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Abstract—This paper reviews some recent progress in the field
of neuromorphic photonics, with a particular focus on scalabil-
ity. We provide a framework for understanding the underlying
models, and demonstrate a neuron-like processing device—an ex-
citable laser—that has many favorable properties for integration
with emerging photonic integrated circuit platforms. On a systems
level, we compare several proposed interconnection frameworks
that allow for fully tunable networks of photonic neurons.

Index Terms—Bifurcation, excitability, multiple-accumulate
(MAC), neural networks, neuromorphic computing, neuromorphic
photonics, optoelectronics, photonic integrated circuits (PICs), re-
current network, semiconductor lasers, spiking neural networks
(SNNs), wavelength-divison multiplexing (WDM).

1. INTRODUCTION

EUROMORPHIC photonics is an emerging field at the
N intersection of photonics and neuromorphic engineering,
with the goal of producing accelerated processors that combines
the information processing capacity of neuromorphic processing
architectures and the speed and bandwidth of photonics.

It is motivated by the widening gap between current com-
puting capabilities and computing requirements that result from
the limitations of conventional, microelectronic processors in
the high performance computing (HPC) space. This problem is
increasingly apparent in applications involving complex sys-
tems [1], [2], big data [3], [4], or real-time processing [5],
which are all heavily bottlenecked by multiply-accumulate
(MAC) operations. These operations—which take the form
a = a+ w x z for accumulator a, multiplier w and input z—
are the constituent elements of matrix computations. It is no
longer possible for microelectronics to maintain previous rates
of processor evolution in speed, efficiency, and performance
generality [6]-[8]. There is also a consensus that centralized,
universal von-Neumann architectures employed by conven-
tional computers are no longer capable of being the one-size-
fits-all approach to computing problems.
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Fig. 1. Comparison of specialized, deep learning digital electronic architec-
tures with silicon photonic and nanophotonic platforms. Photonic systems can
support high bandwidth densities on-chip while consuming minimal energy both
transporting data and performing computations. Metrics for electronic architec-
tures taken from various sources [9]-{13]. Silicon photonic metrics calculated
assuming a modern silicon photonic platform running at 20 GHz, N = 100
channels with densely packed microrings. Nanophotonic mefrics calculated as-
suming closely packed athermal microdisks [14] (~20 pm area) at 100 GHz
running close to the shot noise limit.

Breaking the limitations of conventional microelectronic
computing will require integrating unconventional techniques
that utilize new processing methods. There are a few reasons
why systems based on photonic integrated circuits (PICs) may
be particular well suited to address such limitations. For one,
photonic interconnects can directly address the data transport
problem: most of the energy on a modern microelectronic chip
is consumed charging and discharging metal wires, which can
be superseded by on-chip photonic links as optical devices be-
come more efficient [15]. Secondly, photonic systems can utilize
optical multiplexing and high speed signals to achieve a large
bandwidth density. This can translate to a very high computa-
tional density (ops/sfmm?) for closely spaced waveguides or
filters that perform dense operations [16]. Third, implementing
linear operations such as MACs in the photonic domain does
not intrinsically consume energy [17]. This can result in very
favorable, sublinear scaling of energy consumption with respect
to the number of operations. All three of these properties to-
gether can lead to significant increases in performance for both
energy efficiency and compute density, as shown in Fig. 1.

The ability to realize these advantages, however, relies on
the creation of systems that can consistently scale up to large
numbers of devices. Although the discovery of an analogy
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Fig.2. Neuromorphic photonics utilizes the convergence of recent advances in
photonic integration technology, resurgence of scalable computing models (e.g.,
spiking, deep neural networks), and a large scale integrated photonic ecosystem
in both III-V materials and silicon. -

between lasers and biological neurons by Nahmias ef al. [18]
lead to an explosion of many different laser prototypes with a
variety of different structures [19], the interconnection capabili-
ties of these devices have remained largely opaque. For example,
many of these models require free-space coupling into a fiber or
holographic array. Although free-space systems have emulated
neural network models in the past [20], they exhibit practical
scaling difficulties as result of their size, weight, power, and
cost, or SWAP-C (Fig. 2).

Scaling can be particularly challenging in light of the analog
nature and size limitations of photonic devices. Nonetheless,
the rapid development of photonic integrated circuit (PICs) pro-
vides one avenue for scalability. The density of on-chip photonic
devices is increasing exponentially [21], driven by significant
interest in the industrial sector (Fig. 2). Although scalable ana-
log computing systems present many challenges, CMOS co-
integration will allow digital logic to provide precision control
of reconfigurable on-chip photonics. Heterointegration between
the optical and electrical devices hold great promise for the
scalability of analog photonic processors, particularly in appli-
cations in which the speed and efficiency of photonic operations
more than make up for the conversion cost of using photonic
signals. Some potential impacts of such capabilities in deep
learning and nonlinear optimization problems are discussed in
Ref. [16], [22].

This paper discusses a framework for understanding neuro-
morphic photonics, both on a individual device and systems level
with a particular focus on integrated circuits and scalability. In
addition to pointing out some limitations with past approaches,
we present the first results of a novel device, an excitable laser
on a PIC platform. It is able to emulate the key properties of the
leaky integrate-and-fire (LIF) neuron model and exhibits many
favorable features for scalability, including compatibility with
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Fig. 3. Top: Nonlinear model of a neuron. Note the three parts: (i) a set of
synapses, or connecting links; (ii) an adder, or linear combiner, performing a
weighted sum of signals; and (iii) a non-linear activation function. Bottom:
An illustration of spiking dynamics in an LIF neuron, which represents one
possible nonlinear activation function. Spikes arriving from inputs ; (¢) that
are inhibitory (red arrows) reduce the membrane voltage V (t), while those
that are excitatory (green arrows) increase V' (t). Enough excitatory activity
pushes V' (t) above Vipyeqy , releasing a delta function spike in yy. (£), followed
by a refractory period during which V' (t) recovers to its resting potential V.
Copyright 2013 1EEE. Reprinted, with permission, from Nahmias ef al. JEEE
J. Sel. Top. Quantum Electron. 19, 5 (2013) Ref. [18].

interconnection protocols such as broadcast-and-weight [23].
By offering programmable neuromorphic models at a high speed
and efficiency, neuromorphic photonic processors—and even-
tually nanophotonic processors—could enable computational
domains that are well beyond those accessible by contemporary
technologies.

