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1 Introduction

Bidispersed mixtures of hard spheres are an important elementary
model of a glass transition:" at high temperature and low density
they flow freely, while as temperature is reduced they become
kinetically arrested and form rigid but highly disordered
structures.” At zero temperature and stress, a similar jamming
transition to rigidity occurs as a function of density®* which in
2D tends to occur around a packing fraction of & = 0.84.>°
Jammed structures exhibit distinctive properties including iso-
staticity: the average number of inter-particle contacts is the
minimum number required for mechanical stability.” Powerful
mathematical tools exist® to classify jammed and glassy packings
of hard particles according to a hierarchy, depending on where
individual particles, groups or boundary deformations can unjam
the system.’

Sphere packings, the high density and zero temperature
limit of these processes, have been extensively studied in both
2D and 3D Euclidean space®>*" " revealing strong dimensional
dependence: 2D monodispersed spheres tend to crystallize
readily, because the locally dense hexagonal packing fills space;
in 3D the locally dense tetrahedral packing cannot fill space,
permitting a random close packed structure that is the subject
of much debate.’>* Even in 2D, however, disorder can be
induced in bidispersed systems. Molecular dynamics simulations
have shown that there is a transition from order to disorder as
the degree of bidispersity is increased,">® and statistical models
of bidispersed particle packings have been used to predict the
local features of disordered bidispersed packings.'*° The degree
of order or disorder can be measured by an order parameter such
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eventually disconnect the neighbor graph.

as the hexatic bond orientational order.” An exponentially large
number of packings exist between the crystalline and disordered
packings in flat space, showing that the glass transition in binary
disks is not ideal and that a continuous trade-off between
packing fraction and configurational entropy is possible.*”

Crystalline order is geometrically frustrated on curved surfaces:*
an incompatibility between the preferred hexagonal symmetry of
the crystalline packing and the topology of the surface necessitates a
minimal number of defects—particles with a number of neighbors
other than 6—to accommodate the curvature. For monodispersed
particles, the packings are mainly crystalline with a transition
between isolated defects for small particle number and chains of
defects or scars akin to grain boundaries in bulk systems that occur
above a critical number of particles N, &~ 110 and grow with system
size.>»*® The scars may join in asterisk-like motifs>> and are aligned
by anisotropic curvature.”® Jammed packings on spheres or spherical
codes have recently been studied in multiple dimensions.””

In this paper, we determine how curvature affects the packing
of bidispersed particles on a spherical surface to establish how the
crystalline to disordered transition is affected. We characterize the
packing fraction, connectivity and hexatic order parameter as a
function of particle number N, fraction of large particles y = N;/N
and bidispersity b = (r, — r,)/(r1 + r,) where r; and r, are the radii of
the particles and r; > r,. By identifying topological defects from
the neighbor graph we show that variation in these parameters
is explained by a percolation transition due to growth and
connectivity of the scar network, as well as commensurate local
arrangements of particles.

2 Model

Packings with high coverage fraction were produced using a
surface relaxation algorithm described in the Methods section
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below. Configurations produced by this procedure are referred
to as arrested, because they remain metastable if the simulation is
restarted; eventually, however, a Monte Carlo move will unjam the
arrested configuration, potentially facilitating further relaxation
and a consequent increase in the packing fraction. This process
occurs in real glasses and is known as aging. Extending a powerful
technique due to Donev et al.,® we artificially age the arrested
structures using a linear program to find and execute an
unjamming motion of the particles and further relax the surface.
Iterative unjamming and relaxation guides the packing toward a
state that is collectively jammed with respect to movement of
the particles and further relaxation. As we report elsewhere,>®
the convergence of this procedure is greatly accelerated by
preconditioning the packing, attaching a short range repulsive
interaction to the particles beyond the hard inter-penetrability
constraint and minimizing the corresponding energy by gradient
descent. This procedure moves the particles into the center of the
feasible region from which the linear program is more effectively
able to identify an unjamming motion. Each arrested structure
was subjected to this artificial aging process to produce a
corresponding ensemble of jammed structures.

