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Neuromorphic photonic networks 
using silicon photonic weight banks
Alexander N. Tait  , Thomas Ferreira de Lima, Ellen Zhou, Allie X. Wu, Mitchell A. Nahmias, 
Bhavin J. Shastri   & Paul R. Prucnal

Photonic systems for high-performance information processing have attracted renewed interest. 
Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed 
the capabilities of electronics. We report first observations of a recurrent silicon photonic neural 
network, in which connections are configured by microring weight banks. A mathematical isomorphism 
between the silicon photonic circuit and a continuous neural network model is demonstrated through 
dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic 
neural network is programmed using “neural compiler” to solve a differential system emulation task. 
A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive 
power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are 
compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could 
access new regimes of ultrafast information processing for radio, control, and scientific computing.

Light forms the global backbone of information transmission yet is rarely used for information transformation. 
Digital optical logic faces fundamental physical challenges1. Many analog approaches have been researched2–4, 
but analog optical co-processors have faced major economic challenges. Optical systems have never achieved 
competitive manufacturability, nor have they satisfied a sufficiently general processing demand better than digital 
electronic contemporaries. Incipient changes in the supply and demand for photonics have the potential to spark 
a resurgence in optical information processing.

A germinating silicon photonic integration industry promises to supply the manufacturing economomies 
normally reserved for microelectronics. While firmly rooted in demand for datacenter transceivers5, the indus-
trialization of photonics would impact other application areas6. Industrial microfabrication ecosystems propel 
technology roadmapping7, library standardization8, 9, and broadened accessibility10, all of which could open 
fundamentally new research directions into large-scale photonic systems. Large-scale beam steerers have been 
realized11, and on-chip communication networks have been envisioned12–14; however, opportunities for scalable 
silicon photonic information processing systems remain largely unexplored.

Concurrently, photonic devices have found analog signal processing niches where electronics can no longer 
satisfy demands for bandwidth and reconfigurability. This situation is exemplified by radio frequency (RF) pro-
cessing, in which front-ends have come to be limited by RF electronics, analog-to-digital converters (ADCs), and 
digital signal processors (DSP)15, 16. In response, RF photonics has offered respective solutions for tunable RF 
filters17, 18, ADC itself19, and simple processing tasks that can be moved from DSP into the analog subsystem20–22. 
RF photonic circuits that can be transcribed from fiber to silicon are likely to reap the economic benefits of silicon 
photonic integration. In a distinct vein, an unprecedented possibility for large-scale photonic system integration 
could enable systems beyond what can be considered in fiber. If scalable information processing with analog pho-
tonics is to be considered, new standards relating physics to processing must be developed and verified.

Standardized concepts that link physics to computational models are required to define essential quantitative 
engineering tools, namely metrics, algorithms, and benchmarks. For example, a conventional gate has simultane-
ous meaning as an abstract logical operation and as an arrangement of electronic semiconductors and thereby acts 
as a conduit between device engineering and computational performance. In another case, neuromorphic elec-
tronics adopt unconventional standards defining spiking neural networks as event-based packet networks23–25. 
These architectures’ adherence to neural network models unlocks a wealth of metrics26, algorithms27, 28, tools29, 30,  
and benchmarks31 developed specifically for neural networks. Likewise, scalable information processing with 
analog photonics would rely upon standards defining the relationship between photonic physics and a suitable 
processing model. Neural networks are among the most well-studied models for information processing with 
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distributed analog elements. The fact that distributed interconnection and analog dynamics are performance 
strongsuits of photonic physics motivates the study of neuromorphic photonics.

“Broadcast-and-weight”32 was proposed as a standard protocol for implementing neuromorphic processors 
using integrated photonic devices. Broadcast-and-weight is potentially compatible with mainstream silicon pho-
tonic device platforms, unlike free-space optical neural networks4, 33. It is capable of implementing generalized 
reconfigurable and recurrent neural network models. In the broadcast-and-weight protocol, shown in Fig. 1(a), 
each neuron’s output is assigned a unique wavelength carrier that is wavelength division multiplexed (WDM) 
and broadcast. Incoming WDM signals are weighted by reconfigurable, continuous-valued filters called photonic 
weight banks and then summed by total power detection. This electrical weighted sum then modulates the cor-
responding WDM carrier through a nonlinear or dynamical electro-optic process. Previous work on microring 
(MRR) weight banks have established a correspondence between weighted addition operations and integrated 
photonic filters. In reference to the operation, MRR weight bank scalability34 and accuracy35 metrics can be 
defined, but MRR weight banks have not been demonstrated within a network.

In this manuscript, we demonstrate a broadcast-and-weight system configured by microring weight banks that 
is isomorphic to a continuous-time recurrent neural network (CTRNN) model. As opposed to “brain-inspired” 
and “neuro-mimetic”, “neuromorphic” is an unambiguous mathematical concept meaning that a physical system’s 
governing equations are isomorphic to those describing an abstract neural network model. Isomorphic dynami-
cal systems share qualtitative changes in dynamics as a result of parameter variation. We adopt a strategy for prov-
ing neuromorphism experimentally by comparing these dynamical transitions (a.k.a. bifurcations) induced in an 
experimental device against those predicted of a CTRNN model. In particular, we observe single-node bistabil-
ity across a cusp bifurcation and two-node oscillation across a Hopf bifurcation. While oscillatory dynamics in 
optoelectronic devices have long been studied36, 37, this work relies on configuring an analog photonic network 
that can be scaled to more nodes in principle. This implies that CTRNN metrics, simulators, algorithms, and 
benchmarks can be applied to larger neuromorphic silicon photonic systems. To illustrate the significance of this 
implication, we simulate a 24-modulator silicon photonic CTRNN solving a differential equation problem. The 
system is programmed by appropriating an existing “neural compiler”29 and benchmarked against a conventional 
CPU solving the same problem, predicting an acceleration factor of 294×.

Results
The CTRNN model is described by a set of ordinary differential equations coupled through a weight matrix.

τ
= − +d t

dt
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where s(t) are state variables with timeconstants τ, W is the recurrent weight matrix, y(t) are neuron outputs, win 
are input weights, and u(t) is an external input. σ is a saturating transfer function associated with each neuron. 
Figure 1(b,c) shows the integrated, reconfigurable analog network and experimental setup. Signals u and y are 
physically represented as the power envelope of different optical carrier wavelengths. The weight elements of W 
and win are implemented as transmission values through a network of reconfigurable MRR filters. The neuron 
transfer function, σ, is implemented by the sinusoidal electro-optic transfer function of a fiber Mach-Zehnder 
modulator (MZM). The neuron state, s, is the electrical voltage applied to the MZM, whose timeconstant, τ, is 
determined by an electronic low-pass filter. We aim to establish a correspondence between experimental bifur-
cations induced by varying MRR weights and the modeled bifurcations38 derived in Supplementary Section 1.

