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In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects 
fluctuations in the shape of the initial state of the system. This allows to select events with the same 
centrality but different initial geometry. This selection technique, Event Shape Engineering, has been 
used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at √
sNN = 2.76 TeV. The two-particle correlator 〈cos(ϕα − ϕβ)〉, calculated for different combinations of 

charges α and β , is almost independent of v2 (for a given centrality), while the three-particle correlator 
〈cos(ϕα + ϕβ − 2�2)〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity 
density. The charge dependence of the three-particle correlator is often interpreted as evidence for the 
Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured 
dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with 
Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME 
signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% 
at 95% confidence level.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Parity symmetry is conserved in electromagnetism and is max-
imally violated in weak interactions. In strong interactions, global 
parity violation is not observed even though it is allowed by 
quantum chromodynamics. Local parity violation in strong inter-
actions might occur in microscopic domains under conditions of 
finite temperature [1–4] due to the existence of the topologi-
cally non-trivial configurations of the gluonic field, instantons and 
sphalerons. The interactions between quarks and gluonic fields 
with non-zero topological charge [5] change the quark chirality. 
A local imbalance of chirality, coupled with the strong magnetic 
field produced in heavy-ion collisions (B ∼ 1015 T) [6–8], would 
lead to charge separation along the direction of the magnetic 
field, which is on average perpendicular to the reaction plane (the 
plane of symmetry defined by the impact parameter vector and 
the beam direction), a phenomenon called Chiral Magnetic Effect 
(CME) [9–12]. Since the sign of the topological charge is equally 
probable to be positive or negative, the charge separation aver-
aged over many events is zero. This makes the observation of the 
CME experimentally difficult and possible only via correlation tech-
niques.
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Azimuthal anisotropies in particle production relative to the re-
action plane, often referred to as anisotropic flow, are an important 
observable to study the system created in heavy-ion collisions [13,
14]. Anisotropic flow arises from the asymmetry in the initial ge-
ometry of the collision. Its magnitude is quantified via the co-
efficients vn in a Fourier decomposition of the charged particle 
azimuthal distribution [15,16]. Local parity violation would result 
in an additional sine term [17]

dN

d�ϕα
∼ 1+ 2v1,α cos(�ϕα) + 2a1,α sin(�ϕα)

+ 2v2,α cos(2�ϕα) + ..., (1)

where �ϕα = ϕα − �RP, ϕα is the azimuthal angle of the particle 
of charge α (+, −) and �RP is the reaction-plane angle. The first 
(v1,α) and the second (v2,α ) coefficients are called directed and 
elliptic flow, respectively. The a1,α coefficient quantifies the effects 
from local parity violation. Since the average 〈a1,α〉 = 0 over many 
events, one can only measure 〈a21,α〉 or 〈a1,+ a1,−〉. The charge-
dependent two-particle correlator

δαβ ≡ 〈cos(ϕα − ϕβ)〉
= 〈cos(�ϕα) cos(�ϕβ)〉 + 〈sin(�ϕα) sin(�ϕβ)〉 (2)
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is not convenient for such a study, because along with the signal 
〈a1,α a1,β〉 (β denotes the charge) there is a much stronger contri-
bution from correlations unrelated to the azimuthal asymmetry in 
the initial geometry (“non-flow”). These correlations largely come 
from the inter-jet correlations and resonance decays. To increase 
the CME contribution it was proposed to use the following corre-
lator [17]

γαβ ≡ 〈cos(ϕα + ϕβ − 2�RP)〉
= 〈cos(�ϕα) cos(�ϕβ)〉 − 〈sin(�ϕα) sin(�ϕβ)〉 (3)

that measures the difference between the correlation projected 
onto the reaction plane and perpendicular to it. In practice, the 
reaction-plane angle is estimated by constructing the event plane 
angle �2 using azimuthal particle distributions, which is why this 
correlator is often described as a three-particle correlator. This cor-
relator suppresses background contributions at the level of v2, the 
difference between the particle production in-plane and out-of-
plane. Examples of such background sources are the local charge 
conservation (LCC) coupled with elliptic flow [18,19], momen-
tum conservation [19–21], and directed-flow fluctuations [22]. The 
most significant background source for CME measurements is the 
LCC.