For monodispersed particles,** neighbors are assigned from a
Voronoi tessellation® of the particle centers of mass, partitioning
the surface into N polygonal regions closest to a particular
particle. Two particles are neighbors if they share an adjacent
edge on the Voronoi tessellation. Generalizing this construction
to bidispersed particles with a weighted distance fails to uniquely
assign all points on the surface to a particle; two proposed
alternatives®® are the radical tessellation and the navigation
map, both of which recover the Voronoi tessellation in the limit
of monodispersed spheres. The radical tessellation utilizes the
radical plane as a separatrix between each pair of particles;
the navigation map partitions the surface into regions closest
to the surface of the particles rather than their center of mass. We
found little difference between quantities calculated from these
constructions and use the radical tessellation exclusively in the
remainder of the paper. From the radical tessellation, the adjoint
neighbor graph was constructed for each packing and the
coordination number determined for each particle.

3 Results and discussion

For each value of bidispersity on the interval b € [0,1] with a
resolution of Ab = 0.005, an ensemble of 20 jammed configurations
was generated with y = 1/2 and varying number of particles N. The
packing fraction @, ie. the fraction of the surface enclosed by the
particles, was calculated for each configuration and shown in Fig. 1.
For particle numbers above about N = 200, slight deviations from
the monodispersed case immediately introduce disorder and
reduce the packing fraction as expected. Above a critical value
of bidispersity b, ~ 0.09, however, we see a transition and @
increases, with an apparent shoulder at b ~ 0.4, up to a
maximum value of @ ~ 0.87 at b= b, ~ 0.7 and then decreases
as b — 1. For N < 200, ¢ increases monotonically up to a
maximum at a slightly lower value of b ~ 0.6. In the lower inset
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Fig. 1 Packing fraction @ as a function of bidispersity b = (r; — ro)/(ry + r2)
where r; > r, for different particle numbers N and a fraction y = 0.5 of
large particles. The maximum b = V3 — 12 0.73, indicated with a vertical
dashed line, occurs for an Apollonian packing, i.e. where smaller particles
fit in the interstices of the larger particles as depicted in the upper inset.
Lower inset: Comparison of the packing fraction of arrested (gray) and
jammed (black) packings for N = 800 particles.

of Fig. 1, we compare the packing fraction for 800 particles for
the ensemble of arrested and jammed packings. It is clear
that the arrested structures are slightly less efficiently packed,
but the shape of the plots is identical. We find similar results
for other N; this correspondence affirms that the trends are
geometric in origin rather than due to variation in the perfor-
mance of the algorithm at different b.

The maximum at b = b, is immediately explicable: it corre-
sponds to the special point at which the smaller particles fit
exactly in the interstices between the larger particles, depicted
in the upper inset of Fig. 1. We denote this the Apollonian point
in reference to the tiling. Packings around and above b, appear
mostly crystalline with the smaller particles separated into the
interstices; the packing fraction for N particles at b = 1 corresponds
exactly to that for N/2 particles at b = 0. No such immediate
explanation is obvious for the low and medium bidispersity
results, which appear to be well mixed; we therefore seek a more
detailed understanding of the structure.

One structural measure that reflects the degree to which the
packings are locally crystalline is the hexatic order parameter
Ve = (exp(i60,)), where the average is taken over the neighboring
particles. This is shown calculated from the dataset as a
function of » and N in Fig. 2A. A maximum occurs for all N at
b = 0 as expected; the value is reduced for smaller N reflecting
the disruption of crystallinity by the curvature. The hexatic
order drops with b, reaches a minimum around b ~ 0.45, rises
and then forms a plateau above the Apollonian point, albeit at a
value significantly lower than the b = 0 case, because here the
large particles have a higher coordination number. Variation in
Ve is significantly attenuated for low N where the influence of
the curvature is stronger.

