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Abstract In 1965, Chern posed a question concerning the extent to which funda-
mental groups of manifolds admitting positive sectional curvature look like spherical
space form groups. The original question was answered in the negative by Shankar in
1998, but there are a number of positive results in the presence of symmetry. These
classifications fall into categories according to the strength of their conclusions. We
give an overview of these results in the case of torus symmetry and prove new results
in each of these categories.
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actions - Chern problem - Secondary cohomology operations
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1 Introduction

The sphere is the simplest example of a compact manifold. With its standard Rie-
mannian metric, it has positive sectional curvature. Strikingly, in all odd dimensions
except for 7 and 13, the spheres remain the only simply connected, compact manifolds
known to admit positively curved metrics. In view of this, it is not surprising that the
realization problem for fundamental groups of positively curved manifolds remains
open. As far as general obstructions go, one only has the classical results of Synge
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and Bonnet—Myers, as well as Gromov’s universal bound on the number of generators
(see [20]).

Spherical space forms provide many examples of fundamental groups of positively
curved manifolds (see Davis—Milgram [14], Hambleton [28], and Wolf [54]). However,
they form a very restrictive class of groups. In particular, they satisfy the properties
that every abelian subgroup is cyclic and every involution is central. By analogy with
Preissmann’s theorem, Chern asked whether the first of these properties holds for the
fundamental groups of positively curved manifolds (see [16, p. 167]). The conjecture
that the answer is yes was at times called the Chern conjecture (see Yau [55, p. 671],
Petersen [38], and Berger [8, p. 583]).

Shankar [45] answered Chern’s question in the negative by showing that 71 (M)
can contain Z, X Z», as well as dihedral groups of all orders. Further study and
examples by Bazaikin [5], Grove—Shankar [24], and Grove—Shankar—Ziller [25] show
that, in particular, 771 (M) can contain Z3 x Z3. It remains unknown whether 771 (M)
can contain Z, x Z, for some p > 5.

These examples grew out of a larger program formulated by Grove whereby one
restricts attention to positively curved manifolds with a large degree of symmetry. For
example, Shankar’s examples involve free actions on homogeneous spaces with posi-
tive curvature. For surveys on the interplay between positive curvature and symmetry
in general, see Grove [21,22], Wilking [53], and Ziller [56,57].

On the other hand, restricting to the case of positively curved manifolds with sym-
metry leads to a number of fundamental group obstructions. It is the purpose of this
article to examine such obstructions in the specific case of torus symmetry.

The strongest possible obstructions for fundamental groups of positively curved
manifolds imply that the groups are cyclic. These results are sharp in a sense since
lens spaces S*"~!/Z; have cyclic fundamental groups of arbitrary order and admit
constant positive curvature metrics with 7" symmetry. A number of papers show that
this conclusion holds for arbitrary positively curved manifolds under weaker symmetry
assumptions. Two such results are highlighted here.

Theorem 1.1 (Wilking, Frank—Rong—Wang) Let M" be a closed Riemannian man-
ifold with positive sectional curvature and T" symmetry. The fundamental group is
cyclic under each of the following conditions:

+1
e r nT+l

>
z%+1andn+l$0mod4.

e

The first statement is proved in Wilking [52, Theorem 4] (cf. Rong [41]), where
it is also shown to be sharp if n + 1 = 0 mod 4. The second statement is proved in
Frank—Rong—Wang [18, Theorem A], and it is shown there to be sharp if n + 1 =
0 mod 6. Further improvements exist in some sufficiently large dimensions satisfying
the properties that n 4+ 1 # 0 mod 4 and n + 1 # 0 mod 6 (see Rong—Wang [44] and
Wang [51, Theorem B]), but these results are not known to be sharp.

In Example 4.8, we construct a family of examples of space forms with large torus
actions and non-cyclic fundamental groups (cf. Example 4.9). Whenn + 1 = 0 mod 4
or n + 1 = 0 mod 6, these examples are those of Wilking and Frank—-Rong—Wang.
In general, when ¢ is the smallest prime such that n + 1 = 0 mod 2¢, there exist a
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2896 L. Kennard

non-cyclic group I' and a space form S"/I" that admits 7" symmetry with r = "2—“
Therefore, the best possible extension of Theorem 1.1 would be the following:

Conjecture Letq be aprime. Assume n is odd such that q is the smallest prime dividing
%. If M" be a closed Riemannian manifold with positive sectional curvature and
T" symmetry such that r > % + 1, then w1 (M) is cyclic.

