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ABSTRACT
This paper investigates the e�ect of relay randomness on the end-

to-end throughput in multi-hop wireless networks using stochastic

geometry. We model the nodes as Poisson Point Processes and

calculate the spatial average of the throughput over all potential

geometrical patterns of the nodes, with no constraints on the re-

lay density or routing distance. More speci�cally, �rst, assuming

nearest neighbor routing protocol, we derive the distribution of the

longest hop distance in a multi-hop route for any given routing

distance. Second, we analyze the average end-to-end throughput

under the TDMA protocol. Our analysis indicates that compared

with the relay-free case, even randomly distributed relays can sig-

ni�cantly extend the communication distance. It is also observed

that systems with equidistant relays generally achieve much higher

throughput than those with random relays. Moreover, the optimal

relay intensity varies with the routing distance, node density and

interference levels. Our results are demonstrated through numerical

examples.

CCS CONCEPTS
•Networks→Networkperformancemodeling;Networkper-
formance analysis; • General and reference → Performance;

• Computer systems organization → Fault-tolerant network

topologies;

KEYWORDS
end-to-end throughput, stochastic geometry, Poisson point process

1 INTRODUCTION
Multi-hop communication with relay assistance has become a promi-

nent scheme in today’s hybrid network design. The main reason is

that it can extend the communication distance in wireless networks

without the deployment of wired backhaul facilities. In wireless

networks, the geometric locations of the nodes play a key role in

determining the signal to interference and noise ratio (SINR), and

hence the probability of successful transmission, at each receiver.
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In large scale multi-hop wireless networks, the node locations,

including the relay locations, are generally random. The spatial ran-

domness in node locations raises signi�cant challenges in network

performance analysis.

An e�ective tool in dealing with spatial randomness in wireless

networks is stochastic geometry, for which the basic idea is to model

the nodes as Poisson Point Processes (PPPs) and calculate the spatial

averages of network performance characteristics by averaging over

all potential geometrical patterns of the nodes [1, 7, 9–11].

In literature, stochastic geometry modeling has been utilized

to study multi-hop wireless network. In [2][16], the random ac-

cess transport capacity and the end-to-end delay were evaluated

respectively. In [4][14][17], the single-hop performance metrics in

multi-hop wireless networks were studied. In [8], the authors intro-

duced limited random deviations of relays from their ideal locations

in the equidistant deployment. In most of the existing works on

the end-to-end performance analysis, the locations of relays are

assumed to be deterministic and known, and are often approximated

as equidistant. Even though the results obtained provide good ap-

proximation of random relays if the relay intensity is dense enough

and certain routing protocols are employed, the randomness of

relays is not fully characterized and taken into consideration.

In this paper, we analyze the end-to end throughput of a general

multi-hop route in a wireless network with randomly located relays.

In our analysis, we model the relays as a linear PPP between the

source and destination. Under the nearest neighbor (NN) routing

protocol, we evaluate the end-to-end throughput under a TDMA

protocol. The external interferers are modeled as an independent

PPP over the whole plane, following the ALOHA MAC protocol.

Our model is similar to that of [5], however, our work studies the

end-to-end throughput that was not formally addressed before. We

derive the distribution of the longest hop distance in a multi-hop

route and calculate the average end-to-end throughput. Our numer-

ical results, together with the theoretical analysis, indicates that

compared with the relay-free case, the communication distance

between source and destination can generally be extended using

random relays, even without a �ne deployment. It is also observed

that compared with the equidistant relays, the end-to-end through-

put under random relays su�ers a signi�cant performance loss,

which is not negligible in network performance evaluation. More-

over, optimal relay intensities can be calculated for di�erent route

distances. If the intensity of the available relays is greater than the

optimal value, the actual relays can be selected from a thinning of

the original relay point process to get a better performance.
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2 SYSTEM DESCRIPTION
2.1 Network Model
We consider a source node S , and a destination node D located at

a distance of R. A one-dimensional linear relay pattern is studied,

where relay nodes are distributed randomly along the line segment

between S and D. Without loss of generality, we assume S is at

the origin and D = (R, 0). Thus the relays formulate a 1D point

process Φ = {Xi , i = 1, 2, ...,N }, where N is the random variable

(RV) denoting the number of relays, and Xi the location of the

i-th relay along the line segment between (0, 0) and (R, 0). In the

remaining part of this paper, we model Φ as a 1D homogeneous

PPP (HPPP) of intensity λ, i.e., for i = 0, 1, ...,N − 1 and let X0 = S .