II. NEUROMORPHIC PHOTONIC PROCESSORS

The past decade has seen much progress in the theoreti-
cal and experimental demonstration of optoelectronic devices
whose dynamical properties (photons—carriers interactions) are
analogous to the those of spiking biological neurons (electro—
chemical interactions) but on a faster time scale (picosecond
versus millisecond). This section focuses on the many photonic
laser neurons that have been proposed and investigated over the
last fifteen years, and discusses their many capabilities, as well
as their limitations in scaling to larger on-chip systems.

A. Spiking and Excitability

Unlike traditional analog and digital processing schemes,
neurons process and transmit information via spikes, in which
the information is encoded between the timing of asynchronous
short pulses. Ideal signals can be represented mathematically
via a series of delta functions of the form o(t) = 3, 6(t — 7).
This technique of carrying information via pulse timing, which
is also known as pulse position modulation (PPM), has many
signal processing advantages, including robustness against ana-
log noise and a high bit/J communication efficiency [24].
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TABLEI
CHARACTERISTICS OF RECENT OPTOELECTRONIC EXCITABLE DEVICES

Device Injection Scheme Pump Excitable Dynamics  Refs,

A. Two-section gain and SA electrical clectrical  stimulated emission (28], [31]-[34], [42]-[49]
B. Semiconductor ring laser coherent optical electrical  optical interference 1371, [50}-[53]

C. Microdisk laser coherent optical electrical  optical interference {541, [55]

D. 2D Photenic crystal nanocavity electrical electrical  thermal [35], [56], [57]

E. Resonant tunneling diode photodetector and laser diode electrical or incoherent optical  electrical  electrical tunneling 581, [591

F. Injection-locked semiconductor laser with delayed feedback  electrical electrical  optical interference [6071-[70]

(3. Semiconductor lasers with optical feedback incoherent optical electrical  stimulated emission [29], {71}-[76]

H. Polarization switching VCSELs coherent optical optical optical interference 138], [77)-(79]

Performing nonlinear computations on PPM signals requires
a nonlinear processor such as a leaky integrate-and-fire (LIF)
neuron [25]. LIF neurons are the most widely used spiking
models in computational neuroscience. The LIF model is based
on properties derived from biological neurons, which include a
dendritic tree that collects, weights, and delays spiking signals
from other neurons, a soma that temporally integrates the sig-
nals, and an axon that produces spikes when the integrated signal
exceeds a threshold (Fig. 3). The connections between neurons
are known as synapses, and the strength of those connections
are called weights. Networks of LIF neurons are Turing com-
plete and can in principle perform any algorithm [25]. For state
variable V'(#), time constant 7, pump variable P and an input
variable #(t) consisting of weighted signals 8(¢) = >, w;zi(t),
the LIF model is defined as follows:

avi) , V(@) y
& P = + 6(t); (1a)
if V(tf) > Vinresn then (1b)

release a pulse 4(¢ — ¢¢) and set V (£) — Vieset-

Only when there is enough stimulation—i.e., #(¢) includes
enough high energy pulses closely spaced together in time—
will the system generate a pulse. In biological neurons, the state
variable V() represents the voltage difference across the cell
membrane, but neuromorphic systems often use other hysteretic
state variables such as the number of carriers inside a laser
cavity. A prerequisite for emulating the LIF model is the abil-
ity to generate a self-consistent pulse from small perturbations
exceeding a threshold, which is encapsulated in a dynamical
system property known as excifability. Excitability is defined
by three main criteria: (i) an unperturbed system rests at a sin-
gle stable equilibrium; (ii) an external perturbation above the
excitability threshold triggers a large excursion from this equi-
librium; (iii) the system then settles back to the attractor in what
is called the refractory period, after which the system can be
excited again [26]. As detailed in Ref. [16], [19], these dynami-
cal regimes involve variables with different time scales resulting
into important attributes of spike processing. The fast dynamics
govern the width of the output pulse (spike); i.e. the fast vari-
able is responsible for the firing of a pulse. This places a lower
bound on the temporal resolution of information coding, which
in the case of excitable lasers, can be up to one hundred million
times faster than their biological counterparts [18]. The slow
dynamics govern the output pulse firing rate. In this regime, the
dynamical system operates within a stable limit cycle, which in

the case of lasers, can easily reach gigahertz frequencies [26],
[27]. Both regimes rely on asynchronous information transfer
and retrieval, avoiding the often costly addition of a clock and
its subsequent distribution to processors on-chip.

B. Excitable Optoelectronic Devices

1) History: There has been many early investigations into
the excitability and pulsation properties of optical cavities [26]-
[30]. The discovery of a theoretical link between the dynam-
ics of semiconductor lasers and an LIF neuron model [18]
(later demonstrated in a fiber-based benchtop system with an
embedded graphene absorber [31]) lead to a renewed interest
in excitable laser models for signal processing. A number of
researchers have fabricated, tested, and proposed a variety of
laser neurons with various feedback conditions. These include
two-section models in semiconductor lasers [32]-[34], photonic
crystal nanocavities [35], polarization sensitive vertical cavity
lasers [36], lasers with optical feedback or optical injection [37],
[38], and linked photodetector-laser systems with receiverless
connections [39], [40] or resonant tunneling [41]. A survey of
recent results is shown in Table I and is discussed at length in
Ref. [19].

As shown in Fig. 4, their injection schemes can be classified
in three categories: coherent optical injection, non-coherent op-
tical injection, and full electrical injection. The injection scheme
of the laser will determine whether it is compatible to all-
optical photonic neurons (pumped optically) or O/E/O neurons
(pumped electrically). The rich body of work in this field has
demonstrated the diversity of potential approaches for imple-
menting photonic spike processing.

