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Defect structure and percolation in the packing
of bidispersed particles on a sphere†

Andrew M. Mascioli, Christopher J. Burke, Mathew Q. Giso and

Timothy J. Atherton *

We study packings of bidispersed spherical particles on a spherical surface. The presence of curvature

necessitates defects even for monodispersed particles; bidispersity either leads to a more disordered

packing for nearly equal radii, or a higher fill fraction when the smaller particles are accommodated in

the interstices of the larger spheres. Variation in the packing fraction is explained by a percolation

transition, as chains of defects or scars previously discovered in the monodispersed case grow and

eventually disconnect the neighbor graph.

1 Introduction

Bidispersed mixtures of hard spheres are an important elementary

model of a glass transition:1 at high temperature and low density

they flow freely, while as temperature is reduced they become

kinetically arrested and form rigid but highly disordered

structures.2 At zero temperature and stress, a similar jamming

transition to rigidity occurs as a function of density3,4 which in

2D tends to occur around a packing fraction of F = 0.84.5,6

Jammed structures exhibit distinctive properties including iso-

staticity: the average number of inter-particle contacts is the

minimum number required for mechanical stability.7 Powerful

mathematical tools exist8 to classify jammed and glassy packings

of hard particles according to a hierarchy, depending on where

individual particles, groups or boundary deformations can unjam

the system.9

Sphere packings, the high density and zero temperature

limit of these processes, have been extensively studied in both

2D and 3D Euclidean space2,4,10,11 revealing strong dimensional

dependence: 2D monodispersed spheres tend to crystallize

readily, because the locally dense hexagonal packing fills space;

in 3D the locally dense tetrahedral packing cannot fill space,

permitting a random close packed structure that is the subject

of much debate.12–14 Even in 2D, however, disorder can be

induced in bidispersed systems. Molecular dynamics simulations

have shown that there is a transition from order to disorder as

the degree of bidispersity is increased,15–18 and statistical models

of bidispersed particle packings have been used to predict the

local features of disordered bidispersed packings.19,20 The degree

of order or disorder can be measured by an order parameter such

as the hexatic bond orientational order.21 An exponentially large

number of packings exist between the crystalline and disordered

packings in flat space, showing that the glass transition in binary

disks is not ideal and that a continuous trade-off between

packing fraction and configurational entropy is possible.22

Crystalline order is geometrically frustrated on curved surfaces:23

an incompatibility between the preferred hexagonal symmetry of

the crystalline packing and the topology of the surface necessitates a

minimal number of defects—particles with a number of neighbors

other than 6—to accommodate the curvature. For monodispersed

particles, the packings are mainly crystalline with a transition

between isolated defects for small particle number and chains of

defects or scars akin to grain boundaries in bulk systems that occur

above a critical number of particles Nc E 110 and grow with system

size.24,25 The scars may join in asterisk-like motifs25 and are aligned

by anisotropic curvature.26 Jammed packings on spheres or spherical

codes have recently been studied in multiple dimensions.27

In this paper, we determine how curvature affects the packing

of bidispersed particles on a spherical surface to establish how the

crystalline to disordered transition is affected. We characterize the

packing fraction, connectivity and hexatic order parameter as a

function of particle number N, fraction of large particles w = NL/N

and bidispersity b = (r1� r2)/(r1 + r2) where r1 and r2 are the radii of

the particles and r1 Z r2. By identifying topological defects from

the neighbor graph we show that variation in these parameters

is explained by a percolation transition due to growth and

connectivity of the scar network, as well as commensurate local

arrangements of particles.

2 Model

Packings with high coverage fraction were produced using a

surface relaxation algorithm described in the Methods section
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below. Configurations produced by this procedure are referred

to as arrested, because they remain metastable if the simulation is

restarted; eventually, however, a Monte Carlo move will unjam the

arrested configuration, potentially facilitating further relaxation

and a consequent increase in the packing fraction. This process

occurs in real glasses and is known as aging. Extending a powerful

technique due to Donev et al.,8 we artificially age the arrested

structures using a linear program to find and execute an

unjamming motion of the particles and further relax the surface.