Figure 1. Broadcast-and-weight protocol and experiment. (a) Concept of a broadcast-and-weight network 
with modulators used as neurons. MRR: microring resonator, BPD: balanced photodiode, LD: laser diode, 
MZM: Mach-Zehnder modulator, WDM: wavelength-division multiplexer. (b) Micrograph of 4-node recurrent 
broadcast-and-weight network with 16 tunable microring (MRR) weights and fiber-to-chip grating couplers. (c) 
Scanning electron micrograph of 1:4 splitter. (d) Experimental setup with two off-chip MZM neurons and one 
external input. Signals are wavelength-multiplexed in an arrayed waveguide grating (AWG) and coupled into a 
2 × 3 subnetwork with MRR weights, w11, w12, etc. Neuron state is represented by voltages s1 and s2 across low-
pass filtered transimpedance amplifiers, which receive inputs from the balanced photodetectors of each MRR 
weight bank.
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Cusp Bifurcation. A cusp bifurcation characterizes the onset of bistability in a single node with self-feedback. 
To induce and observe a cusp, the feedback weight of node 1 is parameterized as w11 = WF. The neurosynaptic 
signal, s1, is recorded as the feedback weight is swept through 500 points from 0.05–0.85, and the input is swept 
in the rising (blue surface) and falling (red surface) directions. The parameters τ, α, and κ in equation (S1.1) are 
fit to minimize root mean squared error between model and data surfaces. The best fit model has a cusp point at 
WB = 0.54. Figure 2(a) shows a modeled cusp surface described by equation (S1.1) and fit to data from Fig. 2(b). 
In Fig. 2(b), the data surfaces are interpolated at particular planes and projected onto 2D axes as red/blue points. 
The corresponding slices of the model surface are similarly projected as green lines. The u = 0 slice projected on 
the s − WF plane yields a pitchfork curve described by equation (S1.2). The WF = 0.08 slice projected on the u − s 
plane yields the bistable curve described by equation (S1.3). Finally, the s = 0 slice projected on the u − WF plane 
yields the cusp curve described by equation (S1.4).

The experimental reproduction of pitchfork, bistable, and cusp bifurcations is demonstrative of an isomor-
phism between the single-node model and the device under test. An opening of an area between rising and falling 
data surfaces is characteristic of bistability. The transition boundary closely follows a cusp form. While the pitch-
fork and bistable slices reproduce the number and growth trends of fixed points, their fits have non-idealities. These 
non-idealities can be attributed to a hard saturation of the electrical transimpedance amplifier when the input 
voltage and feedback weight are high. Furthermore, the stability of cusp measurements serve as a control indi-
cating the absence of time-delayed dynamics resulting from long fiber delays and causing spurious oscillations39.  
Electrical low-pass filtering is used to eliminate these unmodeled dynamics in order to observe modeled 
bifurcations.

Hopf Bifurcation. Dynamical systems are capable of oscillating if there exists a closed orbit (a.k.a. limit 
cycle) in the state space, which must therefore exceed one dimension. The Hopf bifurcation occurs when a stable 
fixed-point becomes unstable while giving rise to a stable limit cycle. Hopf bifurcations are further characterized 
by oscillations that approach zero amplitude and nonzero frequency near the bifurcation point38. We induce 
a Hopf bifurcation by configuring the MRR weight matrix to have asymmetric, fixed off-diagonals and equal, 
parameterized diagonals.

Figure 3 compares the observed and predicted oscillation onset, amplitude, and frequency. Figure 3(a–c) show 
the time traces for below, near, and above the oscillation threshold. Above threshold, oscillation occurs in the 
range of 1–5 kHz, as limited by electronic low-pass filters and feedback delay. Figure 3(d) shows the result of a 
fine sweep of self-feedback weights in the 2-node network, exhibiting the paraboloid shape of a Hopf bifurcation. 
The voltage of neuron 1 is plotted against that of neuron 2 with color corresponding to WF parameter. The peak 
oscillation amplitude for each weight is then projected onto the WF − y2 plane in black, and these amplitudes are 
fit using the model from equation (S1.8) (red). Bifurcation occurs at WB = 0.48 in the fit model. Figure 3(e) plots 
the oscillation frequency above the Hopf point. Data are discarded for WB < WF < 0.53 because the oscillations 
are erratic in the sensitive transition region. Frequency data are then fit with the model of equation (S1.10). The 
frequency axis is scaled so that 1.0 corresponds to the model frequency at region boundary, which is 4.81 kHz. 
The Hopf bifurcation only occurs in systems of more than one dimension, thus confirming the observation of a 
small integrated photonic neural network.

Significantly above the bifurcation point, experimental oscillation amplitude and frequency closely match 
model predictions, but discrepancies are apparent in the transition regime. Limit cycles with amplitudes compa-
rable to noise amplitude can be destabilized by their proximity to the unstable fixed point at zero. This effect could 
explain the middle inset of Fig. 3, in which a small oscillation grows and then shrinks. Part of this discrepancy 
can be explained by weight inaccuracy due to inter-bank thermal cross-talk. The two MRR weight banks were 
calibrated independently accounting only for intra-bank thermal cross-talk. As seen in Fig. 1(c), the physical dis-
tance between w12 (nominally −1) and w22 (nominally WF) is approximately 100 µm. While inter-bank cross-talk 
is not a major effect, w12 is very sensitive because weight −1 corresponds to on-resonance, and the dynamics are 
especially sensitive to the weight values near the bifurcation point.

