
 

On choosing the start time of binary black hole ringdowns

Swetha Bhagwat,1,* Maria Okounkova,2,† Stefan W. Ballmer,1 Duncan A. Brown,1

Matthew Giesler,2 Mark A. Scheel,2 and Saul A. Teukolsky2,3
1Syracuse University, Syracuse, New York 13244, USA

2Theoretical Astrophysics, Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena, California 91125, USA

3Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853, USA

(Received 7 November 2017; published 30 May 2018)

The final stage of a binary black hole merger is ringdown, in which the system is described by a Kerr
black hole with quasinormal mode perturbations. It is far from straightforward to identify the time at which
the ringdown begins. Yet determining this time is important for precision tests of the general theory of
relativity that compare an observed signal with quasinormal mode descriptions of the ringdown, such as
tests of the no-hair theorem. We present an algorithmic method to analyze the choice of ringdown start time
in the observed waveform. This method is based on determining how close the strong field is to a Kerr black
hole (Kerrness). Using numerical relativity simulations, we characterize the Kerrness of the strong-field
region close to the black hole using a set of local, gauge-invariant geometric and algebraic conditions that
measure local isometry to Kerr. We produce a map that associates each time in the gravitational waveform
with a value of each of these Kerrness measures; this map is produced by following outgoing null
characteristics from the strong and near-field regions to the wave zone. We perform this analysis on a
numerical relativity simulation with parameters consistent with GW150914—the first gravitational-wave
detection. We find that the choice of ringdown start time of 3 ms after merger used in the GW150914 study
[B. P. Abbott et al. (Virgo Collaboration and LIGO Scientific Collaboration), Phys. Rev. Lett. 116, 221101
(2016).] to test general relativity corresponds to a high dimensionless perturbation amplitude
of ∼7.5 × 10−3 in the strong-field region. This suggests that in higher signal-to-noise detections, one
would need to start analyzing the signal at a later time for studies that depend on the validity of black hole
perturbation theory.
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I. INTRODUCTION

The quasinormal mode (QNM) spectrum seen during the
ringdown of a perturbed black hole (BH) is determined by
the Teukolsky equation; it carries the signature of the BH
potential along with the BH horizon and asymptotic
boundary conditions [1–3]. The recent detections of binary
black hole (BBH) gravitational-wave (GW) signals by
LIGO (the Laser Interferometer Gravitational-Wave
Observatory) [4–8] allow us to begin to probe this QNM
signature [9]. The QNM spectrum in a gravitational-wave
observation allows us to perform tests of the no-hair
theorem. This theorem states that vacuum, asymptotically
flat, stationary, axisymmetric, uncharged BHs are com-
pletely characterized by two parameters: the mass and the
spin [10–14]. This allows us to constrain modified theories
of gravity that violate the no-hair theorem [15,16].
Observing the QNM spectrum in GWs can be used to

validate the BH uniqueness theorem. This theorem states
that the exterior geometry of an vacuum, asymptotically
flat, stationary, axisymmetric, uncharged BH must be
Kerr [10,17].
However, testing the no-hair and uniqueness theorems

relies on observing GWs from the QNM perturbative
regime (without additional transients remaining from the
inspiral). This requires an appropriate choice of start time of
this regime.1 Identifying this time in the signal is math-
ematically an ill-defined problem, since QNMs form an
incomplete and nonorthogonal basis [18,19]. Hence, the
conventions for choosing the start time of the ringdown
have varied in the literature. Berti et al. [20] and Baibhav
et al. [21] chose the start time based on maximizing the
energy contained in the QNM. London et al. [22] used 10M
after the peak of the dominant mode of Ψ4 (the Newman-
Penrose scalar that encodes outgoing radiation) for fitting
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1While conventions in the literature vary, in this paper, by
“ringdown,” we explicitly mean the part of the postmerger
gravitational waveform that can be described in terms of QNMs.
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to numerical relativity (NR) waveforms.2 Kamaretsos et al.
[23] chose 10M after the peak luminosity of the dominant
mode of the waveform, while Thrane et al. [24] proposed a
loudness-dependent start time. In the GW150914 testing
general relativity (GR) paper [9], different start times were
used to perform the QNM analysis shown in Fig. 5 of that
paper, and the results were consistent with GR when the
start time was picked as 3 ms (or later) after the merger.
None of these methods use information from the strong

field to motivate the start times. The strong field refers
to the region near the BHs (typically within a radius of
few M), where the scale of the curvature is much smaller
than the wavelength of a gravitational wave. In this paper,
we develop an algorithmic method for validating choices of
the start time of ringdown using strong-field features.
Specifically, we measure the Kerrness, or closeness to
Kerr, in the strong-field region of an NR simulation
ringdown, and use null characteristics to map Kerrness
onto the GWat asymptotic future null infinity, Iþ. We then
demonstrate this method on a GW150914-like system.
However, this method is generic, and this procedure can be
carried out for any BBH system.
Determining Kerrness in the strong-field regime is

nontrivial, since one needs a coordinate-invariant way of
identifying a metric as Kerr. Necessary and sufficient
conditions for a gauge-invariant characterization of local
isometry to a Kerr manifold were proposed by García-
Parrado Gómez-Lobo in [25].3 We use this set of algebraic
and geometric conditions to provide a numerical measure
of Kerrness. Previous studies have used multipole moments
of the BH apparent horizon [26], horizon spin measurement
comparisons [27], or Petrov classification [28–30] to
characterize ringdown spacetimes. Our work is the first
set of conditions that completely characterizes a spacetime
as isometric to a Kerr manifold. We study the violation of
these conditions postmerger in the strong field of a BBH
simulation.
Connecting the strong-field region to the wave zone is a

challenge, as the simulation gauge is different from the
gauge in which GWs are observed. There is no straightfor-
ward way to transform between these gauges. Furthermore,
establishing simultaneity between events is not possible in
the GR framework, and thus there is no direct map between
an event in the strong-field region and a point on the
waveform. We therefore devise a scheme to approximately
associate the two frames. The association used in this study
is of a cause-effect nature: we follow the outgoing null
characteristics from the strong-field region to the wave zone
using a Cauchy characteristic extraction scheme (CCE)

[31–33], and associate events in the strong field to the wave
zone. However, given that GR is a nonlinear theory, the
source associated with a particular feature in the GW signal
may not be well localized in the spacetime. Nevertheless,
one would expect that the source dynamics that dominantly
contribute to certain features in the waveform be localizable
to a certain extent. Several such approximate localizations
have been performed in linear perturbation theory [34,35].
This paper is organized as follows. Section II presents the

theoretical methods used in this paper, and Sec. III discusses
their implementation in NR simulations. Section IV then
presents and discusses the results of applying these methods
to an NR simulation with GW150914-like parameters. We
conclude in Sec. V. Figures 15 and 22 are the flagship
figures, presenting our major results. The the results are
quantitatively summarized in Table III.

A. Conventions

We work with the standard 3þ 1 decomposition of NR
(cf. [36] for an introduction). In this paper, gab refers to the
spacetime metric, na refers to the timelike unit normal
vector, γij refers to the spatial metric on each slice,Di is the
covariant derivative with respect to γij, and Kij refers to the
extrinsic curvature. We set G ¼ c ¼ 1 and express all
quantities in terms of M, the sum of the Christodoulou
masses of the two BHs at the start of the simulation. Latin
letters at the start of the alphabet, fa; b; c; dg, refer to
(4-dimensional) spacetime indices, while latin letters in the
middle of the alphabet, fi; j; k; l; m; ng are (3-dimensional)
spatial indices. We denote complex conjugation by an
overbar (e.g. Ā). To avoid confusion among the multiple
meanings of “data” in this paper, we refer to the vacuum
data fγij; Kijg on a spatial slice simply as “a slice.”4

Similarly, rather than being purely geometric, a “slicing”
in our case is a foliation equipped with a coordinate chart.

II. THEORY

A. Characterizing strong-field Kerrness

First, we explain our method of measuring Kerrness in
the strong-field region and develop a method to map it onto
Iþ. Sections II A 1 and II A 2 discuss theoretically char-
acterizing Kerrness in the strong-field region, while
Secs. II B 1, II B 2, and II B 3 discuss mapping strong-field
information onto the wave zone via null characteristics.

1. Overview and historical background

Our overall goal in this section is to evaluate Kerrness:
how close a numerical BH ringdown spacetime is to being
locally isometric to the Kerr spacetime. In order to evaluate

2Since vacuum GR is a scale-invariant theory, it is convenient
to express distance and time in terms of source mass by setting
G ¼ c ¼ 1. Explicitly, 1M ¼ MBH ×G=c3seconds, where MBH
is the mass of the BH.

3Throughout this text, isometry refers to the smooth mapping
of manifolds equipped with metrics.

4Vacuum data means that the spatial metric, γij, and the
extrinsic curvature Kij satisfy a set of constraint equations
corresponding to the decomposition of the vacuum Einstein
equations.
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the Kerrness of a spacetime, we first need a set of
theoretical conditions to evaluate whether a spacetime is
isometric to Kerr. We can then turn these conditions into a
set of measures, where deviation from zero indicates being
farther from being locally isometric to Kerr. In a numerical
simulation, one would evaluate these measures on spatial
slices of a simulation. To characterize Kerrness in the
strong-field region, one needs local quantifiers evaluated
close to the BH, as opposed to looking at regions far away
which are contaminated by gravitational radiation.
Consequently, we seek a pointwise measure and do not
use global measures on a slice such as those proposed in
[37–39].
Uniquely characterizing a spacetime as Kerr has been

historically challenging—until recently one could only
classify spacetimes up to a Petrov type, which gives a
weaker classification that admits several manifolds besides
Kerr. The Petrov classification uses algebraic properties of
the Weyl tensor Cabcd based on the four principal null
directions (PNDs), by solving the eigenbivector problem
(cf. [40] for a review)

1

2
Cab

cdXcd ¼ λXab; ð1Þ

where eigenbivectors Xab
ðαÞ have eigenvalues λðαÞ. The

degeneracies of the PNDs give a unique algebraic classi-
fication of a spacetime. A spacetime with no repeated
PNDs is fully general (Petrov type I). A spacetime with at
least one repeated PND is algebraically special. The Kerr
metric belongs to a particular class of algebraically special
spacetimes, the set of type D spacetimes, which have two
double PNDs. A necessary condition for the manifold to be
locally isometric to Kerr is to be type D.
Campanelli et al. [29] used this approach to analyze a

numerical BBH ringdown. They determined the degener-
acies between the PNDs by solving the eigenbivector
problem and measuring the difference between eigenval-
ues. Their analysis found that the spacetime first numeri-
cally settled to type II, which has only one double PND,
and then to type D. Owen [30] later showed that this
measure was sensitive to the choice of tetrad used to
compute the Weyl scalars needed to solve the characteristic
equation. He proposed a new measure, less sensitive to the
choice of tetrad, and showed that the spacetime settled to
type D without first settling to type II.
A type D spacetime can then be shown to be locally

isometric to Kerr through additional conditions. Kerr
belongs to the Kerr-NUT (Newman-Unti-Tamburino) sub-
set of type D spacetimes. One needs to show that a
spacetime is Kerr-NUT and then constrain the acceleration
and the NUT parameters. We give more information on
Kerr-NUT spacetimes and the various parameters in the
Appendix. Reference [29] investigated the asymptotic
behavior of the acceleration and the NUT parameter on

a BBH simulation and showed they were constrained to be
those of Kerr.
In this study, we do not solve the eigenbivector problem,

but rather use a set of local algebraic and geometric
conditions recently proposed by García-Parrado Gómez-
Lobo [25] to show that a spacetime is locally isometric to
Kerr. These conditions are formulated in a fully covariant
way and thus avoid the complications in [29,30] due to
tetrad choice.

