End-to-End Throughput Analysis of Multi-Hop Wireless
Networks Using Stochastic Geometry

Yuan Liang
liangy11@egr.msu.edu
Michigan State University
Department of Electrical & Computer
Engineering
East Lansing, MI 48824, USA

ABSTRACT

This paper investigates the effect of relay randomness on the end-
to-end throughput in multi-hop wireless networks using stochastic
geometry. We model the nodes as Poisson Point Processes and
calculate the spatial average of the throughput over all potential
geometrical patterns of the nodes, with no constraints on the re-
lay density or routing distance. More specifically, first, assuming
nearest neighbor routing protocol, we derive the distribution of the
longest hop distance in a multi-hop route for any given routing
distance. Second, we analyze the average end-to-end throughput
under the TDMA protocol. Our analysis indicates that compared
with the relay-free case, even randomly distributed relays can sig-
nificantly extend the communication distance. It is also observed
that systems with equidistant relays generally achieve much higher
throughput than those with random relays. Moreover, the optimal
relay intensity varies with the routing distance, node density and
interference levels. Our results are demonstrated through numerical
examples.
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1 INTRODUCTION

Multi-hop communication with relay assistance has become a promi-
nent scheme in today’s hybrid network design. The main reason is
that it can extend the communication distance in wireless networks
without the deployment of wired backhaul facilities. In wireless
networks, the geometric locations of the nodes play a key role in
determining the signal to interference and noise ratio (SINR), and
hence the probability of successful transmission, at each receiver.
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In large scale multi-hop wireless networks, the node locations,
including the relay locations, are generally random. The spatial ran-
domness in node locations raises significant challenges in network
performance analysis.

An effective tool in dealing with spatial randomness in wireless
networks is stochastic geometry, for which the basic idea is to model
the nodes as Poisson Point Processes (PPPs) and calculate the spatial
averages of network performance characteristics by averaging over
all potential geometrical patterns of the nodes [1, 7, 9-11].

In literature, stochastic geometry modeling has been utilized
to study multi-hop wireless network. In [2][16], the random ac-
cess transport capacity and the end-to-end delay were evaluated
respectively. In [4][14][17], the single-hop performance metrics in
multi-hop wireless networks were studied. In [8], the authors intro-
duced limited random deviations of relays from their ideal locations
in the equidistant deployment. In most of the existing works on
the end-to-end performance analysis, the locations of relays are
assumed to be deterministic and known, and are often approximated
as equidistant. Even though the results obtained provide good ap-
proximation of random relays if the relay intensity is dense enough
and certain routing protocols are employed, the randomness of
relays is not fully characterized and taken into consideration.

In this paper, we analyze the end-to end throughput of a general
multi-hop route in a wireless network with randomly located relays.
In our analysis, we model the relays as a linear PPP between the
source and destination. Under the nearest neighbor (NN) routing
protocol, we evaluate the end-to-end throughput under a TDMA
protocol. The external interferers are modeled as an independent
PPP over the whole plane, following the ALOHA MAC protocol.
Our model is similar to that of [5], however, our work studies the
end-to-end throughput that was not formally addressed before. We
derive the distribution of the longest hop distance in a multi-hop
route and calculate the average end-to-end throughput. Our numer-
ical results, together with the theoretical analysis, indicates that
compared with the relay-free case, the communication distance
between source and destination can generally be extended using
random relays, even without a fine deployment. It is also observed
that compared with the equidistant relays, the end-to-end through-
put under random relays suffers a significant performance loss,
which is not negligible in network performance evaluation. More-
over, optimal relay intensities can be calculated for different route
distances. If the intensity of the available relays is greater than the
optimal value, the actual relays can be selected from a thinning of
the original relay point process to get a better performance.