When g = 2 or g = 3, the conjecture holds by Theorem 1.1. An equivalent version
of this conjecture is stated in Wang [51], and it is proved in the case of constant
sectional curvature (see [51, Theorem A]). Our first main theorem generalizes Wang’s
result by proving the conjecture in the case where the universal cover is a homotopy
sphere. It also proves the conjecture for all ¢ in all but finitely many dimensions, under
the additional assumption that the torus action has no fixed point.

Theorem A The conjecture above holds in each of the following cases:

(1) The universal cover of M is homeomorphic to a sphere.
(2) The dimension of M is at least 16>, and the torus action has no fixed point.

Moving beyond cyclic fundamental groups, the next important class of groups are
those that act freely and linearly on S3. These are called the three-dimensional spher-
ical space form groups, and they are classified (see Wolf [54, Sect. 7.4]). There are
again a number of results that provide conditions under which a positively curved man-
ifold with torus symmetry has fundamental group isomorphic to a three-dimensional
spherical space form group. Here are two (see [18, Theorem A] and [44, Theorem

1.1]).

Theorem 1.2 (Frank—Rong—Wang, Rong—Wang) If M" is a closed Riemannian mani-

foldwith positive sectional curvature and T" symmetry, then w1 (M) is the fundamental
group of a three-dimensional spherical space form under each of the following con-
ditions:

ori%—l—l.
072%,n+1$0m0d6,andn225.

Ifr > %, n+ 1= 0mod 6, and n > 25, Rong and Wang [44] prove a partial
classification that either 7r1 (M) is a three-dimensional spherical space form group or
w1 (M) acts freely on a positively curved rational homology 5-sphere. The second
main result of this paper sharpens the latter possibility in two ways (see Corollary 6.2
for a slightly stronger statement).

Theorem B Let M" be a closed Riemannian manifold with positive sectional cur-

vature and T" symmetry. If n > 25 and r > %, then either m (M) is a

three-dimensional spherical space form group or r = % and w1 (M) acts freely

both by diffeomorphisms on S> and by isometries on a positively curved mod 2 and
mod 3 homology 5-sphere.

We remark that the action by diffeomorphisms on S> might not be linear, so we
would like to underline Rong and Wang’s question in [44] about whether 71 (M) is a
five-dimensional spherical space form group in this case.
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Moving beyond spherical space form groups, there is the larger class of finite
groups that act freely and smoothly, but not necessarily linearly, on standard spheres.
According to the classification of Madsen, Thomas, and Wall, these are precisely the
finite groups that satisfy the two following properties:

e (p? conditions) 771 (M) does not contain a copy of Z p X 2L, for any prime p.
e (2p conditions) every involution in 771 (M) is central.

The first of these is equivalent to the property that every abelian subgroup of 71 (M) is
cyclic, as in Chern’s original question. The second is proved in Milnor [37] for finite
groups that act freely on a manifold that is also a mod 2 homology sphere (cf. Bredon
[9, Chapter I11.8.3] and Davis [13, Corollary 7.5]). One might therefore try to prove
that these properties carry over to fundamental groups of positively curved manifolds
with large symmetry. With these goals in mind, Sun and Wang nearly proved both the
p? and 2p conditions under a symmetry assumption weaker than in the results above
(see [49, Theorems A and B]):

Theorem 1.3 (Sun—Wang) If M" is a closed Riemannian manifold with positive sec-
tional curvature and T" symmetry such that n > 23 and r > % + 1, then w1 (M)
does not contain Z, x Z, for any prime p # 3, and every involution in (M) is
central.

As an application of the results in this article, we can remove the condition that
p # 3 in this theorem. In fact, we require less symmetry to do so in the case where
dim(M) = 1 mod 4.

Theorem C Let M" be a closed Riemannian manifold with positive sectional curva-
ture and T" symmetry.

(1) If r > ”+3 + 1 and n > 23, then w1 (M) acts freely and smoothly on a sphere.
(2) Ifr = "5 L 4 3 and n = 1 mod 4, then w1 (M) acts freely and smoothly on S® or
S°.