Iterative unjamming and relaxation guides the packing toward a

state that is collectively jammed with respect to movement of

the particles and further relaxation. As we report elsewhere,28

the convergence of this procedure is greatly accelerated by

preconditioning the packing, attaching a short range repulsive

interaction to the particles beyond the hard inter-penetrability

constraint and minimizing the corresponding energy by gradient

descent. This procedure moves the particles into the center of the

feasible region from which the linear program is more effectively

able to identify an unjamming motion. Each arrested structure

was subjected to this artificial aging process to produce a

corresponding ensemble of jammed structures.

For monodispersed particles,24 neighbors are assigned from a

Voronoi tessellation29 of the particle centers of mass, partitioning

the surface into N polygonal regions closest to a particular

particle. Two particles are neighbors if they share an adjacent

edge on the Voronoi tessellation. Generalizing this construction

to bidispersed particles with a weighted distance fails to uniquely

assign all points on the surface to a particle; two proposed

alternatives20 are the radical tessellation and the navigation

map, both of which recover the Voronoi tessellation in the limit

of monodispersed spheres. The radical tessellation utilizes the

radical plane as a separatrix between each pair of particles;

the navigation map partitions the surface into regions closest

to the surface of the particles rather than their center of mass. We

found little difference between quantities calculated from these

constructions and use the radical tessellation exclusively in the

remainder of the paper. From the radical tessellation, the adjoint

neighbor graph was constructed for each packing and the

coordination number determined for each particle.

3 Results and discussion

For each value of bidispersity on the interval b A [0,1] with a

resolution of Db = 0.005, an ensemble of 20 jammed configurations

was generated with w = 1/2 and varying number of particles N. The

packing fraction F, i.e. the fraction of the surface enclosed by the

particles, was calculated for each configuration and shown in Fig. 1.

For particle numbers above about N = 200, slight deviations from

the monodispersed case immediately introduce disorder and

reduce the packing fraction as expected. Above a critical value

of bidispersity bc B 0.09, however, we see a transition and F

increases, with an apparent shoulder at b E 0.4, up to a

maximum value of FE 0.87 at b = bA B 0.7 and then decreases

as b - 1. For N o 200, F increases monotonically up to a

maximum at a slightly lower value of bB 0.6. In the lower inset

of Fig. 1, we compare the packing fraction for 800 particles for

the ensemble of arrested and jammed packings. It is clear

that the arrested structures are slightly less efficiently packed,

but the shape of the plots is identical. We find similar results

for other N; this correspondence affirms that the trends are

geometric in origin rather than due to variation in the perfor-

mance of the algorithm at different b.

The maximum at b = bA is immediately explicable: it corre-

sponds to the special point at which the smaller particles fit

exactly in the interstices between the larger particles, depicted

in the upper inset of Fig. 1. We denote this the Apollonian point

in reference to the tiling. Packings around and above bA appear

mostly crystalline with the smaller particles separated into the

interstices; the packing fraction for N particles at b = 1 corresponds

exactly to that for N/2 particles at b = 0. No such immediate

explanation is obvious for the low and medium bidispersity

results, which appear to be well mixed; we therefore seek a more

detailed understanding of the structure.

One structural measure that reflects the degree to which the

packings are locally crystalline is the hexatic order parameter

c6 = hexp(i6yi)i, where the average is taken over the neighboring

particles. This is shown calculated from the dataset as a

function of b and N in Fig. 2A. A maximum occurs for all N at

b = 0 as expected; the value is reduced for smaller N reflecting

the disruption of crystallinity by the curvature. The hexatic

order drops with b, reaches a minimum around b B 0.45, rises

and then forms a plateau above the Apollonian point, albeit at a

value significantly lower than the b = 0 case, because here the

large particles have a higher coordination number. Variation in

c6 is significantly attenuated for low N where the influence of

the curvature is stronger.

To see whether hexatic order is replaced by other ordering,

we calculated n-atic order parameters cn = hexp(inyi)i for

Fig. 1 Packing fraction F as a function of bidispersity b = (r1 � r2)/(r1 + r2)

where r1 4 r2 for different particle numbers N and a fraction w = 0.5 of

large particles. The maximum b ¼
ffiffiffi

3
p

� 1 � 0:73, indicated with a vertical

dashed line, occurs for an Apollonian packing, i.e. where smaller particles

fit in the interstices of the larger particles as depicted in the upper inset.