2. Necessary and sufficient Kerrness conditions

To characterize a spatial Cauchy slice as isometric to
Kerr, we first check if the slice is algebraically special.
Next, we use two geometric conditions to check for
the existence of Killing vectors (KVs) on the slice, and
we impose two algebraic conditions to verify that the
slice containing the KVs is type D. Then, we check the
properties of the KVs and further classify the slice into
the Kerr-NUT subfamily. Finally, imposing conditions on
the acceleration and NUT parameters, we completely
characterize the slice as locally isometric to Kerr. These
conditions are summarized in Fig. 1.

FIG. 1. The set of conditions for a slice to be locally isometric
to Kerr. The nodes refer to the resulting type of spacetime when
the conditions on each edge, given by their name and equation
in the text, are met. For example, a spacetime must meet all
four of the conditions specified in the edge from algebraically
special to Petrov type D to belong to the type D subset of
algebraically special spacetimes. In numerical applications, the
failure of these Kerrness conditions to be met gives a set of
respective Kerrness measures, where larger measures denote
greater deviation from Kerr. For each measure, we give Nd,
the number of numerical derivatives beyond the first derivatives
of the metric needed to evaluate it, which corresponds to the
numerical noise level in the measure, with higher derivative
powers giving more numerical noise.
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All algebraic conditions are expressed in terms of electric
and magnetic parts of the Weyl tensor, Cabcd, as

Eab ≡þCacbdncnd; ð2Þ

Bab ≡ −�Cacbdncnd; ð3Þ

where the left dual of the Weyl tensor is defined as
�Cabcd ≡ 1

2
ϵabefCef

cd. For a vacuum spacetime, these
spatial tensors can be more readily evaluated on a slice as

Eij ¼ KijKk
k − Ki

kKjk þ ð3ÞRij; ð4Þ

Bij ¼ −ϵklðiDkKl
jÞ; ð5Þ

where ð3ÞRij is the spatial Ricci tensor evaluated from γij.
These can be combined into a complex quantity as

Eij ≡ 1

2
ðEij − iBijÞ: ð6Þ

In [25], the algebraic condition for a slice to be locally
algebraically special is given in Eq. (85) as

Speciality Index∶ 6b2 − a3 ¼ 0; ð7Þ

where

a≡ 16EijEij;

b≡ −64Ek
i E

ijEjk:

This condition is equivalent to the speciality index in the
Petrov classification literature [cf. Eq. (4.13) of [40] ].
Recall that algebraic speciality corresponds to having

one double PND, and hence is a weaker condition than
being type D, which corresponds to having two double
PNDs. A necessary algebraic condition for a slice to be
type D is given in Theorem 4 of [25] as

Type D 1∶
a
12

γij −
b
a
Eij − 4Ei

kEjk ¼ 0; ð8Þ

which makes use of 4-dimensional algebraic conditions
proven in [41] and orthogonally splits these onto the spatial
slice. Here we have called the condition “type D 1” purely
for bookkeeping purposes, in order to label each of the type
D conditions.
The three sufficient conditions for a slice to be type D

consist of two geometric conditions involving KVs and one
algebraic condition which also includes the KV. As proven
in Theorem 2 of [25], a vacuum type D spacetime has a
complex KV field ξa which satisfies an algebraic condition

Ξab ¼
27

2
w

11
3 ξaξb; ð9Þ

where Ξab is derived from the Weyl tensor, and

w≡ −
b
2a

: ð10Þ

However, one must show that a KV field exists on the
slice in the first place, and then that it satisfies the properties
given in Eq. (9). The necessary and sufficient geometric
conditions for a slice to contain a KV field are known as
Killing initial data (KID), and for a vector ξa ¼ Yna þ Ya,
are given as

Type D 3∶ DðiYjÞ − YKij ¼ 0; ð11Þ

Type D 4∶ DiDjY − LYlKij

− Yðð3ÞRij þ KKij − 2KilKl
jÞ ¼ 0: ð12Þ

Satisfying these conditions guarantees that a KV field
exists on the slice—note that these two conditions say
nothing so far about type D.
We can then relate this KV field ξa to the condition on

the KV in a type D spacetime given in Eq. (9) by requiring

Type D 2∶ EpjðΩ2 þ ΩlΩlÞ;
− 2ΩlðiEk

ðpεjÞlkΩþ ElðpΩjÞÞ

þ γpj

�
1

2
wΩ2 þ Ωl

�
−
1

2
wΩl þ ElkΩk

��

þ 1

2
wΩpΩj −

27

2
w11=3YpYj ¼ 0; ð13Þ

where Eq. (13) is the orthogonal splitting of Eq. (9), and

Ωj ≡Dkw;

Ω≡ KjkEjk − wK − 16i
w
a
EjkεkplDlEp

j ;

Y ≡ ðwΩjΩj þ 2EjkΩjΩkÞ1=2w−11=6;

Yj ≡Ωð2EjkΩk þ wΩjÞ − 2iεjklEp
lΩpΩk

27Yw11=3 : ð14Þ

This procedure is shown in Theorem 6 of [25].5

Type D 3 and type D 4 are independent geometric
conditions that depend on the complex KV ξa and show that
the slice is KID. Type D 1 is a purely algebraic condition
that informs us of the behavior of the PNDs. Type D 2 ties
in the algebraic and geometric conditions, thereby com-
pleting the classification into type D. Speciality index,
meanwhile, is an independent algebraic condition.

5The type D 2 condition has aþ in the second term where [25]
has a −. The sign error has been confirmed by the author of [25].
Similarly, The factor of 1

27
in the definition of Yj is not included in

[25], but is in the corresponding Mathematica notebook [42].
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In order to then show that an algebraically special, type
D slice is locally isometric to Kerr, we must also show that
it belongs to the Kerr-NUT subset of type D spacetimes.
Kerr-NUT spacetimes have the symmetry property of two
commuting KVs [40]—one spacelike and timelike, and
thus if we impose this geometric condition on KV ξa as
defined above, we arrive at the condition given in Theorem
8 of [25],6

Kerr 1∶ ImðYȲjÞ ¼ 0: ð15Þ

In order to further show that a slice is locally isometric to
Kerr, we must place constraints on the parameters charac-
terizing Kerr-NUT spacetimes. We summarize the param-
eters involved in type D spacetimes in the Appendix. We
require that λ, the NUT parameter, vanish, and ϵ, which is
related to the acceleration of the BH, be greater than zero.
These conditions are given in Theorem 8 of [25] as

Kerr 2∶ Z3w̄8 ∈ R−; ð16Þ

for the condition λ ¼ 0, where Z≡∇aw∇aw, and

Kerr 3∶ − jZj2 þ 18Reðw3Z̄Þ > 0; ð17Þ

for ϵ > 0. However, the above expression only holds
outside of the ergoregion [42] in Kerr. This condition is
thus impractical to use in the this study, since it involves
finding the ergoregion, and masking this region would
introduce high levels of numerical error within a spectral
code.
Thus, for a slice to be locally isometric to Kerr, it must

satisfy all of the above conditions, which are summarized
in Fig. 1. Since the vacuum spacetime at the start of a
ringdown may be fully general, the left-hand sides of the
Kerrness conditions will not necessarily be zero on some
slices. Instead, the Kerrness conditions turn into a set of
Kerrness measures, where larger deviation from zero
indicates a larger deviation from being isometric to Kerr.

B. Connecting strong-field information to I +

1. Motivation

Having characterized the Kerrness in the strong-field
region, we connect this information to the GWs at Iþ. We
develop a framework to map the evolution of the Kerrness
measures computed during a postmerger simulation to the
evolution of the postmerger waveform in the asymptotic
frame. This provides a procedure to validate the choices of
start time of ringdown when analyzing a gravitational-wave
signal.

Just after the two BHs merge, the newly formed BH is
expected to be highly distorted. The dynamics of the
BH can be explained only via a full numerical simulation.
At Iþ, where the GWs are observed, these strong-field
dynamics are responsible for features in a small region
close to the peak of the GWamplitude. Once the excitation
amplitude in the strong-field region decays to a level when
linear perturbation theory is valid the spacetime dynamics
and the associated waveform is governed by the Teukolsky
equation [1–3]. At Iþ, the waveform appears as a sum of
exponentially damped sinusoids with a specific QNM
frequency spectrum (with power-law tails that are usually
very weak). Beyond this rough picture, the association of
the specifics in the strong-field dynamics to the waveform
is not well understood, especially during the merger and
postmerger phases.
Understanding this association is crucial because several

strong-field tests of GR rely on BH perturbation theory and
thus, on identifying the perturbative regime in the wave-
form. These tests include the no-hair theorem test, con-
sistency tests of the QNM spectrum with the inspiral
parameters, and the area theorem test. The start of ringdown
in the GW is mathematically ill defined as damped
sinusoids form an incomplete and nonorthogonal basis
[18,19]. Therefore, it is important that we validate the
choices of start times in the data analysis of ringdown
guided by the strong-field information, where the validity
of perturbation theory can be better understood.

2. Conceptual challenges

Mathematically, GR being a nonlinear theory does not
allow for unambiguous localization of sources of GWs.
However, to a certain extent, one expects that the dominant
source of a particular feature in the wave zone be
localizable to a relatively small region of the spacetime
in the past light cone. For instance, studies like [34,43]
identify the dominant source for the peak of the waveform
during the plunge of a test particle into a Schwarzschild BH
with the particle crossing the light ring.7 Furthermore, the
last few cycles of the BBH GW signal are associated with
the dynamics of a linearly perturbed BH [44–46]. However,
one needs to bear in mind that these studies are performed
using linear perturbation theory where such localizations
are better defined. For example, if one adds a massive
particle instead of a test particle in the former case and
makes the problem nonlinear, one would get some addi-
tional source contributions from self-force, thus making the
source localization trickier.
In the case of BBH postmerger, identifying specific

events as a source of the features in the waveform cannot be
done unambiguously owing to the nonlinear dynamics from

6However, this has a typographical error (confirmed by the
author [42]), and should include Ȳj, the complex conjugate, as
given Eq. (15).

7The light ring is the orbit of a massless particle around the
BH, which corresponds to the peak of the BH potential located at
3M in Boyer-Lindquist coordinates for a Schwarzschild BH.
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merger. However, drawing intuition from analytical linear
perturbation theory, we expect the region within the support
of the analytical effective BH potential to contribute
significantly to the waveform at Iþ. Thus, we argue that
even in a nonlinear case, a small region in the spacetime
around the BH containing the strong-field dynamics can be
associated as a dominant source of features in the GW.
Another challenge in performing this association is that

the notion of simultaneity in GR is not absolute, which
means that all spacelike slicings of the spacetime are
equally valid. In numerical simulations however, we have
to make a gauge choice. In our case this choice is made by
the Cauchy evolution code. The spatial features corre-
sponding to a particular time slice are gauge dependent.
We choose to monitor the Kerrness on a spatial coordinate
2-sphere in the strong-field region, instead of computing a
volume integral over the source region in a time slice.8

We attempt to present a mathematically rigorous vali-
dation for the start time of RD. However, we caution the
reader that this association may be affected by gauge
choices, and in particular is dependent on the radius of
the 2-sphere we monitor, especially in the strong-field
region.

3. Forming a source-effect association
via null characteristics

Given these challenges, we propose the following
association scheme. We evaluate the Newman-Penrose
scalar Ψ4, which measures the outgoing gravitational
radiation, on a given slice of the simulation. Ψ4 is obtained
from the Weyl tensor as

Ψ4 ≡ −Cabcdkam̄bkcm̄d; ð18Þ

where ka is a radially ingoing null vector, and the complex
vector ma is formed from spatial vectors orthogonal to the
radially ingoing and outgoing null vectors (cf. [36] for more
detail). By looking at Ψ4 evaluated on the simulation, we
infer a 2-sphere radius that lies within the strong-field
region, containing and generating significant radiative
fields. This 2-sphere acts like an effective source for the
GW seen at Iþ. We evaluate a surface integral of the
Kerrness measures at each time slice during the ringdown
on this 2-sphere. Then, we connect the evolution of the
Kerrness measures on this surface to the associated features
in the GW by following the outgoing null characteristics
emanating from this 2-sphere. The details of this procedure
are described below.
The GWs emanating from a source propagate to Iþ

along outgoing null rays (since the spacetime is curved,
a small portion of GWs also travel inside the light cone).