2 SYSTEM DESCRIPTION
2.1 Network Model

We consider a source node S, and a destination node D located at
a distance of R. A one-dimensional linear relay pattern is studied,
where relay nodes are distributed randomly along the line segment
between S and D. Without loss of generality, we assume S is at
the origin and D = (R, 0). Thus the relays formulate a 1D point
process ® = {X;,i = 1,2,..., N}, where N is the random variable
(RV) denoting the number of relays, and X; the location of the
i-th relay along the line segment between (0, 0) and (R, 0). In the
remaining part of this paper, we model ® as a 1D homogeneous
PPP (HPPP) of intensity A, i.e., fori = 0,1,...,N — 1 and let X = S.
The hop distances L; = |X;+1 — X;| are exponentially distributed
independent RVs of mean 1/A [5]. The locations of the relays would
remain static, in contrast to the high mobility model. Considering
a backlogged source S which has infinite packets to transmit, we
define the end-to-end throughput from S to D as the number of packets
initiated from source S that are successfully received at destination D
per time slot.

The nearest neighbor routing protocol is employed, where relay
node X; would transmit the packets originated from the source S
to its nearest neighbor X; 1 in the direction to D in a decode-and-
forward manner. For tractable analysis, we assume that each relay
node has an infinite transmission buffer, and each packet relayed
is served in a first-in first-out fashion. The packet that fails in one
transmission would go back to the head of the transmission queue,
waiting for the opportunity of next transmission. We consider a
TDMA MAC protocol for the relay nodes. Given there are N relay
nodes, a TDMA cycle would consist of N + 1 time slots, each of
which would be assigned to one relay node or the source node.
Since only one node on the route would be allowed to transmit
signals at each time slot, no intra-route inference is introduced.

We apply the decoupling technique in [5] to our network model,
where all the other nodes that are not along the S-D path are mod-
eled as an independent 2D point process ¥ over R? from ®. Poten-
tially, these nodes can be the external interferers to the relays we
study when they transmit over the same spectrum and time slot.
For the remaining part of this paper, we model ¥ as a 2D HPPP of
intensity y. We assume that the transmissions of the nodes in ¥
follow the ALOHA protocol, where each node would transmit at
each time slot independently with a probability of p,.

As can be seen, the network model adopted here is actually a
combination of the models in [15] and [5]. More specifically, we
combine the random relay model in [5] with the TDMA/ALOHA
multi-hop network model in [15].

2.2 Channel Model
Both large-scale path-loss and small-scale fading are considered.
The received power of a signal transmitted at a distance of x meters
with transmitting power Pr is

Pr-H
c-xP

PR(x) = 1
where H is a random channel gain, f is the path-loss exponent,
and c is a constant determined by the antenna gains and signal
wavelength. H is an exponentially distributed random variable

with mean 1, i.e., Rayleigh fading is considered. Independent small
scale fading is assumed for different transmitter-receiver pairs in
different time slots. The small scale fading between two locations
x1 and x3 is represented by Hy,, x,.

2.3 SINR Characterization

Assume that the physical layer uses a fixed rate coding scheme,
where a packet can be successfully received iff the received signal to
interference and noise ratio (SINR) is above a given threshold 6. We
consider an interference-limiting scenario, where the noise power
is negligible compared with the interference power, so we use signal
to interference ratio (SIR) and SINR interchangeably. Without loss
of generality, we assume that each node in the network transmits
with unit power. For i = 1,2,...,N + 1 and let X5+; = D, the
received SIR at relay X; can be expressed by

Hy, , x,1Xi — Xi-1|™#
Sy ev BY)j)Hy, x,1Y; - Xi| 7~

where for any Y; € ¥, the binary RV B(Y;) indicates whether the
“external” node Y; would transmit under ALOHA protocol at the
time slot of interest. The coverage probability at X; is Pr{SIR(X;) >
0}.

The distribution of external interferers in a given time slot can
be viewed as an independent thinning of ¥ with a retention prob-
ability of pg, i.e., an HPPP with intensity p” = pgp. Following the
same assumption made in [15], we make the approximation that
packet successes are independent across different hops and time
slots, i.e., the distribution of external interferers are independent
across different time slots. Under such approximation, the coverage
probability for an individual hop of distance [ can be calculated as
follows.