To see whether hexatic order is replaced by other ordering,
we calculated n-atic order parameters y, = (exp(in6;)) for
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Fig. 2 Ordering of the packings. (A) Hexatic order parameter as a function
of bidispersity b for different N. (B) Local order parameters ¥/, as a function
b for a jammed packing of N = 1600 particles. Hexatic order dominates
except intermediate values of b where eight- and ten-fold order possess
maxima. (C and D) Commensurate configurations with eight and tenfold
order that occurath = v/2 — 1 ~ 0.4l and b = (v/5 — 1)/2 ~ 0.61 respectively.
(E) Average coordination number for large-large (solid lines), large—small
(dashed lines) and small-small (dotted lines) inter-particle contacts for
varying N. (F) Pair correlation function g(s) and (G) orientational correlation
function ge(s), each shown for values of bidispersity b from 0.005 to 0.212
in steps of 0.030.

N =1600 as a function of b; the results are plotted in Fig. 2B. In
contrast to the hexatic order parameter, ¥, for n # 6 increases
with b from b = 0; moreover all i, exhibit a plateau above the
Apollonian point confirming the distinct nature of this regime.
Several values, n = 5, 8, 10, 11 of which 8 and 10 are the most
prominent, have ,, narrowly greater than ), for intermediate
values of b and possess maxima at b = 0.45 and b = 0.6 respectively.
Examining the packings, the peak in eightfold order is due to the
presence of octagonally coordinated arrangements: a common
and commensurate motif, depicted in Fig. 2C, where four
large and four small particles are arranged around a central
large particle, is allowed first for b = /2 — 1 ~ 0.41, which
coincides with the position of the shoulder in the plot of ®(b)
in Fig. 1. The tenfold peak is explained by an analogous
decagonally coordinated motif, shown in Fig. 2D, that occurs
at b= (v/5-1)/2~0.61. A variety of other commensurate
motifs exist for b around 0.4 with different mixtures of large
and small neighboring particles and appear to cause the
shoulder in @. It is interesting to note that decatic ordering:
10-fold rotational symmetry is incompatible with long range
order and is rarely seen in packings in flat space with the
exception of quasicrystals.’** As long range order is also
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incompatible with curvature, it appears that curvature may
promote the increased 10-fold ordering.

We now examine the coordination number directly. In Fig. 2E,
we plot the average coordination number per particle, separated
into large-large, large-small and small-small contacts and for
different N. At infinitesimal b, each particle has six neighbors,
three smaller and three larger on average. With increasing b, the
number of large-small contacts per particle remains a constant
value of three; larger particles gain more large neighbors while
smaller particles lose small contacts. At the Apollonian point, the
smaller particles are surrounded by three larger neighbors,
while the larger particles are on average surrounded by six
large neighbors and three smaller neighbors. For b beyond the
Apollonian point by, the coordination numbers remain constant,
consistent with the discussion above where smaller particles are
caged within the interstices of the larger particles. Smaller values
of N follow similar trends, but tend to have lower coordination
numbers.

Finally, we calculated two measures of structural order, the
pair correlation function g{s) and bond orientational correlation
function ge(s), that encode the particle’s local environment.*?
Results are displayed in Fig. 2F and G respectively. The pair
correlation function g(s) for » = 0 shows persistent peaks at large
s indicative of long range order and a split second peak in
agreement with previous studies in flat space.>® As bidispersity
is increased to 0.06, the split peaks become a single peak,
representing the disruption of local hexagonal packing, but
the long range order persists. Proceeding to b = 0.09, g(s) is
now flat at large s, indicating that the long range order has
disappeared. This is the same value of bidispersity at the
minimum in ¢ at b. was observed in Fig. 1 and is our first
indication that this minimum is associated with the disruption
of long range order. Above this value of b, g(s) retains short
range order, but the correlation length decreases with b. Plots of
g6(s) in Fig. 2E show an abrupt drop in the value of gi(s) for small
sat b =0.06 and a reduction in the associated correlation length
with increasing b. For all values of b, gs approaches a constant at
large s; there is no sign of algebraic decay that would indicate a
hexatic phase structure.

