggered sample correspond to a total integrated 
luminosity of 1.6 nb−1.

In addition to the online triggers in both collision systems, an 
offline selection was applied in which the online trigger was vali-
dated and remaining background events from beam–gas and elec-
tromagnetic interactions were rejected. To ensure a high tracking 
efficiency for all considered events, the primary vertex was re-
quired to be within 10 cm from the center of the detector along 
the beam axis and within 1 cm in the transverse plane [35].

3. Jet reconstruction and background subtraction

Jet reconstruction for both the p–Pb and Pb–Pb analysis was 
performed with the kT [36] and anti-kT [37] sequential recombina-
tion jet algorithms as implemented in the FastJet package [38]. 

The anti-kT algorithm was used for the signal jets while clus-
ters reconstructed with the kT algorithm were used to estimate 
the background density of the events. Jets were reconstructed us-
ing charged tracks detected in the Time Projection Chamber (TPC) 
[39] and the Inner Tracking System (ITS) [40] which cover the 
full azimuthal angle and pseudorapidity |η| < 0.9. Jets were re-
constructed using the E-scheme to recombine the four-vectors of 
the constituents, assigning the charged-pion mass for each parti-
cle. A resolution parameter, R , of 0.4 was used, and the jet area 
was calculated by the FastJet algorithm using essentially zero mo-
mentum particles, called ghosts, with area 0.005 [41]. Jets were 
accepted if they were fully contained in the tracking acceptance: 
full azimuth and |ηjet| < 0.5, to guarantee that the reconstructed 
jet axes were at least R away from the edge of the detector accep-
tance.

Reconstructed tracks were accepted if their reconstructed trans-
verse momenta exceeded 0.15 GeV/c, with at least 70 space points 
found in the TPC and at least 80% of the geometrically accessi-
ble space-points in the TPC. Tracks were required to have at least 
three hits in the ITS used in the fit to ensure good track mo-
mentum resolution. To account for the azimuthally non-uniform 
response of the two innermost layers of the ITS, the Silicon Pixel 
Detector (SPD), the primary-vertex position was added to the track 
fit, for tracks without SPD points, in order to further improve the 
momentum determination of the track. The track momentum reso-
lution was about 1% at 1 GeV/c and about 3% at 50 GeV/c [35]. Jets 
which contained a track with pT larger than 100 GeV/c, for which 
the track momentum resolution exceeded 6.5%, were rejected. The 
tracking efficiency in central Pb–Pb collisions was 80% for tracks 
with pT larger than 1 GeV/c and decreased to 56% at 0.15 GeV/c. 
In p–Pb collisions the tracking efficiency was 70% for tracks with 
pT = 0.15 GeV/c and increased to 85% for pT ≥ 1 GeV/c.

To suppress the contribution of jets consisting mainly of back-
ground particles (combinatorial jets), only jets containing a “hard 
core” were accepted. A jet was selected only if it overlapped ge-
ometrically with a jet reconstructed with only constituents with 
pT > 4 GeV/c. In the kinematic region considered, the hard core 
selection had similar performance as the selection used in pre-
vious works, namely demanding the jet leading track to have a 
transverse momentum of at least 5 GeV/c [17,18]. PYTHIA pp 
simulations showed that applying such a selection was 100% ef-
ficient on the jet population for charged-jet transverse momentum 
pT,ch jet ≥ 25 GeV/c. The fluctuating background in Pb–Pb collisions 
affected the jet energy scale increasing the full-efficiency threshold 
to psub

T,ch jet = 60 GeV/c (where psub
T,ch jet is the background-subtracted 

pT,ch jet, defined below in Eq. (6)). In minimum bias p–Pb collisions 
the fragmentation bias vanished for pT,ch jet ≥ 30 GeV/c.

3.1. Jet-by-jet background subtraction in Pb–Pb collisions

Jet measurements in Pb–Pb collisions are severely affected by 
the underlying event. A reconstructed jet contains particles unre-
lated to the hard parton shower. In this analysis the background 
was subtracted jet-by-jet. For this purpose, mean background den-
sities were determined by characterizing event-by-event the con-
tamination from soft particles unrelated to the hard jet signal. The 
background transverse momentum density, ρ , was defined as

ρ = median

{
pT,i

Ai

}
, (2)

where i indicates the ith kT cluster in the event, pT,i is the trans-
verse momentum of the cluster and Ai is its area. The two kT clus-
ters with highest transverse momentum were excluded from the 
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calculation of the median. The average ρ in the 10% most central 
Pb–Pb collisions was 116 GeV/c. Further details are given in [17].