2) Processing Functionality: The optical feedback that oc-
curs inside laser cavities allows these system to exhibit strong
dynamical nonlinearities. As a result, excitable lasers have also
been shown to exhibit a number of important signal process-
ing functions. Excitable lasers have been shown to implement
thresholding to reduce noise, accept many inputs, and can cas-
cade over multiple processing iterations [31], key impediments
to optical computing [80]-[82]. There have a been demonstra-
tions of spike processing circuits that can perform temporal pat-
tern recognition and stable recurrent memory [31], [59], [69],
[83]. The use of spike encoding, relative to continuous analog
signals, could lead to more efficient information representations
and increased noise tolerance [84]. These studies show that laser
cavity systems have advantageous properties as nonlinear pro-
cessing units.
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Fig. 4. General classification of semiconductor excitable lasers based on:
(a) coherent optical injection, (b) non-coherent optical injection and (c) full
electrical injection. Each of these lasers can be pumped either electrically or
optically. Note that these categories also apply to modulator-class or all-optical
systems. Reproduced from Ferreira de Lima et al. Nanophotonics 6, 3 (2017)
Ref. [22]. Licensed under Creative Commons Aftribution-NonCommercial-
NoDerivatives License. (CC BY-NC-ND).

C. Scalability Challenges of Current Approaches

Larger networks would allow more interesting and complex
functions—engineered dynamical attractors (i.e., as shown in
silicon modulator-class neurons [85]) could encode complex
optimization problems, find time-dependent winner-takes-all
solutions, or apply real-time sophisticated pattern recognition
algorithms to high speed signals. However, systems must scale
to a large number of devices to make this possible, a problem
with significant practical challenges.

The first difficulty is in calibration. Fabrication variation can
be problematic for large clusters of analog devices, which can re-
sult in inconsistent behavior from one device to another. Proper
control techniques—that include feedforward calibration, feed-
back control, and learning—are employed in both analog neu-
romorphic platforms [86] and analog photonic systems [87],
and require large-scale digital control systems. This challenge
is well-known by the photonics community, and has motivated
significant research efforts into the co-integration of electronics
with photonics [88].

The second and most salient difficulty is monetary cost.
Creating on-chip systems is more expensive than prototyp-
ing individual devices: integrated circuits must contain a suite
of monolithic devices that abide by strict platform specifica-
tions with high uniformity and yield, a problem that becomes
more critical as complex processing operations, requiring many
stages, are more susceptible to defects. As we approach a
roadmap for creating large photonic processing systems that
do not suffer the SWAP-C (size, weight, power and cost) issues
that plagued earlier optical computers, we must also consider the
cost of developing digital control, the interface with digital elec-
tronic motherboards and the software necessary to program the
new system to perform applications. Although the economies
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of scale can justify the development of larger systems if there
is significant interest, this also means that resources will prefer-
entially aggregate towards more popular applications and move
away from more esoteric ones. So far, the approach of proto-
typing individual excitable lasers—which include a large range
of unique material, epitaxial and structural characteristics—has
not been compatible with the standardized scalability efforts of
the photonic community.

To sidestep these problems, we can bring neuromorphic pho-
tonic devices as close to existing conventions as possible. This
ensures forward compatibility with community-driven PIC sys-
tem integration. Larger-scale fabrication facilities such as AIM-
Photonics are actively developing an ecosystem for prototyping
photonic systems-on-chip, which includes multi-project wafer
(MPW) runs, standardization of PIC device sets and, eventu-
ally, co-integration with CMOS electronics [89], [90]. In the
section below, we will describe our prototyping efforts towards
developing a PIC-compatible processing device.

II1. AN INTEGRATED EXCITABLE LASER

In this section, we present our initial measurements of an arti-
ficial photonic neuron. Unlike past models, this device exhibits
favorable properties for integration into larger systems: it is fab-
ricated in a standard, indium phosphide PIC platform, using only
devices included in most standard process design kits (PDKs).
The composite structure consists of a high-speed balanced pho-
todetector pair, a distributed feedback laser (DFB), and a con-
necting wire printed on a standard metalization layer. The only
nonstandard device modification is the separation of the elecfri-
cal sections driving the carrier pumping in the cavity into two
for added control of cavity dynamics. To our knowledge, this
is also the first demonstration of the photodetector-driving con-
cept (proposed in [39] and later demonstrated in [40]) applied
to excitable lasers. It is worth noting that this device is struc-
turally very similar to [58], but uses intracavity laser effects for
excitability rather than optoelectronic feedback.

A. The Device

As described in II-A, an important prerequisite condition for
spike processing is excitability. The demonstration of this con-
dition is arguably the first step to achieving a nonlinear pulse
processor. Researchers have investigated a wide range of semi-
conductor laser models that demonstration the existence of this
condition. In particular, several theoretical models have shown
excitability in DFB lasers that contain two isolated current in-
jection sections [91], or a passive dispersive reflector [92], later
verified experimentally [29]. Since this current-pumped semi-
conductor laser can be excited or inhibited by a perturbation in
its injected current, we use a transducer to convert input optical
pulses to electrical ones, such as a photodetector, and directly
connect it to the corresponding electrical section of the laser.
Because the electrical connection covers a distance <1 mm?,
microwave pulses emitted by the photodetector can be as fast as
10 GHz without experiencing distortions. As long as the driving
current wire carrying laser current I, has a high impedance X,
(via either high inductance or resistance), the photodetector-
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Fig. 5. Picture of the integrated photonic neuron, taken from a top-view
microscope. The bottom picture is the schematic figure of the system. Buit
joint couplers (BJ) are placed at the two ends of laser sections coupling laser to
waveguide and back end PD. The back end PD placed at the left prevents the
reflection of laser from the back end. The 3 x 4 mm chip is an indium phosphide-
based device fabricated by Heinrich Hertz Institute. I, I are the current put
into large and small section respectively. The photocurrent I, generated by
PD2 flows into the large section under a reverse bias condition. The output of
the two-section DFB and the input of PD2 travel through waveguides coupled
to benchtop instruments via a V-groove fiber array.

emitted current pulses will flow into the laser. [40]. Both the
excitability and electrical driving concepts, encapsulated in an
extra tunable active section in our system and the on-chip
photodetector-driving principle, were used to construct the laser
processor shown in Fig. 5.