Lower inset: Comparison of the packing fraction of arrested (gray) and

jammed (black) packings for N = 800 particles.
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N = 1600 as a function of b; the results are plotted in Fig. 2B. In

contrast to the hexatic order parameter, cn for n a 6 increases

with b from b = 0; moreover all cn exhibit a plateau above the

Apollonian point confirming the distinct nature of this regime.

Several values, n = 5, 8, 10, 11 of which 8 and 10 are the most

prominent, have cn narrowly greater than c6 for intermediate

values of b and possess maxima at b = 0.45 and b = 0.6 respectively.

Examining the packings, the peak in eightfold order is due to the

presence of octagonally coordinated arrangements: a common

and commensurate motif, depicted in Fig. 2C, where four

large and four small particles are arranged around a central

large particle, is allowed first for b ¼
ffiffiffi

2
p

� 1 � 0:41, which

coincides with the position of the shoulder in the plot of F(b)

in Fig. 1. The tenfold peak is explained by an analogous

decagonally coordinated motif, shown in Fig. 2D, that occurs

at b ¼ ð
ffiffiffi

5
p

� 1Þ=2 � 0:61. A variety of other commensurate

motifs exist for b around 0.4 with different mixtures of large

and small neighboring particles and appear to cause the

shoulder in F. It is interesting to note that decatic ordering:

10-fold rotational symmetry is incompatible with long range

order and is rarely seen in packings in flat space with the

exception of quasicrystals.30–32 As long range order is also

incompatible with curvature, it appears that curvature may

promote the increased 10-fold ordering.

We now examine the coordination number directly. In Fig. 2E,

we plot the average coordination number per particle, separated

into large–large, large–small and small–small contacts and for

different N. At infinitesimal b, each particle has six neighbors,

three smaller and three larger on average. With increasing b, the

number of large–small contacts per particle remains a constant

value of three; larger particles gain more large neighbors while

smaller particles lose small contacts. At the Apollonian point, the

smaller particles are surrounded by three larger neighbors,

while the larger particles are on average surrounded by six

large neighbors and three smaller neighbors. For b beyond the

Apollonian point bA, the coordination numbers remain constant,

consistent with the discussion above where smaller particles are

caged within the interstices of the larger particles. Smaller values

of N follow similar trends, but tend to have lower coordination

numbers.

Finally, we calculated two measures of structural order, the

pair correlation function g(s) and bond orientational correlation

function g6(s), that encode the particle’s local environment.33

Results are displayed in Fig. 2F and G respectively. The pair

correlation function g(s) for b = 0 shows persistent peaks at large

s indicative of long range order and a split second peak in

agreement with previous studies in flat space.34 As bidispersity

is increased to 0.06, the split peaks become a single peak,

representing the disruption of local hexagonal packing, but

the long range order persists. Proceeding to b = 0.09, g(s) is

now flat at large s, indicating that the long range order has

disappeared. This is the same value of bidispersity at the

minimum in F at bc was observed in Fig. 1 and is our first

indication that this minimum is associated with the disruption

of long range order. Above this value of b, g(s) retains short

range order, but the correlation length decreases with b. Plots of

g6(s) in Fig. 2E show an abrupt drop in the value of g6(s) for small

s at b = 0.06 and a reduction in the associated correlation length

with increasing b. For all values of b, g6 approaches a constant at

large s; there is no sign of algebraic decay that would indicate a

hexatic phase structure.

We turn to an alternative measure of crystallinity, the

fraction f6 of particles that possess a coordination number of

6. In Fig. 3A, we plot 1� f6 as a function of bidispersity revealing

a transition: as b increases from zero, 1 � f6 is approximately

constant then rises rapidly above b = 0.05, reaching a value of 1
2 at

b = bp = 0.15. Above bidispersity b E 0.5, a vanishing fraction of

particles possess six neighbors. These trends persist for all values

of N shown, but 1� f6 is larger at b = 0 for small N since topology

mandates a minimal number of defects.