Figure 2. A cusp bifurcation in a single node with feedback weight, WF, external input, u, and neurosynaptic 
state, s. (a) Theoretical model surface (gray) and bifurcation curves (green) plotted in 3D. Parameters of the 
model are fit to data. (b) Experimental data for increasing (blue surface) and decreasing (red surface) input. 
Theoretical bifurcation curves – with parameters identical to those in (a) – are projected onto 2D axes. The data 
surfaces are sliced at the planes: u = 0, s = 0, and WF = 0.08, and similarly projected onto the axes (red and blue 
points) to illustrate the reproduction of pitchfork, cusp, and saddle-node bifurcations, respectively.
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Emulation Benchmark. A dynamical isomorphism between a silicon photonic system and the CTRNN 
model of equations (1 and 2) implies that larger, faster neuromorphic silicon photonic systems could utilize 
algorithms and tools developed for generic CTRNNs. Here, we apply a “neural compiler” called the Neural 
Engineering Framework (NEF)40 to program a simulated photonic CTRNN to solve an ordinary differential 
equation (ODE). This simulation is benchmarked against a conventional central processing unit (CPU) solving 
the same task. The procedures for each approach are detailed in Methods. As opposed to implementation-specific 
metrics, benchmarks are task-oriented indicators suitable for comparing technologies that use disparate comput-
ing standards. Benchmarking approaches are therefore needed to evaluate the potentials of any unconventional 
processor in application domains currently served by conventional processors. The chosen benchmark problem 
consists of solving a well-known ODE called the Lorenz attractor, described by a system of three coupled ODEs 
with no external inputs:

γ υ
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= − −
= − + −

�
�
�

⁎x x x
x x x x
x x x x
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where x are the simulation state variables, and γ is a time scaling factor. When parameters, υ, β, and ρ, are set 
to (υ, β, ρ) = (6.5, 8/3, 28), the solutions of the attractor are chaotic. The photonic CTRNN and CPU solutions 
are compared in x phase space in Fig. 4(a,b) and the time-domain in Fig. 4(c,d). Figure 4(e) plots the physical 
modulator voltages, s, linear combinations of which represent simulation variables, x, as discussed in Methods. 
Because the two simulators are implemented differently, they cannot be compared based on equivalent metrics; 

Figure 3. A Hopf bifurcation between stable and oscillating states. (a–c) Time traces below, near, and above 
the bifurcation. (d) Oscillation growth versus feedback weight strength. Color corresponds to feedback 
weight parameter, WF, to improve visibility. Black shadow: average experimental amplitudes; solid red 
curve: corresponding fit model; dotted red line: unstable branch. (e) Frequency of oscillation above the Hopf 
bifurcation. The observed data (black points) are compared to the expected trend of equation (S1.10) (red 
curve). Frequencies are normalized to the threshold frequency of 4.81 kHz.

Figure 4. Photonic CTRNN benchmarking against a CPU. (a,b) Phase diagrams of the Lorenz attractor 
simulated by a conventional CPU (a) and a photonic CTRNN (b). (c,d) Time traces of simulation variables 
for a conventional CPU (c) and a photonic CTRNN (d). The horizontal axes are labeled in physical real time, 
and cover equal intervals of virtual simulation time, as benchmarked by γCPU and γPho. The ratio of real-time 
values of γ’s indicates a 294-fold acceleration. (e) Time traces of modulator voltages si (minor y-axis) for each 
modulator neuron i (major y-axis) in the photonic CTRNN. The simulation variables, x, in (d) are linear 
decodings of physical variables, s, in (e).
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however, the time scaling factor, γ, links physical real-time to a virtual simulation time basis, in which a direct 
comparison can be made.

Figure 4(c,d) plots photonic CTRNN and CPU solutions in the real-time bases, scaled to cover equal sim-
ulation intervals. The discrete-time simulation is linked to physical real-time by the step calculation time, 
∆t = 24.5 ns, and its stability is limited by numerical divergence. We find that γCPU ≥ ∆t × 150 is sufficient for 
<1% divergence probability, resulting in γCPU = 3.68 µs. The CTRNN simulation is linked to physical real-time by 
its feedback delay, tfb = 47.8 ps, and its stability is limited by time-delayed dynamics. We find that γPho ≥ tfb × 260 
is sufficient to avoid spurious dynamics, resulting in γPho = 12.5 ns. The acceleration factor, γCPU/γPho, is thus pre-
dicted to be 294×.

Implementing this network on a silicon photonic chip would require 24 laser wavelengths, 24 modulators, and 
24 MRR weight banks, for a total of 576 MRR weights. The power used by the CTRNN would be dominated by 
static MRR tuning and pump lasers,as discussed in the Methods section. Minimum pump power is determined 
by the requirement that recurrently connected neurons are able to exhibit positive eigenvalues. Considering 24 
lasers with a realistic wall-plug efficiency of 5%, minimum total system power is expected to be 106 mW. The area 
used by the photonic CTRNN is split evenly between MRR weight banks (576 × 25 µm × 25 µm = 0.36 mm2) and 
modulators41 (24 × 500 µm × 25 µm = 0.30 mm2). The fundamental limits of these performance metrics are com-
pared with other neuromorphic approaches below.

While the qualitative Lorenz behavior is reproduced by CTRNN and CPU implementations, the chaotic 
nature of the attractor presents a challenge for benchmarking emulation accuracy. Non-chaotic partial differential 
equations (PDEs) exist to serve as accuracy benchmarks42, 43; however, most non-trivial ODEs are chaotic. One 
exception is work on central pattern generators (CPGs) that are used to shape oscillations for driving mechani-
cal locomotion44. CPGs have been implemented with analog ASICs45 and digital FPGAs46. While work on CPG 
hardware has fallen in sub-kHz timescales, similar tasks could be developed for GHz timescales with possible 
application to adaptive RF waveform generation. Further work could develop CPG-like tasks to benchmark the 
accuracy of photonic CTRNN ODE emulators.

Accuracy can be assessed through metrics of weight accuracy. Previous work discussed the precision and 
accuracy to which MRR weight banks could be configured to a desired weight vector35. Even in the presence of 
fabrication variation and thermal cross-talk, the dynamic weight accuracy was demonstrated to be 4.1 + 1(sign) 
bits and anticipated to increase with improved design. Since the weight is analog, its dynamic accuracy (range/
command error) is not an integer; however, this metric corresponds to bit resolution in digital architectures. In 
the majority of modern-day neuromorphic hardware, this resolution is selected to be 4 + 1(sign) bits24, 47, 48 as a 
tradeoff between hardware resources and functionality. Significant study has been devoted to the effect of limited 
weight resolution on neural network function49 and techniques for mitigating detrimental effects50.

Neuromorphic photonic metrics. In addition to task-driven benchmark analyses, we can perform 
component-level metric comparisions with other neuromorphic systems in terms of area, signal bandwidth, and 
synaptic operation (SOP) energy. The 24-modulator photonic CTRNN used as an emulation benchmark was pre-
dicted to use a 4.4 mW/neuron using realistic pump lasers, and was limited to 1 GHz bandwidth to spoil spurious 
oscillations. This results in a computational efficiency of 180 fJ/SOP. The area of an MRR weight is approximately 
(l × w)/N2 = 25 × 25 = 625 µm2/synapse.