The hop distances Li = |Xi+1 −Xi | are exponentially distributed

independent RVs of mean 1/λ [5]. The locations of the relays would

remain static, in contrast to the high mobility model. Considering

a backlogged source S which has in�nite packets to transmit, we
de�ne the end-to-end throughput from S toD as the number of packets
initiated from source S that are successfully received at destination D
per time slot.

The nearest neighbor routing protocol is employed, where relay

node Xi would transmit the packets originated from the source S
to its nearest neighbor Xi+1 in the direction to D in a decode-and-
forward manner. For tractable analysis, we assume that each relay

node has an in�nite transmission bu�er, and each packet relayed

is served in a �rst-in �rst-out fashion. The packet that fails in one

transmission would go back to the head of the transmission queue,

waiting for the opportunity of next transmission. We consider a

TDMA MAC protocol for the relay nodes. Given there are N relay

nodes, a TDMA cycle would consist of N + 1 time slots, each of

which would be assigned to one relay node or the source node.

Since only one node on the route would be allowed to transmit

signals at each time slot, no intra-route inference is introduced.

We apply the decoupling technique in [5] to our network model,

where all the other nodes that are not along the S-D path are mod-

eled as an independent 2D point process Ψ over R2 from Φ. Poten-

tially, these nodes can be the external interferers to the relays we

study when they transmit over the same spectrum and time slot.

For the remaining part of this paper, we model Ψ as a 2D HPPP of

intensity µ. We assume that the transmissions of the nodes in Ψ
follow the ALOHA protocol, where each node would transmit at

each time slot independently with a probability of pa .

As can be seen, the network model adopted here is actually a

combination of the models in [15] and [5]. More speci�cally, we

combine the random relay model in [5] with the TDMA/ALOHA

multi-hop network model in [15].

2.2 Channel Model
Both large-scale path-loss and small-scale fading are considered.

The received power of a signal transmitted at a distance of x meters

with transmitting power PT is

PR (x) =
PT · H
c · xβ

(1)

where H is a random channel gain, β is the path-loss exponent,

and c is a constant determined by the antenna gains and signal

wavelength. H is an exponentially distributed random variable

with mean 1, i.e., Rayleigh fading is considered. Independent small

scale fading is assumed for di�erent transmitter-receiver pairs in

di�erent time slots. The small scale fading between two locations

x1 and x2 is represented by Hx1,x2 .

2.3 SINR Characterization
Assume that the physical layer uses a �xed rate coding scheme,

where a packet can be successfully received i� the received signal to

interference and noise ratio (SINR) is above a given threshold θ . We

consider an interference-limiting scenario, where the noise power

is negligible compared with the interference power, so we use signal

to interference ratio (SIR) and SINR interchangeably. Without loss

of generality, we assume that each node in the network transmits

with unit power. For i = 1, 2, ...,N + 1 and let XN+1 = D, the

received SIR at relay Xi can be expressed by

SIR(Xi ) =
HXi−1,Xi |Xi −Xi−1 |−β∑

Yj ∈Ψ B(Yj )HYj ,Xi |Yj −Xi |−β
, (2)

where for any Yj ∈ Ψ, the binary RV B(Yj ) indicates whether the

“external" node Yj would transmit under ALOHA protocol at the

time slot of interest. The coverage probability at Xi is Pr{SIR(Xi ) >
θ }.