In either case, the fundamental group satisfies all p* and 2p conditions.

Part (2) of Theorem C is actually one in a family of results where the symmetry
assumptionisr > ’54— +¢ for some positive number g and where part of the conclusion
is that w1 (M) 2 Z, x Z, for some prime p only if 2 < p < g (see Theorem 8.2).
Furthermore, this family of results follows from the next theorem, which is the main

technical result of this paper.

Theorem D Let M" be a closed, positively curved Riemannian manifold with n =
1 mod 4 and T" symmetry. If r > logy 3 ( ) then m1(M) = Zje x T for some
e > 0 and some group T of odd order. Moreover the following hold:

(1) IfT 2 Z, x Z, for some prime p, then r < "J;,l andr < ”H + 5.

(2) If T 2 Zp, x Z, for all p, then there exists an odd mteger d < ”H such that

(M) contams anormal, cyclic subgroup of index d and acts freely and smoothly
on S*-1,
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2898 L. Kennard

The factorization of 71 (M) into a cyclic 2-group and an odd-order group immedi-
ately implies that every involution is central. This factorization follows from a general
surgery-theoretic result of Davis and Weinberger, applied to the special case of a
positively curved, rational (homology) sphere of dimension n = 1 mod 4. For fur-
ther discussion of their result and about the structure of 71 (M) in the context of this
theorem, see Sect. 4.

Finally, continuing along the path of results with weaker symmetry assumptions
and correspondingly weaker fundamental group classifications, we come to a major
result of Rong. It requires only a circle action (see [40], cf. [42, Theorem B]):

Theorem 1.4 (Rong) For each n, there exists a constant w(n) such that if M" is a
closed Riemannian manifold with positive sectional curvature and circle symmetry,
then w1 (M) has a cyclic subgroup of index at most w(n).

In particular, if 1 (M) 2 Z, x Zp for some prime p, then p < w(n).

The formula for w(n) grows superexponentially in n; however, examples on space
forms suggest that it might be replaced by a linear function ». The next result provides
evidence for this suggestion in the special case where the universal cover is a rational
sphere.

Corollary 1.5 (Corollary 5.2) Let M" be a closed, positively curved Riemannian
manifold that admits a non-trivial, isometric circle action. If the universal cover of M
is a rational sphere and w1 (M) 2 Z,, X Z, for some prime p, then p < %

This result is an immediate consequence of one of the new obstructions proved in
this article (see Proposition 5.1 and the discussion that follows).

In addition to the standard sphere, there are two simply connected rational 7-spheres
known to admit positive curvature, the Berger space SO(5)/SO(3) (see [6]) and a coho-
mogeneity one manifold P, homeomorphic but not diffeomorphic to the unit tangent
bundle of S* (see Dearricott [15] and Grove—Verdiani—Ziller [27]). In addition, there
is an infinite list of rational 7-spheres that are considered candidates to admit positive
curvature (see Grove—Wilking—Ziller [26] and Verdiani—Ziller [50]), and Petersen and
Wilhelm claim that the Gromoll-Meyer exotic 7-sphere admits positive curvature (see
[39], cf. Joachim—Wraith [31, Sect. 2] and references therein). With these examples
in mind, we state the following strengthening of this corollary in dimension 7.

Corollary 1.6 (Corollary 5.3) Let M7 be a closed, positively curved Riemannian
manifold whose universal cover is a rational sphere. If a circle acts effectively by
isometries on M, then every subgroup of w1 (M) of odd order is cyclic.