To understand this transition further, it is necessary to

examine the microstructural information encoded in the neighbor

graphs, the adjoint graph of the radical tessellation. We crudely

separate the crystalline and non-crystalline components

by deleting from a neighbor graph all vertices that have six

neighbors, yielding the ‘‘non-hexatic’’ subgraph. Illustrative

examples of these subgraphs are depicted in Fig. 3B. For b = 0 the

subgraph consists of small disconnected components corresponding

Fig. 2 Ordering of the packings. (A) Hexatic order parameter as a function

of bidispersity b for different N. (B) Local order parameters cn as a function

b for a jammed packing of N = 1600 particles. Hexatic order dominates

except intermediate values of b where eight- and ten-fold order possess

maxima. (C and D) Commensurate configurations with eight and tenfold

order that occur at b ¼
ffiffiffi

2
p

� 1 � 0:41 and b ¼ ð
ffiffiffi

5
p

� 1Þ=2 � 0:61 respectively.

(E) Average coordination number for large–large (solid lines), large–small

(dashed lines) and small–small (dotted lines) inter-particle contacts for

varying N. (F) Pair correlation function g(s) and (G) orientational correlation

function g6(s), each shown for values of bidispersity b from 0.005 to 0.212

in steps of 0.030.
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to the previously-studied scars, which are essentially linear in

morphology, with a small number of branches. As bidispersity

increases to b = 0.1, just below bp, the connected subgraphs are

still recognizably scar-like in nature, but have a branching

morphology and are substantially longer. By b = 0.14, close to

bp, the defect subgraph remains disconnected, but is now

dominated by a few large connected graphs that are mostly

linear with branches. Finally, above bp at b = 0.2 the defect

subgraph is now mostly a single connected structure with a

small number of additional isolated defects; it is no longer

branching, but with linear sections that link into a foam-like

structure. For b = 0.3, the defect subgraph retains this structure,

but is more densely connected. The gradual growth and long-range

connection of the non-hexatic subgraph due to bidispersity is

therefore a percolation transition that occurs: as b increases

around bp, the number of sites participating in the non-hexatic

subgraph increases until they form a connected structure.

Percolation transitions are well-studied.35,36 The canonical

formulation is: given a network, and selecting a fraction p sites,

what is the probability that one of the selected sites belongs to a

long-range connected structure? Clearly, the system under

consideration cannot be precisely mapped onto this problem

because the neighbor graph changes with b. However, by

averaging over all particle pairs in Fig. 2B we see that the mean

coordination number remains 6 for all b. Thus, we examine the

canonical percolation problem on the neighbor graph of a

monodispersed packing for N = 800 particles as a proxy. From

such a graph, we randomly select a fraction p sites and repeat

this procedure to form n trials. Plotted in Fig. 3C is the fraction

of trials where the selected components form a connected

structure (gray line) and where the remaining components

retain their connectivity (black line).

We compare this to the bidispersity percolation transition by

the placing the non-hexatic subgraph in correspondence to the

selected subgraph in the random percolation model; the

selected fraction is therefore p = 1 � f6. The fraction of

connected hexatic and non-hexatic subgraphs at each value of

p is plotted as points in Fig. 3C, showing that the percolation

thresholds are in good agreement. In order of increasing p: at

p = 0.2, the hexatic subgraph begins to become disconnected,

50% of simulations have disconnected hexatic subgraphs at

p = 0.35 and the hexatic subgraph is fully disconnected by

p = 0.5. Connection of the non-hexatic subgraph and disconnection

of the hexatic subgraph are complementary processes, and hence

the traces in Fig. 3C are reflections of one another about p = 0.5.

Consequently, the non-hexatic subgraph starts to become connected

at p = 0.5; is 50% likely to be connected at p = 0.65 fully connected by

p = 0.8. Using the relation from 1 � f6 and b from Fig. 3A, we can

map this sequence of events onto values of bidispersity. Hexatic

disconnection starts at b = 0.075, is 50% likely to be connected

at b = 0.1 and complete by b = 0.15; the non-hexatic component

starts to become connected at b = 0.15, is 50% likely to be

connected at b = 0.2 and fully connected by b = 0.3 respectively.

