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Abstract

We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a
gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo,
the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at
0.47–18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/
FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope (HST). The spectral energy distribution (SED) inferred
from this photometry at 0.6 days is well described by a blackbody model with »T 8300 K, a radius of

» ´R 4.5 1014 cm (corresponding to an expansion velocity of »v c0.3 ), and a bolometric luminosity of
» ´L 5 10bol

41 erg s−1. At 1.5 days we find a multi-component SED across the optical and NIR, and
subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/
NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of 56Ni, or those
with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red
optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich
ejecta provide a good fit to the data; the resulting “blue” component has » M M0.01ej

blue and »v 0.3 cej
blue , and

the “red” component has » M M0.04ej
red and »v 0.1 cej

red . These ejecta masses are broadly consistent with the
estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first
evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment.

Key words: binaries: close – catalogs – gravitational waves – stars: neutron – surveys

1. Introduction

The era of gravitational wave (GW) astronomy began on 2015
September 14 when the Advanced Laser Interferometer Gravita-
tional-wave Observatory (LIGO)made the first direct detection of
gravitational waves, resulting from the merger of a stellar mass
binary black hole (BBH; GW150914; Abbott et al. 2016a). LIGO
has since announced the detection of three additional BBH events
(Abbott et al. 2016b, 2017a; LIGO Scientific Collaboration et al.
2017). There are currently no robust theoretical predictions for
electromagnetic (EM) emission associated with such mergers.

By contrast, mergers involving at least one neutron star can
produce a wide range of EM signals, spanning from gamma-rays
to radio (e.g., Metzger & Berger 2012). In the optical/near-
infrared (NIR) bands, the most promising counterpart is the
kilonova (KN), a roughly isotropic thermal transient powered by
the radioactive decay of rapid neutron capture (r-process)
elements synthesized in the merger ejecta (Li & Paczyński
1998; Metzger et al. 2010; Roberts et al. 2011; Metzger &
Berger 2012; Barnes & Kasen 2013; Tanaka & Hotokezaka
2013). The properties of the KN emission (luminosity, timescale,
spectral peak) depend sensitively on the ejecta composition. For
ejecta containing Fe-group or light r-process nuclei with atomic76 Hubble, Carnegie-Dunlap Fellow.
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mass number A 140, the KN emission is expected to peak at
optical wavelengths at a luminosity ~ –L 10 10p

41 42 erg s−1 on a
short timescale of ~t 1p day (a so-called “blue” KN; Metzger
et al. 2010; Roberts et al. 2011; Metzger & Fernández 2014). By
contrast, for ejecta containing heavier lanthanide elements
( A 140) the emission is predicted to peak at NIR wavelengths
with ~ –L 10 10p

40 41 erg s−1 over a longer timescale of ~t 1p
week (a so-called “red” KN; Barnes & Kasen 2013; Kasen et al.
2013; Tanaka & Hotokezaka 2013).

The first direct detection of gravitational waves from the
inspiral and merger of a binary neutron star (BNS) was made
on 2017 August 17 (GW170817; LIGO Scientific Collabora-
tion & Virgo Collaboration 2017a, 2017b, 2017c). This source
was coincident with a short burst of gamma-rays detected by
both Fermi/Gamma-ray Burst Monitor (GBM) and INTEGRAL
(GRB 170817A; Blackburn et al. 2017; Goldstein
et al. 2017a, 2017b; Savchenko et al. 2017a, 2017b; von
Kienlin et al. 2017). Rapid optical follow-up by our Dark
Energy Camera (DECam) program (Flaugher et al. 2015),
starting just 11.4 hr after the GW trigger, led to the discovery of
an associated optical counterpart in the nearby ( »d 39.5 Mpc;
Freedman et al. 2001) galaxy NGC 4993 (Allam et al. 2017;
Soares-Santos et al. 2017). This optical source was indepen-
dently discovered by several groups (Abbott et al. 2017b), and
first announced as SSS17a by Coulter et al. (2017a, 2017b).
The source has also been independently named DLT17ck
(Valenti et al. 2017; Yang et al. 2017) and AT2017gfo.