The proofs in this article require tools of two types. The first collection of tools
provide cohomological information about positively curved manifolds with torus sym-
metry. Most significantly, we rely on ideas developed in Wilking [52] and refined by the
author and Amann (see [3,4,32,33]). They include the connectedness lemma, results
concerning periodicity in cohomology, and a powerful machinery for inducting over
dimension. In this article, these results serve to essentially reduce the proofs of the
main theorems to the case where the universal cover of the manifold M is a rational
sphere. This is one of the places where the assumption of dim(M) = 1 mod 4 is used.
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The second collection of tools for the proofs are three new obstructions to free
actions of finite groups on manifolds with special cohomology, curvature, or sym-
metry properties. The first extends a result of Smith that obstructs free actions by
Zp x Z, on mod p homology spheres. This involves a technical lemma which refines
the periodicity theorem in earlier work [32] of the author (see Proposition 3.2). The
proof of this refinement builds upon the use of Steenrod powers in [32] and uses in
addition secondary cohomology operations. The second obstruction is an immediate
application of a surgery-theoretic result of Davis and Weinberger on free, orientation-
preserving actions on rational spheres M with dim(M) = 1 mod 4 (see Proposition
4.1). This obstruction essentially reduces all of our proofs to the case of odd-order
fundamental groups. For such groups, we are able to apply a classification of Burnside,
results about finite groups with periodic cohomology, and a realization theorem due to
Madsen, Thomas, and Wall. The third obstruction was inspired by, and generalizes, an
obstruction used in earlier work of Rong, Sun, and Wang. It provides an obstruction to
free, isometric actions by Z, x Z, on positively curved rational spheres that commute
with an isometric circle action (see Proposition 5.1).

The outline of this article is as follows: Section 2 states conditions under which a
simply connected, positively curved manifold with torus symmetry is a rational sphere.
Sections 3, 4, and 5 provide proofs of the three new obstructions mentioned above.
Section 4 also collects results about finite groups with periodic cohomology. Section 6
pulls together these obstructions and applies them to torus actions on positively curved
rational spheres. Theorem B is also proved in this section. Theorem D is proved in
Sect. 7 using the results of Sects. 2 and 6, and then it is used to prove Theorems C and
A in Sects. 8 and 9, respectively.

2 Preliminaries

In this section, we mention a few of preliminary results and tools that have been used
repeatedly to study fundamental groups of positively curved manifolds with torus
symmetry. In addition, we state three important sufficient conditions under which a
positively curved manifold with torus symmetry is a rational homology sphere.

The first crucial result is the following (see Berger [7] and Grove—Searle [23]):

Theorem 2.1 (Berger) If T" acts isometrically on a compact, positively curved man-
ifold M", then there exists a codimension one subtorus T" ™! that fixes some point of
M.

This result ensures the existence of many non-trivial fixed-point sets in the presence
of isometric torus actions on manifolds with positive sectional curvature. Such fixed-
point sets are (embedded) totally geodesic submanifolds, so the classical result of
Frankel comes into play (see [19]). Wilking proved a vast generalization of Frankel’s
result, and we reproduce part of it here (see [52, Theorem 2.1]).

Theorem 2.2 (Connectedness lemma) Let M" be a closed, positively curved Rieman-
nian manifold.

(1) IfN"* isaclosed, totally geodesic submanifold, then the inclusion is (n—2k+1)-
connected.
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2900 L. Kennard

(2) If Nl.n_ki — M" are two closed, totally geodesic submanifolds with k1 < ky, then
the inclusion Ny N N — Nj is (n — k1 — ko)-connected.

We recall that an inclusion N — M is c-connected if the induced map on homotopy
is isomorphisms in degrees less than ¢ and a surjection in degree c. In particular, we
have the following consequences, which we will use repeatedly:

e Ifcod(N) < % in the first part of the lemma, then 1 (N) = 71 (M).

e Suppose N; € M' are fixed-point components containing x of isometries ¢;. If
n — ki — ko > 1, then the intersection N; N N3 is connected and hence coincides
with the component containing x of the fixed-point set M{1:22) of the fixed-point
set of the group generated by ¢; and ¢5.

We proceed to a discussion of three important conditions under which a simply
connected positively curved Riemannian manifold is a rational homology sphere. The
first is the following, which we quote frequently (for a proof, see [3, Proposition 3.2]):

Lemma 2.3 (dk 2 lemma) Let M" be a closed, simply connected, positively curved
Riemannian manifold with n = 1 mod 4, let T be a torus acting isometrically and
effectively on M, and let T" C T denote a subtorus that fixes a point x € M.

If there exists an involution o € T' such that the component N € M° containing x
has dim(N) > 5 and is fixed by another involution in T, then M is a rational sphere.
In particular, this applies if the dimension of the kernel of the induced T'-action on N

is at least two.

The second and third sufficient conditions can also be regarded as statements about
the case where M is not a rational homology sphere. The first has a strong symmetry
assumption and implies that every involution in the torus has large codimension. The
second has a weak symmetry assumption and implies that some involution has large
codimension.