To take into account the influence of background particles on 
the reconstructed jet mass, a quantity m

δ,kclusterT
was evaluated for 

each kT cluster following the procedure outlined in [42]

m
δ,kclusterT

=
∑
j

(

√
m2

j + p2
T,jc

2 − pT,jc), (3)

where the sum runs over all particles inside the kT cluster, mj is 
the mass and pT,j the transverse momentum of each constituent. 
The background mass density is defined by

ρm = median

{
mδ,i

Ai

}
, (4)

where the subscript i indicates again the ith kT cluster in the event 
and Ai is the area of the kT cluster. As in the calculation of ρ , 
the two leading kT clusters were excluded from the median cal-
culation. For central Pb–Pb collisions, 〈ρm〉 was found to be about 
3.6 GeV/c2.

The background densities, ρ and ρm, were used in combination 
with two background subtraction techniques for jet shapes which 
will be described in the following:

(i) The area-based subtraction method corrects jet-shape observ-
ables for background or pile up effects on an event-by-event 
and jet-by-jet basis [42]. The method is valid for any jet algo-
rithm and infrared- and collinear- safe jet shapes. The back-
ground is characterized by ρ and ρm. Ghosts are added in the 
η–ϕ plane to the event, each of them mimicking a background 
component in a region of area Ag. The shape sensitivity to 
pileup is determined by considering its derivatives with re-
spect to the transverse momentum and mass of the ghosts and 
extrapolated by a Taylor series to zero pileup or background. 
A complete description of the method can be found in [42].

(ii) The constituent subtraction method is a particle-level ap-
proach which removes or corrects jet constituents. The particle-
by-particle subtraction allows to correct both the 4-momentum 
of the jet and its substructure. Massless ghosts are added to 
the event such that they cover the η–ϕ plane. Each jet will 
therefore contain the real particles and ghosts. A distance 
measure is defined for each pair of a real particle i and a 
ghost k:

�Ri,k = pT,i ·
√

(yi − ygk)
2 + (ϕi − ϕ

g
k )2, (5)

where y is the rapidity and ϕ the azimuthal angle. An iterative 
background removal procedure starts from the particle-ghost 
pair with smallest distance. At each step the transverse mo-
mentum and mass of each particle and ghost are modified. 
The background densities ρ and ρm are used to assign mo-
mentum and mass to each ghost: pg

T = Agρ and mg
δ = Agρm

where Ag is the area of each ghost. If the transverse momen-
tum of particle i is larger than the transverse momentum of 
the ghost, the ghost is discarded and the transverse momen-
tum of the ghost is subtracted from the real particle. If the 
transverse momentum of the ghost is larger than particle i, 
the real particle is discarded and the transverse momentum of 
the ghost is corrected. The same procedure is applied to the 
mass of the particles and ghosts. All pairs are considered and 
the iterative procedure is terminated when the end of the list 
of pairs is reached. The four-momentum of the jet is recalcu-
lated with the same recombination scheme as used for the jet 
finding procedure. A complete description of the method can 
be found in [43].

The area-based subtraction method was used as the nominal 
method for the Pb–Pb analysis to correct the reconstructed jet 
mass for the influence of background since it is expected to in-
duce zero bias. On the other hand, since track-by-track it is not 
possible to determine whether a soft particle is background or an 
effect of the interaction with the medium, the constituent method 
could potentially remove non-background particles.

The reconstructed transverse momentum of anti-kT jets, praw
T,ch jet, 

is corrected according to [44],

psub
T,ch jet = praw

T,ch jet − ρ · A, (6)

where A is the area of the jet and ρ is the pT-density of the con-
sidered event, as defined in Eq. (2).

3.2. Background in p–Pb collisions

In p–Pb collisions the average ρ and ρm were about 1.26 GeV/c
and 0.08 GeV/c2, respectively. To account for the regions of the de-
tector without event activity, an additional correction [45] was ap-
plied and the hard signal jets were excluded from the background 
estimate by excluding overlap of the kT clusters with anti-kT jets 
with pT,ch jet > 5 GeV/c. While the overall background contribution 
is significantly smaller than in Pb–Pb collisions, it was observed 
that the width of the mass fluctuations caused by the p–Pb back-
ground was increased when subtracting the background on a jet-
by-jet basis with respect to including it in the response. Therefore, 
to minimize this effect present in sparse events and to mitigate 
the different sensitivities of the considered subtraction methods to 
fluctuations, in p–Pb collisions the background was not subtracted 
jet-by-jet (on an event-by-event basis), but corrected for on aver-
age in the unfolding, as explained in greater detail in Sec. 4. The 
systematic uncertainty on this choice was assessed by subtracting 
the background in data with the constituent method and correct-
ing only for the detector effects in the response (see Sec. 6).