Here we present rapid-cadence UV, optical, and NIR
observations spanning from the time of discovery to 18.5 days
post-merger. We construct well-sampled light curves and
spectral energy distributions (SEDs) using data from DECam,
along with Gemini-South/FLAMINGOS-2 (GS/F2) and
Hubble Space Telescope (HST). We show that the data cannot
be fit by a model with heating from 56Ni radioactive decay and
Fe-peak opacities (as in normal supernovae), but instead
requires heating from r-process nuclei and at least two
components consistent with lanthanide-poor and lanthanide-
rich opacities. We further use the data to determine the ejecta
masses and velocities for each component.

All magnitudes presented in this work are given in the AB
system and corrected for Galactic reddening77 with

- =( )E B V 0.105, applying the calibration of Schlafly &
Finkbeiner (2011). We assume a negligible reddening contrib-
ution from the host (Blanchard et al. 2017).

2. Observations and Data Analysis

A summary of the observations and photometry described in
this section is available in the Appendix.

2.1. DECam

We processed all of the DECam images using the
photpipe pipeline (e.g., Rest et al. 2005, 2014) in order to
perform single-epoch image processing and image subtraction
using the hotpants software package (Becker 2015). Point-
spread function (PSF) photometry was performed on the
subtracted images using an implementation of DoPhot
optimized for difference images (Schechter et al. 1993). We
performed astrometric and photometric calibration relative to

the Pan-STARRS1/ p3 catalog (PS1/ p3 ; Chambers et al.
2016), with appropriate corrections between magnitude
systems (Scolnic et al. 2015). The typical calibration error is
on the order of »3%. Image subtraction was performed using
stacked images from the PS1/ p3 survey as reference images
for gr-band. DECam images from 2017 August 25 and 2017
August 31 were used as reference images for u-band and izY-
band, respectively, after the transient had faded away.

2.2. HST

We obtained HST Target-of-Opportunity observations of
GW170817 on 2017 August 27.28 (9.8 days post-trigger) UT
using ACS/WFC with the F475W, F625W, F775W, and
F850LP filters, WFC3/UVIS with the F336W filter, and
WFC3/IR with the F160W and F110W filters (PID: 15329; PI:
Berger). We retrieved the calibrated data from the Mikulski
Archive for Space Telescopes and used the DrizzlePac78

software package to create final drizzled images from the
individual dithered observations in each filter. We used the
astrodrizzle task to correct for optical distortion and
improve the resolution from that sampled by the instrumental
PSF. We measure the flux of the optical counterpart by fitting a
model PSF, constructed from multiple stars in each image,
using a custom Python wrapper for DAOPhot (Stetson 1987).
We removed contaminating flux from the host galaxy at the
transient location using local background subtraction. After
subtraction, the typical contribution from the host flux is5%.
We calibrated the photometry for each image using the
zeropoints provided by the HST analysis team.79

2.3. GS/F2

We obtained several epochs of HKs band photometry using
FLAMINGOS-2 on the Gemini-South 8m telescope (Eikenberry
et al. 2012) starting on 2017 August 19.00 (1.47 days post-
merger). We processed the images using standard procedures in
the gemini IRAF80 package. We created an average sky
exposure from the individual dithered frames and then scaled and
subtracted from each science image prior to the registration and
combination of the images. We performed PSF photometry using
field stars and host galaxy subtraction as described in Section 2.2,
and calibrated the photometry relative to the 2MASS point
source catalog.81

2.4. Swift/UVOT

The UVOT instrument on board Swift (Gehrels et al. 2004;
Roming et al. 2005) began observing the field of the optical
counterpart on 2017 August 18.167 UT with the U, W1, W2,
and M2 filters (Cenko et al. 2017; Evans et al. 2017a, 2017b).
We used the latest HEAsoft release (v6.22) with the
corresponding calibration files and updated zeropoints in order
to independently analyze the data. We performed photometry
in a 3 photometric aperture to in order minimize the
contamination from host galaxy light, following the prescrip-
tions by Brown et al. (2009). We estimated and subtracted the
contribution from host galaxy light using deep UVOT

77 This is computed fromhttp://irsa.ipac.caltech.edu/applications/DUST/
using the coordinate transients in Soares-Santos et al. (2017).