We turn to an alternative measure of crystallinity, the
fraction ¢ of particles that possess a coordination number of
6. In Fig. 3A, we plot 1 — ¢, as a function of bidispersity revealing
a transition: as b increases from zero, 1 — ¢, is approximately
constant then rises rapidly above b = 0.05, reaching a value of 1 at
b = b, = 0.15. Above bidispersity b ~ 0.5, a vanishing fraction of
particles possess six neighbors. These trends persist for all values
of Nshown, but 1 — ¢ is larger at b = 0 for small N since topology
mandates a minimal number of defects.

To understand this transition further, it is necessary to
examine the microstructural information encoded in the neighbor
graphs, the adjoint graph of the radical tessellation. We crudely
separate the crystalline and non-crystalline components
by deleting from a neighbor graph all vertices that have six
neighbors, yielding the “non-hexatic” subgraph. Illustrative
examples of these subgraphs are depicted in Fig. 3B. For b = 0 the
subgraph consists of small disconnected components corresponding
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Fig. 3 Percolation transition. (A) Fraction of particles 1 — ¢ with coordination
number C # 6 as a function of bidispersity. (B) Representative defect
subgraphs different b illustrating growth and connection of the scar network.
(C) Comparison with random percolation: a fraction p sites are randomly
selected on a b = 0, N = 800 neighbor graph. Shown is the fraction of
simulations where the selected sites form a connected structure (gray solid
line) and the fraction where the non-selected sites retain global connectivity
(black solid line). Points show the fraction of simulations where the hexatic
(black points) and non-hexatic subgraphs remain connected. (D) Packing
fraction of particles as a function of the non-hexatic fraction 1 — ¢¢. Black
points have a connected hexatic component; gray points indicate a
disconnected hexatic component. (E) Size of the largest connected
component for random percolation (solid lines) and bidispersed neighbor
graphs (points). (F) Fitted fractal dimension of the cluster size as a function
of the selected fraction for random percolation (black solid lines) and
bidispersed neighbor graphs (black points). The cluster size as a function of
selected fraction is also shown for bidispersed neighbor graphs; the
vertical gray bar indicates where the cluster size has saturated due to
finite system size.

to the previously-studied scars, which are essentially linear in
morphology, with a small number of branches. As bidispersity
increases to b = 0.1, just below b, the connected subgraphs are
still recognizably scar-like in nature, but have a branching
morphology and are substantially longer. By b = 0.14, close to
b,, the defect subgraph remains disconnected, but is now
dominated by a few large connected graphs that are mostly
linear with branches. Finally, above b, at b = 0.2 the defect

This journal is © The Royal Society of Chemistry 2017

View Article Online

Soft Matter

subgraph is now mostly a single connected structure with a
small number of additional isolated defects; it is no longer
branching, but with linear sections that link into a foam-like
structure. For b = 0.3, the defect subgraph retains this structure,
but is more densely connected. The gradual growth and long-range
connection of the non-hexatic subgraph due to bidispersity is
therefore a percolation transition that occurs: as b increases
around b, the number of sites participating in the non-hexatic
subgraph increases until they form a connected structure.

Percolation transitions are well-studied.>**® The canonical
formulation is: given a network, and selecting a fraction p sites,
what is the probability that one of the selected sites belongs to a
long-range connected structure? Clearly, the system under
consideration cannot be precisely mapped onto this problem
because the neighbor graph changes with b. However, by
averaging over all particle pairs in Fig. 2B we see that the mean
coordination number remains 6 for all b. Thus, we examine the
canonical percolation problem on the neighbor graph of a
monodispersed packing for N = 800 particles as a proxy. From
such a graph, we randomly select a fraction p sites and repeat
this procedure to form 7 trials. Plotted in Fig. 3C is the fraction
of trials where the selected components form a connected
structure (gray line) and where the remaining components
retain their connectivity (black line).