Proposition 2.4 Let M" be a closed, simply connected, positively curved Riemannian
manifold withn = 1 mod 4 and T" symmetry such thatr > 2log, n+ I% + 1 for some

positive k < "4i2. One of the following occurs:

o M is a rational homology sphere.
e Every involution in T" has fixed-point set of codimension greater than k.

In particular, if n > 81 and r > 2./n, then either M is a rational sphere or every
involution has fixed-point set of codimension greater than \/n.

The first part of statement is simply a rephrasing of Proposition 3.3 in [3]. The last
statement follows immediately by taking k = /n and confirming the estimate

2ﬁ2210g2n+4+1

for all n > 85.
The third sufficient condition is the following. It is a slight adaptation of Proposition
1.1 in [4] that is better suited to our situation.
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Proposition 2.5 Assume n = 1 mod 4 and n > 25. Let M" be a closed, simply
connected Riemannian manifold with positive sectional curvature, and let T® be a

. . . . . . 3
torus acting effectively by isometries on M with fixed point x. If s > 10g4 3 (%) -2,
then one of the following occurs:

e M is a rational homology sphere.
e There exists an involution 1 € T* such that the component N € M" of the fixed-
point set containing x satisfies % < cod(N) < %, and dimker(T*|y) < 1.
Here, and throughout this article, if 7 is a torus acting on a manifold M, and if
N C M is a submanifold to which the T-action restricts, then dim ker(7 |) denotes
the dimension of the kernel of the induced T-action on N. Note that N admits an
isometric torus action of rank at least dim(7") — dim ker (7| ).

Proof First, it is immediate from the definition of periodic cohomology (see [32,
Definition 1.8]) that M is a rational homology sphere if and only if it has 4-periodic
rational cohomology.

The proof now parallels the proof of Proposition 1.1 in [4]. The slight modification
is that, here, we set ¢ = 1,1t = 1, kg = %, and j = Llogz(ko)J. As there, the
proof now follows immediately from Lemmas 1.2 and 1.3 in [4] assuming a certain
inequality involving the rank of the torus and the dimension of the manifold. We are
referring to Inequality (1.1) in [4], reproduced here forc = 1, = 1,andn = 1 mod 4:

n—1 = n+3
5 <j—1+_z;[w] (1
1=

Dropping the ceiling functions in the proposed estimate and rearranging, we see
that this inequality holds if

s >logy(n+3)+ j—log,(j+1) —2.

One can check by hand that this holds for 25 < n < 45. In addition, since j <
log, (%5%) and j > log, (“31) — 1, Inequality (1) holds if

s > logy(n + 3) + log,(n — 1) — log,(log,(n — 1) — 2) — 4.

This inequality holds for n» = 49 and hence for all n > 49 since the left-hand side
grows faster than the right-hand side. O

3 Free Actions on Mod p Spheres

In the classification of spherical space forms, it is shown that a finite group acts freely
on sphere only if every abelian subgroup is cyclic. Smith proved a localized version
of this, which we state here for manifolds (also see Bredon [9, II1.8.1]):

Theorem 3.1 (Smith, [48]) If M is a mod p homology sphere, then Z, x Z, does not
act freely on M.
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2902 L. Kennard

Here and throughout the paper, a mod p (resp. rational) homology sphere is a
smooth manifold whose mod p (resp. rational) homology is that of a sphere. We will
apply Smith’s theorem to conclude the following, the main result of this section:

Proposition 3.2 Let p > 3 be prime, and let n be an odd integer greater than
max(19, 2p?). If M" is a closed, simply connected Riemannian manifold with posi-
tive sectional curvature that contains two transversely intersecting, totally geodesic
submanifolds of codimension 2p, then M is a mod p homology sphere. In particular,
M does not admit a free action by Z, X Zp.

This result can be viewed as a refinement of the periodicity theorem due to the
author (see [32, Theorem B], and more specifically [32, Proposition 2.1]). That theorem
immediately implies that the manifold is a rational homology sphere. To exclude free
actions by Z, x Z,, however, we need to know that the manifold is also a mod p
homology sphere.