The distribution of external interferers in a given time slot can

be viewed as an independent thinning of Ψ with a retention prob-

ability of pa , i.e., an HPPP with intensity µ ′ = paµ. Following the

same assumption made in [15], we make the approximation that

packet successes are independent across di�erent hops and time

slots, i.e., the distribution of external interferers are independent

across di�erent time slots. Under such approximation, the coverage

probability for an individual hop of distance l can be calculated as

follows.

Lemma 2.1. Given a hop distance l , the coverage probability for
the hop is

Ps (l) = exp(−κl2), (3)

where κ = 2πµ ′ π
β sin(2π /β )θ

2/β .

Proof. See [4]. �

Remark 1. For the tractability of the problem, in this paper, we

only consider the case where relays are deployed along the line

segment between S and D. However, the results obtained also apply

to the more practical scenario where relays are modeled as a 2D

HPPP over an area. For example, in Fig. 1, the relays are deployed

randomly in a R ×W rectangle R whose widths intersect S and D.

A simple NN routing protocol is that each relay would transmit to

its nearest neighbor along the direction to D (the x-coordinate). By

projecting the relays to the x-coordinate, we can �nd that the hop

distances in the 2D case are lower bounded by the hop distances in

the 1D case. Thus, the throughput in 1D case is an upper bound of

the throughput in 2D case.

2.4 Problem Formulation
The local throughput at node Xi on the route can be calculated by

T
local
(Xi ) =

1

N + 1
Ps (|Xi −Xi−1 |), (4)
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Figure 1: An illustration of relays randomly deployed over a
2D area

where Ps (|Xi −Xi−1 |) is the coverage probability or the probabil-

ity of successful transmission from Xi−1 to Xi . According to the

stability analysis in queuing theory, the end-to-end throughput

is bounded by the hop of the lowest throughput [13]. Since Ps (·)
is a non-increasing function, the end-to-end throughput can be

expressed as

T
end
= min

Xi ∈Φ∪{D }
T

local
(Xi ) =

1

N + 1
Ps ( max

Xi ∈Φ∪{D }
|Xi −Xi−1 |).

(5)

Denote the longest hop distance on the route by Lm , then we

have

T
end
=

1

N + 1
Ps (Lm ). (6)

Note that N and Lm are not independent, the distribution of N
and Lm are determined by the source-destination distance R and the

relay distribution. In the following, we will show how to calculate

the average end-to-end throughput E{T
end
}. We �rst start with the

distribution of Lm .

3 THE DISTRIBUTION OF THE LONGEST
HOP DISTANCE LM

In this section, we derive the distribution of the longest hop distance

Lm , as well as its mean and variance.

Theorem 3.1. Given the routing distance between source and des-
tination R = r , we have:

(1) The conditional CDF of Lm , Pr{Lm ≤ l |R = r } = 1 for l ≥ r .
Moreover Pr{Lm = r |R = r } = e−λr and Pr{Lm < r |R =
r } = 1 − e−λr .

(2) De�ne д(l , r ) 4= Pr{Lm ≤ l |R = r } and denote the Laplace
transform (LT) of д(l , r ) with respect to r by G(l , s), then

G(l , s) = 1 − e−(λ+s)l

s + λe−(λ+s)l
. (7)

Proof. 1) This part follows directly from the properties of PPP.

2) For 0 < l < r , consider the conditional probability of Lm given

that the �rst relayX1 is located at (x , 0), Pr{Lm ≤ l |R = r , |X1 | = x}.
Since the distribution of the points of Φ in disjoint intervals are

independent, and based on the Palm theory of PPP
1
, given |X1 | = x ,

1
For a PPP, given that one node is located at a particular point, the conditional distri-

bution of all other nodes is still a PPP, which is known as Slivnyak-Mecke Theorem [3,

Theorem 1.4.5].