We utilize this in constructing an association between
strong-field information and the features on the GW. We
associate a feature on the GW to a 2-sphere in the strong-
field region at a given time (in the simulation coordinates) if
they lie on the same outgoing null hypersurface. This 2-
sphere can thus be interpreted as an effective source
producing the point on the waveform. The choice of 2-
sphere should be close to the region generating GWs rather
than farther out as we are interested in monitoring the
region with a strong support of the BH potential. Measuring
Kerrness of such a surface would give an insight into
validity of perturbation theory in the region that acts as a
dominant source of the GWs.
A framework that is naturally suited for such connections

is Cauchy characteristic extraction (CCE). CCE foliates the
spacetime into a family of outgoing null hypersurfaces and
formulates Einstein’s equations as an initial-boundary value
problem in a 2þ 2 characteristic decomposition. The
mathematical details of this formalism can be found in
[33,47]. CCE performs a characteristic evolution using the
metric data on a timelike boundary of the Cauchy region
(known as the worldtube) and propagates it to Iþ. At Iþ
the radiation information is obtained as the Bondi news
functionN [48]. The GW strain can then be obtained from
N by a time integration,

hðtÞ ¼
Z

t

−∞
N ðt0Þdt0: ð19Þ

A key feature of this scheme is that each point at Iþ
corresponds to a null hypersurface, which in turn corre-
sponds to a particular (coordinate) time label on the
worldtube.
We can thus associate the average of the Kerrness on a

2-sphere to spherical harmonic modes at Iþ. We choose to
average the quantities, rather than modally decompose
them, in order to obtain a single number, which makes
the interpretation and presentation of results easier. We
illustrate this in Fig. 2. Here τ0 marks a specific time slice
(horizontal solid green line) in the Cauchy evolution region
in a gauge chosen by the Cauchy code. The intersection of
this time slice with the worldtube boundary is a spatial
(topological) 2-sphere. The information on this 2-sphere is
propagated to Iþ along a null hypersurface labeled (solid
purple line) as τ0. The radiation feature carries the time
stamp τ0 at Iþ, which, roughly speaking, arises from the
2-sphere defined by the intersection of time slice τ0 and the
worldtube in the simulation and thus, we identify them to
be associated.
Having established a framework to associate information

on a 2-sphere in the strong-field region to the waveform at
Iþ, we now discuss the choice of the 2-sphere used in this
study. Motivated by analytical studies of test particles
plunging into Schwarzschild BHs [34,43], one might want
to inspect the 2-sphere associated with the peak of effective

8By doing so, the gauge effect is limited to uncertainty of
picking the 2-sphere, thereby avoiding contribution of gauge
effects through the entire volume region.
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BH potential. However, locating it during the merger in a
numerical simulation is nontrivial (if at all well-defined),
and is beyond the scope of this paper. Furthermore, CCE
cannot be performed from an arbitrarily small worldtube
close to the horizon. This limitation arises because CCE is
formulated in light-cone coordinates. In the regions very
close to the horizon, light-cone coordinates can form
caustics, leading to coordinate singularities. Because of
these constraints, we choose the worldtube radius corre-
sponding to the smallest coordinate 2-sphere that is
accessible to our procedure, but we visually verify that it
contains strong-field dynamics by plotting Ψ4 in Fig. 16.

C. Inferring perturbation amplitudes via Kerrness

In order to give physical meaning to the values of the
Kerrness measures outlined in Sec. II A 2, we can compare
their values (on a postmerger spacetime, for example) to
those on a single BH with a known analytic perturbation.

Specifically, we can compare the Kerrness measures during
ringdown to those on a l ¼ m ¼ 2 spheroidal QNM
perturbed Kerr BH of the same final mass and spin, with
varying dimensionless perturbation amplitude ε. This will
provide a true physical comparison, as linearly perturbed
type D spacetimes are fully generic type I, and thus the
Kerrness measures on the perturbed spacetime are expected
to be nonzero [49]. This comparison will allow us to infer
the perturbation amplitude to which a particular coordinate
time corresponds. We can then map this inferred amplitude
onto the waveform using the methods in Sec. II B 3.
Given the initial masses and spins, we can generate

initial data for a perturbed BH (including all the relevant
modes). In this study we choose to use the initial data
consisting of only (2,2) mode as this is the dominant mode
of the system. We have fitting formula for relative mode
amplitudes in the perturbative regime, and thus we can
extract an overall amplitude factor and call that ε.

1. Kerrness measures on perturbed metrics

The perturbed metric is generated on a single slice for
each ε by solving the Teukolsky equation and reconstruct-
ing the metric perturbation hab using a Hertz-potential
formalism [50,51] (cf. [44] for a general review). The
resulting perturbation hab is then added to the background
metric to give

g̃ab ¼ gKerrab þ εhab; ð20Þ

which is correct to linear order. The constraint equations for
the metric g̃ab are then solved to give a fully constraint-
satisfying metric gab in Kerr-Schild coordinates using the
extended conformal thin-sandwich formalism (cf. [36]).
This introduces some nonlinear effects into the perturbed
metric. Furthermore, the asymptotic radial behavior leads
to blowup of the solution at large radii [52]. Thus, before
solving for gab, we multiply hab by an envelope of the form

fEnvelopeðRÞ ¼ exp½−ððR − rþÞ=WÞF=2�; ð21Þ

where rþ is the radius of the outer horizon of the BH, W is
the width, and F is the falloff of the envelope. Since the
mapping of the Kerrness measures onto the waveform
occurs at R ¼ 5M, as will be discussed in Sec. III C, and
the horizon typically has outer radius Rþ ∼ 1.7M, we
choose W ¼ 6M to give fEnvelopeð5MÞ ∼ 1 so as to min-
imally affect the perturbation at the extraction radius.
Additionally, we choose F ¼ 8 in order to counteract the
steep growth of the perturbation with radius. We plot the
envelope in Fig. 3. In practice, the metric perturbation is
generated using an extension of the code used in East et al.
[53], but with the QNM solution rather than an ingoing GW
solution and using the full radial dependence.
Figure 4 shows the behavior of the Kerrness measures

averaged on a 2-sphere of R ¼ 5M with ε on a BH of the

FIG. 2. Prescription for connecting the strong-field information
to the asymptotic frame dynamics. The colored cylinder repre-
sents the region of spacetime that is evolved by the Cauchy code.
The vertical green line within the cylinder indicates the direction
of coordinate time. The horizontal lines represent time slices. The
details of the location of time slices depend on the gauge choice.
The pink boundary of the cylinder depicts the worldtube from
where the CCE is performed. The purple lines with unit slope
illustrate the null characteristics along which the information on
the worldtube is propagated to (the solid blue line) Iþ. In our
procedure of associating information in the source frame with the
asymptotic frame, we identify all the points along a characteristic
by an equivalence. The solid green line in the cylinder acts as a
source to the waveform feature at τ0 observed at Iþ.
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same final mass and spin as the simulation outlined in
Sec. III A. The theoretical behavior of the Kerrness
measures with perturbation amplitude is unknown
[42,54], and thus this is the first (numerical) computation
of the behavior. We first check that the measures converge
to finite values with numerical resolution, thus representing

real physical values. The Kerrness measures increase
quadratically for small ε, then show higher-order effects
for large ε. Type D 2 grows to (best-fit) quartic, type D 3
and Kerr 1 become cubic, while speciality and type D 1
remain quadratic at ε ∼ 10−2, the largest amplitude for
which we can solve for gab before violating the constraints.
In particular, the steep increase of the type D 3 and Kerr 1
measures, which come from geometric conditions on KVs,
indicates that at large enough perturbation amplitude, the
slice fails to have even an approximate KV. Since the
perturbation we are introducing is not axisymmetric, it
makes sense that at large ε the slice loses this KV symmetry.
The linear perturbation regime corresponds to the region

where the measures increase quadratically with ε, while the
nonlinear regime approximately begins where one can see
higher-power behavior. In this case, we see the transition
from quadratic behavior around εcritical ∼ 5 × 10−3, sug-
gesting that this is the approximate start of the nonlinear
regime. In practice, one can normalize all of the ε values in
this paper by εcritical. However, we do not do this for
readability of the figures.
However, there are some sources of error in the gab

analysis. The areal radius of the perturbed metric on a
coordinate 2-sphere of radius R ¼ 5M changes slightly
with perturbation amplitude, changing by 10−2M between
ε ¼ 10−6 and 10−2. Thus, a coordinate-radius measure
comparison does not happen on exactly the same 2-sphere.
Solving for gab changes the values of the mass and spin
from the parameters used in creating gKerrab . At the largest
perturbation amplitude ε ¼ 10−2, the dimensionless spin
changes by 0.003, while the mass changes by 0.008M. We
keep these errors in mind when computing the Kerrness
values of the strong-field region in terms of ε and mapping
them to the waveform for the binary case in Sec. IV C.

2. Mapping onto the waveform

A perturbation amplitude ε is associated with each time
slice of a postmerger spacetime in the strong-field region by
the procedure described above. Since the procedure devel-
oped in II B 3 allows us to associate simulation time slices
with the gravitational waveform at Iþ, we can map the
perturbation amplitude associated with each time slice to
the corresponding parts of the waveform at Iþ. This gives
an insight into deciding which portion of the waveform at
Iþ can be modeled as being generated by linearly
perturbed Kerr manifold, thus providing validation of start
times chosen in data analysis that rely on perturbative
description of Kerr.

D. Outline of method

For quick reference, we now concisely provide an
outline of the algorithmic procedure developed in this
paper. This also serves as a step-by-step plan that we can
apply to future BBH detections.

FIG. 3. Envelope function from Eq. (21), for two choices of
width and falloff parameters, fW;Fg. We show how the envelope
parameters affect an extraction radius of R ¼ 5M (marked by the
dashed black line). For our chosen values of fW ¼ 6M;F ¼ 8g,
the envelope is at ∼1 and R ¼ 5M, while for fW ¼ 3M;F ¼ 8g,
the envelope affects the perturbation amplitude at R ¼ 5M. We
have checked that using a smaller envelope does not change the
qualitative behavior of our results.

FIG. 4. Behavior of absolute Kerrness measures with pertur-
bation amplitude ε. We compute this on an l ¼ m ¼ 2 QNM
perturbed Kerr BH with the same mass and spin as the final
remnant in the BBH simulation we consider in this paper. We
average each measure on a coordinate 2-sphere of R ¼ 5M. Note
that we do not plot type D 4 due to the high level of numerical
noise in the measure, but it behaves similarly to type D 3. The
behavior is initially quadratic with ε for all measures. At larger
amplitudes ε ≥ 5 × 10−3, type D 2, D 3, D 4 and Kerr 1 show
higher-power dependence, and hence nonlinearity. We show this
εcrit ∼ 5 × 10−3 by a dashed vertical line. The lines between the
points are only used to visually connect them (rather than
being fits).
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(1) Performing an NR simulation with waveform
parameters inferred from parameter estimation,
and saving the metric data,

(2) Generating worldtube data for various extraction
radii and performing CCE from the inner-most
possible radius,

(3) Evaluating the Kerrness measures on the metric data
at this radius for BBH ringdown,

(4) Evaluating the Kerrness measures on QNM per-
turbed data with the same final mass and spin, and
inferring corresponding perturbation amplitude from
the Kerrness values,

(5) Mapping the Kerrness measures and inferred per-
turbation amplitudes to the waveform via null
characteristics,

(6) Using these results to validate choices for the start
time of ringdown in detector data analysis.