4. Jet scale and resolution

For the Pb–Pb analysis, the jet energy and mass response 
were studied by embedding simulated pp events at detector level, 
namely including the effects of the detector response, into real 
Pb–Pb events. The detector response was determined from a 
PYTHIA 6 simulation (tune A with initial state radiation parameter 
PARP(67) = 2.5 to fit the D0 di-jet data [46]) followed by a detailed 
particle transport using GEANT 3 [47] in a detector configuration 
corresponding to the conditions during Pb–Pb data taking. Prior 
to embedding the reconstructed tracks from the simulation into 
Pb–Pb events, an additional pT-dependent tracking inefficiency of 
2–4% was applied in order to account for the larger tracking ineffi-
ciency due to the high occupancy for large particle densities [18]. 
The combination of Pb–Pb and PYTHIA events will be referred to 
as ‘hybrid events’.

The same jet reconstruction procedure as in data, see Sec. 3, 
was applied to the hybrid events, resulting in a sample of hybrid 
jets. The hybrid jets were matched to the probe jets, which were 
obtained by reconstructing jets from only the PYTHIA events at 
the detector level. Not all constituents of an embedded probe jet 
will necessarily be found in a hybrid jet. In order to relate the 
hybrid to the probe jet, a matching condition was used. This re-
quired that the constituents of the hybrid jet that comes from the 
PYTHIA event must carry at least 50% of the transverse momen-
tum of the PYTHIA jet. In the case that a hybrid jet was paired to 
two or more probe jets, it was matched to the probe jet with high-
est pT and the other probe jets were considered lost, reducing the 
jet-finding efficiency. The efficiency in the 10% most central events 
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for charged jets increased from 40% at psub
T,ch jet = 10 GeV/c to 100% 

for psub
T,ch jet > 40 GeV/c.

Region-to-region fluctuations of the jet mass and pT-scale were 
characterized by using the hybrid events and calculating δpT and 
δM , defined as the difference between the transverse momentum 
or mass of the background-subtracted hybrid jet and the probe jet 
[48]. On a jet-by-jet basis a linear correlation between δpT and δM
was observed.

The jet mass distributions of hybrid jets matched to probe jets 
within a certain jet pT-interval, showed on average a larger jet 
mass with respect to the corresponding spectrum of the probes. 
This offset was due to background fluctuations and limited purity 
and efficiency within a reconstructed jet pT-interval, resulting in 
jet migration between pT-intervals.

Detector effects on the jet energy and mass were investigated 
by matching detector level jets and particle level jets from a Pythia 
simulation and comparing their properties (including Pb–Pb back-
ground). The jets were matched based on distance, in a way that 
guarantees a one-to-one match. The constituents of the detector 

Fig. 1. (Color online) Mass response using the area-based background subtraction 
method in the 10% most central Pb–Pb collisions for background fluctuations only 
(black, shaded histogram), compared to the full response including detector effects 
(red, hashed histogram), for anti-kT jets with resolution parameter R = 0.4. Msub
refers to the background-subtracted reconstructed jet mass while Mprobe is the jet 
mass of the embedded probe. From top left to bottom right, each panel represent a 
pT,ch jet region, 40–60, 60–80, 80–100, 100–120 GeVc.

level jets are all assigned the pion mass, as is done for the data 
analysis, while the particle mass is used for the particle level 
jet reconstruction. A comparison between the jet mass response 
due to background fluctuations and the full response, which also 
contains detector effects, is shown in Fig. 1. While background 
fluctuations induce a positive shift of the reconstructed jet mass, 
detector effects, which are dominated by the finite tracking effi-
ciency and the mass assumption of the jet constituents, reduce the 
reconstructed jet mass. This was further characterized by extract-
ing the mean and the most probable value from the distribution 
in Fig. 1, giving a measure of the relative jet mass shift. The rel-
ative mass shift is shown in Fig. 2 for the area-based subtraction 
method (left) and the constituent subtraction method (right). In 
the kinematic range of interest, the mass shift does not exhibit 
a strong dependence on jet momentum. The performance of the 
constituent subtraction method is slightly better than for the area-
based method since the constituent subtraction corrects partially 
for the local background fluctuations while the area-based method 
only corrects for the average background.

Since embedding a full PYTHIA event, including the underly-
ing event, into the sparse p–Pb event would significantly distort 
the p–Pb background estimate, the above procedure, devised with 
Pb–Pb collisions in mind, was modified for p–Pb collisions. To min-
imize the distortion, we instead embedded single tracks, whose 
4-vectors correspond to jets reconstructed from a PYTHIA simu-
lation (tune Perugia2011 [49]) at detector level, into p–Pb events. 
After running FastJet on the measured events including embedded 
PYTHIA tracks, each resulting jet was matched with the particle 
level PYTHIA jet associated to the embedded track.