1) Chip Design: We opted to use a balanced photodetector
pair as the input port in order to allow for a push-pull cur-
rent configuration (a mechanism that will be explored in future
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Fig. 6. The schematic figure of experimental setup. The generated optical
signal is sent to the chip through a channel of v-groove fiber array. The laser
output couples to the another channel of the V-groove fiber array, and the output
signal is detected by a sampling scope. Current sources are connected to the
large section and the small section of the device to provide pumping and biasing
of the laser. The voltage source provides a bias for the photodetector on the chip.

work). Each photodetector is a reverse-biased PN photodiode.
The resulting difference current from both photodetectors Ip,
flows directly into the gain section of DFB laser. A current Iy,
flows into the gain section, ideally along a high-impedance line
to prevent photodetector current from flowing back up this con-
nection. We also have a current source I, to a smaller section,
which can be both forward or reversed biased to adjust inter-
nal cavity parameters, including the lasing threshold, to desired
levels. The interaction between the two active sections allows
for the interesting dynamical behavior exhibited by the device.

The DFB laser is based on a multi-quantum well (MQW)
ridge-waveguide structure, electrically pumped with a PN junc-
tion. It contains an active small section with length 75.0 um and
an active large section with length 125.0 pm (Fig. 6). The iso-
lation between the sections, achieved by etching the p-section,
is 75.0 pm. We terminated the back (left) side of the laser with
an absorber to reduce the effect of backreflections. The two sec-
tions are grounded to a metal pad on the chip, and each section
connects to different metal pads for independent current injec-
tion. The photocurrent generated by the photodetectors flows
in and out of the large section of the DFB laser, resulting in
pulse-like perturbations to the laser cavity. We generated these
devices layouts in collaboration with staff at the Fraunhofer In-
stitute for Telecommunications, at the Heinrich Hertz Institute
(HHI), using computer-aided design software PhoeniX OptoDe-
signer [93]. The devices were also fabricated at HHI as part of
the JePPiX consortium.

2) Experimental Setup: To test the device for excitability
conditions, we built a measurement system shown schemati-
cally in Fig. 6. We placed the chip on a vacuum-sealed, copper
mount with water-cooled temperature control at 18 °C. To gen-
erate input pulses to the system, we used a separate continuous-
wave DFB laser source, followed by a high speed Mach-Zehnder
(MZ) modulator. We utilized both a high speed pulse patter gen-
erator (PPG) and sampling scope connected to a synchronized
clock source to measure laser outputs. We also remeasured the
output on a real-time scope to check for consistency. Since high
speed input and output siganls were fully optical, the exper-
iment required no microwave probes. We aligned a V-groove
fiber array to the PIC’s spot size converters (SSCs), providing
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coupling to on-chip waveguides that connected to the input pho-
todetectors and the laser (Fig. 5: top, right). To compensate for
optical losses at the SSC-fiber interface, we used erbium-doped
fiber amplifiers for optical amplification and band pass filters to
reduce amplified spontaneous emission noise. In this particular
experiment, only the bottom excifatory photodetector (i.e., the
generator of positive I, current) received input. The electrical
interface included DC probes connected to arrays of metal pads
on the edge of the chip. Two current sources pumped the two
laser sections with I, and I, and a voltage source was used to
reverse bias PD relative to the gain section to assure that current
flowed in the right direction. For proper driving conditions, the

- N-side of the photodetector was biased with a large positive bias
V5 so that the voltage difference AV =V, — V}, between the
laser input port and the photodetector N-port was negative. This
assured that the photodetector remained reversed biased with a
proper source and drain for continuous current flow.

3) Method: The goal of this experiment is to demonstrate
ultrafast laser excitability, thereby showing the emulation of an
LIF neuron model. It involves the perturbation of PD-driven
two-section DFB laser with high speed optical input pulses, and
the measurement of the time-dependent optical response of the
DFB laser. We generated a high-speed signal via a pulse pattern
generator, clocked at 5.0 GHz, modulated onto a 1550.32 nm
light signal using an MZ modulator. The input and output powers
of the time-dependent traces were inferred by measuring the
input and output average powers and comparing the expected
SSC-fiber interface losses with stand-alone measurements of the
responsivities of the measured photocurrents and output powers
of the lasers. We separated the first three optical input pulses
by 1.2 ns, and the following three pulses by a smaller delay
0.4 ns (center-to-center). Pulses are 200 ps long and have equal
amplitude. We adjusted the pulse amplitude of the input and the
current [, into the small section s.t. the input pulses perturb the
system below the excitability threshold, but three closely spaced
pulses perturb the system beyond this threshold.

B. Results

1) Device Characteristics: The current injected into small
section is fixed at I, = 35.0mA, and we operate the larger
section at Iy, = 6.0 mA, just above the lasing threshold. We ob-
served that changing the small section current I, results in a shift
of the laser threshold without a significant change in the laser
output power, which is largely dependent on the current injected
into large section. An L-I characteristic of the DFB is shown
in Fig. 7. The sharp lasing threshold on the L-I characteristic of
the device is the region in which excitability occurs. Accounting
for the losses at the fiber-SSC interface, the time average optical
input power incident on the PD was about 0.275 mW, and the
induced photocurrent is about 0.22 mA going into the laser.

2) Demonstration of Excitable Behavior: In the LIF model,
a neuron will only fire a pulse if its internal state variable is
perturbed beyond a critical threshold. This can occur if
the input contains closely spaced pulses in time. As shown
in Fig. 8, the laser’s excitable behavior allows it to exhibit
both integration and thresholding. The first three pulses cause
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Fig. 7. The curve of laser intensity v.s. current injected into large section.

This curve is measured under the I; = 35mA, Vp py = —5 V. The experiment
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Fig. 8. The current injected to large section is 6.3 mA. The top blue curve is

the input optical signal, and the bottom red curve is the laser output. The small
peaks in range 1 to 4 ns correspond to the subthreshold response. The giant peak
shown in the last is excited by three consecutive optical input pulses.

a minimal response below the excitability threshold (dubbed
sub-threshold response), whereas more closely spaced pulses
cause the release of an optical pulse (or spike). There is also
evidence of refractory period—the third pulse does not trigger
the release of an additional pulse, since the energy has already
been depleted from the cavity.