The measurements of charge-dependent azimuthal correlations 
performed at the Relativistic Heavy Ion Collider (RHIC) [23–26] and 
the Large Hadron Collider (LHC) [27,28] are in qualitative agree-
ment with the expectations for the CME. However, the interpre-
tation of these experimental results is complicated due to possible 
background contributions. The Event Shape Engineering (ESE) tech-
nique was proposed to disentangle background contributions from 
the potential CME signal [29]. This method makes it possible to se-
lect events with eccentricity values significantly larger or smaller 
than the average in a given centrality class [30,31] since v2 scales 
approximately linearly with eccentricity [32]. Centrality estimates 
the degree of overlap between the two colliding nuclei, with low 
percentage values corresponding to head-on collisions. The CME 
contribution is expected to mainly scale with the magnetic field 
strength and to not have a strong dependence on the eccentric-
ity [33], while the background varies significantly. Therefore ESE 
provides a unique tool to separate the CME signal from the back-
ground for the three-particle correlator.

The CMS Collaboration has recently reported the measurement 
of the three-particle correlator γαβ in p–Pb collisions at 

√
sNN =

5.02 TeV [34], where the direction of the magnetic field is expected 
to be uncorrelated to the reaction plane [35]. The magnitude of the 
correlator in p–Pb and Pb–Pb collisions is comparable for similar 
final-state charged-particle multiplicities. This measurement indi-
cates that the contribution of the CME to this observable in this 
multiplicity range is small.

In this paper we report the measurements of the two-particle 
correlator δαβ , the three-particle correlator γαβ , and the elliptic 
flow v2 of unidentified charged particles. These measurements are 
performed for shape selected and unbiased events in Pb–Pb colli-
sions at 

√
sNN = 2.76 TeV. An upper limit on the CME contribution 

is deduced from comparisons of the observed dependence of the 
correlations on the event v2 to that estimated using Monte Carlo 
(MC) simulations of the magnetic field of spectators with differ-
ent initial conditions. While this paper was in preparation, a paper 
employing a similar approach to estimate the fraction of the CME 
signal in the three-particle correlator was submitted by the CMS 
Collaboration [36].

The data sample recorded by ALICE during the 2010 LHC 
Pb–Pb run at 

√
sNN = 2.76 TeV is used for this analysis. Gen-

eral information on the ALICE detector and its performance can 
be found in [37,38]. The Time Projection Chamber (TPC) [37,39]

and Inner Tracking System (ITS) [37,40] are used to reconstruct 
charged-particle tracks and measure their momenta with a track-
momentum resolution better than 2% for the transverse momen-
tum interval 0.2 < pT < 5.0 GeV/c [38]. The two innermost layers 
of the ITS, the Silicon Pixel Detector (SPD), are employed for trig-
gering and event selection. Two scintillator arrays (V0) [37,41], 
which cover the pseudorapidity ranges −3.7 < η < −1.7 (V0C) 
and 2.8 < η < 5.1 (V0A), are used for triggering, event selection, 
and the determination of centrality [42] and �2. The trigger con-
ditions and the event selection criteria are described in [38]. An 
offline event selection is applied to remove beam induced back-
ground and pileup events. Approximately 9.8 · 106 minimum-bias 
Pb–Pb events with a reconstructed primary vertex within ±10 cm 
from the nominal interaction point in the beam direction belong-
ing to the 0–60% centrality interval are used for this analysis.

Charged particles reconstructed using the combined informa-
tion from the ITS and TPC in |η| < 0.8 and 0.2 < pT < 5.0 GeV/c
are selected with full azimuthal coverage. Additional quality cuts 
are applied to reduce the contamination from secondary charged 
particles (i.e. particles originating from weak decays, conversions 
and secondary hadronic interactions in the detector material) and 
fake tracks (with random associations of space points). Only tracks 
with at least 70 space points in the TPC (out of a maximum of 159) 
with an average χ2 per degree-of-freedom for the track fit lower 
than 2, a distance of closest approach (DCA) to the reconstructed 
event vertex smaller than 2.4 cm in the transverse plane (xy) and 
3.2 cm in the longitudinal direction (z) are accepted. The charged 
particle track reconstruction efficiency was estimated from HIJING 
simulations [43,44] combined with a GEANT3 [45] detector model, 
and found to be independent of the collision centrality. The re-
construction efficiency of primary particles defined in [46], which 
may bias the determination of the pT averaged charge-dependent 
correlations and flow, increases from 70% at pT = 0.2 GeV/c to 
85% at pT ∼ 1.5 GeV/c where it has a maximum. It then gradu-
ally decreases and is flat at 80% for pT > 3.0 GeV/c. The systematic 
uncertainty of the efficiency is about 5%.