Fig. 3 shows the jet mass resolution for Pb–Pb and p–Pb colli-
sions as a function of the jet mass at particle level for probe jets 
with 60 < pT,ch jet < 80 GeV/c. A strong dependence on Mprobe is 
observed. The resolution for jets with a small mass is poor while 
for larger jet masses it improves to 25%. Jets with small mass are 
very collimated and typically have a small number of constituents. 
The influence of the tracking inefficiency and the contamination 
of tracks from the background on these jets are large. For large 
enough pT,ch jet (> 40 GeV/c), jets with a small jet mass are rare 
and therefore the poor resolution for very collimated jets with 
small number of constituents is not a limiting factor in this analy-
sis, which was restricted to jets with pT,ch jet > 60 GeV/c for Pb–Pb
and p–Pb collisions. For example, only about 16% of the jets have 
a mass smaller than 6 GeV/c2 within the 60–80 GeV/c pT,ch jet in-
terval in PYTHIA.

The jet mass scale and resolution in p–Pb collisions are dom-
inated by tracking inefficiency, the mass assumption for the con-
stituents, and, less strongly, by track momentum resolution. The jet 
Fig. 2. Jet mass scale characterized by the relative mean and most probable value of the response. Jet mass scale is shown as a function of probe jet pT for background 
fluctuations and the full response including detector effects, using anti-kT PYTHIA jets with R = 0.4 embedded into central Pb–Pb collisions. Left: area-based subtraction 
method. Right: constituent subtraction method.
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mass resolution in p–Pb collisions at small jet mass is by a factor 
2 better than in Pb–Pb collisions due to the much smaller contri-
bution of the underlying event. At large jet mass the resolution is 
similar for the two collision systems, 25% for Pb–Pb and 20% for 
p–Pb, and mainly driven by detector effects.

5. Uncorrected jet mass distributions and corrections

5.1. Comparison of jet mass in Pb–Pb to PYTHIA at detector level

It is common use to compare uncorrected Pb–Pb results with 
embedded pp or PYTHIA events, including in the latter detector 
and background effects. We perform this comparison and then 
proceed with the full correction in order to compare with p–Pb
corrected results and particle-level event generators.

In this section, the jet mass distributions measured in cen-
tral Pb–Pb collisions are compared to hybrid detector-level PYTHIA 
jets. The background was subtracted from the jet transverse mo-
mentum and mass using the area-based and constituent subtrac-

Fig. 3. Jet mass resolution as a function of true jet mass Mprobe
ch jet for probes with 60 <

pprobe
T,ch jet(GeV/c) < 80 GeV/c. Pb–Pb: Anti-kT PYTHIA jets with R = 0.4 embedded into 

central Pb–Pb collisions taking into account background fluctuations and detector 
effects. p–Pb: 4-vectors corresponding to detector-level PYTHIA jets embedded into 
p–Pb events.

tion methods. A comparison of the jet distributions (normalized 
per jet) is shown in Fig. 4. It can be observed that the Pb–Pb
and PYTHIA distributions are similar, which supports the valid-
ity of using embedded PYTHIA for the corrections as discussed 
in Sec. 5.2. The constituent method gives systematically lower jet 
mass than the area-based method, due to the different effect of 
background fluctuations for the two subtraction algorithms, see 
Sec. 4. The lower panels of Fig. 4 show the ratio between Pb–Pb
and PYTHIA embedded jets. The ratio as a function of jet mass 
shows that the measured distributions are very similar to the em-
bedded PYTHIA jets, or possibly a small shift to lower mass, which 
is however more pronounced for the constituent background sub-
traction method. The hint of a shift is more pronounced in the 
mean jet mass, which is slightly smaller in Pb–Pb collisions than 
embedded PYTHIA events, as shown in Fig. 5. Also when compar-
ing the corrected results with PYTHIA at particle level later in this 
letter, the data show a hint of a shift towards smaller masses with 
respect to PYTHIA when considering only statistical uncertainties.

Fig. 5. Comparison of the mean jet mass in Pb–Pb collisions to detector-level embed-
ded PYTHIA jets, for anti-kT charged jets with R = 0.4 in 10% most central Pb–Pb
collisions. Background subtraction with the area-based method.
Fig. 4. Detector-level jet mass distributions in Pb–Pb data and PYTHIA (tune A) embedded into Pb–Pb collisions. Centrality: 0–10%. Anti-kT with R = 0.4. Left: area-based 
background subtraction. Right: constituent background subtraction.
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5.2. Correction of jet mass to particle level

For the correction of the jet mass measurement to particle level, 
a two-dimensional Bayesian unfolding technique [50] from RooUn-
fold [51] was used. A four-dimensional response matrix was con-
structed with the following axes: particle-level pT,ch jet, detector-
level pT,ch jet, particle-level Mch jet and detector-level Mch jet. For 
the Pb–Pb analysis, detector-level jets were obtained by embedding 
detector-level PYTHIA jets into Pb–Pb events, running the jet finder 
and applying the background subtraction as explained in Sec. 3. 
A projection of the response on the detector level mass is shown 
in Fig. 4. As discussed in Sec. 4, the embedded detector-level jets 
were matched to the detector-level jets without Pb–Pb background. 
The latter were matched to particle-level jets in such a way to ob-
tain a unique matching between each detector-level embedded jet 
and the corresponding particle-level jet.