3) Moving Away From Excitability: Altering the current
to the small and large sections both have an effect on the
laser’s response. The small section current I, modulates the
excitability threshold within a small range (< 1 mA), while the
large section current I, can significantly change the dynamical
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Laser Qutput

Time (ns)

Fig. 9. The blue, orange, green, and red correspond to the injected current
6.0 mA to 6.5 mA. All the curves were measured under the same optical input
shown in Fig. 8.

response. We show results of applying different large section
injection currents I, in Fig. 9. For a small I}, the laser remains
off and does not respond to inputs. Increasing the I also
increases the amplitude of the laser response, but the energy
ratio between the spike and subthreshold responses decreases
(the system is less excitable). For larger I, the laser gets closer
to the pulse energy saturation region, where the spike energy is
similar to the subthreshold response energy. If I is too large,
the laser’s output will respond linearly to input perturbations
(linear regime). The best operating conditions occur only within
a certain region (I; = 6.0 mA to 6.4 mA), in which the laser
responds nonlinearly to input excitations.

4) Discussion: We have shown that a PIC-compatible inte-
grated excitable laser demonstrates a number of useful charac-
teristics, including excitability, integration, thresholding, and a
refractory period. Nonetheless, there are several other proper-
ties we must consider for a network-compatible processor. For
example, a closed-loop gain greater than unity is important for
cascadability, discussed in Section IV-A. In our initial perturba-
tive experiment shown in Fig. 8, we found that the output pulse
energy (2.08 pJ) was close to but smaller than the input pulse
energy (4.58 pJ). This is consistent with, but slightly lossier
than what prior simulations show [47]. One source of loss, con-
firmed by observation, is microwave reflections along the DC
probes. This results from a low-impedance connection between
the current source and large DFB section, providing an addi-
tional pathway along which PD-generated current pulses can
escape. We can resolve this problem by using a high impedance
input to the gain section, i.e., by replacing the DC test probes
with wirebonded connections.

Regardless, networks-on-chip will require signal fan-out to
distribute the output to multiple nodes. In the best case, en-
ergy consumption scales with the number of neurons, N [17%:
one simply needs to replenish only passive losses in the opti-
cal network s.t. the total output power is greater than the input
N Pyu: > NP, The current system requires on-chip semicon-
ductor optical amplifiers (SOAs) to compensate for losses. Prac-
tically, this is relatively straightforward to implement in an InP
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PIC platform on the output of each unit, but amplifiers can nega-
tively impact both energy consumption and signal integrity. For -
example, SOAs are often power hungry, typically consuming
>25 mW per unit [94], thereby dominating the energy con-
sumption of any laser neural network. Each amplifier would
also contribute >3 dB of amplitude noise [95], putting tighter
constraints on nonlinearities (discussed in Section IV-A). In fu-
ture systems, high sensitivity laser neurons could strictly utilize
excitable dynamics for amplification to avoid the significant
costs that result from SOAs.

A second problem involves the integrity of spike informa-
tion. Ideally, spiking processors will take any analog input and
produce a series of well defined pulses of equal amplitude and
width. In practice, the degree to which this occurs depends
on the characteristics of the dynamical system. The simulated
system investigated in [18], for example, produced highly regu-
larly, very short pulses, even when the pump current is set above
threshold. In our experimental device, Fig. 9 shows that there is
evidence of an excitability threshold, pulse regeneration, and the
saturation of pulse energy above this threshold. Nonetheless, an
open question is whether this dynamical system can indefinitely
maintain a spike as it propagates through a network of cascaded
excitable lasers.

A third concern is network interconnectivity. Implement-
ing an efficient networking scheme (see Section IV) requires
the integration of on-chip filters, such as microring resonators
(MRRs), or on-chip switches, such as Mach-Zehnder interfer-
ometers (MZI). MZIs are standard components in InP PICs [96],
but silicon photonic MRRs have the advantage of being both
smaller and less lossy than InP MZIs. Two viable paths forward
for silicon photonic interconnects include the use of interposer
systems that passively connect III-V lasers to silicon [97], or
a more integrative approach, such as the hybrid silicon/IlI-V
platform [98], [99].

IV. TOWARD SCALABLE NETWORKS

Creating a programmable neural network system requires cas-
cadable processors that can be connected via a large number of
reconfigurable parameters. Typically, the behavior of a neural
network is determined by its weights, which govern the strength
of the connection (positive or negative) between interacting pro-
cessors. For a set of N processors, there are, in the worst case,
N2 connections for a fully connected network since each pro-
cessor can in principle connect to any other. Note that techniques
such as pruning [100] may allow a reduction in the number of
network parameters, given the large size of photonic devices.

First, we discuss some of the necessary conditions for cascad-
ability, a prerequisite for the stability of larger scale processor
networks. We then compare interconnection approaches, start-
ing by describing a protocol for networking cascadable pho-
tonic nodes via wavelength-division multiplexing (WDM). We
discuss the scalability of this protocol in the context of larger
systems, and compare it to the recently proposed reconfigurable
coherent approach based on optical interference. Finally, we
describe optical reservoir computers, which have also utilized
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both coherent and optoelectronic physical phenomena to con-
nect nodes together.

A. Cascadability

In order for analog processors to function properly, they must
be able to propagate and maintain signals during computations.
This can lead to many challenges in analog systems, which—
unlike digital systems—must make careful trade-offs between
noise-limited precision and bandwidth. In short, cascadable sys-
tems must be able to regenerate signals faster than they decay,
and suppress noise faster than it accumulates. For spiking sys-
tems, amplitude is a digital quantity while timing is an analog
quantity. As a result, processors must regenerate signals in both
domains for the system to function properly.

The first condition involves signal gain: the ratio of signal
amplitudes between processing layers (i.e., the signal at n + 1
over the signal at n) must be greater than unity. One can test this
condition by reducing the output by the expected fan-out and
connecting the output back to the input of the same processor.
This closed-loop gain condition must account for inefficiencies
in physical conversions (i.e., O/E and E/O), amplification, and
signal generation.