E. Measuring Kerrness on the horizon

In addition to local measures throughout a spatial slice
discussed in Sec. II A 2, Kerrness can also be evaluated on
the postmerger apparent horizon (AH). Owen describes a
multipolar horizon analysis in [26], finding that the
multipolar structure of a final BBH remnant was that of
Kerr. Probing the multipolar structure also serves as a test
of the no-hair theorem [44].
This formalism involves computing the mass multipole

moments Iα of the horizon as

Iα ¼
I

yαRdA; ð22Þ

where R is the scalar curvature of the horizon, dA is the
metric volume element on the AH, and α labels generalized
(nonaxisymmetric) scalar spherical harmonics yα. These
generalized spherical harmonics are computed from the
eigenvalue problem

Δyα ¼ λðαÞyα; ð23Þ

where Δ is the operator Δ≡ gAB∇A∇B on the AH, and
λ is its eigenvalue. In analogy with axisymmetric
spherical harmonics Ylm, an effective l is defined for the
eigenvalues as

λ ¼ −
leffðleff þ 1Þ

r2
; ð24Þ

where r is the areal radius of the horizon. Since the leff
values are time dependent, we refer to a given multipole by
its final value.
As discussed in [26], the multipole moments that are

zero on a Kerr BH either immediately vanish due to the
symmetry of the AH, or decay to zero from their excited
values as the remnant BH settles to Kerr. The multipole

moments that do not vanish on Kerr are functions of the
mass and spin, and reach these values with increasing
coordinate time. We use the code implemented and tested in
[26] to compute the multipole moments. However, since the
multipole moments are features of the horizon, we cannot
map their behavior onto the waveform at Iþ. Moreover,
CCE cannot be performed close to the horizon, as discussed
in Sec. II B 3. Nevertheless, we can compare the qualitative
behavior of the multipole moments with those of the
Kerrness measures as done in Secs. IVA and IV B.

III. NUMERICAL IMPLEMENTATION

A. Description of simulation

We apply the methods outlined Sec. II to the numerical
simulation presented in Fig. 1 of [55], with similar
parameters to GW150914, the first LIGO detection. The
simulation is performed and the methods are applied using
SpEC, the Spectral Einstein Code. The waveforms and
parameters are available in SXS:BBH:0305 in the SXS
Public Catalog [56]. The simulation has initial mass ratio
q ¼ 1.221, and dimensionless spins χA ¼ ð0; 0; 0.33Þ
and χB ¼ ð0; 0;−0.44Þ. The initial orbital frequency is
Ω0 ¼ 0.017. The final (postmerger) BH has dimensionless
spin χC ≃ ð0; 0; 0.69Þ (within numerical error, as measured
using the techniques in [27]) and mass 0.952M. The
inspiral proceeds for 3694.4M until the formation of a
fully resolved common AH. The visible part of the
postmerger waveform on a linear scale has a temporal
duration of ∼61M.
Within a BBH simulation, the metric equations are

evolved in a damped harmonic gauge [57,58], with excision
boundaries just inside the apparent horizons [59,60], and
minimally reflective, constraint-preserving boundary con-
ditions on the outer boundary [61]. The spectral grid used
during the inspiral of the simulation has an excised region
for each BH. Once a common AH forms, the simulation
proceeds for a few M before switching to a new grid, in
which there is one excision region for the new AH [59]. For
this simulation, the grid-switch happens at 3696.9M. For
more information on the code, see [62].

B. Implementation of Kerrness measures

We discuss the numerical implementation of the
Kerrness measures outlined in Sec. II A 2, and summarized
in Fig. 1, on an NR BBH postmerger. Note that these
measures will not be zero even on a numerical Kerr
spacetime, due to the resolution of the simulation.
In order to quantify the Kerrness measures at each point,

we convert the complex tensors into scalars. We contract a
tensor Aij, a vector Bi, and a scalar C as

SA ¼ AijĀij SB ¼ BiB̄i SC ¼ CC̄; ð25Þ
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where raising and lowering occurs using the spatial metric
γij.

9 Throughout the rest of the paper, all of the measures
will refer to their respective scalars generated using
Eq. (25).
Because our simulations are performed using spectral

methods, we expect errors to converge exponentially with
increasing numerical resolution [63]. In Fig. 5, we plot the
Kerrness measures as a function of resolution for a single
Kerr black hole; we see that the measures decay exponen-
tially towards zero as expected.
SpEC solves a first-order formulation of the Einstein

equations, and therefore evolves both the spacetime metric
and variables corresponding to its time and spatial deriv-
atives [64]. The metric and first derivatives are available to
the accuracy of the numerical simulation on each slice.
Kerrness measures that require additional numerical deriv-
atives, however, will have greater numerical noise and a
higher numerical noise floor. The highest numerical order
derivative needed to evaluate each measure is given in
Fig. 1. Type D 4, which requires four numerical derivatives,
is the noisiest measure and has a higher noise floor than the
other measures, as shown in Fig. 5.

C. Map from source to I + implementation

In our study, we use a CCE implementation in SpEC
(cf. [65], in prep). This implementation uses a no-ingoing
and outgoing radiation condition on the initial null hyper-
surface of the characteristic evolution. This means that the
code treats the spacetime outside the worldtube as initially

free of any gravitational radiation from the past.10 Usually
the CCE worldtube is placed at a large radius, and the CCE
evolution begins at the start of the numerical simulation
during early inspiral. However, here we begin CCE only at
the merger portion of the Cauchy evolution, and in addition,
we place the CCE worldtube at a very small radius. This
means that extractedwaveformdoes not contain contribution
coming from the inspiral part of the dynamics.
By decreasing the radius of the extraction worldtube

progressively by 1M, we find the smallest radius of the
worldtube that our procedure can be applied to occurs at a
coordinate radius of R ¼ 5M. For a radius of R ¼ 3M, the
CCE procedure cannot be performed, presumably due to
the formation of caustics. At R ¼ 4M, we get a very glitchy
and unreliable extraction of the news function.
However, performing the CCE from such small radii

gives rise to an additional complication. Since time stamps
on the waveform at Iþ are induced by the simulation
coordinates, the news function obtained is not necessarily
in an inertial gauge. In a standard CCE scheme, a gauge
transformation is applied to the news function in order to
obtain it in an inertial gauge. To preserve the map between
the time in simulation gauge and the time coordinate on the
extracted news function, we do not perform this gauge
transformation. We see the effect of the gauge trans-
formation in the waveform at Iþ as a mixing of mode
amplitudes. The effect is very small when the worldtube
boundary for CCE is large i.e., lies in the weak field region.
For instance, for a worldtube boundary of R ¼ 128M the
effect of this transformation is negligible. To confirm this,
we compute the overlapO between the news extracted from
R ¼ 128M with and without the gauge transformation. The
overlap O is defined as

O ¼ hÑ 1jÑ 2i ¼
Z

∞

−∞

Ñ 1ðfÞÑ �
2ðfÞ

jÑ 1jjÑ 2j
df; ð26Þ

where Ñ 1;2 is the frequency domain Fourier-transformed
news function, and * denotes complex conjugation for ease
of readability, and k is the norm [66].
We find that the mismatch, 1 −O, is ∼10−6. This overlap

computation uses only the merger and postmerger parts of
the news function for the dominant (l ¼ m ¼ 2) spin-
weighted spherical mode. However, for a worldtube radius
of R ¼ 5M, there could be significant amplitude deviations
between the waveforms in the simulation-coordinate-
induced gauge and the inertial gauge. Because of technical
difficulties in the code implementation, we could not apply
the gauge transformation to an extraction fromR ¼ 5M and
quantify the difference.

FIG. 5. Convergence of Kerrness measures on a numerical BH
in Kerr-Schild coordinates with dimensionless spin χ ¼ ð0.2;
0.3; 0.4Þ. We observe exponential convergence towards the
theoretical value of zero with numerical resolution. For each
measure ζ, we present kζk=kζ0k, the L2 norm over the spatial
slice normalized by the L2 norm of the lowest resolution. The
resolution is expressed

ffiffiffiffi
N3

p
, where N is the number of spectral

collocation points in the domain.

9The Kerr 2 measure given in Eq. (16) requires that the
imaginary part be zero, while the real part be ≥0. Hence, when
evaluating Kerr 2, we measure the deviation of the imaginary part
from zero, and the deviation of the real part from being positive
(hence only including negative values).

10During the Cauchy evolution, we perform the evolution with
a boundary of R ≈ 670M and we do not neglect the backscatter
from the region outside of the CCE extraction radius.
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Furthermore, before the noninertial to inertial gauge
transformation, every point on Iþ at the same time stamp
on the waveform corresponds to the same null hypersurface
and therefore to the same simulation coordinate time. After
the transformation, this is no longer true: the waveform seen
at different sky directions with the same time stamp on the
waveform corresponds to different null hypersurfaces and
therefore different values of simulation coordinate time. This
happens because the choice of the 2-sphere is gauge
dependent. Therefore, we omit the gauge transformation,
as the aim in this paper is to connect the near zone to thewave
zone, requiring us to retain the time stamps.
Additionally, the initial no-ingoing radiation condition

neglects gravitational radiation coming from the inspiral.
This may be significant for extraction done at small radii,
where the initial CCE null hypersurface connects the
strong-field region close to merger to Iþ and may contain

significant radiation from the inspiral. This could contribute
towards the discrepancy between the R ¼ 128M and
R ¼ 5M waveforms.
To assess this difference, we compare the news function

obtained by extraction performed from R ¼ 5M with the
extractions performed from the worldtubes of larger radii,
all without the gauge transformation. The result of this is
presented in Fig. 6. We observe that all the extractions from
radii greater than 32M converge with radius, indicating that
the effect of the gauge transformation is insignificant at
these radii. Further, the extraction from R ¼ 5M has a
significant amplitude discrepancy with the other extrac-
tions, particularly in its first cycle. Therefore, we would
ideally wish to map the strong-field information computed
on the 2-sphere at a coordinate radius of R ¼ 5M on the
news function that has been extracted from a larger radius
like R ¼ 128M.

We do this mapping in two steps. First, we map the
strong-field information computed on the 2-sphere at a
coordinate radius of R ¼ 5M onto the CCE performed from
a worldtube of R ¼ 5M using the framework described
above. Next, we note that the phase evolution of extraction
from R ¼ 5M agrees with the extractions from larger
radii.11 We verify this in Fig. 7. Then we align the news

FIG. 6. The l ¼ m ¼ 2 mode of the news function seen at Iþ
extracted from worldtube boundaries of R ¼ 5M, 32M, 64M,
80M, 96M and 128M. The horizontal axis corresponds to the
time stamps associated with the news function corresponding to
CCE from R ¼ 128M. The top panel shows the real part and the
bottom panel shows the imaginary part of the news function. The
alignment of news functions has been done such that the overlap
is maximized. The transformation that changes the gauge from a
noninertial to an inertial observer has not been applied to any of
the extractions. All of the extractions beginning with R ¼ 32M
seem to agree with one another (to the point of overlapping with
the R ¼ 128M line). Notice that the amplitude of the news
function extracted from R ¼ 5M deviates from the other extrac-
tions, especially in the first cycle. Nevertheless, the phase
evolution between the news function from extraction radii seem
to agree. The primary goal of this figure is to compare the
extracted waveforms at R ¼ 5M and R ¼ 128M. Thus we have
bolded and boxed these lines.

FIG. 7. The phase discrepancy between the news function
extracted from a worldtube radius of R ¼ 5M and R ¼ 128M.
The news functions are aligned to maximize the overlap. The top
panel presents the phase evolution of the news function for each
extraction radius. The bottom panel shows the fractional differ-
ence defined as ϕ128 − ϕ5. Notice that the phase difference is
significant at the very beginning but quickly decreases to an
acceptable level for our analysis. We notice that the phase
difference oscillates about 1 radian, indicating the level of error
we introduce by (a) not performing the final gauge transforma-
tion, (b) imposing no-ingoing condition for CCE.