78 http://drizzlepac.stsci.edu/
79 http://www.stsci.edu/hst/acs/analysis/zeropoints
80 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy
(AURA) under a cooperative agreement with the National Science Foundation.
81 https://www.ipac.caltech.edu/2mass/
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observations acquired at later times, when the UV emission
from the transient was no longer present in the images (Swift ID
07012979003). The systematic effect from the host light
contamination is ≈3% (see e.g., Brown et al. 2009).

3. Light Curves and Spectral Energy Distributions

3.1. Light Curves

Our UV/optical/NIR light curves are shown in Figure 1.
The data span from 0.47 to 18.5 days post-merger, with bluer
bands fading below the detection limits at earlier times. The
light curve coverage was truncated by the proximity of the
source to the Sun. We first note that the light curves are not
well described by a power law, indicating minimal contribution
from a GRB optical afterglow over the timescale of our
observations. This is consistent with modeling of the afterglow
based on X-ray and radio observations (Margutti et al. 2017;
Alexander et al. 2017).
The light curves exhibit a rapid decline in the bluest bands

(ug), an intermediate decline rate in the red optical bands (rizY),
and a shallow decline in the NIR (HKs). However, while the
u- and g-band light curves decline by ≈2 mag day−1 starting
with the earliest observations, the redder optical bands exhibit a
more complex behavior: they exhibit a comparatively slow
decline (≈0.3 mag day−1) over the first 1.5 days, develop a
shoulder at about 4 days, and subsequently begin to decline at
about 8 days.

We find a similar rapid evolution in the colors of the transient
(Figure 2). In particular, the u−g and g−r colors become
redder by about 1 mag between about 1.5 and 3.5 days. The
colors in the redder optical bands exhibit slower evolution, with
- » –r i 0.5 1 mag, - » –i z 0 0.5 mag, and - »z Y 0.3 mag.

These colors are significantly redder than those of known
supernovae near explosion (e.g., Folatelli et al. 2010; Bianco
et al. 2014; Galbany et al. 2016).

3.2. Spectral Energy Distribution

We construct SEDs from photometry at several epochs
from about 0.6 to 10 days post-merger (Figure 2). The SEDs
exhibit rapid evolution from an initial peak at ∼3500Å to a
final peak at 15000Å by 10 days. Moreover, the SED at 1.5
days appears to consist of two components, as indicated by
the changing slope in the NIR emission. The same rapid
evolution and structure are apparent in the optical and NIR
spectra at comparable epochs (Chornock et al. 2017; Nicholl
et al. 2017).
The SED at 0.6 days is well described by a blackbody with
~T 8300 K and ~ ´R 4.5 1014 cm, corresponding to an

expansion velocity of ~v c0.3 . This is somewhat larger than
the velocities observed in broad-lined SNe Ic (for which
»v c0.1 ; Modjaz et al. 2016), but is consistent with

expectations for ejecta resulting from a BNS merger (Metzger
2017). The SEDs at later times are not well described by a
blackbody curve, instead exhibiting strong flux suppression at

Figure 1. UV, optical, and NIR light curves of the counterpart of GW170817. The two-component model for r-process heating and opacities (Section 4) is shown as
solid lines. The right panels focus on the g (top), i (middle), and H-band photometry (bottom) over the first 10 nights. Triangles represent 3σ upper limits. Error bars
are given at the s1 level in all panels, but may be smaller than the points.
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blue wavelengths that leads to a spectrum with a sharper peak
than a blackbody. This behavior is also present in our optical
spectra (Nicholl et al. 2017).

3.3. Bolometric Light Curve

We construct a bolometric light curve from the ugrizYH data
spanning 11 days. We fit the time evolution in each band
independently with a linear model and interpolate the
magnitudes to a common grid of times. The bolometric
luminosity is determined using the integrated total flux at each
time step; see Figure 2. The peak bolometric luminosity of
~ ´5 1041 erg s−1 at 0.6 days is broadly consistent with the
luminosity predicted for r-process heating by a ´ -

Mfew 10 2

ejecta, similar to the original predictions of Metzger et al.
(2010) for blue KN emission from Fe-opacity ejecta. The total
radiated energy during the first ∼10 days is ≈1047 erg.