The second condition involves the accumulation of noise:
the precision of an analog signal depends on its signal-to-noise
(SNR) ratio, and that ratio cannot decrease as it propagates for-
ward in a network (i.e., SNR,, . 1 /SNR,, > 1).Inastrictly linear
system, this is impossible: each component will reduce the SNR
by either passively attenuating the signal or actively amplifying
the noise. Nonlinear activation functions serve the important
role of breaking this impasse by suppressing amplitude noise or
spike variations that can contribute to processing errors. Typi-
cally,amplitude cascadability depends on the properties of the
nonlinear activation function x — x for spike amplitudes x. This
function must include a sigmoid-like nonlinearity that thresh-
olds noise more strongly than it accumulates, meeting similar
conditions to other regeneration devices in optical communi-
cation systems [102]. Separately, since timing is analog and
asynchronous, there must be a decrease in the accumulation of
timing jitter from stage to stage. LIF spiking models are one ex-
ample of processors that possess this property inherently [103].

The last condition involves signal integrity: assurance the
the signal maintains its desired configuration (typically either
a continuous analog signal or a spiking signal) from stage to
stage. If s, represents the measure of qualify of the signal, then
Sq(n+1)/Sq(n) > 1. This assures, for example, that spike signals
do not degrade into continuous signals, or continuous signals do
not degrade into binary or random signals. Processors that meet
these three conditions are capable of forming stable networks
that can maintain persistent information during computations.

B. The Broadcast-and-Weight Protocol

The Broadcast-and-weight (B&W) is a fully tunable network
protocol (Fig. 10) proposed by Tait ef al. [23]. The protocol
utilizes wavelength division multiplexing (WDM) to provide
dense connections between nodes, wherein each node ¢ is as-
signed a unique wavelength 1;. By multiplexing many connec-
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neural network architecture

photonic neural network

waveguide

Fig. 10. Neural nets: The photonic edge in the B&W metocol‘ Comparison
between (top) traditional neural networks employing N* wires to establish as
many connections and ghotonic neural network that employs a single wave-
guide to establish all N* connections. In the B&W protocol, there is no need
for switching or routing, and the bandwidth is not limited by the intercon-
nects. Adapted with permission from Nahmias ef al., Opt. Photon. News 29
(2018) Ref. [101]. Copyright 2013 Optical Society of America.

tions within each waveguide, a small number of waveguides can
carry signals for many more connections, as shown in Fig. 10.
As an illustrative example, a single waveguide can carry all
the signals for an N ~ 100 network, thereby providing signal
pathways for up to N2 ~ 10,000 connections.! B&W’s use of
wavelength multiplexing and conversion means that it requires
no waveguide crossings, and signals travel through only sev-
eral filters on the way to their destinations. In addition, B&W
uniquely allows for recurrent connections between the same
group of units [16].

The protocol was initially defined for networks of excitable
laser processors, i.e. devices much like the one described in
Section III. However, B&W has also been extended fo a
perceptron-like and modulator-class neurons in silicon [106].
It represents a broad protocol for connecting nonlinear opto-
electronic processors, under the condition that such processors
can receive many optical signals j at multiple wavelengths A;
and transmit a single optical signal 7 at a specific wavelength A;.

!The scheme also has similarities with the recently proposed superconducting
optoelectronic neural network system by Shainline et al. [105], which focuses
on waveguide modes rather than spectral filtering.
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Fig. 11. (Top) Schematic of a neural network node. Inputs x1,Z9,23 are
weighted and summed s.t. zy = Zi w;x;, and then experience a nonlinear
function y = f(zx). (Bottom) Concept diagram for a PNN. Inputs incident
from other lasers at different wavelengths A1 3,3 are spectrally filtered (i.e.
weighted). This is followed by conversion of the total power into an electronic
signal (i.e. summation) by a PD, which drives a laser performing a nonlinear
operation (inhibitory photodetector not shown). The laser receives the current,
performing a nonlinear operation. The output at a new wavelength A4 feeds
back into the network. Reprinted with permission from Nahmias ef al., Appl.
Phys. Lett. 108, 151106 (2016) Ref. [40]. Copyright 2016 AIP Publishing LLC.

The simplest driving approaches involve the use of a photode-
tector directly wired to a nonlinear device as described in [40],
although the use of optical nonlinearities to receive multiple
wavelength signals remains an unexplored possibility, as previ-
ously discussed in [19].

The B&W protocol distinguishes between two main compo-
nents: the processing network nodes (PNN) and the interconnec-
tion network. Since signals are broadcast into waveguides that
allow any nodes to access information about any other node, it
is convenient to group the weights (typically implemented as
filter banks) with each processor. As shown in Fig. 11(b), PNNs
principally include both a set of weight banks and nonlinear
O/E/O processing device in a single node.

1) A Processing Network Node: A PNN has a direct ana-
logue to artificial neuron representations. In such models, a
processor performs two key operations: a linear weighted sum
z; =y, wiz; (i.e. dot product with a weight vector) of M
incoming signals, and a nonlinear function y; = f(z;). In clas-
sical artificial networks, this nonlinear is typically instantaneous
and simple, i.e. ReLU. As discussed in II-A, the activation func-
tion for spiking models are dynamic, described via a nonlinear
differential equation of the form y; = f(y;,x;) and represent
information between short, delta-like pulses, or spikes. Regard-
less of the activation function used, the result is encoded on a
specific wavelength A4 and output into the network.