11The time derivative of the phase gives the instantaneous
frequency of the gravitational radiation.
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function extracted from R ¼ 5M to the extraction from
larger radii as shown in Fig. 6. The alignment is done
such that the overlap O between the CCE extracted news
function from different worldtube radii is maximized.
The maximum normalized O between the news func-
tion extracted from R ¼ 128M and R ¼ 5M is 0.82.
Incidentally, this alignment is equivalent to aligning the
real part of the news function at its global minima (or global
maxima of the absolute value). Table I lists the time
shifts that have been applied in order to align the news
function extracted from a radius Ri with extraction done
at R ¼ 128M.

Using this alignment we map the time stamps on the
R ¼ 5M to those on R ¼ 128M. From this, we infer
the mapping of strong-field information at R ¼ 5M on
to the extraction done from R ¼ 128M, thus mapping the
strong-field information onto the news function as seen in
near inertial gauge.
We summarize our algorithm for mapping the strong-

field information onto the news function:
(1) Perform CCE from worldtube with radius of the

2-sphere that lies in the strong-field region (whose
evolution you wish to map on to the news function
seen at Iþ) without the final noninertial to inertial
gauge transformation. The time stamps on this
extracted news function are induced by the time
coordinates in the simulation, thus providing a
natural map between the evolution of the strong-
field region and the wave zone.

(2) Perform CCE from a large worldtube radius where
the effect of the noninertial to inertial gauge trans-
formation is negligible.

(3) Align the news functions obtained in steps 1 and 2
such that the overlap between the waveform is
maximized.

(4) Use this alignment to map the time stamps of the
news function extracted in step 1 to that in step 2.
The 2-sphere chosen in step 1 at the time slice
marked with the simulation time coordinate can be
associated as the dominant source of the feature at
Iþ with the same time stamp.

IV. RESULTS

We now present the results of performing the analysis
outlined in Secs. II and III on the GW150914-like simu-
lation detailed in Sec. III A. Sec. IVA presents the behavior
of the multipole moments of the AH, which provides a
comparison for the Kerrness measures on the simulation
volume. Sec. IV B discusses the results of evaluating the
Kerrness measures on the postmerger spacetime and map-
ping them onto the waveform at Iþ, presenting them in
terms of the percentage decrease from their peak values.
Section IV C presents the results of comparing the Kerrness
measures on the postmerger spacetime to values on
perturbed data, in order to infer the perturbation amplitude
in the strong-field region, and mapping them onto the
waveform, presenting them in terms of the inferred per-
turbation amplitude ε. The percentage decrease from the
peak value and ε can then be used to estimate the overall
level of Kerrness and validate choices for the start time of

TABLE I. The shift in the time axis performed to align the news
functions extracted from different radii in Fig. 6. The alignment
has been done such that the overlap between the news function
extracted from different worldtube radii with the extraction from
R ¼ 128M is maximized.

Worldtube Radius
Alignment Shift with Respect to

R ¼ 128M

R ¼ 5M 132.5M
R ¼ 32M 96.5M
R ¼ 64M 62.5M
R ¼ 128M 0M

FIG. 8. Settling of the postmerger AH as a function of
coordinate time. The top panel shows the areal mass quickly
attaining a constant value and the minimum and maximum radii R
of the horizon exponentially settling to final values. Each quantity
ζ is presented as jζ − ζfinalj=ζfinal where ζfinal is the value at the
final time of the simulation. The bottom panel shows the behavior
of the initially excited AH mass multipoles, labeled by the leff
given in Eq. (24) at the final time. The initially excited quadruple
moments (leff ∼ 2) are shown by the dashed lines, while the
initially excited hexadecapole moments (leff ∼ 4) are shown by
the solid lines. As discussed in the text, two of the quadrupole
moments and four of the hexadecapole moments, as well as the
l ∼ 1 and l ∼ 3 moments immediately vanish due to symmetry.
Thus, we do not plot them in this figure. The excited multipoles
either exponentially decay or reach constant values consistent
with the values expected for Kerr [26].
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ringdown. Finally, in Sec. IV D, we discuss the implica-
tions of these results on analyzing ringdown in GW data,
and in Sec. IV E we compare our results to the ringdown
start times chosen in the GW150914 testing GR study [9].

A. Horizon behavior and multipolar analysis
on BBH ringdown

As a first measure of Kerrness, we apply the horizon
multipolar analysis outlined in [26] and summarized in
Sec. II E to the simulation described in Sec. III A. Figure 8
presents the behavior of the AH. The areal mass of the AH,
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16π

p
where A is the proper area of the AH,

sharply settles to a final value. The minimum and maxi-
mum radii are initially noisy, as the AH is initially peanut
shaped, but they decrease exponentially with coordinate
time, showing a settling of the AH to the final state.
However, the radii are coordinate-dependent measures, and
thus to check if the BH settles to Kerr it is more instructive
to look at the AH multipole moments.
Figure 8 shows the behavior of the initially nonvanishing

quadrupole and hexadecapole moments, labeled by their
corresponding leff at the final time, as given in Eq. (24). The
quadrupole moments correspond to leff ∼ 2 and the hex-
adecapole moments correspond to leff ∼ 4. The multipole
moments behave as expected for a generic simulation
remnant settling to a Kerr BH. As explained in [26], two
of the five quadrupole moments immediately vanish by
reflection symmetry, while two others exponentially go
to zero (eventually hitting a numerical noise floor) as the

final remnant settles to Kerr. Four of the nine possible
hexadecapole moments immediately vanish from reflection
symmetry, while four go exponentially to zero as the
remnant settles to Kerr. Note that the l ¼ 1 and l ¼ 3
moments vanish on Kerr due to symmetry. As in [26], one
quadrupole moment (leff ¼ 2.1) and one hexadecapole
moment (leff ¼ 4.17), both corresponding to m ¼ 0, do
not vanish, but rather attain a constant value in line with that
of a Kerr BH of the same final mass and spin.
The multipolar behavior thus confirms that the final state

of the AH is that of a Kerr BH. This serves as an independent
test of Kerrness, and thus one would expect the Kerrness
measures presented in Sec. II A 2 to also show the strong-
field region exponentially settling to Kerr. This also serves as
numerical evidence for BH uniqueness, as the final remnant
of a BBH merger is indeed Kerr, as also discussed in [26].
Similarly, since the final multipolar structure can be
described completely by the mass and spin, this serves as
numerical validation of the no-hair theorem.

B. Measuring and mapping Kerrness
onto the waveform

The goal in this section is to validate choices of the
start time of ringdown using Kerrness measures on the
GW150914-like system described in Sec. III A. We now
present the results of evaluating the Kerrness measures
outlined in Secs. II A 2 and III B (and summarized in Fig. 1)
in the strong-field region and mapping them onto the
waveform at Iþ using the procedure given in III C.

FIG. 9. Behavior of absolute Kerrness measures with coordinate time on BBH postmerger spacetime. The measures are averaged on a
variety of concentric nested coordinate 2-spheres of radii R around the BH, as indicated by the colors. Larger values within each subplot
mean that the 2-sphere is farther from being locally isometric to Kerr. For measures that involve higher-order numerical derivatives, we
present the results only at radii where they are at least somewhat well resolved. All plots, however, include R ¼ 5M, the radius we use to
map Kerrness onto the waveform. Type D 4 is particularly noisy, as it contains the highest number of numerical derivatives. The
measures exponentially decay as the spacetime approaches Kerr, ultimately reaching a numerical noise floor. We observe that the peak of
each measure moves outwards with radius, indicating propagation of non-Kerrness.
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These measures are evaluated pointwise on each slice, and
we map the value on a 2-sphere at a radius of R ¼ 5M onto
the news function. Recall that larger values of the Kerrness
measures indicate greater deviation from being locally
isometric to Kerr.

Figure 9 shows the Kerrness measures averaged at
various coordinate radii on each slice of the postmerger
spacetime, presented as a function of coordinate time.
All of the measures decay exponentially toward zero,
showing that the spacetime approaches an isometry to

FIG. 10. Absolute Kerrness measures on slices of the BBH postmerger spacetime. The data is presented in the equatorial plane, with
the gray region corresponding to the excised BH. The black circles correspond to coordinate radii R ¼ 5M and R ¼ 10M. The columns
correspond to speciality index, type D 1, and Kerr 1, and the rows (from top to bottom) correspond to coordinate times at which the each
measure at R ¼ 5M achieves 100%, 30%, 10%, and 1% of the combined peak value. The quadrupolar pattern (with jmj ¼ 2) in all three
measures is consistent with the dominant quadrupolar radiation (recall that these are absolute measures, and hence do not distinguish
between positive and negative values). Notice that the algebraic measures—speciality index and type D 1—settle outward-in, whereas
Kerr 1, a geometric measure, settles inward-out. Additionally, the structures in the measures are visible even at 1% of the peak value. We
can compare these measures to Ψ4 (in Fig. 16) to infer their sensitivity to the spacetime curvature features.
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Kerr. This confirms the results of the multipolar analysis in
Sec. IVA. Additionally, this serves as a numerical verifi-
cation of BH uniqueness, as the final state of a BBHmerger
is isometric to Kerr. The behavior of the measures at large
radii (such as R ¼ 128M in this case) is especially
interesting to the question of BH uniqueness, which is
particularly concerned with the domain of outer commu-
nication [54].
Figure 10 shows the behavior of the speciality index, an

algebraic measure (type D 1) and a geometric measure
(Kerr 1) in the volume, as a function of increasing
coordinate time. We see a distinct quadrupolar pattern in
all our measures (the equatorial plane has a modal pattern
that corresponds to jmj ¼ 2), consistent with the dominant
mode of gravitational radiation. Furthermore, the speciality
index and type D 1 measures, which determine properties
of the PNDs, settle first further from the BH, while the
geometric Kerr 1 measure, which is determined by proper-
ties of the KV, first settles closer to the BH.
The Kerr 2 measure, which constrains the NUT param-

eter, is effectively constant throughout the ringdown, as
shown in Fig. 11. Since the NUT parameter is one of the
hairs of a generic type D manifold, Fig. 11 confirms that a
NUT charge is not generated during a BBH merger. We
thus do not include it further in our analysis.
Of these measures, two are algebraic constraints—type D

1 and type D 2—and three are geometric constraints on the
KV, type D 3, type D 4, and Kerr 1. In Fig. 9 we see that all
the algebraic measures decay in a similar fashion and all the
geometric measures decay similarly. Type D 4, which
requires 4 numerical derivatives, is visibly noisier than the
other measures. This measure checks if the vector identified
as ðY; YjÞ satisfies the Killing equation and is crucial for a
rigorous mathematical characterization of Kerr manifold.
However, all geometric measures depend on the same
Killing vector and we observe that type D 4 has a similar
decay property as type D 3 and Kerr 1. Thus, we do not
include the noisier type D 4 in our analysis, rather treating
type D 3 as a proxy for both.

Each measure at each radius in Fig. 9 eventually reaches a
floor. This is confirmed to be a numerical noise floor in
Fig. 12, where the floor is shown to exponentially converge
to zero with numerical resolution. The radial behavior of the
Kerrness measures stems from the radial behavior of the
Weyl tensor and the metric quantities. For example, for a
stationary background, Eij ∼ R−3 and Bij ∼ R−4, and thus
speciality index given in Eq. (7) should be ∼R−18, which we
indeed observe.
The analysis outlined in Sec. III C requires the Kerrness

measures to be extracted at R ¼ 5M in order to map them to
the news function. Figure 10 shows that the Kerrness
measures have strong support at R ¼ 5M, thus justifying
the choice of radius as being in the near field.12

The Kerrness measures quantify the violation of the
conditions for a manifold to be isometric to Kerr and
therefore, they need not have the same dimensions and
sensitivities. Thus, one cannot compare the absolute
magnitudes of these measures with each other and
directly translate their value into statements on validity
of start time of perturbative regime. In order to normalize
and combine them into an overall measure of Kerrness,
we use the concomitant percentage decrease from their
peak values.