3.4. Qualitative Comparisons to Kilonova Emission

Before exploring detailed models, there are several lines of
preliminary evidence that suggest the optical counterpart is an
r-process-powered KN. The presence of an initially blue SED,
which then transitions to a multi-component SED and finally to
a red SED, is strongly suggestive of both blue and red KN
emission; this is consistent with lanthanide-poor and rich ejecta
components, respectively (Metzger et al. 2010; Barnes &
Kasen 2013; Tanaka & Hotokezaka 2013; Metzger &
Fernández 2014; Kasen et al. 2015; Wollaeger et al. 2017).
Furthermore, the deviations from a pure blackbody spectrum at
late times are indicative of the strong UV line blanketing
expected for lanthanide-rich material, lending further evidence
to the existence of a red KN component. This behavior is also
seen in optical/NIR spectra of the transient (Chornock et al.
2017; Nicholl et al. 2017).
The fact that this red component does not initially obscure

the emission from a blue component suggests that we require
two separate emitting regions with distinct sources of ejecta.
If the KN outflow is quasi-spherical, then the blue component
must reside outside of the material with red emission.
Alternatively, if the outflow is not spherically symmetric,
the blue and red ejecta should occupy distinct portions of
the outflowing solid angle. This feature is suggested in
several models that consider lanthanide-rich material ejected
in the equatorial plane while the lanthanide-poor material
is ejected from the polar regions (Kasen et al. 2015;
Metzger 2017).

4. Kilonova Modeling

We test the conjecture that the UV/optical/NIR transient
is an r-process KN by fitting several isotropic, one-zone,
gray opacity models to the light curves. For each model,
we assume a blackbody SED which evolves assuming a
constant ejecta velocity until it has reached a minimum
temperature, at which point the photosphere has receded into
the ejecta and the temperature no longer evolves. A similar
temperature “floor” is predicted in Barnes & Kasen (2013),
and we include this minimum temperature as a fitted
parameter. We additionally fit for a “scatter” term, added in
quadrature to all photometric errors, which roughly accounts
for additional systematic uncertainties that are not included in
our model.
We use MOSFiT82 (Guillochon et al. 2017; Nicholl et al.

2017), an open-source light curve fitting tool that utilizes a
Markov Chain Monte Carlo (MCMC) to sample the model
posterior. For each model, we ensure convergence by enforcing
a Gelman-Rubin statistic <1.1 (Gelman & Rubin 1992). We
compare models using the Watanabe–Akaike Information
Criteria (WAIC; Watanabe 2010; Gelman et al. 2014), which
accounts for both the likelihood score and the number of fitted
parameters. The best-fit parameters, uncertainties, and WAIC
scores for each model are provided in Table 1.
We first attempt a simple supernova model, namely heating

by the radioactive decay of 56Ni and Fe-peak opacity of

Figure 2. Top: optical colors from DECam observations as a function
of time. We observed rapid and early reddening in g−r compared to
the relatively flat but red i−z colors. Also shown are template Ia SN
colors relative to the explosion for comparison (Nugent et al. 2002). Middle:
SEDs at four representative epochs (assuming isotropic emission). The
transition from a blue dominated spectrum at early times to a spectrum
dominated by a red component at late times is clearly visible. Bottom:
Bolometric light curve spanning ugrizYH. Expected values for r-process
heating from Metzger et al. (2010) are shown for comparison, indicating that
the observed emission requires ´ -

Mfew 10 2 of r-process ejecta. Error
bars are given at the s1 level in all panels, but may be smaller than the
points.