The event shape selection is performed as in [30] based on the 
magnitude of the second-order reduced flow vector, q2 [47], de-
fined as

q2 = |Q2|√
M

, (4)

where |Q2| =
√

Q 2
2,x + Q 2

2,y is the magnitude of the second order 
harmonic flow vector and M is the multiplicity. The vector Q2 is 
calculated from the azimuthal distribution of the energy deposition 
measured in the V0C. Its x and y components and the multiplicity 
are given by

Q 2,x =
∑
i

wi cos(2ϕi), Q 2,y =
∑
i

wi sin(2ϕi), M =
∑
i

wi,

(5)

where the sum runs over all channels i of the V0C detector 
(i = 1 − 32), ϕi is the azimuthal angle of channel i and wi is the 
amplitude measured in channel i. The large gap in pseudorapidity 
(|�η| > 0.9) between the charged particles in the TPC used to de-
termine v2, δαβ and γαβ and those in the V0C suppresses non-flow 
effects. Ten event-shape classes with the lowest (highest) q2 value 
corresponding to the 0–10% (90–100%) range are investigated for 
each centrality interval.

The flow coefficient v2 is measured using the event plane 
method [16]. The orientation of the event plane �2 is estimated 
from the azimuthal distribution of the energy deposition measured 
by the V0A detector. The event plane resolution is calculated from 
correlations between the event planes determined in the TPC and 
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Table 1
Summary of absolute systematic uncertainties. The uncertainties depend on central-
ity and shape selection, whose minimum and maximum values are listed here.

Opposite charge Same charge

δαβ (3.4− 25) × 10−5 (3.1− 10) × 10−5

γαβ (2.6− 34) × 10−6 (4.1− 74) × 10−6

v2 (1.2− 4.7) × 10−3

Fig. 1. (Colour online.) Unidentified charged particle v2 for shape selected and un-
biased events as a function of collision centrality. The event selection is based on 
q2 determined in the V0C with the lowest (highest) value corresponding to 0–10% 
(90–100%) q2. Points are slightly shifted along the horizontal axis for better visibil-
ity. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.

the two V0 detectors separately [16]. The non-flow contributions 
to the v2 coefficient and charge-dependent azimuthal correlations 
are greatly suppressed by the large rapidity separation between 
the TPC and the V0A (|�η| > 2.0).

The absolute systematic uncertainties are evaluated from the 
variation of the results with different selection criteria on the re-
constructed collision vertex, different magnetic field polarities, as 
well as by estimating the centrality from multiplicities measured 
by the TPC or the SPD rather than the V0 detector. Changes of the 
results due to variations of the track-selection criteria (e.g. chang-
ing the DCA xy and z ranges, number of the TPC space points, 
using tracks reconstructed by the TPC only) are considered as part 
of the systematic uncertainties. The effect of reconstruction ef-
ficiency on the measurements is checked by randomly rejecting 
tracks to ensure a flat acceptance in pT. The detector response is 
studied using HIJING and AMPT [48] simulations, where the v2
coefficients and the charge-dependent azimuthal correlations ob-
tained directly from the models are compared with those from 
reconstructed tracks. The largest contribution to the systematic un-
certainties is given by the detector response. The checks related 
to the reconstruction efficiency, magnetic field polarity and track-
selection criteria also yield significant deviations from the nominal 
values for v2, γαβ and δαβ , respectively. The contributions from 
all sources are added in quadrature as an estimate of the total 
systematic uncertainty. The resulting systematic uncertainties are 
summarized in Table 1.

Fig. 1 presents the unidentified charged particle v2 averaged 
over 0.2 < pT < 5.0 GeV/c for shape selected and unbiased sam-
ples as a function of collision centrality. The measured v2 for the 
shape selected events differs from the average by up to 25%, which 
demonstrates that events with the desired initial spatial anisotropy 
can be experimentally selected. Sensitivity of the event shape se-
lection deteriorates for peripheral collisions (already visible for the 

Fig. 2. (Colour online.) Top: Centrality dependence of γαβ for pairs of particles with 
same and opposite charge for shape selected and unbiased events. Bottom: Cen-
trality dependence of δαβ for pairs of particles with same and opposite charge for 
shape selected and unbiased events. The event selection is based on q2 determined 
in the V0C with the lowest (highest) value corresponding to 0–10% (90–100%) q2. 
Points are slightly shifted along the horizontal axis for better visibility in both pan-
els. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.

50–60% centrality class) due to the low multiplicity and for central 
collisions due to the reduced magnitude of flow [30].