FIG. 11. Kerr 2 measure throughout the postmerger BBH
simulation, averaged on a variety of coordinate 2-spheres of
radius R. The values remain relatively constant and low, indicat-
ing that no NUT charge is gained during ringdown.

FIG. 12. Exponential convergence of the noise floor of each
Kerrness measure on the final time step of the BBH simulation.
Each measure ζ is presented as an average over a 2-sphere of
R ¼ 5M (where the measures have settled to a noise floor),
normalized by jζ0j, the average of the lowest resolution. The
resolution is indicated by

ffiffiffiffi
N3

p
, where N is the number of spectral

collocation points. The convergence to zero shows that the noise
floor observed in Fig. 9 is a numerical noise floor, rather than real
a physical artifact. We have also testing this convergence
behavior on a 2-sphere R ¼ 5M and verified that the behavior
is consistent (although more noisy).

12The measures at R ¼ 3M in Fig. 9 behave similarly to those
at R ¼ 5M indicating that R ¼ 3M also behaves like the near-
field region, but unfortunately we have not been able to perform
CCE from this small a radius.
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We present the percentage decrease of each of these
measures from their peak values mapped on to the news
function in Figs. 13 and 14. In the bottom panels of
these figures, the news function is plotted as a function of
time. On the same time axis, the top panel depicts the

corresponding evolution of the Kerrness measure in the
strong-field region. The waveform feature in the bottom
panel at a particular time coordinate is associated to the
time slice carrying the same time label, via source-effect
association outlined in Sec. II B 3. In the bottom panel, the
Kerrness value at this time characterizes the deviation
from Kerr.

FIG. 13. Connecting the Kerrness measures in the strong field to dynamics at Iþ using the procedure described in Sec. III C on the
BBH postmerger. The left panels map the algebraic measures and the right panels map the geometric measures on to the news function.
The top panel within each subplot corresponds to a Kerrness measure in the strong field, while the bottom panel shows the news function
at Iþ. The purpose of plotting the news function directly below each Kerrness measure is to emphasize that the top and bottom panels
are mapped to the same time axis. The dashed lines of different colors indicate the % decrease from the peak value of the respective
Kerrness measures. The horizontal axis corresponds to the simulation coordinate time induced on the news function extracted from a
worldtube radius of R ¼ 128M. Furthermore, unlike the strong-field result plots that aim at rigorous characterization of isometry to Kerr,
here we aim at providing insight into validating the start time of ringdown for data analysis. Therefore, these plots are on linear scale as
opposed to logarithmic scale. Notice that the curves on the left panel decay more slowly than those on the right; type D 1 is the slowest to
decay, closely followed by type D 2. Also, recall that we cannot compare the magnitude of the top part of each of these panels as they are
dimensionally different.

FIG. 14. This figure is similar to Fig. 13 but for speciality
index. We plot this separately as it is an independent measure and
decays rapidly compared to the other measures. Further, we do
not indicate the 1% of peak line because of numerical noise
(cf. Fig. 9) which leads to unreliable root finding for time of
percentage decrease.

TABLE II. The spread in the time for given % of the peak value
of Kerrness measures computed using all the measures. The
combined % time refers to the value of the dashed lines in Fig. 15
and corresponds to the time at which all the measures have at least
decayed to the indicated % relative to the time at which the peak
amplitude of news function occurs.

% of Peak Value Spread in Time Combined % Time

100% 12M 1.5M
50% 9.8M 11M
30% 9M 14.7M
10% 8.3M 21.7M
5% 8.7M 25.9M
1% 6.1M 35.3M
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In these figures, we delineate 6 lines marking the
percentage decrease from the peak value of each of
the Kerrness measures as a function of time—both in
the strong-field region and on the news function at Iþ.
As stated before, these measures have different decay
properties and so do not decay to a particular percentage
of their peak value at the same time. The difference
between the time at which measures decay to a particular
percent is tabulated in Table II.
We present the combined percentage decrease from the

peak value on the news function in Fig. 15. The shaded
bands correspond to spread in percentage decay on the
news function. The widths of these bands are given in
Table II. The solid line at the end of each band marks the
time when all these measures have decayed to the indicated
percentages and this can be used to conservatively choose
the start time.
Furthermore, in this figure we do not include the

speciality index. The speciality index is an independent
measure that quantifies if the manifold is algebraically
special. Since this is the weakest condition in our Kerrness
characterization scheme, we see that it gets satisfied earliest
on the postmerger simulation from Fig. 14. The 1% of peak
line which occurs unexpectedly late arises because of
numerical reasons. We assert this by looking at the nearly
flat nature of speciality index curves in Fig. 9 at late times,
very close to the numerical noise floor.
We observe that all measures decay to ∼50% of their

peak value within half a cycle from the peak of the news
function. Further, in approximately one cycle, all the
measures are reduced to ∼30% of their peak values. The
spread in each of the bands is about ∼10M when we
include all the Kerrness measures in computing the band,
and this shrinks to ∼6M when we exclude speciality index.
We combine the measures with equal weights, thereby

presenting a conservative result. Furthermore, we have

FIG. 15. The concomitant decrease of all of our Kerrness measures. The dashed lines indicate the time at which all the measures decay
to at least the indicated % of peak. The bands color the region in which different measures decrease to the indicated % of peak. Notice
that there is about half a cycle spread in each of these bands. Therefore, the dashed lines provide a conservative idea of the validity of the
choice of the start time for data analysis. We have specifically included the spread of these bands as a quantifier of error bounds in the
statements of validity made further in this paper. Furthermore, one could shrink the right boundary of these shaded bands if one
combines the Kerrness measures with appropriate weights based on their sensitivity to the spacetime curvature and the final remnant’s
effective potential.

FIG. 16. Ψ4 in on the x axis (in the equatorial plane) for both a
single BH with an l ¼ m ¼ 2 perturbation of amplitude ε ¼
7.5 × 10−3 (top panel) and ε ¼ 10−3 (bottom panel), and for the
BBH ringdown at times that achieve the same Kerrness. For all
cases, Kerrness is matched on a coordinate 2-sphere of R ¼ 5M.
The x axis of the plot shows the radius, and includes the data
within the Gaussian envelope of width R ¼ 8M, as described in
Fig. 3. Note that this is only meant to show qualitative agreement
between Ψ4 on both slices, as the quantity is still subject to
coordinate tetrad effects in the strong-field region. Notice that
although the two systems look similar, the mapping does have
some imperfections. Recall, however, that it is ultimately the
invariant Kerrness measures that determine the mapping between
the perturbation amplitude and the BBH merger-ringdown time.
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repeated our analysis with larger worldtube radii and
confirmed that our results for the spread do not change
significantly. For instance, using R ¼ 128M results in a
time shift of aboutþ4M relative to the R ¼ 5M results, and
this positive time shift monotonically decreases with radius
for R ¼ 32, 64 and 80M.

C. Estimating and mapping the perturbation
amplitude onto the waveform

In order to provide a physical understanding for the
values of the measures in the strong-field region shown in
Figs. 9 and 10, we can compare the values to those on an
initial slice of a perturbed Kerr BH with the same final mass
and spin as the BBH simulation, as outlined in Sec. II C 1.
We can then map the inferred strong-field perturbation
amplitude ε onto the waveform using the procedure out-
lined in Secs. II B 3 and III C. This procedure involves the
following steps:
(1) Generate perturbed Kerr manifolds for a range of

amplitudes ε.
(2) Compute the Kerrness measures at R ¼ 5M on these

slices.
(3) Compute the Kerrness measures at R ¼ 5M on the

postmerger BBH simulation [verifying that the
gauge-invariant areal radii of the R ¼ 5M coordinate
2-spheres are approximately (within 0.01M in our

case) equal for the single-BH and the BBH case]. If
the areal radii do not match, then choose a different
surface on the perturbation slice such that the two
areal radii agree.

(4) Identify the coordinate time in the postmerger BBH
simulation at which the Kerrness measures at
R ¼ 5M agree with those on the perturbed Kerr
slice for a given ε—this gives a crossing time for
this ε.

(5) Use this crossing time to map the inferred ε onto the
waveform.

Figure 17 shows the inferred ε for the BBH ringdown
simulation as a function of coordinate time in the simu-
lation. The gauge-invariant areal radii at R ¼ 5M on the
BBH simulation slices and on the metric perturbation are
within 10−2M. The values of the Kerrness measures on the
perturbed data vary quadratically with ε, as shown in Fig. 4.
At higher values of ε, they obtain higher-power depend-
ence, as discussed in Sec. II C 1. Each Kerrness measure
decays through various ε as the simulation progresses.
Type D 1 and type D 2, the two algebraic conditions, have
comparable crossing times for a given ε, while the two
geometric KV conditions, type D 3 and Kerr 1, also have
comparable crossing times. Speciality index crosses around
10M before the other measures, in part because it is a
weaker condition that the others. Each crossing time has an
intrinsic 2M spread due to sampling, and not all measures

FIG. 17. Comparison of the Kerrness measures during the BBH postmerger to the values of the Kerrness measures on an l ¼ m ¼ 2
QNM perturbed Kerr BH of various perturbation amplitudes ε, with the same mass and spin parameters. The measures are averaged on a
2-sphere of coordinate radius R ¼ 5M, which corresponds to comparable areal radii of ∼2.59M in both systems. The measures
evaluated on the BBH slices are shown by solid black lines, decaying as a function of time. The Kerrness measures for the perturbed
metric are presented as horizontal dashed red lines, one for each ε. The times at which the BBH curves intersect the Kerrness values for a
given ε Kerr perturbation give a scale for the BBH Kerrness measures as the postmerger progresses. These times, known as crossing
times are then mapped onto the waveform, and used to validate the start time of ringdown. Note that the measures have different crossing
times. The time axes are shifted to agree with the time stamps of the GW at R ¼ 128M, as explained in Table I.
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cross each ε due to numerical noise floors, leading to
spreads in crossing time.
In Fig. 16, we qualitatively check the spacetime features

by comparing Ψ4 corresponding to ε ¼ 7.5 × 10−3 and
10−3 on the perturbed Kerr metric with the corresponding
time slice during the postmerger simulation. The crossing
time spread for a particular ε arises because of the imperfect
mapping between an analytically perturbed Kerr BH and
the postmerger spacetime. Therefore, unlike in an ideal
mapping, the combined crossing times will have a spread.
In particular, the difference in the features between the
postmerger and the perturbed Kerr slice indicates a differ-
ence in symmetry and explains the larger spread in the
crossing time between the KV-dependent measures. We see
that the spread in the combined crossing times using only
algebraic measures is much smaller than when we include
the geometric measures.

We next map the inferred perturbation amplitude to the
news function, using a procedure similar to the one in the
previous section, and present the result in Fig. 18. The top
panel of the figure indicates the crossing time for the
speciality index, the middle panel for the algebraic mea-
sures, and the bottom panel shows that for geometric
measures. The spread in the crossing time for the algebraic
measures decreases from ∼6M at the start, to our sampling
rate, 2M. This occurs because at the very start of post-
merger, the system is not yet in a perturbative regime and
therefore, our mapping contains a larger error. Geometric
measures are more drastically affected by the imperfections
in the mapping, indicating the differences in the symmetries
of the two systems. On including the geometric measures,
the crossing time spreads to ∼8M. We confirm that the
spread of the crossing times calculated using the algebraic
measures is always contained within the spread of crossing
times calculated using the geometric measures.
As the signal decays from the peak to a barely visible

amplitude on a linear scale (∼3–4 cycles) at Iþ, the
corresponding perturbation in the strong-field region
decreases by an order of magnitude. The peak of the news
function corresponds to a perturbation amplitude of
∼7.5 × 10−3. Further, it takes about 2 cycles in the wave
zone for the perturbation amplitude to decay to half its peak
value. Also, by the time the perturbation amplitude decays
by an order of magnitude, there is hardly any power left in
the signal.