82 https://github.com/guillochon/MOSFiT
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k = 0.1 cm2 g−1 (see Villar et al. 2017). The model parameters
are the ejecta mass and velocity, and the 56Ni mass fraction in
the ejecta (as well as the temperature floor and scatter).
The best-fit model has » M M0.01ej , »v 0.26 cej , and

»f 0.75Ni . The parameters are comparable to those we
inferred from blackbody fits to the flux and SEDs in the
previous section, but the overall fit is poor. In particular, this
model severely underestimates the NIR light curves, while the
high 56Ni fraction is inconsistent with the optical spectra
(Nicholl et al. 2017). We therefore conclude that the transient is
not powered by the radioactive decay of 56Ni.

We next turn to r-process heating, using the model outlined
in Metzger (2017) and implemented in Villar et al. (2017).
This model includes the ejecta mass, ejecta velocity, and
opacity as fitted parameters (as well as the temperature floor
and scatter). Within this context we first assume an Fe-peak

opacity of κ=0.1cm2g−1 (our “blue” model; e.g., as
assumed historically in Li & Paczyński 1998) and fit for the
ejecta mass and velocity. This model, with » M M0.03ej and

»v 0.18 cej , adequately describes the early light curves
(3 days), but again is a poor fit to the NIR light curves.
More recent calculations indicate that lanthanide-rich ejecta
are expected to have a much higher opacity of k = 10 cm2

g−1, leading to a “red” KN (e.g., Barnes & Kasen 2013).
However, such a model (our “red” model), with best-fit values

» M M0.03ej and »v 0.27 cej , produces a poor fit to the data
as well. In particular, the model light curves exhibit an initial
rise for »4 days, in contrast to the observed rapid decline at
early times, especially in the UV and blue optical bands.
Finally, we allow the opacity to vary as a free parameter,
finding a best-fit value of k » 0.82 cm2 g−1, and an associated

» M M0.04ej and »v 0.27 cej . However, this model again

Figure 3. Top left: fitting the data with a Type I b/c SN model powered by the radioactive decay of 56Ni. This model clearly fails to capture the late-time NIR behavior
and requires an unphysically large fraction of the ejecta to be synthesized into nickel (∼75%). Top right: fitting the data with a single-component “blue” KN model.
Like the SN model, this fit is unable to capture the late-time NIR behavior and overall spectra shape. Bottom left: fitting the data with a single-component “red” KN
model. This model clearly fails to capture any of the observed behavior. Bottom right: fitting the data with a single-component KN model with the opacity as a free
parameter. Again, this model fails to capture the late-time NIR behavior. This is suggestive of the fact that we need to model multiple ejecta components
simultaneously. Error bars are given at the s1 level in all panels, but may be smaller than the points.
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fails to reproduce the initial rapid decline in the UV, as well as
the NIR light curves. We therefore conclude that r-process
heating with a single value for the opacity cannot explain
the observed light-curve evolution and colors. The final light
curves for these models can be seen in Figure 3.

Inspired by the multi-component observed SED (Figure 2)
and by the failure of single-component models to capture both
the early rapid decline and the late-time red colors, we explore
two multi-component models: (i) a two-component “blue”
(k = 0.5 cm2 g−1) plus “red” (κ as a free parameter) model;
and (ii) a three-component “blue” (k = 0.5 cm2 g−1) plus
“purple” (k = 3 cm2 g−1) plus “red” (k = 10 cm2 g−1) model.
These values were recently shown by Tanaka et al. (2017) to
roughly capture the detailed opacity from radiative transfer
simulations. For each component, we leave Mej and vej as free
parameters.

First, we explore the two-component model (with eight free
parameters); we vary the ejecta masses, ejecta velocities, and
temperature floors, the red component opacity, and a single
scatter term. We find that the “blue” component has

» M M0.01ej
blue and »v 0.27cej

blue (with errors of roughly
10%), in good agreement with our inference from the SED at
early times (Section 3.2). The “red” component has a much
larger mass of » M M0.04ej

red but a slower velocity of

»v 0.12 cej
red . The best-fit opacity of this component is
κ≈3.3 cm2 g−1, lower than expected for lanthanide-rich
ejecta. We find that most of the parameters are uncorrelated,
with the exception of the red component’s opacity and ejecta
velocity, which have a Pearson correlation coefficient of
∼0.67. The resulting parameters and uncertainties from the
MCMC fitting are summarized in Table 1.