The coherent approach described by Shen et al.51 based on a matrix of Mach-Zehnder interferometers (MZIs) 
would exhibit similar fundamental energy and speed limitations, given similar assumptions about detection 
bandwidth and laser efficiency. The power requirements of this approach were limited by nonlinear threshold 
activation, rather than signal cascadability. Supposing a laser efficiency of 5%, this was estimated to be around 
20 mW/neuron. A 24-neuron system limited to 1 GHz bandwidth would therefore achieve 830 fJ/SOP. While 
there is no one-to-one correspondence between MZIs and synapses, there is still a quadratic area scaling relation-
ship: (l × w)/N2 = 200 × 100 = 20,000 µm2/synapse, as limited by thermal phase shifter dimension.

The superconducting optoelectronic approach described by Shainline et al.52 would be optimized for scala-
bility and efficiency, instead of speed. This can be attributed to the extreme sensitivity of cryogenic photodetec-
tors, but this difference also limits signal bandwidth to 20 MHz. For a 700-neuron interconnect, the wall-plug 
efficiency is estimated to be around 20 fJ/SOP. Area was calculated to be (l × w)/N2 = 1.4 × 15 = 21 µm2/synapse.

A metric analysis can extend to include neuromorphic electronics, although metrics do not necessarily indi-
cate signal processing merit. Electronic and photonic neuromorphics are designed to address complementary 
types of problems. Akopyan et al.24 demonstrated a chip containing 256 million synapses dissipating 65 mW. The 
signal bandwidth, determined by the effective tick, or timestep, is 1.0 kHz, and the chip area is 4.3 cm2. This results 
in an effective 240 fJ/SOP and effective area of 6.0 µm2/synapse. We note that TrueNorth is event-based, meaning 
explicit computation does not occur for every effective SOP, but only when the input to a synapse is nonzero.

Discussion
We have demonstrated an isomorphism between a silicon photonic broadcast-and-weight system and a recon-
figurable CTRNN model through observations of predicted bifurcations. In addition to proof-of-concept, this 
repeatable method could be used to characterize the standard performance of single neurons and pairs of neurons 
within larger systems. Employing neuromorphic properties, we then illustrated a task-oriented programming 
approach and benchmark analysis. Similar analyses could assess the potentials of analog photonic processors 
against state-of-the-art conventional processors in many application domains. Here, we discuss the implications 
of these results in the broader context of information processing with photonic devices.

This work constitutes the first investigation of photonic neurons implemented by modulators, an important step 
towards silicon-compatible neuromorphic photonics. Interest in integrated lasers with neuron-like spiking behav-
ior has flourished over the past several years53, 54. Experimental work has so far focused on isolated neurons55–57  



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS | 7: 7430  | DOI:10.1038/s41598-017-07754-z

and fixed, cascadable chains58, 59. The shortage of research on networks of these lasers might be explained by the 
challenges of implementing low-loss, compact, and tunable filters in the active III/V platforms required for laser 
gain. In some cases where fan-in is sensitive to input optical phase, it is also unclear how networking would occur 
without global laser synchronization. In contrast to lasers, Mach-Zehnder, microring, and electroabsorption 
modulators are all silicon-compatible. Modulator-class neurons are therefore a final step towards making com-
plete broadcast-and-weight systems entirely compatible with silicon foundry platforms. While laser-class neurons 
with spiking dynamics present richer processing opportunities, modulator-class neurons would still possess the 
formidable repertoire of CTRNN functions.

In parallel with work on individual laser neurons, recent research has also investigated systems with isomorphisms 
to neural network models. A fully integrated superconducting optoelectronic network was recently proposed52  
to offer unmatched energy efficiency. While based on an exotic superconducting platform, this approach accom-
plishes fan-in using incoherent optical power detection in a way compatible with the broadcast-and-weight pro-
tocol. A programmable nanophotonic processor was recently studied in the context of deep learning51. Coherent 
optical interconnects exhibit a sensitivity to optical phase that must be re-synchronized after each layer. In the 
demonstration, optical nonlinearity and phase regeneration were performed digitally. Analog solutions for coun-
teracting signal-dependent phase shifts induced by nonlinear materials60 have not yet been proposed. Recurrent 
neural networks have been investigated in fiber61. While the current work employs fiber neurons, it is the first 
demonstration of a recurrent weight network that is integrated. Optical neural networks in free-space have also 
been investigated in the past4 and recently33. Free-space systems occupy an extra dimension but can not necessar-
ily use it for increased scalability. The volume between focal planes is used for diffractive evolution of the optical 
field and unused for network configuration. Spatial light modulators that configure the network are generally 
planar. Shainline et al. noted that integrated neuromorphic photonic systems could potentially be stacked to take 
advantage of a third dimension52.

Reservoir computing techniques that take inspiration from certain brain properties (e.g. analog, distributed) 
have received substantial recent attention from the photonics community62–65. Reservoir techniques rely on 
supervised learning to discern a desired behavior from a large number of complex dynamics, instead of relying 
on establishing an isomorphism to a model. Neuromorphic and reservoir approaches differ fundamentally and 
possess complementary advantages. Both derive a broad repertoire of behaviors (often referred to as complexity) 
from a large number of physical degrees-of-freedom (e.g. optical intensities) coupled through interaction param-
eters (e.g. transmissions). Both offer means of selecting a specific, desired behavior from this repertoire using 
controllable parameters. In neuromorphic systems, network weights are both the interaction and controllable 
parameters, whereas, in reservoir computers, these two groups of parameters are separate. This distinction has two 
major implications. Firstly, the interaction parameters of a reservoir do not need to be observable or even repeat-
able from system to system. Reservoirs can thus derive complexity from physical processes that are difficult to 
model or reproduce, such as coupled amplifiers66, coupled nonlinear MRRs67, time-delayed dynamics in fibers64,  
and fixed interferometric circuits63. Furthermore, they do not require significant hardware to control the state of 
the reservoir. Neuromorphic hardware has a burden to correspond physical parameters (e.g. drive voltages) to 
model parameters (e.g. weights), as was shown in this paper. Secondly, reservoir computers can only be made to 
elicit a desired behavior through instance-specific supervised training, whereas neuromorphic computers can 
be programmed a priori using a known set of weights. Because neuromorphic behavior is determined only by 
controllable parameters, these parameters can be mapped directly between different system instances, different 
types of neuromorphic systems, and simulations. Neuromorphic hardware can leverage existing algorithms (e.g. 
NEF) and virtual training results. Particular behaviors, fully determined by the virtual/hardware weights, are 
guaranteed to occur. Photonic RCs can of course be simulated; however, they have no corresponding guarantee 
that a particular hardware instance will reproduce a simulated behavior or that training will be able to converge 
to this behavior.