The centrality dependence of γαβ for pairs of particles with 
same and opposite charge for shape selected and unbiased events 
is shown in the top panel of Fig. 2. The same charge results de-
note the average between pairs of particles with only positive and 
only negative charges since the two combinations are found to be 
consistent within statistical uncertainties. The correlation of pairs 
with the same charge is stronger than the correlation for pairs 
of opposite charge for both shape selected and unbiased events. 
The ordering of the correlations of pairs with same and opposite 
charge indicates a charge separation with respect to the reaction 
plane. The magnitude of the same and opposite charge pair corre-
lations depends weakly on the event-shape selection (q2, i.e. v2) 
in a given centrality bin.

The bottom panel of Fig. 2 shows the centrality dependence of 
δαβ for pairs of particles with same and opposite charge for shape 
selected and unbiased samples. As reported in [27], the magnitude 
of the correlation for the same charge pairs is smaller than for the 
opposite charge combinations. This is in contrast to the CME ex-
pectation, indicating that background dominates the correlations. 
The same and opposite charge pair correlations are insensitive to 
the event-shape selection in a given centrality bin.

The difference between opposite and same charge pair corre-
lations for γαβ can be used to study the charge separation effect. 
This difference is presented as a function of v2 for various cen-
trality classes in the top panel of Fig. 3. The difference is positive 
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Fig. 3. (Colour online.) Top: Difference between opposite and same charge pair cor-
relations for γαβ as a function of v2 for shape selected events together with a linear 
fit (dashed lines) for various centrality classes. Bottom: Difference between opposite 
and same charge pair correlations for γαβ multiplied by the charged-particle den-
sity [49] as a function of v2 for shape selected events for various centrality classes. 
The event selection is based on q2 determined in the V0C with the lowest (highest) 
value corresponding to 0–10% (90–100%) q2. Error bars (shaded boxes) represent 
the statistical (systematic) uncertainties.

for all centralities and its magnitude decreases for more central 
collisions and with decreasing v2 (in a given centrality bin). At 
least two effects could be responsible for the centrality depen-
dence: the reduction of the magnetic field with decreasing cen-
trality and the dilution of the correlation due to the increase in 
the number of particles [24] in more central collisions. The dif-
ference between opposite and same charge pair correlations mul-
tiplied by the charged-particle density in a given centrality bin, 
dNch/dη (taken from [49]), to compensate for the dilution effect, 
is presented as a function of v2 in the bottom panel of Fig. 3. All 
the data points fall approximately onto the same line. This is qual-
itatively consistent with expectations from LCC where an increase 
in v2, which modulates the correlation between balancing charges 
with respect to the reaction plane [50], results in a strong effect. 
Therefore, the observed dependence on v2 points to a large back-
ground contribution to γαβ .

The expected dependence of the CME signal on v2 was eval-
uated with the help of a Monte Carlo Glauber [51] calculation 
including a magnetic field. In this simulation, the centrality classes 
are determined from the multiplicity of charged particles in the 
acceptance of the V0 detector following the method presented 
in [42]. The multiplicity is generated according to a negative bi-
nomial distribution with parameters taken from [42] based on the 
number of participant nucleons and binary collisions. The ellip-
tic flow is assumed to be proportional to the eccentricity of the 
participant nucleons and approximately reproduces the measured 

Fig. 4. (Colour online.) The expected dependence of the CME signal on v2 for various 
centrality classes from a MC-Glauber simulation [51] (see text for details). No event 
shape selection is performed in the model, and therefore a large range in v2 is 
covered. The solid lines depict linear fits based on the v2 variation observed within 
each centrality interval.

pT-integrated v2 values [52]. The magnetic field is evaluated at 
the geometrical centre of the overlap region from the number of 
spectator nucleons following Eq. (A.6) from [11] with the proper 
time τ = 0.1 fm/c. The magnetic field is calculated in 1% cen-
trality classes and averaged into the centrality intervals used for 
data analysis. It is assumed that the CME signal is proportional to 
〈|B|2 cos(2(�B − �2))〉, where |B| and �B are the magnitude and 
direction of the magnetic field, respectively. Fig. 4 presents the ex-
pected dependence of the CME signal on v2 for various centrality 
classes. Similar results are found using MC-KLN CGC [53,54] and 
EKRT [55] initial conditions. The MC-KLN CGC simulation was per-
formed using version 32 of the Monte Carlo kT-factorization code 
(mckt) available at [56], while the TRENTO model [57] was em-
ployed for EKRT initial conditions.