SIR(X;) = 2

LEMMA 2.1. Given a hop distance l, the coverage probability for
the hop is
Ps(l) = exp(-I?), 3)

_ 2
where k = Zﬂp’m9 18
PrROOF. See [4]. o

Remark 1. For the tractability of the problem, in this paper, we
only consider the case where relays are deployed along the line
segment between S and D. However, the results obtained also apply
to the more practical scenario where relays are modeled as a 2D
HPPP over an area. For example, in Fig. 1, the relays are deployed
randomly in a R X W rectangle R whose widths intersect S and D.
A simple NN routing protocol is that each relay would transmit to
its nearest neighbor along the direction to D (the x-coordinate). By
projecting the relays to the x-coordinate, we can find that the hop
distances in the 2D case are lower bounded by the hop distances in
the 1D case. Thus, the throughput in 1D case is an upper bound of
the throughput in 2D case.

2.4 Problem Formulation
The local throughput at node X; on the route can be calculated by

1

N 1Ps(|Xi - Xi-1l), 4)

Tlocal(Xi) =
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Figure 1: An illustration of relays randomly deployed over a
2D area

where Ps(|X; — Xi-1]) is the coverage probability or the probabil-
ity of successful transmission from X;_; to X;. According to the
stability analysis in queuing theory, the end-to-end throughput
is bounded by the hop of the lowest throughput [13]. Since P(-)
is a non-increasing function, the end-to-end throughput can be
expressed as

1
Tend = i T Xi)= ——P Xi — Xi-1]).
end X,-ergbn{D} local (Xi) N1 s( | X i-11)
®)

Denote the longest hop distance on the route by L;,, then we
have

max
X;€dU{D}

1
Tend = mPS(Lm)- (6)

Note that N and L, are not independent, the distribution of N
and L, are determined by the source-destination distance R and the
relay distribution. In the following, we will show how to calculate
the average end-to-end throughput E{T,,,q}. We first start with the
distribution of L,.

3 THE DISTRIBUTION OF THE LONGEST
HOP DISTANCE Ly,

In this section, we derive the distribution of the longest hop distance
Ly, as well as its mean and variance.

THEOREM 3.1. Given the routing distance between source and des-
tination R = r, we have:

(1) The conditional CDF of Ly, Pr{Lyy, <Il[R=r}=1forl >r.
Moreover Pr{Ly, = rlR = r} = e *" and Pr{L,, < r|R =
rb=1-e,

(2) Define g(I,r) 2 Pr{L; < I|R = r} and denote the Laplace
transform (LT) of g(1, r) with respect tor by G(l,s), then

1 = e-(s)l

G(1,s) = (7

s+ le—(A+s)l °
Proor. 1) This part follows directly from the properties of PPP.
2)For 0 < I < r, consider the conditional probability of L,, given

that the first relay X is located at (x, 0), Pr{L, < I[|R =r, |X1| = x}.

Since the distribution of the points of ® in disjoint intervals are

independent, and based on the Palm theory of PPP!, given |X1| = x,

!For a PPP, given that one node is located at a particular point, the conditional distri-
bution of all other nodes is still a PPP, which is known as Slivnyak-Mecke Theorem [3,
Theorem 1.4.5].

the remaining relay nodes within the interval (x, r) is still a 1D PPP
of the same intensity with ®. And the distribution of the longest
hop distance for the relays within (x, r) should be the same as that
for R = r — x. Since |X1| is exponentially distributed for x < r, we
have

1
Pr{ly, <IlIR=r} = / fix, ) Pr{Llm < IR =7, |X;1| = x}dx
0

1
=/ Ae ™ Pr{L,, <I[R=r—-x}dx. (8
0

Take Laplace transform on both sides of equation (8) with respect
to r over (I, +o0), we have

+00
/ Pr{lLy, <l|R=r}e % dr
1

+oo  pl
= / / Ae ™ Pr{L,, <IIR =r—x}e " dxdr
1 0

1 I+x
/ Ae X / Pr{lLm <l|R=r—x}e *"dr
0 1

+o0
+/ Pr{Lm, <IIR=r—x}e *"dr|dx
1

+x
e g Aen ~(+
= (- - - )l
A= -Gt )
A 1-es
N (Al _
e G, s) I 9)
Note that we also have
+00 1— ¢Sl
/ Pr{Ly, < IR =r}e*"dr = G(l,s) - (10)
1
Following (9) and (10), we get
1= e=(AHs)
o9 = e
o

We have the following corollary about the region of convergence
(ROC) of G(1, 5).