At increased scale, neuromorphic silicon photonic systems could be applied to unaddressed computational 
areas in scientific computing and RF signal processing. A key benefit of neuromorphic engineering is that existing 
algorithms can be leveraged. A subset of CTRNNs, Hopfield networks68, have been used extensively in mathe-
matical programming and optimization problems27. The ubiquity of PDE problems in scientific computing has 
motivated the development of analog electronic neural emulators42. Further work could explore the use of NEF to 
emulate discrete space points of PDEs. Neural algorithms for CTRNNs have been developed for real-time RF sig-
nal processing, including spectral mining69, spread spectrum channel estimation70, and arrayed antenna control71. 
There is insistent demand to implement these tasks at wider bandwidths using less power than possible with RF 
electronics. Additionally, methodologies developed for audio applications, such as noise mitigation28, could con-
ceivably be mapped to RF problems if implemented on ultrafast hardware. Unsupervised neural-inspired learning 
has been used with a single MRR weight bank for statistical analysis of multiple RF signals72.

We have demonstrated a reconfigurable analog neural network in a silicon photonic integrated circuit 
using modulators as neuron elements. Network-mediated cusp and Hopf bifurcations were observed as a 
proof-of-concept of an integrated broadcast-and-weight system32. Simulations of a 24 modulator neuron net-
work performing an emulation task estimated a 294× speedup over a verified CPU benchmark. Neural network 
abstractions are powerful tools for bridging the gap between physical dynamics and useful application, and silicon 
photonic manufacturing introduces opportunities for large-scale photonic systems.

Methods
Experimental Setup. Samples shown in Fig. 1(b) were fabricated on silicon-on-insulator (SOI) wafers at the 
Washington Nanofabrication Facility through the SiEPIC Ebeam rapid prototyping group10. Silicon thickness is 
220 nm, and buried oxide (BOX) thickness is 3 µm. 500 nm wide WGs were patterned by Ebeam lithography and 
fully etched through to the BOX73. After a cladding oxide (3 µm) is deposited, Ti/W and Al layers are deposited. 
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Ohmic heating in Ti/W filaments causes thermo-optic resonant wavelength shifts in the MRR weights. The sam-
ple is mounted on a temperature stabilized alignment stage and coupled to a 9-fiber array using focusing sub-
wavelength grating couplers74. The reconfigurable analog network consists of 2 MRR weight banks each with four 
MRR weights with 10 µm radii.

Each MRR weight bank is calibrated using a multi-channel protocol described in past work35, 75: an offline 
measurement procedure is performed to identify models of thermo-optic cross-talk and MRR filter edge trans-
mission. During this calibration phase, electrical feedback connections are disabled and the set of wavelength 
channels carry a set of linearly seperable training signals. After calibration, the user can specify a desired weight 
matrix, and the control model calculates and applies the corresponding electrical currents.

Weighted network outputs are detected off-chip, and the electrical weighted sums drive fiber Mach-Zehnder 
modulators (MZMs). Detected signals are low-pass filtered at 10 kHz, represented by capacitor symbols in 
Fig. 1(c). Low-pass filtering is used to spoil time-delayed dynamics that arise when feedback delay is much 
greater than the state time-constant37. In this setup with on-chip network and off-chip modulator neurons, 
fiber delayed dynamics would interfere with CTRNN dynamical analysis39. MZMs modulate distinct wave-
lengths λ1 = 1549.97 nm and λ2 = 1551.68 nm with neuron output signals y1(t) and y2(t), respectively. The 
MZM electro-optic transfer function serves as the nonlinear transfer function, y = σ(s), associated with the 
continuous-time neuron. A third wavelength, λ3 = 1553.46 nm, carries an external input signal, x(t), derived 
from a signal generator. Each laser diode source (ILX 7900B) outputs +13 dBm of power. All optical signals (u, 
y1, and y2) are wavelength multiplexed in an arrayed waveguide grating (AWG) and then coupled back into the 
on-chip broadcast STAR consisting of splitting Y-junctions76 (Fig. 1(c)).

Photonic CTRNN Solver. Recently developed compilers, such as Neural ENGineering Objects (Nengo)77, 
employ the Neural Engineering Framework (NEF)40 to arrange networks of neurons to represent values and 
functions without relying on training. While originally developed to evaluate theories of cognition, the NEF has 
been appropriated to solve engineering problems78 and has been used to program electronic neuromorphic hard-
ware79. Background on the NEF compilation procedure is provided in Supplementary Section 2. Simulation state 
variables, x, are encoded as linear combinations of real population states, s. Each neuron in a population has the 
same tuning curve shape, σ, but differ in gain g, input encoder vector e, and offset b. The input-output relation of 
neuron i – equivalent to equation (2), is thus si = σ (giei · x + bi). In this formulation, arbitrary nonlinear functions 
of the simulation variables, f(x), are represented by linear combinations of the set of these tuning curves across the 
domain of values of x considered. Introducing recurrent connections in the population introduces the notion of 
state time-derivatives, as in equation (1). By applying the decoder transform to both sides of equation (1) and 
using the arbitrary function mapping technique to find W, the neural population emulates an effective dynamical 
system of the form =�x f x( ). Given equations (3) stated in this form, Nengo performs the steps necessary to rep-
resent the variables, functions, and complete ODE.

Modifications were made to the standard Nengo procedure. Firstly, we specify the tuning curve shape as the 
sinusoidal electro-optic transfer characteristic of a MZM. Secondly, to reduce the number of MZMs required, 
we choose encoders to be the vertices of a unit-square {e} = [1, ±1, ±1], while they are typically chosen ran-
domly. Thirdly, the MZM sinusoidal transfer function provides a natural relation to the Fourier basis. Gains 
are chosen to correspond to the first three Fourier frequencies of the domain: g ∈ sπ/2 · {1, 2, 3}, where sπ is the 
MZM half-period. Offsets were chosen to be b ∈ {0, sπ/2}, corresponding to sine and cosine components of each 
gain frequency. The total number of modulator neurons is therefore #e · #g · #b = 4 · 3 · 2 = 24. Figure 4(e) shows 
the MZM states, s(t), of which simulation variables, x(t), are linear combinations. From this plot, it appears that 
some neurons are barely used. Thus, further optimizations of number of neurons could be made by pruning those 
neurons after compilation of the weight matrix.