We compare this to the bidispersity percolation transition by
the placing the non-hexatic subgraph in correspondence to the
selected subgraph in the random percolation model; the
selected fraction is therefore p = 1 — ¢ The fraction of
connected hexatic and non-hexatic subgraphs at each value of
p is plotted as points in Fig. 3C, showing that the percolation
thresholds are in good agreement. In order of increasing p: at
p = 0.2, the hexatic subgraph begins to become disconnected,
50% of simulations have disconnected hexatic subgraphs at
p = 0.35 and the hexatic subgraph is fully disconnected by
p = 0.5. Connection of the non-hexatic subgraph and disconnection
of the hexatic subgraph are complementary processes, and hence
the traces in Fig. 3C are reflections of one another about p = 0.5.
Consequently, the non-hexatic subgraph starts to become connected
at p =0.5; is 50% likely to be connected at p = 0.65 fully connected by
p = 0.8. Using the relation from 1 — ¢ and b from Fig. 3A, we can
map this sequence of events onto values of bidispersity. Hexatic
disconnection starts at b = 0.075, is 50% likely to be connected
at b = 0.1 and complete by b = 0.15; the non-hexatic component
starts to become connected at b = 0.15, is 50% likely to be
connected at b = 0.2 and fully connected by b = 0.3 respectively.

The minimum in @ at b, = 0.09, therefore, is associated with
disconnection of the hexatic fraction of the neighbor graph,
rather than percolation of the scars. We make this explicit in
Fig. 3D, which displays @ as a function of 1 — ¢¢ for each
simulation in our dataset, colored by whether the hexatic
subgraph remains connected or not.

To further test the correspondence of scar growth and
connection to random percolation theory, we also computed
the size of the largest connected component of the selected and
unselected subgraphs, plotted as solid lines in Fig. 3E. Results
from the bidispersed neighbor graphs, using 1 — ¢4 = p, are
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plotted as points in Fig. 3E. There is excellent agreement
between the two processes.
Another quantity of interest is the cluster radius R,

2N
2R *anv 1)

7
where the sum is taken over all pairs of particles belonging to a
connected cluster, 7 is the number of sites in the cluster and d;
is the distance between the centroids of two particles 7 and j in
the cluster. Here, we use the arclength distance between two
particles rather than the Euclidean distance. Near the percola-
tion threshold, the cluster size scales as the cluster radius as a
power law,

ne. oc R°, (2)

where the exponent D is referred to in the percolation literature
as the fractal dimension. D is, according to percolation theory,
a universal parameter that depends only on the dimensionality
of the system and independent of the details of the lattice. In
the limit L —» o0, D — 1.896 in 2D and = 2.5 in 3D.%’ Studies in
2D Euclidean space of random packings of bidispersed disks®”
and dimers®® reproduce these predicted values. We calculated
cluster radii and corresponding cluster size both from our
neighbor graphs of bidispersed packings as well as the random
percolation model on a monodispersed graph, and fitted these to
a power law. Fig. 3F shows the results for random percolation
(black solid lines) and bidispersed neighbor graphs (black points)
which are in good agreement. At the percolation point p = 0.65,
the fractal dimension is ~1.86 which is close to the 2D universal
value. The cluster size is also shown as a function of p in 3F, and
saturates at p = 0.65, verifying that this is indeed the percolation
point. A more detailed study to establish whether the residual
discrepancy in D is due to the curved space is left to future work.

From the strong agreement between connected fraction and
fraction belonging to the connected component as a function of
p as well as cluster radius scaling, we infer that the qualitative
features of the bidispersity percolation transition are well
predicted by a random percolation transition on the mono-
dispersed neighbor graph. To test this further, we attempted to
disrupt the transition by varying the fraction of large particles
% = Ni/N, motivated by the idea that growth of the scars might
be prevented if sufficiently few minority particles are present.
Results are shown in Fig. 4.