the remaining relay nodes within the interval (x , r ) is still a 1D PPP

of the same intensity with Φ. And the distribution of the longest

hop distance for the relays within (x , r ) should be the same as that

for R = r − x . Since |X1 | is exponentially distributed for x < r , we

have

Pr{Lm ≤ l |R = r } =
∫ l

0

f |X1 |(x) Pr{Lm ≤ l |R = r , |X1 | = x}dx

=

∫ l

0

λe−λx Pr{Lm ≤ l |R = r − x}dx . (8)

Take Laplace transform on both sides of equation (8) with respect

to r over (l ,+∞), we have∫ +∞
l

Pr{Lm ≤ l |R = r }e−sr dr

=

∫ +∞
l

∫ l

0

λe−λx Pr{Lm ≤ l |R = r − x}e−sr dxdr

=

∫ l

0

λe−λx
(∫ l+x

l
Pr{Lm ≤ l |R = r − x}e−sr dr

+

∫ +∞
l+x

Pr{Lm ≤ l |R = r − x}e−sr dr

)
dx

=
e−sl

s
(1 − e−λl ) − λe−sl

s(λ + s) (1 − e
−(λ+s)l )

+
λ

λ + s
(1 − e−(λ+s)l )[G(l , s) − 1 − e−sl

s
] . (9)

Note that we also have∫ +∞
l

Pr{Lm ≤ l |R = r }e−sr dr = G(l , s) − 1 − e−sl
s

. (10)

Following (9) and (10), we get

G(l , s) = 1 − e−(λ+s)l

s + λe−(λ+s)l
.

�

We have the following corollary about the region of convergence

(ROC) of G(l , s).

Corollary 3.2. The ROC of G(l , s) includes the imaginary axis.
More speci�cally, д(l , r ) is absolutely integrable, i.e.,∫ +∞

−∞
|д(l , r )|dr < +∞ . (11)

Proof. See [12]. �

Following Theorem 3.1 and Corollary 3.2, the conditional CDF of

Lm given R = r can be computed numerically by calculating the

inverse Fourier Transform (FT) of G(l , jω). The conditional CDFs

of Lm for selected r ’s are plotted in Fig. 2.

Remark 2. To obtain a closed form expression for the CDF of Lm ,

instead of �xing the routing distance R = r , we can model R as an

exponentially distributed RV of mean
1

ν . Based on Theorem 3.1, the

CDF of Lm can be calculated as

Pr{Lm ≤ l} = ν (1 − e−(λ+ν )l )
ν + λe−(λ+ν )l

, (12)

for l ≥ 0.
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Figure 2: The conditional CDF Pr{Lm ≤ l | R = r }, where
relay intensity λ = 0.1 /m.

Based on Theorem 3.1, we can also evaluate the mean and vari-

ance of Lm with respect to the routing distance.

Theorem 3.3. For a �xed relay intensity λ, as r approaches +∞,
E{Lm | R = r } ∼ O(ln(r )). More speci�cally, for r > 0, letmLm (r )

4
=

E{Lm | R = r }, we have

mLm (r ) =
∫ r

0

1 − e−λx
λx

dx , (13)

whose LT is

MLm (s) =
1

sλ
ln(λ

s
+ 1) . (14)

Moreover, for any given λ, the conditional variance of Lm under R = r ,
D{Lm | R = r }, satis�es

lim

r→∞
D{Lm | R = r } =

π 2

6λ2
. (15)

Proof. See [12]. �

For a �xed relay intensity λ, the conditional mean of the longest

hop distance E{Lm | R = r } ∼ O(ln(r )) as the routing distance

r → +∞, and its variance is bounded. Unlike the case with evenly

deployed relays where the per hop distance stays constant with

respect to the routing distance, for randomly distributed relays,

the longest hop distance would goes to in�nity as routing distance

approaches in�nity, i.e., the throughput of the worst hop would ap-

proach zero. This demonstrates that long distance communication

is not feasible in randomly deployed networks.

4 THE AVERAGE END-TO-END
THROUGHPUT

In this section, we derive the mean of the end-to-end throughput

based on the distribution of the longest hop distance Lm obtained

in the previous section.