The operational speed of this network would be limited by time-of-flight feedback delay. In Fig. 1(a), the 
longest feedback path is via the drop port of the last (pink) MRR weight of the first (yellow) neuron’s bank. The 
path includes the perimeter of the square MRR weight matrix, plus a drop waveguide folded back along the bank. 
Supposing a minimum MRR pitch of 25 µm and MZM length of 500 µm, the feedback delay would then be (6 × 
25 × 25 + 500) · n/c = 48 ps. We model this delayed feedback in the Nengo simulation and then adjust feedback 
strength to find the minimum stable simulation timescale. For γPho/tfb < 65, spurious time-delayed dynamics 
dominate. For γPho/tfb < 104, the butterfly phase diagram in Fig. 4(b) is not reproduced accurately. γPho/tfb ≥ 260 is 
chosen for robust reproduction of the expected dynamics.

Conventional CPU Solver. Conventional digital processors must use a discrete-time approximation to sim-
ulate continuous ODEs, the simplest of which is Euler continuation:

+ ∆ = ∆ + ∆ ∆n t n t t n tx x f x[( 1) ] [ ] ( [ ]) (4)

where ∆t is the time step interval. To estimate the real-time value of ∆t, we develop and validate a simple 
CPU model. For each time step, the CPU must compute f(x[n∆t]) as defined in equation (3), resulting in 9 
floating-point operations (FLOPs), and 12 cache reads of the operands. The Euler update in equation (4) con-
stitutes one multiply, one addition, and one read/write for each state variable, resulting in 6 FLOPs and 6 cache 
accesses. Supposing a FLOP latency of 1 clock cycle, Level 1 (L1) cache latency of 4 cycles, and 2.6 GHz clock, this 
model predicts a time step of ∆t = 33 ns. This model is empirically validated using an Intel Core i5-4288U. The 
machine-optimized program randomly initializes and loops through 106 Euler steps of the Lorenz system, over 
100 trials. CPU time was measured to be ∆t = 24.5 ± 1.5 ns. The minimum stable simulation timescale is limited 
by divergent errors stemming from time discretization. We performed a series of 100 trials over 100 values of 
∆t/γCPU, finding that <1% probability of divergence occurred for γCPU/∆t ≥ 150.

http://2
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Minimum Power Calculations. Static thermal power must be applied to each weight in order to track 
MRRs to the on-resonance condition. Supposing a bank length set by an MRR pitch of 25 µm and count of 24, 
the MRR network would occupy a square with 600 µm sides. Within this length, resonances can be fabricated 
with repeatability within ±1.3 nm80. Supposing a tuning efficiency of 0.25 nm/mW81, it would take an average of 
5.2 mW/weight to track resonance, for a static power dissipation of 3.0 W. On the other hand, if depletion-based 
tuning can be used, there would be negligible static power dissipation in the weights.

The laser bias power must be set such that a modulator neuron can drive downstream neurons with suffi-
cient strength. A neuron fed back to itself should be able to elicit an equivalent or greater small-signal response 
after one round-trip. This condition is referred to as signal cascadability and can be stated as g ≥ 1, where g is 
round-trip, small-signal gain. If the cascadability condition is not met, all signals will eventually attenuate out 
with time. In other words, in a recurrent network, the real part of system eigenvalues would not be able to exceed 
zero. Round-trip gain is expressed as

=g dP
dP (5)

out

in

For a modulator-based broadcast-and-weight system, this breaks down into receiver and modulator compo-
nents. Assuming a voltage-mode modulator, such as reverse-biased MRR depletion modulator,

π=
π

dP
dV V

P
2 (6)

out

mod max
pump

=
dV
dP

R R
(7)

mod

in
PD r

where Vπ is modulator π-voltage, Ppump is modulator pump power, and RPD is detector responsivity. Because input 
power generates a photocurrent, yet a depletion modulator is voltage-driven, the receiver’s impedance, Rr, deter-
mines the conversion and can be set externally. As Rr increases, round-trip gain also increases, but bandwidth 
decreases according to f = (2πRrCmod)−1, where Cmod is PN junction capacitance of the modulator. By setting the 
cascadability condition: g = 1 and combining the above equations, we find that

π
= πP R V

R R
( ) 2

(8)pump r
PD r

= π
−P f V C R f( ) 4( ) (9)pump mod PD

1

The values of Vπ, Cmod, and RPD on a typical silicon photonic foundry platform have been published41. For an 
MRR depletion modulator, Vπ = 1.5 V, Cmod = 35 fF. For a PD on the same platform, RPD = 0.97 A/W. This means 
that the minimum pump power for a given signal bandwidth is 2.2 × 10−13 W/Hz.

In this paper, we study a 24-node CTRNN whose signal bandwidth is restricted to 1 GHz to avoid time-delay 
dynamics. This means that, for the cascadability condition to be met, modulator pumping must be at least 
0.22 mW/neuron of optical power. Adding up 24 lasers and accounting for laser inefficiency, wall-plug system 
power would be 106 mW.
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1 Derivation of Theoretical Bifurcations
The CTRNN model of interest is described by equations (1-2). Mathematical analysis of dynamical systems begins by
examining fixed states (where ~̇s = 0) and the effects of parameters on their behavior. Bifurcations occur when the number or
stability of fixed-points change as a result of parameter variation. Here, we derive simple bifurcations of small networks38.
Predictions of amplitude and frequency are then compared to experiment in Fig. 2 and Fig. 3. For the sake of analysis, the
neuron transfer function, whether sigmoidal (in the case of a perceptron) or sinusoidal (in the case of a MZM neuron), is
approximated to the first nonlinear term: s(s)⇡ as�ks3, where a and k are positive coefficients.

Cusp bifurcations describe transitions from monostability to bistability. A cusp can be observed in the simplest case of
equations (1-2), which is a single node with self-feedback weight, WF .

0 =WF s(s⇤)� s⇤

t
+winu⇤ = kWF s⇤3 �

�
aWF � t�1�s⇤ �winu⇤ (S1.1)

where s⇤ and u⇤ are the steady-state scalar values of the neuron state and input, respectively.
When the input is zero, the steady-state solutions have the form:

s⇤(1) = 0; s⇤(2,3) =±
r

a
k

WF �WB

WF
(S1.2)

where WB = (at)�1 is the bifurcation weight, and subscripts index the three solution branches. Below WB, solution branches
(2) and (3) are imaginary and therefore do not physically exist. This expression, plotted on the WF -y axis of Fig. 2(b), exhibits
the standard form of a pitchfork bifurcation, in which two stable solution branches arise out of one stable branch.