We remark that Proposition 3.2 is enough to exclude the possibility of 71 (M) 2
Z3 x Z3 in Theorem 1.3 of Sun and Wang in the introduction. However we postpone
discussion of this until later, since the other obstructions we prove allow us to say
more in this setting.

Proof Note that the last conclusion is simply Smith’s theorem, so it suffices to prove
the first conclusion.

Denote the submanifolds of M by N; and N,. By the connectedness lemma and
its corollary (see [52, Theorem 2.1 and Lemma 2.2]), the cohomology of N, is
(2p)-periodic in the sense that some x € H 2P(N»; 7) exists such that the maps
H!(N»;Z) — H!*?P(N»;Z) induced by multiplication by x are surjections for
0 < i < dim(N2) — 2p and injections for 0 < i < dim(Ny) — 2p. Since the
codimension of N, equals 2p, which is at most %, it follows again by the con-
nectedness lemma that M has (2p)-periodic cohomology as well. Finally, it follows
in general that k-periodic integral cohomology induces k-periodic Z,-cohomology
(see, for example, the proof of Lemma 3.1 in [32]). The theorem now follows from
Lemma 3.3 below. O

Lemma 3.3 Let M" be a closed, simply connected manifold of odd dimension. Let p
be an odd prime such that 2p* < n. If H*(M; Zp) is (2p)-periodic, then M is a mod
p sphere.

This result refines Proposition 2.1 in [32], the proof of which uses mod p Steenrod
cohomology operations and applies not just to manifolds. Here we restrict to manifolds
since the proof of Lemma 3.3 uses Poincaré duality. In addition, we require a secondary

factorization by secondary cohomology operations due to Liulevicius and Shimada—
Yamanoshita. After setting up the notation and some preliminaries, we prove the
lemma.

First, we recall the existence of the Steenrod powers

Pl HY(M; Zy) — H*P2P Vi, 7,)

@ Springer



Fundamental Groups of Manifolds with Positive Curvature... 2903

and the Bockstein homomorphism

B H*(M;Z,) — H*™\(M;Z,)
associated to the short exact sequence

0— Zp —> Zy —> Zo —> O.

See [32, Sect. 2] or Hatcher [30, Sect. 4.L] for a summary of the basic properties of
these operations.

Second, we require a secondary decomposition of Steenrod powers. Such decom-
positions of Steenrod squares were developed by Adams in his resolution of the Hopf
invariant one problem (see [1]). Liulevicius, Shimada, and Yamanoshita developed
odd prime analogues for the Steenrod powers (see [34,46]). We only require here the
following consequence (see Harper [29, Theorem 6.2.1.b]):

Theorem 3.4 (A secondary decomposition of Steenrod powers) For any space M and
x € HY(M; Zp), if B(x) = 0 and Pl(x) = 0, then there exist cohomology elements
wo, w1 € H*(M; Zp) such that

PP (x) = B(wo) + P (w)).

We spend the rest of this section on the proof of Lemma 3.3. We will denote 2 p by
k, H(M;Z,) by H', and H*(M; Z,) by H*.

Let x € H* be an element inducing periodicity in H*. By definition of periodicity,
the conclusion follows immediately if x = 0. Second, if M is also p-periodic and if
y € HP is an element inducing p-periodicity, then y and y? generate H” and H??,
respectively. It follows by the skew symmetry of cup products that y> = 0 and hence
that x = 0, so again the result follows. Third, if M is also k’-periodic for any other
positive k' < k, then H* is periodic with periodic gcd(k,” k") = 2 by an argument
similar to that of [32, Lemma 3.2]. Since M is simply connected and odd-dimensional,
this would imply that M is again a mod p sphere.

We may assume therefore that x is non-zero and has minimal degree among all
elements inducing periodicity in H*. In particular, x” # 0, k does not divide n — 1,
and, by [32, Lemma 2.3], no non-trivial multiple of x is of the form P! (y) withi > 0.
Similarly, we have the following:

Lemma 3.5 No non-trivial multiple of x is of the form B(y).