COROLLARY 3.2. The ROC of G(1, s) includes the imaginary axis.
More specifically, (1, r) is absolutely integrable, i.e.,

+00
/ lg(l,r)ldr < +co . (11)

00

ProOOF. See [12]. o

Following Theorem 3.1 and Corollary 3.2, the conditional CDF of
Ly, given R = r can be computed numerically by calculating the
inverse Fourier Transform (FT) of G(I, jw). The conditional CDFs
of L, for selected r’s are plotted in Fig. 2.

Remark 2. To obtain a closed form expression for the CDF of L,
instead of fixing the routing distance R = r, we can model R as an
exponentially distributed RV of mean % Based on Theorem 3.1, the
CDF of L,;; can be calculated as

v(1 - e—(/l-%—v)l)

Pr{L, <1} = Ny vY

, (12)

forl > 0.
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Figure 2: The conditional CDF Pr{L,, < [ | R = r}, where
relay intensity A = 0.1 /m.

Based on Theorem 3.1, we can also evaluate the mean and vari-
ance of Ly, with respect to the routing distance.

THEOREM 3.3. For a fixed relay intensity A, as r approaches +oo,

E{Lm | R = r} ~ O(In(r)). More specifically, forr > 0, letmy,_(r) 2
E{Lm | R =r}, we have

rq- e*)kx
my,, (r) =/ ——dx, (13)
0 AX
whose LT is 5
M, ()= ~In(2 +1). (14)
SA s

Moreover, for any given A, the conditional variance of Ly, underR = r,
D{Lm | R = r}, satisfies

7[2

62
ProOF. See [12]. O

lim D{L,, |R=r}= (15)
r—0c0

For a fixed relay intensity A, the conditional mean of the longest
hop distance E{Ly, | R = r} ~ O(ln(r)) as the routing distance
r — +oo, and its variance is bounded. Unlike the case with evenly
deployed relays where the per hop distance stays constant with
respect to the routing distance, for randomly distributed relays,
the longest hop distance would goes to infinity as routing distance
approaches infinity, i.e., the throughput of the worst hop would ap-
proach zero. This demonstrates that long distance communication
is not feasible in randomly deployed networks.

4 THE AVERAGE END-TO-END
THROUGHPUT

In this section, we derive the mean of the end-to-end throughput
based on the distribution of the longest hop distance L, obtained
in the previous section.

Given the coverage probability function Ps(-), the average cover-
age probability of the longest hop, E{Ps(L;,)}, should only depend
on the intensity of the relays, A, and the routing distance R. For

this reason, we define p(x, r) 2 E{Ps(Lm) | A = x,R = r}. Then,
we have the following theorem on the end-to-end throughput.

THEOREM 4.1. Given the relay intensity A and routing distance R,
the mean of the end-to-end throughput is given by
AR A
E{Tenat = —— [ " plx, Ryd. (16)
Proor. Recall that ® is the PPP of the relays over (0, R). The
number of relays, N, is a random variable following Poisson distri-
bution of mean AR. Given the value of N, the relays are uniformly
distributed over (0, R). Denote the longest hop distance given N = n
by L (n). The average end-to-end throughput can be expressed as

+00

N RGBT 1 _
B{Tend} = ), ¢ M B Ps(Lm) | N = n}

n=0
+00

- —Ar_(AR)"
= 2 ey AP (Lm(m))}

Note that L,;,(n) is the longest hop distance for n uniformly dis-

tributed relays over (0, R). Define p,(r) 2 E{Ps (Lm(n))|R=r},
then we have

n=0

+00

_ -ar_(AR)"
E{Tend) = Z‘)e o P ®-
Moreover, note that
+00
3 ey (xr)™
pl.r) = Zoe T palr).

For routing distance R, define

1o (n+1)

¢
h(1) = HZ:;) el pn(R) .

The derivative of h(t) can be calculated as

+too p

W=D pnl®) = e pl3.R).

n=0

It then follows that

h(t) = /Oth'(u)du - /Ote“ p(?—z,R) du,

and
e—lR e—/lR AR u
Ella) = S W00 = S [T e pG R )
Let x = , then it follows from (17) that
e*AR A R
E{Tend} = T A e p(x, R) dx .
This completes the proof. O

Note that function p(x, r) can be computed numerically, which
only depends on the marginal distribution of L,. Following Theo-
rem 4.1, we can calculate E{T,,,q} without deriving the joint prob-
ability density function (PDF) of N and L, explicitly. With the
following Lemma, we can further reduce the computational com-
plexity by calculating the Laplace transform of E{ T, 4} with respect
to the routing distance.