Returning to the general expression, the inputs, u⇤, that yield steady-state solutions, s⇤, take the form

u⇤ =
kWF

win

✓
s⇤3 � a

k
WF �WB

WF
s⇤
◆

(S1.3)

The resulting, familiar S-shaped bistable curve is plotted on the u-y axis of Fig. 2(b). Three roots of s⇤ exist when feedback
weight is fixed above the pitchfork bifurcation value. The edges of this bistable regime are referred to as saddle-node points
because the unstable middle saddle and one of the stable nodes annihilate one another. The saddle-node points (s⇤SN ,u

⇤
SN) are

found where the derivative of u⇤ in equation (S1.3) is zero with respect to s⇤.

s⇤SN =±
r

a
3k

WF �WB

WF
; u⇤SN =±2

3
a3/2

win
p

3kWF
(WF �WB)

3/2 (S1.4)

These parametric equations define a cusp, which is projected onto the WF -u axis of Fig. 2(b). The cusp bifurcation is more
informative than either the pitchfork or saddle-node bifurcations because it is described only in reference to two parameters,
while the other bifurcations can occur in systems of one parameter.

Hopf bifurcations are characterized by a transition from stable to oscillating dynamics. In experiments and this analysis, we
fix the off-diagonal weights asymmetrically such that �w12 =w21 = 1 and parameterize the diagonals such that w11 =w22 =WF .
Under this formulation, there is always one and only one steady-state at~s = 0. To examine its stability, we linearize the system
around this point to yield the Jacobian matrix whose eigenvalues indicate fixed-point stability.

J =
d
ds

✓
ds
dt

◆
= a


WF � (at)�1 �1

1 WF � (at)�1

�
; eigenvalues: l =WF � (at)�1 ± i (S1.5)

The imaginary part of the eigenvalue pair is indicative of oscillating behavior. The real part of the eigenvalue switches
sign at the bifurcation weight WB = (at)�1. In this case, when the only fixed-point solution becomes unstable, a stable limit
cycle arises instead of new stable states. Near threshold, we can assume a circular form of the limit cycle in order to model its
expected amplitude, A, and frequency, w .

s1(t) = Asin(wt); s2(t) = Acos(wt) (S1.6)

At points where wt is a multiple of 2p , the time-derivative of s2 is zero. Examining the ṡ2 equation from equations (1-2),

ds2

dt

����
wt=2pm

= 0 = s (0)+WF s (A)� t�1A (S1.7)

A =

r
a
k

WF �WB

WF
(S1.8)
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where m is an integer. The amplitude follows a form similar to that of the pitchfork bifurcation in equation (S1.2) and is plotted
as a red curve on the s1-WF axis of Fig. 3(d). The equation for ṡ1 at this same point can be used to find the angular frequency.

ds1

dt

����
wt=2pm

=�Aw =WF s (0)�s (A) (S1.9)

w =
t�1

WF
(S1.10)

The expected limit cycle frequency is therefore finite at the Hopf point and inversely proportional above, as shown in Fig. 3(e).
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2 NEF Compilation Procedure
2.1 Solving ODEs with Photonic Modulator Neurons
The complete jupyter notebook used to generate plots in this section and in Fig. 4 is available in: https://github.com/
lightwave-lab/Neuromorphic_Silicon_Photonics

Modifications to the nengo project

Nengo is based exclusively on monotonic, non-negative output neuron models. However, its encoding-decoding algorithms
should work with other kinds of neuron models. Here, we use the following FourierSinusoid class of neurons included in
our fork of the nengo project.

The Lorenz chaotic attractor

In this simulation, we chose to construct a neural network using the neurons defined above to solve a classical chaotic dynamical
system named “Lorenz attractor”.

The equations are:

ẋ0 = n(x1 � x0) ẋ1 = x0(r � x2)� x1 ẋ2 = x0x1 �bx2

Since x2 is centered around approximately r , and since NEF ensembles are usually optimized to represent values within a
certain radius of the origin, we substitute x02 = x2 �r , giving these equations:

ẋ0 = n(x1 � x0) ẋ1 =�x0x02 � x1 ẋ02 = x0x1 �b (x02 +r)

Refer to the standard example of the Lorenz attractor solver with 2000 neurons in a nengo example. *Note that the last
equation for x02 is typically shown with an error in that example and in other articles from Prof. Eliasmith’s group.

2.2 Encoding strategy
From here onwards, we will refer the Lorenz system in its reduced form as as~x = f (~x), with:

~x = [x0,x1,x02]
T and f (~x) =

2

4
n(x1 � x0)
�x0x02 � x1

x0x1 �b (x02 +r)

3

5

In the following sections, we briefly explain the details on how nengo can be used to inform us on how to configure a
photonic neural network to emulate an accelerated ODE, having the Lorenz attractor as an example.

Neuron model

Using nengo, we instantiate a population of N neurons that are all-to-all interconnected. These neurons are responsible of
representing the vector~x at any time t. We consider the state of each neuron as~s = [si] for neuron i. The ODE that models each
neuron, in this case, is:

tsi + si = ui

where ui represents the post-synaptic input of the neuron and yi = s(si) its output.

Nengo encoding strategy

In order to encode a vector~x in the population N, nengo performs the following linear transformation (it has to be linear for the
method to work):

si = gi~ei ·~x+bi

where gi is a gain term,~ei is an encoder vector, and bi is a bias term. This is called the encoding strategy.
Nonlinear operations are effectively performed by linear combinations of the neural nonlinearities s(si). Therefore, it is the

encoder’s mission to generate as much entropy about the variables~x as possible. This can be done by generating a diverse set
of (g,~e,b) parameters. Below, we do this by using~ei = [1,±1,±1], mixing all components of~x together. Note: this can be
optimized even further by noticing that the ODE does not contain x0x2 terms.

Because we know that s is a sinusoid, we create a set of (g,b) values to span a Fourier-like basis of functions across the
domain~ei ·~x 2 [�1,1]. (See tuning curves).
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1 # Intercept, in this case, corresponds to where the tuning curve intercepts

2 # zero. Range of [-.5, .5] corresponds to [-pi, pi]

3 ints = [0, 1/4]

4 # This number represents how many periods do we want between -1 and 1

5 # (see tuning curves below)

6 rats = s_pi

*

np.arange(1, 4)/2

7 # Encoder multipliers

8 enst = [-1,1]

9

10 num_intercepts = len(ints)

11 num_max_rates = len(rats)

12 num_encoders = len(enst)

**

2

13

14 j = 0

15 encoders = np.zeros(shape=(num_neurons, 3))

16 intercepts = np.zeros(num_neurons)

17 max_rates = np.zeros_like(intercepts)

18 for ir in range(num_max_rates):

19 for ii in range(num_intercepts):

20 for ie0 in range(len(enst)):

21 if ie0 is 0:

22 continue

23 for ie1 in range(len(enst)):

24 for ie2 in range(len(enst)):

25 vertex = np.array([enst[ie0], enst[ie1], enst[ie2]])