Proof Suppose x is a multiple of (y) for some y € H 2p’~1 The Adem relation
PPB=PlgpPP~! 4 gPP
implies that x” = PP (x) is a multiple of

PPB(y) = PSPPI (y) + BPP ().
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2904 L. Kennard

But the second term on the right-hand side is zero since 2p is larger than the degree
of y, and the first term on the right-hand side is zero since no non-trivial multiple of
xP is in the image of P! (see [32, Lemma 2.4]). This contradicts the assumption that
xP #£0. O

Next, choose m € {2,4,6, ...,k — 2} such that k divides n — 1 — m. We prove the
following:

Lemma 3.6 The groups H”, H"12,..., H*=2 vanish.
Proof First, the definition of periodic cohomology implies that
Hm g Hm+k ; Hm+2k ; . ; Hn—l
since k divides n — 1 — m. By Poincaré duality and the assumption that M is simply
connected, we conclude that H™ = 0. We proceed by induction. Suppose that H = 0

for some ! € {m,m + 2, ...,k — 4}, and suppose that H'*2 # 0. Using Poincaré
duality and periodicity, we conclude the existence of a relation

uv = Xz

for some u € H'*? and v € HM"H1=0+2) 'where z € H"*! = HF = 7, isa
generator. On one hand, P! (u) € H** = H' = 0, so the Adem relations imply

i'Plw)y=P'P'...Plw) =0

and hence P’ (u) = Oforall 0 < i < p. Applying the Cartan relation and the property
that P”(u) = 0 and P?(v) = O since 2p > deg(u) and 2p > deg(v), respectively,
we conclude

PP(uv) = PPwyv+ »  P'w)PP~ () + uP?(v) = 0.
O<i<p

On the other hand, we claim that P? (xz) = x”z, which is non-zero by periodicity.
Indeed, PP (x)z = xPz and x PP(z) = 0 since 2p = deg(x) and 2p > deg(z). In
addition, if we can show that P!(z) = 0, it will follow from the relation j!P/(z) =
P'P1... Pl(2) that P/(z) = O forall 0 < j < p, and hence that

PP(x3) =xPz+ Y PP (x)P/(x) + xPP(z) = x"z.
O<j<p

It suffices to prove P! (z) = 0. If it is non-zero, Poincaré duality and periodicity imply
the existence of w € H? such that wP'(z) = xz. Applying the Cartan formula to this,

we have

xz = Pl(wz) — Pl(w)z = Pl(wz) — wPz.
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However w” e H* is zero by the minimality of x (see [32, Lemma 2.3]), and, applying
Poincaré duality and periodicity once more, we have that wz = 0 since wz # 0 would
imply a relation

0 # xz =w'(wz) = (Ww)z.

But w'w € H* is zero by the minimality of x (again see [32, Lemma 2.3]), so
Pl(z) = 0 as claimed. O

We are ready to conclude the proof from the fact that H*~2 = 0. Since B(x) €
H**!' = g =0and P!(x) € H*?>(P~D = gk=2 = 0, Theorem 3.4 implies

xP = PP(x) = B(wo) + P (w)

for some wg, w; € H*. Since k = 2p, one has that wy = xp’lyo and w; = xp’lyl
for some yg, y; € H* of positive degree. Using again the fact that f(x) = 0 and
P!(x) = 0, we have by the Cartan formula that

P = xP= B (yo) + PP ()
and hence, by periodicity, that

x = BGo)+ P o).

Using periodicity once more, we have that the non-zero element x generates H*,
which implies that 8(yg) or P ! (y1) is a non-trivial multiple of x. This contradicts the
minimality of x established at the beginning of the proof.

4 Free Actions on Positively Curved Rational Spheres

In this section, we state the Davis—Weinberger factorization, which obstructs certain
free actions by finite groups on rational homology spheres of dimension 4k+1. We also
discuss examples and properties of finite groups with periodic cohomology, including
classifications due to Burnside, Wolf, and Madsen—Thomas—Wall. We also provide in
Example 4.8 an important class of finite groups that act freely on spheres in a way that
commutes with large isometric torus actions.

Proposition 4.1 (Davis—Weinberger factorization) Ler M**! be a closed, simply
connected manifold with the rational homology of a sphere. Assume M admits a Rie-
mannian metric with positive sectional curvature. If 7w is a finite group acting freely
by isometries on M, then w1 = Zoe X T for some e > 0 and some group I" with odd
order.