For the p–Pb analysis, detector-level jets were obtained from 
embedding detector-level jet four-momentum vectors into p–Pb
events (see Sec. 4). The reconstructed embedded jets were matched 
with the particle-level four-momentum vectors corresponding to 
the detector level embedded four momenta. The four-dimensional 
matrix contains the smearing in jet pT and mass due to back-
ground and detector effects.

The four-dimensional response matrix was used to unfold the 
jet pT and mass simultaneously, taking advantage of the observed 
strong correlation between the jet transverse momentum and mass 
fluctuations caused by the residual region-to-region background 
fluctuations, which reduces off-diagonal elements in the response 
matrix. The relationship between the transverse momentum and 
mass of the jet at particle level in the response, called the prior, is 
obtained from PYTHIA simulations (tune A for Pb–Pb and Perugia 
2011 for p–Pb). A variation of this assumption was considered in 
the systematic uncertainties (Sec. 6).

The unfolding procedure was validated using a MC closure test 
by applying the correction procedure to PYTHIA embedded jets. 
For the signal and the response matrix, statistically independent 
data sets were used. The background subtracted and unfolded and 
true distributions agree with each other to a precision of 5% for 
pT,ch jet > 40 GeV/c. The refolded distribution, obtained by con-
voluting the unfolded solution with the response matrix, is in 
agreement with the measured distribution within the statistical 
uncertainty.

6. Systematic uncertainties

The systematic uncertainties for the jet mass measurement 
were determined by varying parameters and algorithmic choices 
of the measurement, corrections for detector response and back-
ground fluctuations. The main systematic uncertainties originate 
from the regularization of the unfolding algorithm, the background 
subtraction method and the uncertainty on the detector response. 
For the Pb–Pb analysis, also the choice of the prior, the relation be-
tween mass and pT at the particle level, used in the unfolding has 
an important effect. In this section the method to estimate the sys-
tematic uncertainty for each source and their magnitude in central 
Pb–Pb collisions and p–Pb collisions will be discussed.

The unfolding procedure converges after a certain number of 
iterations. Only relatively small variations in the results are ex-
pected when the convergence is reached. The sensitivity to the 
number of iterations chosen as default was estimated by varying 
their number over a wide range, where the convergence of the 
result is verified. The nominal number of iterations used for the 
Pb–Pb measurement is 6 and the number of iterations was varied 
from 3 to 10. For p–Pb collisions the default is 3 and the number 
was varied between 1 and 5. Changing the number of iterations 

shifts the full jet mass distribution to higher or lower jet mass, 
resulting in an anti-correlated shape uncertainty. The relative un-
certainty is largest in the tails of the jet mass distribution where it 
amounts to 20% in Pb–Pb collisions and 5–20% in p–Pb collisions 
for different pT ranges. In the peak region of the jet mass distri-
butions the uncertainty does not exceed 5% (2%) in Pb–Pb (p–Pb) 
collisions. The size of the uncertainty in the number of iterations is 
correlated with the statistical uncertainty and the uncertainty on 
the data points is correlated point-to-point.

The prior used for the Bayesian unfolding was taken from 
PYTHIA simulations. The mean jet mass as a function of uncor-
rected but background-subtracted jet pT is 1–4% smaller in Pb–Pb
collisions than in PYTHIA simulations as shown in Fig. 5. The sec-
ond central moments of the distributions are statistically compat-
ible indicating that the shape of the distribution is unchanged. 
Therefore it is reasonable to apply a shift of at maximum 4% on 
the jet mass in the prior to estimate a systematic uncertainty to 
the measurement due to the prior choice. This results in a system-
atic uncertainty of 10% around the jet mass peak, which increases 
gradually to 50% in the tails. For the p–Pb analysis, a smearing of 
the mass at particle level in the response matrix was performed. 
The new particle level mass is extracted randomly from a Gaussian 
centered at the original mass with a σ of 2%, roughly correspond-
ing to the maximum spread observed in the ratio of the jet mass 
distribution in the response at detector level and in the data. The 
resulting uncertainty ranges from 4% to 6%, with the largest value 
reached in the first pT range.

For the jet-by-jet background subtraction in Pb–Pb collisions, 
the result from the area-based method was compared to the con-
stituent subtraction. The response matrix for the methods is dif-
ferent since the jet mass scale differs as was shown in Fig. 2. The 
response matrix in both cases was obtained using the embedding 
technique presented in Sec. 4. The systematic uncertainty due to 
the background subtraction method varies between 5% at the cen-
ter of the distribution and 30% in the tails.