For the three-component model (with 10 free parameters) we
find similar values for the “blue” component ( » M M0.01ej

blue

and »v 0.27 cej
blue ) and the “purple” component ( »Mej

purple

M0.03 and »v 0.11 cej
purple ). The “red” component is sub-

dominant with » M M0.01ej
red and »v 0.16 cej

red ); see Table 1.
These ejecta parameters are consistent with those determined
from independent modeling of the optical and NIR spectra
(Chornock et al. 2017; Nicholl et al. 2017).

Both sets of models are shown in Figure 1 and are
essentially indistinguishable. Both provide a much better fit to
the data than the single-component models described above,
capturing both the initial blue colors and rapid decline, as well

as the later redder colors and NIR light curves. Their similar
WAIC scores suggest that neither model is statistically
preferred. The two models differ most drastically at 5 days
in the Ks-band, where the two-component model is double-
peaked, while the three-component model is single peaked.
While neither model fully captures every feature of the light
curves, it is remarkable that these simplified semi-analytic
models produce such high-quality fits over a wide range of
wavelength and time.

5. Implications

In the multi-component models, we can interpret each
component as arising from distinct physical regions within the
merger ejecta. In both models, the high velocity of the blue KN
ejecta suggests that it originates from the shock-heated polar
region created when the neutron stars collide (e.g., Oechslin
et al. 2007; Bauswein et al. 2013; Sekiguchi et al. 2016). This
dominant blue component is also seen in early-time optical
spectra (Nicholl et al. 2017). By contrast, the low velocity red
KN component in our three-component model could originate
from the dynamically ejected tidal tails in the equatorial plane
of the binary (e.g., Rosswog et al. 1999; Hotokezaka et al.
2013), in which case the relatively high ejecta mass » M0.01
suggests an asymmetric mass ratio of the merging binary
( q 0.8; Hotokezaka et al. 2013).
In both multi-component models we find that the

κ≈3 cm2 g−1 ejecta dominates by mass. The lower velocity
of this component suggests an origin in the post-merger
accretion disk outflow. Our inferred ejecta mass is consistent
with that expected for a massive ∼0.1 M torus (e.g., Just et al.
2015; Siegel & Metzger 2017). Similarly, the disk outflow
composition is predicted to be dominated by ~Y 0.3e matter
that produces the k » 3 cm2 g−1 component of the KN
emission (Tanaka et al. 2017) as we observe. The fitted opacity
indicates that the hyper-massive neutron star remnant is
relatively short-lived (∼30 ms; Fernández & Metzger 2013;
Just et al. 2015; Kasen et al. 2015). We additionally find that in
both models the total kinetic energy is roughly

´( – )1 2 1051 erg.
The fact that our multi-component models fit the data well

provides strong evidence for the production of both light and
heavy r-process nuclei, addressing one of the long-standing
mysteries in astrophysics (Burbidge et al. 1957; Cameron

Table 1
Kilonova Model Fits

Model Mej
blue vej

blue
kblue Mej

purple vej
purple

kpurple Mej
red vej

red
kred f Ni WAIC

( M ) (c) ( -cm g2 1) ( M ) (c) ( -cm g2 1) ( M ) (c) ( -cm g2 1)