Given the coverage probability function Ps (·), the average cover-

age probability of the longest hop, E{Ps (Lm )}, should only depend

on the intensity of the relays, λ, and the routing distance R. For

this reason, we de�ne p(x , r ) 4= E{Ps (Lm ) | λ = x ,R = r }. Then,

we have the following theorem on the end-to-end throughput.

Theorem 4.1. Given the relay intensity λ and routing distance R,
the mean of the end-to-end throughput is given by

E{Tend} =
e−λR

λ

∫ λ

0

eRx p(x ,R)dx . (16)

Proof. Recall that Φ is the PPP of the relays over (0,R). The

number of relays, N , is a random variable following Poisson distri-

bution of mean λR. Given the value of N , the relays are uniformly

distributed over (0,R). Denote the longest hop distance given N = n
by Lm (n). The average end-to-end throughput can be expressed as

E{T
end
} =

+∞∑
n=0

e−λR
(λR)n
n!
E{ 1

N + 1
Ps (Lm ) | N = n}

=

+∞∑
n=0

e−λR
(λR)n
(n + 1)! E{Ps ( Lm (n) )} .

Note that Lm (n) is the longest hop distance for n uniformly dis-

tributed relays over (0,R). De�ne pn (r )
4
= E{Ps ( Lm (n) ) | R = r },

then we have

E{T
end
} =

+∞∑
n=0

e−λR
(λR)n
(n + 1)! pn (R) .

Moreover, note that

p(x , r ) =
+∞∑
n=0

e−xr
(xr )n
n!

pn (r ) .

For routing distance R, de�ne

h(t) 4=
+∞∑
n=0

t (n+1)

(n + 1)! pn (R) .

The derivative of h(t) can be calculated as

h′(t) =
+∞∑
n=0

tn

n!
pn (R) = et p( t

R
,R) .

It then follows that

h(t) =
∫ t

0

h′(u)du =
∫ t

0

eu p(u
R
,R) du ,

and

E{T
end
} = e−λR

λR
h(λR) = e−λR

λR

∫ λR

0

eu p(u
R
,R) du . (17)

Let x = u
R , then it follows from (17) that

E{T
end
} = e−λR

λ

∫ λ

0

eRx p(x ,R) dx .

This completes the proof. �

Note that function p(x , r ) can be computed numerically, which

only depends on the marginal distribution of Lm . Following Theo-
rem 4.1, we can calculate E{T

end
} without deriving the joint prob-

ability density function (PDF) of N and Lm explicitly. With the

following Lemma, we can further reduce the computational com-

plexity by calculating the Laplace transform ofE{T
end
}with respect

to the routing distance.
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Lemma 4.2. Taking the relay intensity Λ as a random variable and
let fLm |Λ,R (l | x , r ) denote the conditional PDF of the longest hop
distance Lm given relay intensity Λ = x and routing distance R = r .
De�ne

q(l , λ, r ) 4= e−λr

λ

∫ λ

0

erx fLm |Λ,R (l | x , r ) dx , (18)

then the Laplace transform of q(l , λ, r ) with respect to r is

Q(l , λ, s) = (s + λ)
λ + e(s+λ)l s

(19)

This follows directly from the Laplace transform of fLm |Λ,R (l |
x , r ) in (??), we skip the proof for brevity. Based on Lemma 4.2, we

have the following result on E{T
end
}.