As mentioned in Sec. 3.2, in p–Pb events the background sub-
traction introduces additional fluctuations due to the region-to-
region fluctuations of the background, which leads to a broadening 
of the jet mass distribution after subtraction. It was therefore de-
cided not to perform the subtraction event-by-event and jet-by-jet, 
and instead include the background in the response matrix and 
correct for in it the unfolding. As an extreme variation for the 
systematic uncertainty, the background was subtracted event-by-
event in the data with the constituent method, which is less sen-
sitive to fluctuations than the area method, and corrected only for 
detector effects using the PYTHIA response. The jet mass distribu-
tions corrected with the two assumptions differ by 5% in the peak 
region and the difference increases gradually up to 40% in the low-
mass tail. These variations were taken as systematic uncertainties.

The uncertainty in the detector response was dominated by 
the uncertainty in the tracking efficiency, which was estimated by 
varying track quality cuts and found to be 3–4%. The tracking effi-
ciency in the detector simulation was varied accordingly, providing 
an alternative response matrix with which to repeat the unfolding. 
Observed differences with respect to the nominal result vary from 
10% to 40% and 5% to 30% in Pb–Pb and p–Pb, respectively, with 
the largest uncertainty in the tails of the distributions.

All systematic uncertainties were added in quadrature for each 
Mch jet bin. The uncertainties affect the shape of the jet mass dis-
tribution and the normalization applied causes long-range anti-
correlations. The uncertainty on the mean jet mass as a func-
tion of pT,ch jet was evaluated on the unfolded distribution using 
the variations mentioned above and shown in Table 1. The to-
tal systematic uncertainty in the mean jet mass increases from 
6% for jets with 60 < pT,ch jet < 80 GeV/c to 9.0% for jets with 
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Table 1
Systematic uncertainty in mean jet mass from different sources in the 10% most central Pb–Pb collisions (left) and minimum-bias p–Pb collisions (right).
Source pT,ch jet
(GeV/c)

Pb–Pb p–Pb

60–80 80–100 100–120 60–80 80–100 100–120

Prior 1.0% 3.0% 5.0% 0 0 0
Background 3.0% 3.0% 5.0% 1.0% 0.5% 1.0%
Tracking efficiency 5.0% 5.0% 5.0% 3.0% 3.0% 3.0%
Unfolding (iterations, range) 1.0% 3.0% 4.0% 0.5% 1.0% 4.0%

Total 6.0% 8.0% 9.0% 3.5% 3.5% 4.5%

Fig. 6. Fully-corrected jet mass distribution for anti-kT jets with R = 0.4 in p–Pb collisions, compared to PYTHIA and HERWIG simulations for three ranges of pT,ch jet . 
Statistical uncertainties in data are smaller than the markers and in the models are smaller than the line width.

Fig. 7. Fully-corrected jet mass distribution for anti-kT jets with R = 0.4 in minimum bias p–Pb collisions compared to central Pb–Pb collisions for three ranges of pT,ch jet .
100 < pT,ch jet < 120 GeV/c in Pb–Pb central collisions. The system-
atic uncertainty in p–Pb collisions is about two times smaller than 
in central Pb–Pb collisions due to the much smaller underlying 
event contribution.

7. Results and discussion

7.1. Jet mass measurements in Pb–Pb and p–Pb collisions

The fully unfolded jet mass distributions including all system-
atic uncertainties, measured in p–Pb collisions at 

√
sNN = 5.02 TeV

in three ranges of pT,ch jet between 60 and 120 GeV/c are shown 
in Fig. 6 and compared with PYTHIA Perugia 2011 and HER-
WIG EE5C [30,52]. Minimum-bias triggered events were used for 
pT,ch jet < 80 GeV/c, while the online jet triggered event sam-
ple was used for pT,ch jet ≥ 80 GeV/c. The agreement of data and 
PYTHIA is within 10–20% for most of the Mch jet range. The de-
viations increase for the low and high mass tail and can exceed 
30–50% for the intermediate pT,ch jet range. The agreement with 
HERWIG is slightly worse, mostly in the low mass tail of the dis-
tribution and in the highest pT,ch jet interval. Considering the good 
agreement with simulations and that the jet nuclear modification 
factors RpPb and Q pPb measurements show no cold nuclear mat-
ter effects [45,53–55], the p–Pb measurement (and PYTHIA) can be 

used as a reference for the assessment of the hot nuclear matter 
effects in Pb–Pb collisions.