2-Comp -
+0.014 0.001

0.002
-
+0.266 0.002

0.007 (0.5) L L L -
+0.036 0.002

0.001
-
+0.123 0.014

0.012
-
+3.349 0.337

0.364 L −102

3-Comp -
+0.014 0.001

0.002
-
+0.267 0.011

0.006 (0.5) -
+0.034 0.002

0.002
-
+0.110 0.010

0.011 (3.0) -
+0.010 0.001

0.002
-
+0.160 0.025

0.030 (10.0) L −106

56Ni -
+0.008 0.001

0.007
-
+0.260 0.031

0.034 (0.1) L L L L L L -
+0.749 0.203

0.214 17

Blue -
+0.032 0.004

0.002
-
+0.180 0.002

0.002 (0.1) L L L L L L L 17

Red L L L L L L -
+0.026 0.008

0.010
-
+0.271 0.002

0.008 (10) L 153

1-Comp L L L -
+0.040 0.007

0.002
-
+0.274 0.093

0.007
-
+0.817 0.135

0.146 L L L L 11

Note. Model parameters and WAIC scores. Numbers in parentheses indicate fixed parameters of the model. The errors represent the 1σ confidence interval. Both the
2-component (“2-Comp”) and 3-component (“3-Comp”) models have significantly smaller WAIC scores (indicating better fits) compared to the four single-
component models.
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1957). We quantify this statement by comparing our blue and
red ejecta masses to those necessary to reproduce the Milky
Way (MW) r-process production rate. For heavy r-process
elements (red KN), the MW inferred production rate is

 » -
Ṁ M10rp,A 140

7 yr−1 (Bauswein et al. 2014). For light
r-process elements (blue KN), the production rate is

 » ´ -
Ṁ M7 10rp,A 100

7 yr−1 (Qian 2000). Using a con-
servative estimate on the local BNS merger rate estimated
by Abbott et al. (2016), »R 10000 Gpc−3 yr−1, and a volume
density of MW-like galaxies of »0.01Mpc−3, we estimate
the MW rate of KN as »R 100MW Myr−1. Using this
MW rate, we find that the average ejecta mass for a
red KN is  » Ṁ R M0.001rp,A 140 MW and for a blue KN
it is  » Ṁ R M0.007rp,A 100 MW . These order-of-magnitude
estimates are smaller than our inferred ejecta masses for this
event, although the discrepancy can potentially be mitigated
when properly taking into account the fraction of r-process
materials that remains in a gas phase in the ISM and galactic
halo. Nevertheless, this exercise suggests that BNS
mergers can reproduce the r-process yields found in the
MW and may be a dominant source of cosmic r-process
nucleosynthesis.

6. Discussions and Conclusions

We have presented a comprehensive UV, optical, and NIR
data set for the first electromagnetic counterpart to be
associated with a gravitational wave event. Analysis of these
data reveals that the emission is due to an r-process-powered
KN consisting of both “blue” and “purple/red” ejecta
components. Models with 56Ni heating, Fe-peak opacities, or
a single component of r-process opacity fail to match the
observations.

Our models indicate that the total ejecta mass is » M0.05 ,
with a high velocity ( »v c0.3 ) blue component and a slower
( » –v c0.1 0.2 ) purple/red component. The presence of both
components and the relatively large ejecta mass suggests that
binary neutron star mergers (like GW170817) dominate the
cosmic r-process nucleosynthesis.

The data presented in this paper (and others in this series)
represent by far the best observations of an r-process powered
KN, and it is remarkable how well the observations match
theoretical models. This event also marks the true beginning of
joint GW–EM multi-messenger astronomy. We expect that this
event will serve as a benchmark for future efforts to model and
understand the behavior of these transients, and for the first
time allow the development of data-driven KN models. The
next Advanced LIGO/Virgo observing run (starting in Fall
2018) is expected to detect many more BNS events (Abbott
et al. 2016c). The follow-up of these events will provide further
understanding of the ubiquity of the features seen in this event,
the relationship between event and host properties, and place
even stronger constraints on r-process enrichment from BNS
mergers.
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Table 2
Summary of Photometry

Telescope Instrument Filter MJD Mag [AB]