Proposition 4.3. For a �xed relay intensity λ, de�ne Tend(r )
4
=

E{Tend |R = r } as the average end-to-end throughput given routing
distance R = r . The Laplace transform of Tend(r ), Tend(s), can be
calculated as

Tend(s) =
∫ +∞
0

Ps (l)
s + λ

λ + e(s+λ)l s
dl . (20)

Proof. Recall that p(x , r ) = E{Ps (Lm ) | λ = x ,R = r }, where

Ps (Lm ) is the coverage probability of the longest hop, then p(x , r )
can be calculated as

p(x , r ) =
∫ +∞
0

Ps (l) fLm |Λ,R (l | x , r )dl . (21)

So T
end
(r ) can be expressed as

T
end
(r ) = e−λr

λ

∫ λ

0

erx
∫ +∞
0

Ps (l) fLm |Λ,R (l | x , r )dldx

=

∫ +∞
0

Ps (l) q(l , λ, r ) dl . (22)

Based on Lemma 4.2, (20) can be obtained accordingly. �

Following Proposition 4.3 and Corollary 3.2, the mean of the

throughput can be computed numerically through the inverse

Fourier transform of T
end
(jω).

As is shown in Proposition 4.3, a closed-form expression of the

end-to-end throughput is hard to derive. In order to further ana-

lyze the impacts of di�erent network parameters on network per-

formance, we derive the following lower bound on end-to-end

throughput.

Proposition 4.4. For a given relay intensity λ and routing dis-
tance r , the end-to-end throughputTend(r ) is lower bounded byTend,L(r ),
i.e., Tend(r ) ≥ Tend,L(r ), where

Tend,L(r ) =
1−e−λr
λr

exp(− κλ−2

1−e−λr
[ ln

2(λr )
2

+ B(λr ) ln(λr )

+C(λr )+ c − e−λr
(
A(λr )2 + (2 + c)λr + c

)
]) , (23)

with c = maxt ∈(0,1)
ln

2 t
(1−t )2 − ln

2 t ≈ 1.51, A 4
=

∫ +∞
0

l 2e−l
1−e−l dl ≈

2.404, B(x) 4=
∫
1

0

1−e−u
u du −

∫ x
1

e−u
u du, C(x) 4=

∫ x
1

lnu e−u
u du −∫

1

0
lnu 1−e−u

u du .
For λr � 1, the lower bound Tend,L(r ) approximates

Tend,L(r ) ≈
1

λr
exp

(
−κλ−2[ ln

2(λr )
2

+ B ln(λr ) +C + c]
)
, (24)

where B = lim

x→+∞
B(x) ≈ 0.577, C = lim

x→+∞
C(x) ≈ 0.989 .

Proof. See [12]. �

Note that a closed-form expression for the end-to-end through-

put is di�cult to obtain, in the following we consider to optimize

the lower bound T
end,L
(r ) with respect to the relay intensity λ, and

obtain the following result.

Corollary 4.5. For λr � 1, the optimal relay intensity λ∗ that
maximizes Tend,L(r ) should satisfy λ1 < λ∗ < λ2, where

λ1 =
1

r
exp

(
1

r
√
κ
exp

(
−W−1(−

1

r
√
κ
)
))
, (25)

λ2=
1

r
exp

(
e−
√
2C+2c−B

r
√
κ

exp

(
−W−1(−

e−
√
2C+2c−B

r
√
κ

)
))
, (26)

whereW−1(·) is the real branch of LambertW function over (−∞,−1) [6].

Proof. See [12]. �

Remark 3. As discussed earlier, if we model R as an exponentially

distributed RV with mean
1

ν , the mean of the throughput can be

obtained as

E{T
end
} =

∫ +∞
0

Ps (l)
ν (ν + λ)

λ + e(ν+λ)lν
dl . (27)

Note that

∂
(

ν (ν+λ)
λ+e (ν+λ)lν

)
∂λ

= ν2
[1 − (ν + λ)l]e(ν+λ)l − 1(

λ + e(ν+λ)lν
)
2

,

which is negative for all (ν + λ)l > 0. So in this case, E{T
end
}

is a decreasing function with respect to λ. That is, as the relay

intensity increases, the randomly deployed relays may degrade,

rather than improve the throughput performance of the system.

The underlying argument is that if the routing distance is very

short, nearest neighbor relaying is more likely a burden rather

than a necessary step when taking the extra spectrum and power

it consumes into account. At the same time, when the routing

distance is exponentially distributed, the probability of having a

short routing distance is very high.