The minimum in F at bc = 0.09, therefore, is associated with

disconnection of the hexatic fraction of the neighbor graph,

rather than percolation of the scars. We make this explicit in

Fig. 3D, which displays F as a function of 1 � f6 for each

simulation in our dataset, colored by whether the hexatic

subgraph remains connected or not.

To further test the correspondence of scar growth and

connection to random percolation theory, we also computed

the size of the largest connected component of the selected and

unselected subgraphs, plotted as solid lines in Fig. 3E. Results

from the bidispersed neighbor graphs, using 1 � f6 = p, are

Fig. 3 Percolation transition. (A) Fraction of particles 1� f6with coordination

number C a 6 as a function of bidispersity. (B) Representative defect

subgraphs different b illustrating growth and connection of the scar network.

(C) Comparison with random percolation: a fraction p sites are randomly

selected on a b = 0, N = 800 neighbor graph. Shown is the fraction of

simulations where the selected sites form a connected structure (gray solid

line) and the fraction where the non-selected sites retain global connectivity

(black solid line). Points show the fraction of simulations where the hexatic

(black points) and non-hexatic subgraphs remain connected. (D) Packing

fraction of particles as a function of the non-hexatic fraction 1 � f6. Black

points have a connected hexatic component; gray points indicate a

disconnected hexatic component. (E) Size of the largest connected

component for random percolation (solid lines) and bidispersed neighbor

graphs (points). (F) Fitted fractal dimension of the cluster size as a function

of the selected fraction for random percolation (black solid lines) and

bidispersed neighbor graphs (black points). The cluster size as a function of

selected fraction is also shown for bidispersed neighbor graphs; the

vertical gray bar indicates where the cluster size has saturated due to

finite system size.
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plotted as points in Fig. 3E. There is excellent agreement

between the two processes.

Another quantity of interest is the cluster radius R,

2R2 ¼
X

ij

dij
2

n2
; (1)

where the sum is taken over all pairs of particles belonging to a

connected cluster, n is the number of sites in the cluster and dij
is the distance between the centroids of two particles i and j in

the cluster. Here, we use the arclength distance between two

particles rather than the Euclidean distance. Near the percola-

tion threshold, the cluster size scales as the cluster radius as a

power law,

nc p RD, (2)

where the exponent D is referred to in the percolation literature

as the fractal dimension. D is, according to percolation theory,

a universal parameter that depends only on the dimensionality

of the system and independent of the details of the lattice. In

the limit L-N, D- 1.896 in 2D andE2.5 in 3D.35 Studies in

2D Euclidean space of random packings of bidispersed disks37

and dimers38 reproduce these predicted values. We calculated

cluster radii and corresponding cluster size both from our

neighbor graphs of bidispersed packings as well as the random

percolation model on a monodispersed graph, and fitted these to

a power law. Fig. 3F shows the results for random percolation

(black solid lines) and bidispersed neighbor graphs (black points)

which are in good agreement. At the percolation point p = 0.65,

the fractal dimension isB1.86 which is close to the 2D universal

value. The cluster size is also shown as a function of p in 3F, and

saturates at p = 0.65, verifying that this is indeed the percolation

point. A more detailed study to establish whether the residual

discrepancy in D is due to the curved space is left to future work.

From the strong agreement between connected fraction and

fraction belonging to the connected component as a function of

p as well as cluster radius scaling, we infer that the qualitative

features of the bidispersity percolation transition are well

predicted by a random percolation transition on the mono-

dispersed neighbor graph. To test this further, we attempted to

disrupt the transition by varying the fraction of large particles

w = NL/N, motivated by the idea that growth of the scars might

be prevented if sufficiently few minority particles are present.

Results are shown in Fig. 4.

First we examine the effect of stoichiometry on the structure.

The packing fraction for several values of w is shown in Fig. 4A.