Fig. 7 shows the comparison of the jet mass distribution, nor-
malized per jet, in central Pb–Pb collisions at 

√
sNN = 2.76 TeV and 

the p–Pb collision measurement. It can be observed that the jet 
mass distribution in Pb–Pb collisions is shifted to smaller values 
with respect to the measurement in p–Pb collisions for pT,ch jet <

100 GeV/c.
Fig. 8 shows the ratio between the jet mass distribution in 

the 10% most central Pb–Pb collisions and p–Pb collisions. The 
systematic uncertainties are propagated into the ratio as uncor-
related. The center-of-mass energy at which the Pb–Pb and p–Pb
collisions were taken is different, 

√
sNN = 2.76 TeV for Pb–Pb and √

sNN = 5.02 TeV for p–Pb collisions. This is expected to introduce 
a small difference in the jet mass distributions due to a different 
shape in the underlying jet pT-spectrum and a different quark-to-
gluon ratio. Therefore, the figure shows also the same ratio from 
particle level simulated PYTHIA pp collisions (tune Perugia 2011) 
at the two energies. Considering statistical uncertainties only in 
the ratio, a shift to lower jet masses in Pb–Pb is observed for 
pT,ch jet < 100 GeV/c, consistent with the PYTHIA embedded results 
in Sec. 5.1. Including the systematic uncertainties in our measure-
ments, the decreasing trend of the ratio as a function of Mch jet is 
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Fig. 8. Ratio between fully-corrected jet mass distribution for anti-kT jets with R = 0.4 in central Pb–Pb collisions and minimum bias p–Pb collisions. The ratio is compared 
to the ratio of mass distributions of PYTHIA (tune Perugia 2011) at √s = 2.76 TeV and √s = 5.02 TeV (width of the band represents the statistical uncertainties).
Fig. 9. Fully-corrected mean jet mass as a function of pT,ch jet for anti-kT jets with 
R = 0.4 in minimum bias p–Pb collisions at √sNN = 5.02 TeV compared to central 
Pb–Pb collisions at √sNN = 2.76 TeV.

compatible between data and PYTHIA and no significant reduction 
in jet mass in Pb–Pb collisions is observed.

The comparison of the jet mass in Pb–Pb collisions relative to 
p–Pb collisions is further established by presenting the mean jet 
mass as a function of pT,ch jet in Fig. 9. The difference in the mean 
jet mass for the two collision energies considered is between 0.2
and 0.5 GeV/c2 in the PYTHIA simulation. This difference in the 
mean jet mass is indicated by a filled box attached to the p–Pb
data points in Fig. 9. For the lowest pT,ch jet range in Pb–Pb colli-
sions the mean jet mass exhibits a reduction with respect to p–Pb
measurements, limited to about one standard deviation. For higher 
pT,ch jet the mean jet mass in the two systems is compatible within 
systematic uncertainties.

7.2. Model comparison and discussion

The jet mass measurements for central Pb–Pb collisions for 
three pT,ch jet intervals compared to several event generators are 
shown in Fig. 10. PYTHIA represents the expectation without jet 
quenching while JEWEL [56,57] and Q-PYTHIA [58] (with PQM ge-
ometry [59]) are two models with medium-induced energy loss. 
In JEWEL each scattering of the leading parton with constituents 
from the medium is computed giving a microscopic description 
of the transport coefficient, q̂. By default, JEWEL does not keep 
track of the momenta of the recoiling scattering centers (“recoil 
off”). This leads to a net loss of energy and momentum out of 
the di-jet system, and is expected to mostly affect low-pT-particle 
production. For the jet mass measurement, low-momentum frag-
ments are important, so JEWEL was also run in the mode in which 
it keeps track of the scattering centers (“recoil on”). In that mode, 

more soft particles are generated, some of which have very large 
angles with the jet and will contribute to the background esti-
mate in the event. The JEWEL authors implemented a background 
subtraction in full jets by introducing “fake” neutral constituents 
used for the 4-momentum subtraction. Since the pp charged jet 
mass distribution is reproduced by shifting the full jet mass dis-
tribution towards lower masses, the JEWEL background-subtracted 
charged jet mass is obtained by shifting the background-subtracted 
full jet mass. Q-PYTHIA modifies the splitting functions in the 
PYTHIA event generator, resulting in medium-induced gluon radia-
tion following the multiple soft scattering approximation. Both jet 
quenching models reproduce the suppression observed in inclusive 
high-pT particle and jet production [57,58].

The jet mass is strongly overestimated by Q-PYTHIA due to the 
strong broadening of the jet profile close to the jet axis. Also JEWEL 
with “recoil on” significantly overestimates the jet mass. JEWEL 
“recoil off” underestimates the jet mass due to the large amount 
of out-of-cone radiation, which does not hadronize in this mode 
of the generator. The vacuum expectation from PYTHIA, while 
slightly overestimating the jet mass for lower pT,ch jet when con-
sidering statistical uncertainties only, is compatible with the Pb–Pb
measurement within systematic uncertainties. The Pb–Pb mean jet 
mass as a function of pT,ch jet is compared to the event generators 
in Fig. 11. The linear increase of the mean jet mass with jet pT is 
expected from NLO pQCD calculations [60].