Blanco DECam i 0.4745 17.48±0.03
Blanco DECam z 0.4752 17.59±0.03
Swift UVOT M2 0.627 21.14±0.23
Swift UVOT W1 0.634 19.53±0.12
Swift UVOT0 U 0.639 18.20±0.09
Swift UVOT W2 0.643 20.76±0.20
Swift UVOT0 U 0.981 18.90±0.17
Swift UVOT0 U 1.043 18.98±0.16
Blanco DECam Y 1.4478 17.32±0.03
Blanco DECam z 1.4485 17.59±0.02
Blanco DECam i 1.4492 17.78±0.02
Blanco DECam r 1.4499 18.04±0.02
Blanco DECam g 1.4506 18.66±0.03
Blanco DECam u 1.4512 19.94±0.05
Gemini-South FLAMINGOS-2 H 1.471 17.63±0.10
Gemini-South FLAMINGOS-2 H 2.439 17.71±0.09
Blanco DECam Y 2.4461 17.77±0.03
Blanco DECam z 2.4472 18.18±0.03
Blanco DECam i 2.4479 18.38±0.03
Blanco DECam r 2.4486 19.03±0.03
Blanco DECam g 2.4492 20.21±0.05
Blanco DECam u 2.4515 22.26±0.16
Blanco DECam Y 3.4541 18.05±0.03
Blanco DECam z 3.4551 18.56±0.03
Blanco DECam u 3.4556 23.06±0.32
Blanco DECam i 3.4558 18.73±0.03
Blanco DECam r 3.4564 19.29±0.04
Blanco DECam g 3.4571 20.93±0.08
Gemini-South FLAMINGOS-2 H 4.445 17.92±0.10
Blanco DECam Y 4.4467 18.35±0.03
Blanco DECam z 4.4491 18.81±0.03
Blanco DECam i 4.4516 19.22±0.03
Blanco DECam r 4.4552 20.25±0.05
Blanco DECam g 4.4624 21.73±0.11
Blanco DECam Y 5.4460 18.83±0.18
Blanco DECam z 5.4484 19.17±0.11
Blanco DECam i 5.4508 19.55±0.18
Blanco DECam r 5.4545 20.79±0.24
Blanco DECam g 5.462 >20.80
Blanco DECam Y 6.4458 19.06±0.31
Blanco DECam r 6.457 >19.60
Blanco DECam g 6.468 >20.67
Gemini-South FLAMINGOS-2 H 7.438 18.79±0.14
Blanco DECam Y 7.4448 19.44±0.05
Blanco DECam z 7.4509 19.89±0.05
Blanco DECam i 7.4533 20.54±0.05
Blanco DECam r 7.4581 21.23±0.11
Blanco DECam g 7.469 >22.19
Blanco DECam Y 8.4446 20.06±0.07
Gemini-South FLAMINGOS-2 H 8.452 19.22±0.18
Blanco DECam z 8.4543 20.40±0.06
Blanco DECam i 8.4591 20.72±0.06
Blanco DECam r 8.4688 21.95±0.18
Blanco DECam Y 9.4457 20.78±0.11
Gemini-South FLAMINGOS-2 H 9.449 19.62±0.15
Blanco DECam z 9.4659 21.19±0.07
Blanco DECam i 9.4712 21.37±0.06
HST WFC3/IR F110W 9.753 20.57±0.04
HST WFC3/IR F160W 9.768 19.89±0.04
HST WFC3/UVIS F336W 9.819 26.92±0.27

Table 2
(Continued)

Telescope Instrument Filter MJD Mag [AB]

HST ACS/WFC F475W 9.905 23.95±0.06
HST ACS/WFC F625W 9.969 22.88±0.07
HST ACS/WFC F775W 10.032 22.35±0.08
HST ACS/WFC F850LP 10.045 21.53±0.05
Blanco DECam Y 10.4462 21.67±0.21
Gemini-South FLAMINGOS-2 Ks 10.449 18.43±0.25
Gemini-South FLAMINGOS-2 H 10.453 20.04±0.15
Blanco DECam z 10.4583 22.06±0.13
Blanco DECam i 10.4715 22.38±0.10
Gemini-South FLAMINGOS-2 Ks 11.455 19.03±0.17
Gemini-South FLAMINGOS-2 Ks 12.447 19.42±0.16
Gemini-South FLAMINGOS-2 Ks 13.441 19.63±0.23
Gemini-South FLAMINGOS-2 Ks 14.446 19.90±0.21
Gemini-South FLAMINGOS-2 Ks 15.447 20.13±0.25
Gemini-South FLAMINGOS-2 Ks 16.446 20.43±0.30
Gemini-South FLAMINGOS-2 Ks 18.450 20.84±0.26

Note. Summary of photometry from Section 2. Dates are give in days relative
to the time of the GW trigger (MJD=57982.529). Photometry is not corrected
for extinction. Limits are given at the s3 level. Error bars are given at the s1
level.
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