Small values of w lead to a dramatic enhancement of the packing

fraction around the Apollonian point, while the packing fraction is

less sensitive to b for w close to 1. This might be anticipated

because a small number of large particles, the low w limit, can

create voids in the packings of small particles while a few small

particles, the high w limit, can be accommodated into the inter-

stices. We performed an additional set of simulations varying 0o

w o 0.3 rather than b to determine the nature of the maximum in

F as a function of stoichiometry. Representative packings from

these additional simulations are shown in ESI† Fig. S1.

We also show in ESI† Fig. S2 the neighbor subgraphs for

large and small particles. These show interesting clustering

behavior of the particles in a few cases: for small fractions of

large particles (low w), large particles are well-dispersed in the

small particles, forming chains that grow and connect with

increasing w. For low w and high b, the smaller particles tend to

be localized into the space between the large particles, forming

crystalline regions. Finally, when large particles cover most of

the surface (high w), the smaller particles again cluster into the

interstices, but only a few particles can fit. We note that our

simulations do not enforce a particular degree of mixing, and

that previous work indicates a continuous tradeoff between F

and configurational entropy is possible;22 how the curvature

affects this tradeoff is left to future work.

The packing fractions plotted in Fig. 4B show that for values

of bidispersity b4 0.4 a maximum exists in F for at some value

of w. The maximum F = 0.912 found is at around b = 0.85 and

w = 0.025, corresponding to about 20/800 particles. This value is

somewhat short of the bidispersed disk lattice in 2D Euclidean

space which has F2D = 0.9503. Visually, this particular packing

(displayed in the inset of Fig. 4B) resembles a very disordered

low N packing with the interstices filled by smaller particles.

Large particles are relatively isolated from one another, making

on average only 4 contacts with other large particles, and 12

contacts with small particles. We speculate that values of F even

closer to F2D may be achieved by careful tuning of N, b and w.

According to the results shown above in 2B–D for w = 0.5,

between the percolation and Apollonian points the packings

are influenced by the possibility of symmetric commensurate

motifs, leading to a rich sequence of 5, 12, 11 and 8 fold order

replacing hexatic order. In contrast, stoichiometry values away

from w = 0.5 seem to suppress this sequence as shown in Fig. 4C

which displays the most prominent local order parameter cn

for each value of b and w. Full plots of the order parameter and

coordination number for each w are shown in ESI† Fig. S3. For

w4 0.5, hexagonal and dodecagonal ordering remain for w = 0.7

and w = 0.9 shows only hexagonal ordering. w = 0.3 preserves five

and tenfold ordering and interestingly introduces ninefold

order at the Apollonian point. At w = 0.1, only hexagonal order

remains below the Apollonian point, with fivefold order dominating

above it. Noting that the commensurate motifs shown in 2C and D

involve an equal number of small and large particles, it would

appear that the suppression of these motifs, and introduction of

others, simply reflects the relative abundance of different particle

types. For example the ninefold order at w = 0.3 and bB 0.7 emerges

due to commensurate arrangements of 3 large and 6 small particles

around a central large particle.

We now turn to the effect of stoichiometry on the percolation

transition. The non-hexatic fraction 1 � f6 is shown as a

function of b for the different w tested in Fig. 4D. Also shown

as a dashed line at 1 � f6 = 0.4 is the value from the random

percolation model (see Fig. 3D) above which the hexatic sub-

graph is disconnected. The line for w = 0.9 flattens out at high

b just below the critical value; the line for w = 0.1 reaches it at a

much higher value of b than for w = 0.5. It is therefore expected

that the non-hexatic subgraphs for w = 0.9 should not display
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defect percolation while those for w = 0.1 should percolate

around b B 0.4. Examining the packings themselves, shown

in Fig. 4E, together with the non-hexatic subgraphs, shown in

Fig. 4F, this is correct. The scars in the w = 0.9 packings indeed

elongate with increasing b, but never form a connected structure.

For w = 0.1, b = 0.3 is disconnected while b = 0.5 forms a connected

structure. For intermediate values of w, the non-hexatic component

percolates at a similar value of b to the earlier results for w = 0.5.

We therefore conclude that the random percolation model

successfully predicts the percolation point of the scars as a

function of stoichiometry.