First we examine the effect of stoichiometry on the structure.
The packing fraction for several values of y is shown in Fig. 4A.
Small values of y lead to a dramatic enhancement of the packing
fraction around the Apollonian point, while the packing fraction is
less sensitive to b for y close to 1. This might be anticipated
because a small number of large particles, the low y limit, can
create voids in the packings of small particles while a few small
particles, the high y limit, can be accommodated into the inter-
stices. We performed an additional set of simulations varying 0 <
7 < 0.3 rather than b to determine the nature of the maximum in
@ as a function of stoichiometry. Representative packings from
these additional simulations are shown in ESI{ Fig. S1.
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We also show in ESIf Fig. S2 the neighbor subgraphs for
large and small particles. These show interesting clustering
behavior of the particles in a few cases: for small fractions of
large particles (low yx), large particles are well-dispersed in the
small particles, forming chains that grow and connect with
increasing y. For low y and high b, the smaller particles tend to
be localized into the space between the large particles, forming
crystalline regions. Finally, when large particles cover most of
the surface (high ), the smaller particles again cluster into the
interstices, but only a few particles can fit. We note that our
simulations do not enforce a particular degree of mixing, and
that previous work indicates a continuous tradeoff between @
and configurational entropy is possible;** how the curvature
affects this tradeoff is left to future work.

The packing fractions plotted in Fig. 4B show that for values
of bidispersity » > 0.4 a maximum exists in ¢ for at some value
of y. The maximum ¢ = 0.912 found is at around » = 0.85 and
7 = 0.025, corresponding to about 20/800 particles. This value is
somewhat short of the bidispersed disk lattice in 2D Euclidean
space which has @, = 0.9503. Visually, this particular packing
(displayed in the inset of Fig. 4B) resembles a very disordered
low N packing with the interstices filled by smaller particles.
Large particles are relatively isolated from one another, making
on average only 4 contacts with other large particles, and 12
contacts with small particles. We speculate that values of ¢ even
closer to @, may be achieved by careful tuning of N, b and .

According to the results shown above in 2B-D for y = 0.5,
between the percolation and Apollonian points the packings
are influenced by the possibility of symmetric commensurate
motifs, leading to a rich sequence of 5, 12, 11 and 8 fold order
replacing hexatic order. In contrast, stoichiometry values away
from y = 0.5 seem to suppress this sequence as shown in Fig. 4C
which displays the most prominent local order parameter v,
for each value of b and y. Full plots of the order parameter and
coordination number for each y are shown in ESI{ Fig. S3. For
¥ > 0.5, hexagonal and dodecagonal ordering remain for y = 0.7
and y = 0.9 shows only hexagonal ordering. y = 0.3 preserves five
and tenfold ordering and interestingly introduces ninefold
order at the Apollonian point. At y = 0.1, only hexagonal order
remains below the Apollonian point, with fivefold order dominating
above it. Noting that the commensurate motifs shown in 2C and D
involve an equal number of small and large particles, it would
appear that the suppression of these motifs, and introduction of
others, simply reflects the relative abundance of different particle
types. For example the ninefold order at y = 0.3 and b ~ 0.7 emerges
due to commensurate arrangements of 3 large and 6 small particles
around a central large particle.

We now turn to the effect of stoichiometry on the percolation
transition. The non-hexatic fraction 1 — ¢, is shown as a
function of b for the different y tested in Fig. 4D. Also shown
as a dashed line at 1 — ¢¢ = 0.4 is the value from the random
percolation model (see Fig. 3D) above which the hexatic sub-
graph is disconnected. The line for y = 0.9 flattens out at high
b just below the critical value; the line for y = 0.1 reaches it at a
much higher value of b than for y = 0.5. It is therefore expected
that the non-hexatic subgraphs for y = 0.9 should not display

This journal is © The Royal Society of Chemistry 2017
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dashed horizontal line represents the critical value from the random percolation model at which the hexatic subgraph becomes totally disconnected.
(E) Representative packings colored by coordination number and (F) non-hexatic subgraphs shown as a function of b and .

defect percolation while those for y = 0.1 should percolate
around b ~ 0.4. Examining the packings themselves, shown
in Fig. 4E, together with the non-hexatic subgraphs, shown in
Fig. 4F, this is correct. The scars in the y = 0.9 packings indeed
elongate with increasing b, but never form a connected structure.
For y = 0.1, b = 0.3 is disconnected while b = 0.5 forms a connected
structure. For intermediate values of y, the non-hexatic component
percolates at a similar value of b to the earlier results for y = 0.5.
We therefore conclude that the random percolation model
successfully predicts the percolation point of the scars as a
function of stoichiometry.