The nearest neighbor routing protocol aims to guarantee the

link quality of each single hop by utilizing all the available relays

in Φ and minimizing the hop distances. When the node intensity

λ is large, the nearest neighbor routing protocol will degrade the

end-to-end throughput because of the extra delay and bandwidth

it takes. In this case, we can select Φ′ ⊂ Φ, which is a thinning of

Φ and a HPPP of intensity λ∗ with λ∗ < λ. We can then apply the

nearest neighbor routing protocol over Φ′ rather than Φ. Please

refer to Corollary 4.5 for the selection of the optimal relay intensity

λ∗.

5 NUMERICAL RESULTS
In this section, we evaluate the end-to-end throughput performance

with random relay deployment through numerical results. Unless

otherwise clari�ed, we will use the following parameters: the in-

terferer intensity µ = 5 × 10−4 /m2
, the ALOHA access probability

pa = 0.1, the path-loss exponent β = 4, the SINR threshold for

successful transmission θ = 10 dB.
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Figure 3: Average end-to-end throughput versus relay inten-
sity under di�erent routing distances.

Example 1: End-to-end throuhgput with random relay de-
ployment. In this example, we evaluate the end-to-end throughput

with random relays. Fig. 3 shows the average end-to-end through-

put versus relay intensity λ for di�erent routing distance r with

random relay deployment. It can be observed that: even without

an optimized deployment of relays, the end-to-end throughput

can still be obviously improved compared with the case of direct

connection. For example, if a minimum end-to-end throughput of

1 × 10
−2

packets/slot is required, the maximum communication

range is around 75 m without the relays, while the communica-

tion range expands to more than 250 m with multi-hop relays. To

improve the end-to-end throughput, we can optimize the relay

intensity for di�erent routing distance. Instead of using the NN

routing, source can select relays by thinning the original PP of

relays to the optimal intensity basing on the routing distance. It

can also be observed that the optimal relay intensity λ increases

as r increases, on the contrary to the equidistant relays where the

optimal relay distance stays constant
2
.

Example 2: Performance comparison between equidistant
and random relays. In this example, we compare the end-to-end

throughput between equidistant and random relays. Fig. 4 shows

the optimal end-to-end throughput of random relay deployment

and that of equidistant relays under di�erent routing distance r
and SINR threshold θ . The relay intensity λ is optimized for each

routing distance. The random relay deployment su�ers a signi�cant

performance loss compared to the ideal case. For instance, with a

SINR threshold θ of 10 dB under the network con�guration, there

is a 48% throughput loss at r = 50 m and a 70% performance loss at

r = 130 m, which are not negligible for system evaluation.

6 CONCLUSION & DISCUSSION
In this paper, we investigated the e�ect of relay randomness on

the end-to-end throughput in multi-hop wireless networks using

2
Here, we refer to the upper bound of end-to-end throughput for equidistant relays,

d
r Pcov (d ), where d is the per hop distance, and the optimal d is independent of r .
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Figure 4: Throughput comparison under TDMA: random re-
lays versus equidistant relays

stochastic geometry. We modeled the relays as a linear Poisson

Point Process between the source and destination, and the external

interferers as an independent Poisson Point Process. Assuming the

nearest neighbor routing protocol, we evaluated the end-to-end

throughput. Based on the throughput analysis, we derived the range

of the optimal relay density for any given routing distance and node

density. The analysis was further demonstrated through numerical

examples. Both the theoretic and numerical results indicated that:

(i) Compared with the relay-free case, random distributed relay can

signi�cantly extend the communication distance, even without a

re�ned deployment; (ii) Systems with equidistant relays generally

achieve much higher throughput than those with random relays;

(iii) Optimal relay intensity varies with the routing distance, node

density and the interference levels. (iv) Long distance communica-

tion is not feasible with random relays. Optimal routing protocol

design for randomly located relays will be further explored in our

future research.
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