Calculating the fractal dimension at percolation, displayed

in ESI† Fig. S4, we find that w = 0.3 and 0.7 have values (D = 1.84

and D = 1.83 respectively) just short of the w = 0.5 value of

D = 1.85; w = 0.1, however, yields a slightly lower value of D = 1.8.

These numbers all fall short of the universal value of D- 1.896

by an amount consistent with previous studies37 due to finite

system size. For w = 0.1, the large particles are much larger

relative to the radius of curvature at percolation, and it remains

possible that the discrepancy is due to the surface curvature.

A more finely resolved study of the low w regime should be

conducted to explore this possibility.

4 Conclusion

We have shown that the packing fraction of bidispersed packings of

spheres on a spherical surface is determined by three influences: an

Apollonian packing for b E 0.73 where small particles fit into

the interstices of large particles produces a global maximum;

commensurate configurations of particles yield an inflexion point at

b E 0.41; a minimum at b E 0.1 is due to the growth and

percolation of scars previously observed in the monodispersed case.

At this point, the non-hexatic subgraph contains a cluster that

percolates throughout the whole structure. Chains of defects or

scars are an important feature of crystals on curved surfaces, and

our work therefore provides a new control parameter, bidispersity,

to vary their length. This might be desirable experimentally, in a

colloidosome for instance, because the scars control themechanical

response and failure point of the system.39

Fig. 4 Effect of stoichiometry. (A) Packing fraction as a function of bidispersity for different number fractions of large particles w = NL/N; (B) packing

fraction as a function of w for different b. Inset: Configuration with highest packing fraction found F = 0.912 at b = 0.85 and w = 0.025. (C) Most prominent

local order parameter cn as a function of b and w. (D) Fraction of particles 1 � f6 with coordination number C a 6 as a function of b for different w. The

dashed horizontal line represents the critical value from the random percolation model at which the hexatic subgraph becomes totally disconnected.

(E) Representative packings colored by coordination number and (F) non-hexatic subgraphs shown as a function of b and w.
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By adjusting the ratio of large particles to small particles w,

we have shown that the percolation transition can be shifted in

bidispersity and even suppressed entirely for large w. The

growing lengthscale and critical fraction for percolation were

found to be in excellent agreement with those for random

percolation on the monodispersed neighbor graph, and the

fractal dimension of the clusters was also found to be in good

agreement with the universal value for 2D percolation accounting

for the finite system size.

Around the Apollonian point, varying w and b simultaneously

permits further enhancement of F. The point b = 0.85 and

w = 0.025 had the highest fraction found, F = 0.912, but we

speculate values closer to the 2D bidispersed disk lattice

F2D = 0.9503 might be found with further tuning. Because we

did not enforce a degree of mixing as has been shown to be

important in flat space,22 it is conceivable that for the values of b

and w investigated, a configuration of higher F might be found.

The interplay of curvature, packing fraction and configurational

entropy is therefore an important question for future work.

5 Methods

Packings with high coverage fraction were produced using a

surface relaxation algorithm: N spherical particles are initially

placed using random sequential absorption with their centers

of mass on a sphere of radius R = 1. Particles are randomly

assigned to two categories corresponding to larger and smaller

radii respectively. The simulation proceeds by, first, diffusion

sweeps where, particles are moved in random order some distance

drawn from a Gaussian distribution of width s = 2r1 � 10�3 in a

random direction along the surface. Moves that cause overlap are

rejected. As the packing becomes dense, an adaptive step size is

used to reduce the number of moves rejected due to overlap: s =

10hsi, where hsi is the geometric mean of the separation between

each particle and its three nearest neighbors. Secondly, surface

relaxation moves slowly decrease the radius of the surface by an

amount DR, where initially DR = 10�5. After the surface radius is

reduced, particles are projected down onto the nearest point on

the surface. After projection, a gradient descent minimization is

run on the particles (where the interparticle energy is linear the

amount of overlap) until overlap is undone. If overlap can not be

undone, the surface relaxation move is undone and particle

positions are reset, and simulation continues with DR set to

DR/2. 20 diffusion sweeps are carried out between each surface

relaxation step. The simulation halts when DR is reduced to

2�14 times its original value.
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