Figure 11(b) shows how a PNN these key properties us-
ing optoelectronic physics [23]. The key differences between
a PNN and the composite structure profotyped in Section III is
the inclusion of inputs across many wavelength and the pres-
ence of linear filter banks. In this model, a series of optically
multiplexed signals are selectively attenuated using linear pho-
tonic filters that modulate a wavelength-dependent transmission
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Fig. 12. Resonance tuning for complementary weighting. Current is applied
to the thermal elements the 4 filter peaks on resonance (blue), and to bias MRR
2 slightly off-resonance (red). (a) Power spectrum of the WDM signal (black)
and weight bank DROP spectra over one FSR. (insets) Time-series waveforms
of weightings channel 2. WDM channel 2 is then modulated with 800 ps pulses,
and DROP and THRU outputs are coupled to a balanced PD. (inset bottom)
Biasing MRR 2 on-resonance (blue) results in a net positive weight. (inset
top) Detuning MRR 2 from resonance (red) results in a net negative weight.
Copyright 2016 IEEE. Adapted, with permission, from Tait et al. IEEE Photon.
Technol. Lett. 28, 8 (2016) Ref. [104].

function T'(A). The resulting photodetector responds to all the
inputs in parallel, and the fast thermal relaxation (~ps) of car-
ries allow the signals to sum together into a single current out-
put i(¢). Although beating effects can occur between adjacent
wavelength channels, they typically manifest on a much faster
time scale (> 50 GHz) than the speeds of the underlying devices
(< 20 GHz), and as a result, do not propagate forward in the sig-
nal pathway. In laser-class models, the resulting current flows
into a laser with some nonlinear activation function (either con-
tinuous or dynamical), resulting in the release of an output. The
result is then broadcast to the receiving port of other PNN nodes.
In addition to performing these functions correctly, a properly
functioning PNN must also meet criteria for node-to-node cas-
cadability as discussed in IV-A.

2) Weighting: Weighting is performed by photonic filter
banks, closely packed groups of passive filters, which have the-
oretically been investigated [107] and experimentally demon-
strated [108] using microring resonators (MRRs). By tuning
each ring either thermally or electrically, one can alter the
wavelength-dependent transmission function T'(A) to achieve
a desired configuration of weights w;, ws, . . . corresponding to
channels Aj, Aa, ... Fig. 12 shows resonance tuning of a single
channel in the presence of others. Intermediate analog weight
values are attained by tuning continuously along each filter edge,
directing power to drop and through ports in a controlled ra-
tio. Methods for practical control of MRR weight banks were
demonstrated in Refs. [104], [107], [108]. As seen in Fig. 12(a),
these control methods allow other MRR filters to be minimally
affected by the tuning of one single channel.

3) Scalability: So far, the largest experimental B&W
networks include only two neurons and four weights [83].
Nonetheless, as shown in Fig. 13, the system exhibited fully
reconfigurable, weight-dependent network dynamics. Looking
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Increasing the weight parameter Wg

has controllable, stable dynamics. Black shadow: average experimental amplitudes;
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Left: picture of a silicon photonic B&W neural network platform. Right: Time traces of a modulator-class, tunable 2x recursive neuron network.
beyond a critical value results in a Hopf bifurcation and the formation of a limit cycle. This shows that the network

solid red curve: corresponding fit model; dotted red line: unstable branch.

Reproduced from Tail ef al., Sci. Rep. 7, 7430 (2017) Ref. [85]. Licensed under Creative Commons Attribution License. (CC BY).
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Fig. 14. The B&W protocol can scale beyond the all-to-all N wavelength limit through the use of interfacial nodes. Examples of how (a) feedforward networks
can be constructed using interfacial PNNs that connect between broadcast mediums, and (b) chains of recurrent networks can be constructed using interfacing

nodes between self-connected broadcast mediums.

ahead, in the B&W framework, single waveguides could in prin-
ciple support thousands of connections. The upper bound of the
number of WDM channels supportable by reconfigurable MRR
weight banks is quantified in [107]. This fan-in channel limit
is approximately N < 148 when using resonators available on
today’s silicon photonics platforms (finesse F < 540 [109]),
giving a connection limit of N/ ? < 21904. This is comparable to
the corresponding limit in neuromorphic electronics, discussed
in Ref. [16], [22]. Note that, beyond resonator finesse F, which
is related to the number of channels one can fit within a given
free spectral range (FSR), WDM channel count can also be
limited by the gain spectrum of the laser sources or amplifiers.
If this is the case in modulator-class systems—in which laser
sources are seperate from the nonlinear processors—one can
potentially expand the channel count to the full range allowed

by F via multiple arrays of optical sources with heterogeneous
gain spectra.

4) Energy: There is also an energy cost associated with tun-
ing MRRs. Typical models of MRRs include both depletion
tuning and thermal tuning. Because the resonance shift that re-
sults from fabrication variation is often greater than the range
allowed via depletion tuning, heaters are crucial for coarse con-
trol [110]. However, since heaters use around ~5 mW of power,
they can result in significant energy consumption that scales
proportional to ~ N2. There are several ways to circumvent this
problem, including the use of high-sensitivity, athermal filters
[14], [111], post-fabrication trimming to make thermal lock-
ing unnecessary [112], or novel methods such as phase-change
materials [113]. One must also consider the energy cost of the
electronic controller, although this cost can be made relatively
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Fig. 15. Schematic illustration of the reconfigurable coherent circuit with
N = 4 which realizes matrix multiplication via constructive and destructive
interference. Reprinted by permission from Macmillan Publishers Ltd: Shen
et al. Nat. Photon. 11 (2017) Ref. [17], copyright {2017).

small since the time scale of processing (<1 ns) is so much faster
than the time scale of temperature fluctuations (>1 us).

5) Discussion: B&W networks offer a compact way fo in-
stantiate large networks of neurons. As an illustrative example,
conservatively assuming each MRR occupies 250 zm? in area,
an implementation of SqueezeNet (421, 098 parameters) [114]
would take up approximately ~1 cm?. Thus, as one looks to-
wards systems that rival the size of current software neural net-
works, scaling beyond the channel count limit becomes critical.
This can be achieved by chaining multiple broadcast waveguides
together via interfacing PNNs. In multi-broadcast systems, the
number of wavelength channels only limits the fan-in per proces-
sor rather than the total size of the network. However, one must
impose substructure on the network since there are limitations
on the number of PNNs that can interface between waveguides.
Several examples of useful topologies are shown in Fig. 14,
wherein each topology may be better suited for different ap-
plications. Beyond these base configurations, it is possible to
create more complex, small-world-like hierarchical networks as
described in [23].