LEMMA 4.2. Taking the relay intensity A as a random variable and
let f1, \a,r( | x,7) denote the conditional PDF of the longest hop
distance L, given relay intensity A = x and routing distanceR = r.
Define

—Ar

A €

A
a2 [T fu e lnn
then the Laplace transform of q(l, A, r) with respect tor is

BT
QL As) = = (19)

This follows directly from the Laplace transform of f; (s r(! |
x,r) in (??), we skip the proof for brevity. Based on Lemma 4.2, we
have the following result on E{Tq}.

PROPOSITION 4.3. For a fixed relay intensity A, define T,y 4(r) 2
E{T,nq4|R = r} as the average end-to-end throughput given routing
distance R = r. The Laplace transform of To,4(r), Tend(s), can be
calculated as

s+ A

+00
Tondls) = /0 P) S d (20)

4 elshlg

Proor. Recall that p(x,r) = E{Ps(Ly) | A = x,R = r}, where
Ps(Lp,) is the coverage probability of the longest hop, then p(x, r)
can be calculated as

+00
pxr) = /0 o) fi, iar(l] x.r)dl . (21)

So Tepd(r) can be expressed as

e~Ar A +00
Tadr) = = [ [0 St 5ol
+00
= / Ps(l) q(I,A,r)dl. (22)
0
Based on Lemma 4.2, (20) can be obtained accordingly. O

Following Proposition 4.3 and Corollary 3.2, the mean of the
throughput can be computed numerically through the inverse
Fourier transform of Tog(jw).

As is shown in Proposition 4.3, a closed-form expression of the
end-to-end throughput is hard to derive. In order to further ana-
lyze the impacts of different network parameters on network per-
formance, we derive the following lower bound on end-to-end
throughput.

PROPOSITION 4.4. For a given relay intensity A and routing dis-
tancer, the end-to-end throughput T, 4(r) is lower bounded by T,pq 1.(r),
ie., Tong(r) 2 Tengr(r), where

—Ar -2
1—-e KA
Tend,L(r) = o exp(— L—eIr [

+COAr)+c—e T (A(/lr)z + 24N+ c)]) . (23)

2
In ;M + B(Ar) In(Ar)

+00 12€—l -
A d =~

du — flx %du, C(x) 2 flx lnu%du -

2
with ¢ = max;¢(, 1) (i’l—tgz ~In®t ~ 151, A =
2.404, B(x) £ [' =&
/01 lnu$du .
For Ar > 1, the lower bound T, 41 (r) approximates

1 In%(A
Tengn(r) ~ 7= exp —Kﬂ[%’) +Bln(Ar) +C+c]|, (24)

u

where B= lim B(x) = 0.577,C = lim C(x)~ 0.989.
xX—+00 x—+00

ProOOF. See [12]. o

Note that a closed-form expression for the end-to-end through-
put is difficult to obtain, in the following we consider to optimize
the lower bound T,q1,(r) with respect to the relay intensity A, and
obtain the following result.

COROLLARY 4.5. For Ar > 1, the optimal relay intensity A* that
maximizes Tong 1 (r) should satisfy 11 < A* < Aa, where

1= Lexp (L exp (_W‘l(_ﬁz))) : (25)

r rvx

1 e_m ¢~ V2C+2c-B

S S
R

Ay =— ex exp [-W-1(—

2= exXp e p ( 1(

where W_1(-) is the real branch of Lambert W function over (—oco, —1) [6].
ProOF. See [12]. O

Remark 3. As discussed earlier, if we model R as an exponentially
distributed RV with mean % the mean of the throughput can be
obtained as

v(v+A)

+00
ETena} = ‘/()' Ps() A+ evedly, @7
Note that
v(v+A)
d (,1+e<v+A)lV) S [1= (v + )1+l q
=v

oA (/1 + e(v+)1)lv) 2

which is negative for all (v + A)l > 0. So in this case, E{T.,q}
is a decreasing function with respect to A. That is, as the relay
intensity increases, the randomly deployed relays may degrade,
rather than improve the throughput performance of the system.
The underlying argument is that if the routing distance is very
short, nearest neighbor relaying is more likely a burden rather
than a necessary step when taking the extra spectrum and power
it consumes into account. At the same time, when the routing
distance is exponentially distributed, the probability of having a
short routing distance is very high.