D. Implication of the start time on data analysis

1. From news to h

In order to compare the Kerrness measures on the GW to
the loss in signal-to-noise ratio (SNR) at the times used in
[9], we must first calculate the strain h from the news
function, and then calculate the merger time. As outlined in
Sec. III C, h can be calculated by integrating the CCE news
function. One can also independently calculate h using the
Regge-Wheeler-Zerilli (RWZ) (cf. [67] for details on the
method) [68–71] method and then extrapolating it in
powers of the extraction radius (cf. [72] for details). The
RWZ method and extrapolation have been implemented
and tested in SpEC [72,73], and the strain calculated by this
method was presented in the GW150914 detection paper
[55]. This method, however, has a different retarded time
axis [72] than the CCE news function. Thus, we differ-
entiate the RWZ strain to get a news function, and shift it to
align in phase with the CCE news function. We check the
CCE results by comparing the output of the two methods,
presenting the results in Fig. 19.
In the GW150914 testing GR study [9], tmerger is defined

as the point at which the quadrature sum of the h× and hþ
polarizations of the most-probable, or maximum a posteri-
ori (MAP) waveform, produced by effective-one-body
(SEOBNRv4) template [74] is maximal. For this study,

FIG. 18. Mapping the inferred perturbation amplitude close to
the BH onto the news function. The top panel shows the spread in
the crossing times computed using just the speciality index, the
middle panel uses only the algebraic measures and the bottom
panel utilizes only the geometric measures. Notice that ampli-
tudes larger than 2 × 10−3 do cross the postmerger time slices
when computed using the geometric measures and that the
crossing time spreads in them are relatively large, suggesting a
difference in the symmetry of a perturbed Kerr metric and the
postmerger BBH spacetime. However, this does not seem to be
reflected when we just consider the algebraic measures as they
have a relatively small spread in the crossing time. The spread in
the crossing time of the speciality index is equal to the
sampling rate.
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we use the l ¼ m ¼ 2 spin-weighted spherical harmonic
mode of the MAP waveform, as this is the least-damped
QNM. In this study, rather than using the EOBNR wave-
form, we calculate tmerger based on the time of maximum
amplitude of the time-shifted RWZ strain, as

tmerger ≡ ftjh2ðtÞ ¼ max
t0

ðh2ðt0ÞÞg; ð27Þ

where

h2 ≡ RealðhÞ2 þ ImagðhÞ2: ð28Þ

We find tmerger ¼ 3839.0� 0.1M.

2. Start time and the SNR

While picking too early a start time for an analysis that
relies on being in ringdown gives inaccurate and biased
results, picking a start time too late leads to a large
statistical error. Since the amplitude of the signal decays
exponentially with time, the SNR in ringdown decreases as
exponential squared with the start time. Consequently, the
spread in the posteriors during estimation of ringdown
parameters, which goes inversely proportional to match-
filtered SNR, increases and gives rise to large statistical
uncertainties. Therefore, one must chose an optimal middle
ground considering both these factors.
In the top panel of Fig. 20, we show the percentage

decrease in match-filtered SNR with the start time of the

ringdown. A match-filtered SNR is a noise-weighted
scalar product between the signal and the template and
is defined as

SNR ¼ 4

Z
∞

0

h̃�1ðf0Þh̃2ðf0Þ
Shðf0Þ

df0 ¼ hh1jh2i; ð29Þ

where * denotes complex conjugation for ease of read-
ability. Here, h1ðtÞ corresponds to a ringdown waveform
that is tapered at tmerger and acts as a signal. We filter this
against the template, h2ðtÞ, which is tapered with varying
start time. Further, ShðfÞ corresponds to power spectral
density (PSD) of aLIGO at design sensitivity [75].
However, since we present our results in terms of ratios,
our analysis remains valid to any detector noise curve.
Then, a Fourier transform is taken to evaluate Eq. (29).

FIG. 19. Comparison between the strain h calculated using
CCE and RWZ methods. All waveforms are presented in terms of
the l ¼ m ¼ 2 mode. We use the fact that the strain is the integral
of the news function to cross-check the methods. The top panel
shows the CCE news function N CCE compared to _hRWZ, the
derivative of the RWZ strain. The bottom panel shows hCCE, the
integral of the CCE news function, compared to the RWZ strain
hRWZ. We find good agreement until late times, when hCCE begins
to drift, likely due to the numerical integration scheme used.

FIG. 20. The top panel of this figure shows the percentage
decrease of SNR from the peak value. The % SNR is set to 100 at
tmerger. For this plot, we evaluate Eq. (29) with varying lower
bounds for the integration. The dashed horizontal lines corre-
spond to f80; 60; 40; 20g% SNR. On the same plot, we mark the
perturbation amplitude bands for a direct comparison between
perturbation amplitude and statistical error. Notice that by the
time the perturbation amplitude near the BH decreases by an
order of magnitude, there is only a few percent of SNR left in the
signal, emphasizing the sharp trade-off between the systematic
biases arising from modeling the postmerger as perturbed Kerr
and the statistical uncertainty arising due to exponentially decay
of signal amplitude. The bottom panel shows the total energy
radiated in units of M during the merger-ringdown. This is
calculated by integrating Eq. (31). Again, we have plotted the
concomitant percentage decrease of the Kerrness measures from
their peak values for an easy comparison between the statistical
and systematic errors associated with the choice of the start time
of ringdown. In particular, the constant settling in the total
radiated energy occurs between the time when the Kerrness
measures have decayed to 5% − 1% of their peak values,
implying that at these times the GW is very weak in amplitude.
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Here we use only the l ¼ m ¼ 2 spin-weighted spherical
harmonic mode of the RWZ strain waveform computed in
Sec. IV D 1. The system is considered to be optimally
oriented with respect to the detector for this calculation.
The tapering is done with a tanh window function

defined as

WðtÞ ¼ tanh½α0ðt − t0Þ�=2: ð30Þ

t0 is the time around which the tapering is centered and it is
set to the start time of the perturbative regime. α0 is set to 10
in making the top panel of Fig. 20. Furthermore, we
confirm that our results do not change significantly with
the tuning parameter α0 using α0 ¼ f2; 5; 10; 20gM−1.
We then present percentage decrease of SNR in the top

panel of Fig. 20 by defining 100% for start time at tmerger.
Further, on this same plot we also indicate the amplitude of
perturbation in the strong-field region (as calculated using
the algebraic measures) at the start time, giving an insight
into how statistical and systematic errors vary with the
choice of start time.
The bottom panel of Fig. 20 presents the total energy

radiated through the merger-ringdown as a function of time.
This indicates the strength of GW signal and is calculated
by integrating [76]

dE
dt

¼ lim
r→∞

r2

16π

I ����
Z

t

−∞
Ψ4dt0

����
2

dΩ: ð31Þ

Furthermore, on the same plot we mark the percentage
decrease of the Kerrness measures from their peak values,
providing a comparison between the strength of the signal
left for performing the analysis versus Kerrness evaluated
in the strong-field region.
To impress the sharp trade-off in systematic and stat-

istical uncertainties in choosing the start time of the
ringdown and, to provide an intuition of implication of
Fig. 20, we present the spread in estimation of dominant
QNM frequency, f22 in Fig. 21. For this, we calculate the

spread using the Fisher information matrix formalism
similar to that in Eq. (4.1a) of [77], for a GW150914-like
system. In particular, we set f22 to 253.7 Hz and the quality
factor, Q22 to 3.2. However, we emphasize that this is a
rough estimate intended only to provide intuition and, we
plan to follow this up by a rigorous Bayesian parameter
estimation in the future.
We present the interplay between the systematic and

statistical uncertainty concisely in Table III. Furthermore,
we find that by the time the news function peaks, the SNR
has already dropped down to 60%. However, at this time
the algebraic Kerrness measures are at their peak value. We
also observe that by about a cycle of news function, there is
less than 20 percent SNR left in the signal. Therefore, there
seems to be a sharp trade-off between the systematic
modeling error and statistical uncertainties.

E. Comparison with GW150914 testing GR paper

The test of consistency of ringdown of the GW150914
signal with the analytically predicted QNM frequency is
given in Fig. 5 of [9]. The analysis chooses various start
times of ringdown, namely tmerger þ 0, 1, 3, 5, 6.5 ms. At a
start time of tmerger þ 3 ms (or later), parameter estimation
of the dominant QNM in ringdown is consistent with
predictions using initial masses and spins.
A time 3 ms for the system corresponds to 9.4M from

tmerger. In our analysis, tmerger ¼ 3839M [cf. Eq. (27)],
while the peak of the news function occurs at 3846M. Thus,
3 ms corresponds to 2.4M after the peak of the news
function. In this region, as shown in Fig. 22, the perturba-
tion amplitude is ≳7.5 × 10−3. Our analysis indicates that
this corresponds to a relatively large deviation from Kerr.
Recall that Fig. 4 suggests that ε ¼ 5 × 10−3 is the
approximate start of the nonlinear regime.

FIG. 21. Spread in estimation of dominant mode frequency as a
function of SNR. We present the spread, σf in the estimation of
frequency calculated using Fisher information matrix formalism.
We should the increase in spread with decreasing SNR, providing
the rough intuition on the implication of Fig. 20 on parameter
estimation.

TABLE III. Summary of our results. The first column counts
the number of cycles from the peak of the news function. The
second column presents the drop in SNR with start time chosen in
the data analysis. SNR is normalized to have 100% when the data
analysis starts at the peak of the waveform [hðtÞ] i.e., at 3839M.
The third column shows the concomitant percentage decrease in
the Kerrness measures from the peak value (similar to Fig. 15).
Further, in the last column we present the perturbation amplitude
inferred by the crossing times computed with type D 1 and D 2
measures (similar to middle panel of Fig. 18.)

No. of Cycles % SNR % Kerrness ε=10−3

peak 60 100 7.5
1
2
cycle 30–40 40–50 7.5

1 cycle 20–25 35–30 5
1 1

2
cycles 10–20 8–12 3.5

2 cycles ∼10 7–5 2–2.5
2 1

2
cycles <10 ∼1 1–2

3 cycles <5 <1 0.5–1
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With a start time of tmerger þ 3 ms, the SNR was about
8.5 and the spread in the estimate of QNM frequency was
roughly 40 Hz [9]. Because of this low SNR and high
spread, the GW150914 testing GR analysis may not have
been sensitive to the large non-Kerrness we see close to the
BH. However, in the case of higher SNR, where the
analysis is sensitive to the systematics of the ringdown
model, our study suggests picking a later start time.
Our analysis uses geometric and algebraic conditions to

identify isometry to Kerr. However, these conditions do not
directly measure the deviation of the curvature BH potential
from that of Kerr. Since the QNM are intrinsic tests of the
BH potential along with the boundary conditions, deviation
of QNM frequencies will depend on details of the BH
potential, and thus are not directly quantified in our
measures. Additionally, the parameters used in this study
correspond to SXS:BBH:0305 waveform used in the
GW150914 detection paper [4], which are slightly different
from those of the MAP waveform used in the testing
GR paper.