26 if not np.all(vertex == 0):

27 encoders[j,:] = vertex

28 intercepts[j] = ints[ii]

29 max_rates[j] = rats[ir]

30 j += 1

Neuron Encoder Intercept Max rates

1 [ 1. -1. -1.] 0.0 0.05

2 [ 1. -1. 1.] 0.0 0.05

3 [ 1. 1. -1.] 0.0 0.05

4 [ 1. 1. 1.] 0.0 0.05

5 [ 1. -1. -1.] 0.25 0.05

6 [ 1. -1. 1.] 0.25 0.05

7 [ 1. 1. -1.] 0.25 0.05

8 [ 1. 1. 1.] 0.25 0.05

9 [ 1. -1. -1.] 0.0 0.1

10 [ 1. -1. 1.] 0.0 0.1

11 [ 1. 1. -1.] 0.0 0.1

12 [ 1. 1. 1.] 0.0 0.1

13 [ 1. -1. -1.] 0.25 0.1

14 [ 1. -1. 1.] 0.25 0.1

15 [ 1. 1. -1.] 0.25 0.1

16 [ 1. 1. 1.] 0.25 0.1

17 [ 1. -1. -1.] 0.0 0.15

18 [ 1. -1. 1.] 0.0 0.15

19 [ 1. 1. -1.] 0.0 0.15

20 [ 1. 1. 1.] 0.0 0.15

21 [ 1. -1. -1.] 0.25 0.15

22 [ 1. -1. 1.] 0.25 0.15

23 [ 1. 1. -1.] 0.25 0.15

24 [ 1. 1. 1.] 0.25 0.15
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Figure S2.1. Selected tuning curves corresponding to sinusoidal Mach-Zehnder transfer functions. Output is transmission
and input is voltage normalized to Vp . The encoded input is derived from the dot product of the encoding weight vector and the
input signal vector.

Tuning curves in Fourier basis

Here, assuming that the neuron states are si = gi~ei ·~x+bi, we plot the functions s(si) for neurons with different gi,bi values
according to the previous table.

Timing

In order to account for the true-time delay between the output of a neuron and the feedback latency of the photonic waveguides,
we instantiate a delay node in nengo, which essentially offsetstime signals in time.

1 # Round-trip feedback delay in ns

2 delayTime = .048

3 # gamma is a characteristic time scale in real time units

4 # The coefficient gamma/delayTime determines the stability

5 # In paper, coefficient was 65 (spurious), 104 (inaccurate), 260 (looks good)

6 gamma = 260

*

delayTime

7

8 # We’ll make a simple object to implement the delayed feedback

9 class Delay(object):

10 def __init__(self, dimensions, timesteps=50):

11 timesteps = max(timesteps,1)

12 self.history = np.zeros((timesteps, dimensions))

13 def step(self, t, x):

14 self.history = np.roll(self.history, -1, axis=0)

15 self.history[-1] = x

16 return self.history[0]

17 delay = Delay(3, timesteps=int(delayTime / dt))

2.3 Nengo Implementation
After having the encoding strategy laid out, we are then ready to extract any function from the population. Here, we set the
feedback function to be t f (~x)+~x, for reasons that are explained in the following section.

1 # the ODE to emulate

2 # The default values for sigma, beta and rho originally used by Lorenz.

3 # Cf. https://en.wikipedia.org/wiki/Lorenz_system#Analysis

4 nu = 10

5 beta = 8.0/3
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Figure S2.2. Encoding and decoding a variable with a population of neurons in the Neural Engineering Framework.

6 rho = 28

7 def feedback(x):

8 dx0 = (-nu

*

x[0] + nu

*

x[1]) / gamma

9 dx1 = (-x[0]

*

x[2] - x[1]) / gamma

10 dx2 = (x[0]

*

x[1] - beta

*

(x[2] + rho)) / gamma

11

12 return [dx0

*

tau + x[0],

13 dx1

*

tau + x[1],

14 dx2

*

tau + x[2]]

In the following code snippet, we show how we can instantiate an ensemble of neurons and set the feedback connections to
emulate the Lorenz attractor.

1 # The main ensemble

2 state = nengo.Ensemble(num_neurons, dimensions=3,

3 intercepts=intercepts,

4 neuron_type=nengo.neurons.FourierSinusoid(max_overall_rate=max_transmission,

5 s_pi=s_pi),

6 max_rates=max_rates,

7 encoders=encoders, radius=60.)

8

9 # This special node calls a function every timestep,

10 # in this case a class method of delay

11 delay_node = nengo.Node(delay.step, size_in=3, size_out=3)

12

13 # Connections from state to delay and back

14 cdel = nengo.Connection(state, delay_node,

15 function=feedback, synapse=tau)

16 conn = nengo.Connection(delay_node, state)

2.4 Decoding strategy: calculating weight matrix
As mentioned, nengo decodes a function h(~x) from the population of neurons by a linear decoding strategy, i.e. a matrix d(h)

resulting in an estimator ĥ(~x):
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Figure S2.3. Recurrent connection for dynamical system emulation in the Neural Engineering Framework.

ĥ(~x) = d(h)~y

where yi = s(si) = s(gi~ei ·~x+bi).
This matrix d(h) is uniquely dependent on the encoder strategy, the neuron’s transfer function s and the function h. As

a result, it can be pre-computed before any real-time simulation. Namely, it attempts to minimize the following objective
function:

J =
Z ���d(h)~y�h(~x)

���d~x

where the integral is over the desired range of values of~x.
The minimum can be calculated via the Moore-Penrose pseudoinverse method (Stewart et al. Front Neuroinform. 3 (2009)):

Gi j =
Z

yiy jd~x

°i =
Z

yih(~x)d~x

d(h) = G�1 ·°

Weight matrix

If we add an all-to-all recurrent connection to the neural population, their collective dynamics is described by the following
ODE system:

t~̇s+~s =Ws(~s)+~I

where W is the weight matrix and~I a bias vector.
Nengo sets W = E(d(x) + td( f )) and~I =~b, where Ei j = (~ei) j. When applied to the ODE above, it is easy to see that one

can recover the Lorenz system:

E(t~̇x+~x) = E(~̂x+ t f̂ (~x))

/
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Figure S2.4. Recurrent weight matrix returned by Nengo compiler procedure. Red (blue) correspond to weights that are more
positive (negative). X and Y axes correspond to neuron index, from 1 to 24.

=) ~̇x = f (~x)+ e(~x)

where e(~x) = (1/t)(~̂x�~x)+ f̂ (~x)� f (~x).
Below, we show the computed weight matrix W for this system.
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