The nearest neighbor routing protocol aims to guarantee the
link quality of each single hop by utilizing all the available relays
in ® and minimizing the hop distances. When the node intensity
A is large, the nearest neighbor routing protocol will degrade the
end-to-end throughput because of the extra delay and bandwidth
it takes. In this case, we can select &’ C @, which is a thinning of
® and a HPPP of intensity A* with A* < A. We can then apply the
nearest neighbor routing protocol over @’ rather than ®. Please
refer to Corollary 4.5 for the selection of the optimal relay intensity
A%

5 NUMERICAL RESULTS

In this section, we evaluate the end-to-end throughput performance
with random relay deployment through numerical results. Unless
otherwise clarified, we will use the following parameters: the in-
terferer intensity y = 5 x 107 /m?, the ALOHA access probability
pa = 0.1, the path-loss exponent f = 4, the SINR threshold for
successful transmission 6 = 10 dB.
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Figure 3: Average end-to-end throughput versus relay inten-
sity under different routing distances.

Example 1: End-to-end throuhgput with random relay de-
ployment. In this example, we evaluate the end-to-end throughput
with random relays. Fig. 3 shows the average end-to-end through-
put versus relay intensity A for different routing distance r with
random relay deployment. It can be observed that: even without
an optimized deployment of relays, the end-to-end throughput
can still be obviously improved compared with the case of direct
connection. For example, if a minimum end-to-end throughput of
1 x 1072 packets/slot is required, the maximum communication
range is around 75 m without the relays, while the communica-
tion range expands to more than 250 m with multi-hop relays. To
improve the end-to-end throughput, we can optimize the relay
intensity for different routing distance. Instead of using the NN
routing, source can select relays by thinning the original PP of
relays to the optimal intensity basing on the routing distance. It
can also be observed that the optimal relay intensity A increases
as r increases, on the contrary to the equidistant relays where the
optimal relay distance stays constant?.

Example 2: Performance comparison between equidistant
and random relays. In this example, we compare the end-to-end
throughput between equidistant and random relays. Fig. 4 shows
the optimal end-to-end throughput of random relay deployment
and that of equidistant relays under different routing distance r
and SINR threshold 6. The relay intensity A is optimized for each
routing distance. The random relay deployment suffers a significant
performance loss compared to the ideal case. For instance, with a
SINR threshold 6 of 10 dB under the network configuration, there
is a 48% throughput loss at r = 50 m and a 70% performance loss at
r = 130 m, which are not negligible for system evaluation.

6 CONCLUSION & DISCUSSION

In this paper, we investigated the effect of relay randomness on
the end-to-end throughput in multi-hop wireless networks using

2Here, we refer to the upper bound of end-to-end throughput for equidistant relays,
% cov(d), where d is the per hop distance, and the optimal d is independent of r.
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Figure 4: Throughput comparison under TDMA: random re-
lays versus equidistant relays

stochastic geometry. We modeled the relays as a linear Poisson
Point Process between the source and destination, and the external
interferers as an independent Poisson Point Process. Assuming the
nearest neighbor routing protocol, we evaluated the end-to-end
throughput. Based on the throughput analysis, we derived the range
of the optimal relay density for any given routing distance and node
density. The analysis was further demonstrated through numerical
examples. Both the theoretic and numerical results indicated that:
(i) Compared with the relay-free case, random distributed relay can
significantly extend the communication distance, even without a
refined deployment; (ii) Systems with equidistant relays generally
achieve much higher throughput than those with random relays;
(iii) Optimal relay intensity varies with the routing distance, node
density and the interference levels. (iv) Long distance communica-
tion is not feasible with random relays. Optimal routing protocol
design for randomly located relays will be further explored in our
future research.
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