V. CONCLUSION

In this study, we present a method for validating choices
of the time at which a BBH GW signal can be considered to
enter the ringdown stage. This is done by computing
algebraic and geometric measures of Kerrness in the
strong-field region of an NR simulation of a BBH ring-
down, and then associating each point on the asymptotic-
frame waveform with a particular value of these Kerrness
measures. Thus, for each point on the asymptotic-frame
waveform there is an estimate for how close the BH
spacetime is to Kerr spacetime. This is the first time this
set of measures, proposed in [25], are evaluated in the
strong-field region. This is also the first time measures of
Kerrness in the strong-field region is mapped onto the
waveform. We outline this method in Secs. II and III, and
implement this analysis in Sec. IVon a GW150914-like NR
simulation.
We observe that after merger, the Kerrness measures of a

BBH ringdown simulation decrease exponentially with
coordinate time in the simulation, eventually settling to a
numerical noise floor, as shown in Fig. 9. This decay is
consistent with measuring Kerrness using multipole
moments of the apparent horizon, as in Fig. 8 and [26].
In all cases, the measures on the final slice of the simulation
indicate that the final remnant is a Kerr BH, thus providing
numerical consistency with the BH uniqueness theorem.
Moreover, we find that the final state in the multipolar
analysis depends just on mass and spin, which serves as a
confirmation of the no-hair theorem in the strong-field
region. Additionally, as shown in Fig. 10, the Kerrness
measures have a quadrupolar (with jmj ¼ 2) structure
consistent with the dominant gravitational radiation. The
geometric measures, which rely on the existence of a
Killing vector field, first decay to zero close to the horizon,
then later they decay at larger radii as gravitational radiation
propagates out. On the other hand, algebraic measures,
which depend on principal null directions, first decay to
zero at larger radii, before decaying near the BH. We also
see that the NUT parameter remains zero during merger and
ringdown, as shown in Fig. 11.
These gauge-independent Kerrness measures are crucial

to the nonlinear stability analysis of Kerr, as they quantify
the deviation from being isometric to Kerr. The analytical
behavior of these measures with perturbation amplitude is
unknown [42,54]. Through this study we provide insights
into their numerical behavior in Fig. 4. We find that all of
these measures scale quadratically with ε for low amplitude
perturbations, but acquire higher-order nonlinearities for
larger perturbation amplitudes. Furthermore, in Figs. 9
and 10, we provide the radial behavior of these measures,
up to a large radius of R ¼ 128M. For a BBH simulation,
we track these measures starting from merger, where linear
perturbation theory is not expected to hold. Despite the
large initial excitation, our study shows that the BBH

FIG. 22. Comparison of the times chosen in the testing GR
study of GW150914 [9]. Here, we make statements about their
validity to perform tests that rely on the perturbative nature of the
BH. Specifically, we propose that a plot of this nature be done for
future detections, especially if the SNR is high, to gain an insight
into the inferred strong-field perturbation amplitudes correspond-
ing to different choices of ringdown start time. The dotted line in
the top panel shows different choices of start time for performing
tests on the detector data. The bottom panel shows what each time
choice corresponds to in the simulation gauge. Although a
practical choice of start time to perform tests like no-hair theorem
tests should be decided based on the interplay between the
statistical and systematic uncertainty, a plot of this nature gives
significant understanding of the results of such tests. For instance,
in the case of GW150914, had the signal been much louder than
what we observed, this plot suggests that we could get biased
results due to large inferred perturbation amplitude in the strong-
field leading to errors in modeling the postmerger as a perturbed
BH at 3 ms.
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ringdown simulation evolves to a final Kerr state, providing
a numerical validation of the nonlinear stability of Kerr.
To connect the Kerrness measures in the strong-field

region to the asymptotic waveform at Iþ, we use CCE,
which evolves Einstein’s equations on a foliation of out-
going null hypersurfaces. A null characteristic evolution
can be done only in a region free from caustics. We
demonstrate that CCE results using a worldtube at R ¼
5M are consistent with those done from larger radii. This
implies that during ringdown, caustics only exist very close
to the BH. Furthermore, we show that the map between the
strong-field region and the wave zone can be extended all
the way in to R ¼ 5M.

Although caustics do not form, we see in Figs. 10, 16
strong features in the curvature quantity Ψ4 in the region
enclosed by R ∼ 10M. This implies that our extraction
radius choice of R ¼ 5M lies within the strong field and
within the support of the BH potential.
In Fig. 13, we label each point of the BBH ringdown

waveform with the percentage decrease of the Kerrness
measures in the strong-field region relative to their maxi-
mum values. In order to give a physical interpretation of the
values of the Kerrness measures, we compare them
throughout the postmerger spacetime to those evaluated
on a l ¼ m ¼ 2 QNM perturbed Kerr BH of the same final
mass and spin. From this we infer the amplitude of BH
perturbation during ringdown and map onto a particular
point in the BBH ringdown waveform; this is marked on
the BBH ringdown waveform in Fig. 18.
As the BBH simulation proceeds after merger, the

strong-field region starts looking like Kerr, indicating the
validity of perturbative analysis. However, as time pro-
gresses, the amplitude of the ringdown decreases, leading
to a rapid decay in SNR in a GW detection. We find that by
the time the Kerrness measures decrease to 50% of their
peak values, there is only about 20% SNR left in the signal.
In terms of perturbation amplitude close to the BH, this
maps to an amplitude between 7.5 − 5 × 10−3. This occurs
after 1–1.5 cycles of the news function, which corresponds
to ∼16.4M after tmerger. Additionally, we find that the start
time of ringdown used in [9], tmerger þ 3 ms, corresponds to
an amplitude of 7.5 × 10−3. Our results also agree with the
start time proposed in [78]. In future detections with higher
SNR, where the statistical noise is significantly smaller, one
may need to choose a later start time to perform precision
tests of GR such as no-hair theorem tests.
A future extension to this project would be to investigate

methods that allow us to perform similar source-asymptotic
frame associations for smaller radii. For instance, the light
ring would be an interesting region to monitor as it is
crucial to the QNM structure. This can perhaps be done
numerically through ray-tracing methods such as those
used in [79,80], to understand the evolution of the peak of
the BH potential (if it forms). Another possible technique
could be to try performing CCE from smaller radii after the

high amplitude of the initial excitation has reduced.
Additionally, being able to perform this association at
smaller radii would allow one to understand the propaga-
tion of perturbations very close to the BH horizon onto the
waveform; these are expected to be redshifted and appear
on the waveform with a large time delay.
Another avenue of future work would be investigating

the effects of implementing a more realistic condition on
the initial null hypersurface by relaxing the no-ingoing-
waves condition used in performing CCE. In addition, we
can study the trade-off involved in choosing an earlier
ringdown time, which will decrease the spread in recovered
ringdown parameter posterior distributions and increase the
systematic errors that arise because of deviations from Kerr
in the strong-field region.
The methods used in this paper can be applied to future

BBH detections in order to guide the choice of the start time
of ringdown. For the sake of quick reference to the
procedure described in this paper, we concisely enumerated
the steps in Sec. II D. Note that the results of this paper
approximately hold for any equal mass system with an
appropriate mass rescaling (cf. footnote 2) and effective
spin near zero. The analysis presented, however, is fully
generic and holds for all spins and masses. Our method
would better allow one to perform precision tests of GR that
depend on being in perturbative regime, such as tests of the
no-hair theorem and area theorem. With this procedure, we
provide an algorithmic way to check whether an unex-
pected deviation in a QNM analysis is due to not being in
the perturbative regime, rather than due to a violation of GR
or corresponding theorems.
For future detections, we plan to repeat this analysis using

an NR simulation with the MAP waveform parameters.
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APPENDIX: KERR-NUT PARAMETERS

In this appendix, we provide a review of the parameters
of the Kerr-NUT solution. The Kerr family of vacuum
solutions is unique when one imposes axisymmetry, sta-
tionarity and regularity on the BH horizon along with
asymptotic flatness. However, if one allows for generali-
zation by relaxing the asymptotic flatness condition, one
arrives at a family of solutions called Kerr-NUT. This
solution is a part of the broader family of Einstein-Maxwell
type D solutions. This generalized family of spacetimes is
parametrized by 6 parameters (potentially 7 if one includes
the cosmological constant Λ). In Table IV, we summarize
the parameters, as well as their physical meaning and
symbols used in various texts.
The general Einstein-Maxwell type D solution (includ-

ing cosmological constant Λ) has the form given in
Eq. (21.11) of [40], with parameters m, l, γ, ε, e, and g.
m refers to the mass parameter (closely related to the mass
of the BH), γ is related to the angular momentum parameter
a (closely related to the spin of the BH), ε is related to the
acceleration b, e is the electric charge, g is the magnetic
charge, and l is known as the NUT parameter. As outlined
in [82], the mass and the NUT parameter form a complex
quantity, as do the angular momentum and the acceleration,
similarly to the electric and magnetic charges. In [82], ε and
γ do not appear in the curvature quantities, and are called
kinematical parameters, while the others are dynamical
parameters.
As shown in Table 21.1 of [40], setting all of the

parameters to zero except for m, a (and hence γ and ε),
and e yields the Kerr-Newman solution, while also setting
a ¼ 0 yields the Reissner-Nordstrom solution. Kerr-
Taub-NUT metrics, meanwhile, are parametrized by mass,
spin, and l, with l ≠ 0, and are thought to be unphysical
[84]. The vacuum BBH case considered in this study,

meanwhile, sets e ¼ 0 and g ¼ 0, since there are no electric
or magnetic charges at the start of the simulation, and no
sourcing of them during the simulation.
An accelerating and rotating BH with a NUT charge will

have nonzero m, l, a, and b, with a > l. A Kerr solution
with a NUT charge will then have b ¼ 0. An accelerating
and rotating BH, meanwhile, will have l ¼ 0. Finally, the
Kerr solution has both l ¼ 0 and b ¼ 0. An illustration of
this is provided in Fig. 1 of [83]. The condition l ¼ 0 gives
the Kerr 2 condition considered in this paper, given
in Eq. (16).
After setting l ¼ 0, the parameters m, ε and γ related to

the mass and spin of a BH are as follows:

mass ¼ m

ε
3
2

and spin ¼ 2
ffiffiffiffiffijγjp
ε

: ðA1Þ

Since, ε > 0 andm > 0 for a Kerr BH, the condition that
b ¼ 0 gives ε > 0, which corresponds to the Kerr 3
condition given in Eq. (17).
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Bunandar, M. A. Scheel, and N.W. Taylor, Classical Quan-
tum Gravity 32, 065002 (2015).

[81] Spectral Einstein Code, https://www.black-holes.org/code/
SpEC.html.

[82] J. Plebanski and M. Demianski, Ann. Phys. (N.Y.) 98, 98
(1976).

[83] J. B. Griffiths and J. Podolsky, Classical Quantum Gravity
22, 3467 (2005).

[84] A. N. Aliev, H. Cebeci, and T. Dereli, Phys. Rev. D 77,
124022 (2008).

SWETHA BHAGWAT et al. PHYS. REV. D 97, 104065 (2018)

104065-26

https://doi.org/10.1088/0264-9381/26/7/075009
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1016/0003-4916(74)90173-0
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.88.124010
https://doi.org/10.1103/PhysRevD.88.124010
https://doi.org/10.1103/PhysRevD.93.064041
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1007/s10714-008-0684-7
https://doi.org/10.1007/s10714-008-0684-7
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevD.96.044047
https://doi.org/10.1103/PhysRevD.94.064008
https://doi.org/10.1103/PhysRevD.94.064008
https://doi.org/10.1088/0264-9381/32/6/065002
https://doi.org/10.1088/0264-9381/32/6/065002
https://www.black-holes.org/code/SpEC.html
https://www.black-holes.org/code/SpEC.html
https://www.black-holes.org/code/SpEC.html
https://www.black-holes.org/code/SpEC.html
https://www.black-holes.org/code/SpEC.html
https://doi.org/10.1016/0003-4916(76)90240-2
https://doi.org/10.1016/0003-4916(76)90240-2
https://doi.org/10.1088/0264-9381/22/17/008
https://doi.org/10.1088/0264-9381/22/17/008
https://doi.org/10.1103/PhysRevD.77.124022
https://doi.org/10.1103/PhysRevD.77.124022