Calculating the fractal dimension at percolation, displayed
in ESIt Fig. S4, we find that y = 0.3 and 0.7 have values (D = 1.84
and D = 1.83 respectively) just short of the y = 0.5 value of
D =1.85; y =0.1, however, yields a slightly lower value of D =1.8.
These numbers all fall short of the universal value of D — 1.896
by an amount consistent with previous studies®” due to finite
system size. For y = 0.1, the large particles are much larger
relative to the radius of curvature at percolation, and it remains
possible that the discrepancy is due to the surface curvature.

This journal is © The Royal Society of Chemistry 2017

A more finely resolved study of the low y regime should be
conducted to explore this possibility.

4 Conclusion

We have shown that the packing fraction of bidispersed packings of
spheres on a spherical surface is determined by three influences: an
Apollonian packing for b ~ 0.73 where small particles fit into
the interstices of large particles produces a global maximum;
commensurate configurations of particles yield an inflexion point at
b ~ 0.41; a minimum at b ~ 0.1 is due to the growth and
percolation of scars previously observed in the monodispersed case.
At this point, the non-hexatic subgraph contains a cluster that
percolates throughout the whole structure. Chains of defects or
scars are an important feature of crystals on curved surfaces, and
our work therefore provides a new control parameter, bidispersity,
to vary their length. This might be desirable experimentally, in a
colloidosome for instance, because the scars control the mechanical
response and failure point of the system.*

Soft Matter, 2017, 13, 7090-7097 | 7095



Published on 21 August 2017. Downloaded by Tufts University on 6/25/2018 3:12:28 PM.

Soft Matter

By adjusting the ratio of large particles to small particles y,
we have shown that the percolation transition can be shifted in
bidispersity and even suppressed entirely for large y. The
growing lengthscale and critical fraction for percolation were
found to be in excellent agreement with those for random
percolation on the monodispersed neighbor graph, and the
fractal dimension of the clusters was also found to be in good
agreement with the universal value for 2D percolation accounting
for the finite system size.

Around the Apollonian point, varying y and b simultaneously
permits further enhancement of @. The point » = 0.85 and
% = 0.025 had the highest fraction found, ¢ = 0.912, but we
speculate values closer to the 2D bidispersed disk lattice
d,p = 0.9503 might be found with further tuning. Because we
did not enforce a degree of mixing as has been shown to be
important in flat space,?* it is conceivable that for the values of b
and y investigated, a configuration of higher ® might be found.
The interplay of curvature, packing fraction and configurational
entropy is therefore an important question for future work.

5 Methods

Packings with high coverage fraction were produced using a
surface relaxation algorithm: N spherical particles are initially
placed using random sequential absorption with their centers
of mass on a sphere of radius R = 1. Particles are randomly
assigned to two categories corresponding to larger and smaller
radii respectively. The simulation proceeds by, first, diffusion
sweeps where, particles are moved in random order some distance
drawn from a Gaussian distribution of width ¢ = 2r;, x 10 % in a
random direction along the surface. Moves that cause overlap are
rejected. As the packing becomes dense, an adaptive step size is
used to reduce the number of moves rejected due to overlap: ¢ =
10(s), where (s) is the geometric mean of the separation between
each particle and its three nearest neighbors. Secondly, surface
relaxation moves slowly decrease the radius of the surface by an
amount AR, where initially AR = 10 °. After the surface radius is
reduced, particles are projected down onto the nearest point on
the surface. After projection, a gradient descent minimization is
run on the particles (where the interparticle energy is linear the
amount of overlap) until overlap is undone. If overlap can not be
undone, the surface relaxation move is undone and particle
positions are reset, and simulation continues with AR set to
AR/2. 20 diffusion sweeps are carried out between each surface
relaxation step. The simulation halts when AR is reduced to
27 times its original value.
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