Previous jet shape and jet fragmentation function measure-
ments clearly favor JEWEL with “recoil on” over Q-PYTHIA [20,19,
61–64]. Despite the difference in the fragment distributions be-
tween Q-PYTHIA and JEWEL with “recoil on”, Fig. 10 shows that 
both models predict a similar large increase of the jet mass, which 
is excluded by the measurement. JEWEL “recoil off”, which does 
not describe the previous measurements well because it does not 
include all soft radiation, gives a better description of the jet mass 
than JEWEL “recoil on”. The difference between the jet mass distri-
butions in JEWEL with “recoil on” an “recoil off” indicates that the 
jet mass is sensitive to the soft fragments at large angle which are 
produced by hadronisation of recoil partons in the JEWEL model.

7.3. Summary

The first jet mass measurement in heavy-ion collisions for 
charged jets (60 < pT,ch jet < 120 GeV/c) was reported and com-
pared to p–Pb reference measurements and models with and with-
out quenching. The presented results are the first attempt to access 
the virtuality evolution of the hard partons in heavy-ion collisions. 
By constraining both energy and virtuality experimentally, differ-
ential jet mass measurements could provide further non-trivial 
tests for models of in-medium shower evolution.
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Fig. 10. Fully-corrected jet mass distribution for anti-kT jets with R = 0.4 in the 10% most central Pb–Pb collisions compared to PYTHIA with tune Perugia 2011 and 
predictions from the jet quenching event generators (JEWEL and Q-PYTHIA). Statistical uncertainties are not shown for the model calculations.
Fig. 11. Fully-corrected mean jet mass compared to PYTHIA Perugia2011 and the jet 
quenching event generators (JEWEL and Q-PYTHIA) for anti-kT jets with R = 0.4 in 
the 10% most central Pb–Pb collisions.

The ratio of the jet mass distribution in central Pb–Pb collisions 
and minimum-bias p–Pb collisions is compared to that in PYTHIA 
Perugia 2011 simulations at the two center-of-mass energies. The 
data ratio is compatible with the PYTHIA expectation at the two 
center-of-mass energies within systematic uncertainties. A hint of 
a difference within statistical uncertainties only in the ratio and 
in the mean jet mass in the lowest pT,ch jet range is of interest to 
motivate further work on reducing the systematic uncertainties in 
order to increase the precision in jet mass measurements as well 
as pursuing more differential studies, for example with respect 
to hard fragmenting jets. The fully-corrected results are consis-
tent with the observation based on detector level comparison with 
PYTHIA embedded jets. The measured jet mass in Pb–Pb collisions 
is not reproduced by the quenching models considered in this let-
ter and is found to be consistent with PYTHIA vacuum expectations 
within systematic uncertainties. These results are qualitatively con-
sistent with previous measurements of jet shapes at the LHC [20,
62], which show only relatively small changes of the particle dis-
tributions in jets in Pb–Pb collisions compared to pp collisions. The 
JEWEL model with “recoil on”, which describes the existing mea-
surements of fragment distributions in jets [19,20] reasonably well 
[61,63], predicts a significant increase of the jet mass, contrary to 
what is observed in the measurement.

The observed suppression of jet yields in the presence of a 
dense medium, RAA < 1 [65], is interpreted as due to radiated 
partons lost or scattered out of the jet cone. Therefore, one re-
constructs a subset of the entire parton shower within a jet with 
resolution parameter 0.4. In the extreme case that only the leading 
parton were to escape the medium, and then shower in vacuum, 
one would reconstruct the mass of the leading parton at the point 

of exit. Since also the virtuality evolution of the parton shower is 
modified in the presence of jet quenching, one would expect in 
such a scenario that the escaping (reconstructed) jets exhibit a re-
duced jet mass with respect to the pp and p–Pb references [21]. 
The data show that the jet mass is consistent within uncertain-
ties in Pb–Pb and p–Pb collisions within a fixed pT,ch jet-interval, 
implying that the soft radiation outside the jet cone does not sig-
nificantly alter the relation between pT and the mass of the parton.
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P. Palni 7, J. Pan 141, A.K. Pandey 47, S. Panebianco 65, V. Papikyan 1, G.S. Pappalardo 109, P. Pareek 48, 
J. Park 50, W.J. Park 100, S. Parmar 91, A. Passfeld 61, S.P. Pathak 126, V. Paticchio 106, R.N. Patra 139, 
B. Paul 113, H. Pei 7, T. Peitzmann 53, X. Peng 7, L.G. Pereira 63, H. Pereira Da Costa 65, D. Peresunko 83,76, 
E. Perez Lezama 60, V. Peskov 60, Y. Pestov 5, V. Petráček 38, V. Petrov 114, M. Petrovici 80, C. Petta 27, 
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