To disentangle the potential CME signal from background, the 
dependence on v2 of the difference between opposite and same 
charge pair correlations for γαβ and the CME signal expectations 
are fitted with a linear function (see lines in Figs. 3 (top panel) 
and 4, respectively):

F1(v2) = p0(1+ p1(v2 − 〈v2〉)/〈v2〉), (6)

where p0 accounts for the overall scale, which cannot be fixed in 
the MC calculations, and p1 reflects the slope normalised such that 
in a pure background scenario, where the correlator is directly pro-
portional to v2, it is equal to unity. The presence of a significant 
CME contribution, on the other hand, would result in non-zero in-
tercepts at v2 = 0 of the linear functions shown in Fig. 3. The 
ranges used in these fits are based on the v2 variation observed 
in data and the corresponding MC interval within each centrality 
range. The centrality dependence of p1 from fits to data and to the 
signal expectations based on MC-Glauber, MC-KLN CGC and EKRT 
models is reported in Fig. 5. The observed p1 from data is a su-
perposition of a possible CME signal and background. Assuming a 
pure background case, p1 from data and MC models can be related 
according to

fCME × p1,MC + (1 − fCME) × 1 = p1,data, (7)

where fCME denotes the CME fraction to the charge dependence of 
γαβ and is given by

fCME = (γopp − γsame)
CME

(γopp − γsame)CME + (γopp − γsame)Bkg
. (8)
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Fig. 5. (Colour online.) Centrality dependence of the p1 parameter from a linear 
fit to the difference between opposite and same charge pair correlations for γαβ

and from linear fits to the CME signal expectations from MC-Glauber [51], MC-KLN 
CGC [53,54] and EKRT [55] models (see text for details). Points from MC simulations 
are slightly shifted along the horizontal axis for better visibility. Only statistical un-
certainties are shown.

Fig. 6. (Colour online.) Centrality dependence of the CME fraction extracted from 
the slope parameter of fits to data and MC-Glauber [51], MC-KLN CGC [53,54] and 
EKRT [55] models, respectively (see text for details). The dashed lines indicate the 
physical parameter space of the CME fraction. Points are slightly shifted along the 
horizontal axis for better visibility. Only statistical uncertainties are shown.

Fig. 6 presents fCME for the three models used in this study. 
The CME fraction cannot be precisely extracted for central (0–10%) 
and peripheral (50–60%) collisions due to the large statistical un-
certainties on p1 extracted from data. The negative values for the 
CME fraction obtained for the 40–50% centrality range (deviating 
from zero by one σ ), if confirmed, would indicate that our expec-
tations for the background contribution to be linearly proportional 
to v2 are not accurate. Combining the points from 10–50% ne-
glecting a possible centrality dependence gives fCME = 0.10 ±0.13, 
fCME = 0.08 ± 0.10 and fCME = 0.08 ± 0.11 for the MC-Glauber, 
MC-KLN CGC and EKRT models, respectively. These results are con-
sistent with zero CME fraction and correspond to upper limits on 
fCME of 33%, 26% and 29%, respectively, at 95% confidence level for 
the 10–50% centrality interval. The CME fraction agrees with the 
observations in [36] where the centrality intervals overlap.

In summary, the Event Shape Engineering technique has been 
applied to measure the dependence on v2 of the charge-dependent 
two- and three-particle correlators δαβ and γαβ in Pb–Pb colli-
sions at 

√
sNN = 2.76 TeV. While for δαβ we observe no significant 

v2 dependence in a given centrality bin, γαβ is found to be al-
most linearly dependent on v2. When the charge dependence of 
γαβ is multiplied by the corresponding charged-particle density, to 
compensate for the dilution effect, a linear dependence on v2 is 
observed consistently across all centrality classes. Using a Monte 
Carlo simulation with different initial-state models, we have found 
that the CME signal is expected to exhibit a weak dependence on 
v2 in the measured range. The observations imply that the dom-
inant contribution to γαβ is due to non-CME effects. In order to 
get a quantitative estimate of the signal and background contri-
butions to the measurements, we fit both γαβ and the expected 
signal dependence on v2 with a first order polynomial. This pro-
cedure allows to estimate the fraction of the CME signal in the 
centrality range 10–50%, but not for the most central (0–10%) and 
peripheral (50–60%) collisions due to large statistical uncertainties. 
Averaging over the centrality range 10–50% gives an upper limit 
of 26% to 33% (depending on the initial-state model) at 95% con-
fidence level for the CME contribution to the difference between 
opposite and same charge pair correlations for γαβ .
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