C. The Coherent Approach

An alternative architecture, which uses destructive or con-
structive interference effects in Mach-Zehnder (MZ) interfer-
ometers to implement a matrix-vector operation on photonic
signals, was recently demonstrated [17] by the Soljac¢i¢ and En-
glund groups (Fig 15). The concept is based on earlier work that
explored the implementation of arbitrary linear optical opera-
tions using interferometer systems [115]. Since these operations
are reversible, they do not principally consume energy outside
of generation and detection. Compared to B&W, it is not neces-
sary to perform O/E or E/O conversion at each stage; hence, it is
possible to interface this system with all-optical resonators (i.e.,
enhanced via the Kerr effect), which could in principle allow
for highly energy efficient, passive all-optical processors that
are not speed-limited by electrical parasitics.

However, all-optical networks must grapple with both ampli-
tude and phase, and no solution has yet been proposed to prevent
phase noise accumulation from one nonlinear stage to another.
Compared to B&W, the coherent approach is limited fo only
one wavelength. In addition, MZs have much larger footprints
than tunable MRRs, resulting in a much larger interconnection
footprints and lower synapse densities. Current prototypes use
heater-controlled phase shifters, which each consume around
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Fig. 16. Classical reservoir computing scheme. Representation of the classic
reservoir computing scheme based on a recurrent neural network. Reprinted by
permission from Macmillan Publishers Ltd: Appeltant ef al. Nat. Commun. 2
(2011) Ref. [121], copyright (2011).

10 mW to 20 mW of power [116], leading to greater energy con-
sumption relative to MRRs (phase element number also scales
proportional to ~ N2). In the future, this may be remedied using
novel approaches, such as phase change materials or microme-
chanical switching [117]. Nonetheless, the coherent approach
represents a viable alternative to B&W that could lead to truly
all-optical neural networks with higher energy efficiencies and
speeds in the future.

D. Photonic Reservoir Computing

Reservoir computing (RC) [118] is another approach to tun-
able neural networks that has been pursued in parallel. RC con-
trasts with fully tunable approaches (such as the B&W approach)
in that the “reservoir” is a fixed recurrent network of nonlinear
nodes; i.e., most of the weights are fixed or restricted to a small
subset (Fig. 16). The network, consisting of many connected
nonlinear nodes, performs a large number of nonlinear opera-
tions, the outputs of which are extracted into linear combinations
to approximate a desired task [119]. To arrive at a user-defined
behavior, reservoirs—rather than being programmed—rely on
trained linear classifiers in a supervised learning framework.
This is advantageous in systems whose overall behavior is com-
plex, yet difficult to model theoretically [120].

Much like the approaches discussed in Section IV-B
and IV-C, photonic reservoir systems can be classified as ei-
ther optoelectronic or coherent. Optoelectronic systems, like the
B&W protocol, use carriers to perform summation, and can exist
in both benchtop models [122]-[130], and integrated solutions
including microring resonators [131], or coupled semiconduc-
tor optical amplifiers (SOAs) [132]. Coherent approaches ex-
ploit both phase and amplitude and perform summation using
interference, which doubles the number of degrees. of freedom
and thus the effective size of the reservoir [133]. On-chip coher-
ent approaches include the passive approach such as the silicon
photonic network described in [133]. Overall, these systems
have achieved competitive figures of merit at unprecedented
data rates by outperforming software-based machine learning
techniques for tasks such as spoken digit and speaker recog-
nition, chaotic time-series prediction, signal classification, or
dynamical system modeling.

Contrast with Reconfigurable Architectures: RC makes a dis-
tinction between computation and training, whereas the B&W
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and coherent architectures use the same set of weights for both.
As detailed in [16], this distinction has two implications: 1) in
RC, reservoirs can emulate complex systems that are difficult to
model simply without significant control hardware. 2) Since the
weights of a reservoir are fixed a priori, the goal of a reservoir is
to perform a large diversity of computations $o that supervised
training algorithms can extract useful transformations and then
combine them for a desired output. RC elicits desired behavior
through instance-specific supervised training, which chooses
only a subset of the total number of operations performed in
the reservoir. A subset of the diversity of computations that are
performed are not actually utilized to form the supervised out-
put. This means that some of these computations are effectively
wasted. In contrast, reconfigurable architectures can be pro-
grammed a priori using a known set of weights (i.e., via a com-
piler such as the Neural Engineering Framework (NEF) [134])
to map values and functions to the hardware with a high de-
gree of reconfigurability. Although reconfigurable approaches
require more control hardware, the resulting computations are
much more efficient and streamlined.

V. CONCLUSION

With the recent emergence of PIC technology platforms, the
time is ripe for the development of scalable, fully reconfigurable
systems that can perform far more complex operations than
before. Although many fields such as microwave photonics or
physical layer security will benefit from this rapid increase in
complexity, the community has yet to establish a processing
standard with which to program complex multistage operations
in the photonic domain.

Neuromorphic photonics is an emerging field at the intersec-
tion of neuroscience and photonics. It combines the efficiency
of neural networks and the speed of photonics to build pro-
cessing systems that can exceed microelectronic performance
by many orders of magnitude. By being partially analog, neu-
romorphic circuits can take advantage of the enormous band-
width and energy efficiency of optical signals, while establishing
a general processing standard for reconfigurable circuits that
can in principle perform any task computable by an artificial
neural network. Co-integrating these systems with low-power
microelectronic control would allow for processing sys-
tems with analog efficiencies that far exceed current digital
standards.

Consistent with this goal, we have prototyped an excitable
laser device that has many favorable properties for network scal-
ability, including behavior that resembles a biologically relevant
neuron model and compatibility with an emerging PIC stan-
dards. We have reviewed past dynamical laser approaches in the
literature, the properties of spiking processors, and the condi-
tions necessary to make cascadable systems. We have also com-
pared the merits of recent interconnection approaches, ranging
from fully reconfigurable systems to optical reservoir comput-
ers that utilize various physical effects, including optoelectronic
carrier interactions and coherent interference.

There are still many problems on the horizon that must be
solved before neuromorphic systems become useful. These in-
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clude the optimization of individual processors for consistent
cascadability, the development of a proper /O protocol, and
techniques for efficient, large-scale control of many reconfig-
urable, interacting devices. Nevertheless, the work to solve these
problems is synergistic with the efforts in the integrated pho-
tonics community, leading to a bright future for the field of
neuromorphic photonics in the years ahead.
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