Proof Theorem D in Davis [13] states the following: If a finite group acts freely on a
closed manifold M**! and trivially on the rational homology of M, then either the
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rational semicharacteristic

2k
Z(—l)i dim H; (M; Q) = 0 mod 2
i=0

or the group is the direct product of a cyclic 2-group and a group of odd order.

Note that the rational semicharacteristic of a rational sphere is one. Moreover,
since 77 acts isometrically and M has positive sectional curvature, Weinstein’s theorem
implies that 7 preserves orientation and hence acts trivially on the rational homology
of M. The conclusion follows immediately. O

The author would like to thank Cooper and Long for directing him to the work of
Davis and Weinberger. The assumption that the dimension is of the form 4k + 1 is
crucial. In fact, Cooper and Long proved that any finite group can act freely on arational
homology sphere of dimension 4k + 3, for any & > 0 (see [12], cf. Browder-Hsiang
[10D).

This factorization immediately implies the following:

Corollary 4.2 (Milnor condition) Let M*+1 be a simply connected, positively curved
rational homology sphere. Suppose 1 is a finite group that acts freely by isometries
on M. If a non-trivial involution in 7 exists, then it is both unique and central.

Milnor proved that, if a finite group acts freely on a closed manifold with the mod
2 homology of a sphere, then every involution is central (see Milnor [37] or Bredon
[9, Chapter I11.8.3]). Combined with Smith’s theorem (Theorem 3.1), it follows that
there is at most one non-trivial involution. (For a different proof of Milnor’s result,
see Davis [13, Corollary 7.5]).

Next, we discuss another important property of the Davis—Weinberger factorization,
which we will use repeatedly. Suppose m = Zye x I for some e > 0 and some odd-
order group I'. Both of the following hold:

(1) 7 contains a copy of Z, x Z, for some prime p if and only if I" does.
(2) m contains a normal, cyclic subgroup of odd index d if and only if I" does.

In the context of our proofs, 7 is a finite group acting freely on a simply connected
manifold. Once it is established that 7 factors as Zye x I' as above, the proofs proceed
by restricting attention to odd-order groups. Moreover, for such groups, we have the
following classification of Burnside (see Burnside [11] or Wolf [54, Theorems 5.3.2
and 5.4.1]):

Theorem 4.3 (Burnside classification) For a finite group T of odd order, ' 2 Z, X Z,
for all primes p if and only if

I (o fla®=p"=1,Bap"" =af)

for some a, b, c > 1 such that gcd(a, b) = 1, ged(a,c — 1) = 1, and c® =1 mod a.

Definition 4.4 Call a triple (a, b, c¢) of positive integers admissible if gcd(a, b) =1,
gcd(a, c—1) = 1,and ¢? = 1 mod a. For each admissible triple (a, b, ¢),letI"(a, b, ¢)
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denote the group generated by o and S subject to the relations o = 1, 8% = 1, and
Bap~! = ac. For each d > 1, let C; denote the collection of all groups I'(a, b, c)
such that d is the order of ¢ in the multiplicative group of units modulo a.

Note that the definition of Cz implies further thatd = 1if and only if I" is cyclic. For
d > 1, we make the following observations. It follows from the relation o~ = a¢
that o and ,Bd commute. Moreover, since gcd(a, b) = 1, these elements have coprime
order and hence generate a cyclic subgroup of index d. It is easy to see that this
subgroup is normal in I". Altogether, we have that every I' € C;4 contains a normal,
cyclic subgroup of index d. By the observation above, 7 = Zje x I' also contains a
normal, cyclic subgroup of index d.

The classification of spherical space forms in dimension n = 1 mod 4 was com-
pleted by Vincent. According to Wolf [54, Theorems 5.4.1 and 5.6.1], Vincent’s
theorem is as follows: A group 7 acts freely and linearly on S**! if and only if
w = T'(a, b, c) € Cy for some admissible triple (a, b, ¢) and some integer d such that
d divides 2k + 1 and the satisfies the property that every prime divisor of d also divides
%. For our purposes, we rephrase Vincent’s classification of fundamental groups that
arise in terms of the groups I'(a, b, ¢) € Cy4.

Theorem 4.5 (Vincent) A finite group 7 acts freely and linearly on S**! only if
T = Zoe X T for some e > 0 and some group I' = I'(a, b, ¢) € Cq such that a, b,
and d are odd, d divides 2k + 1, and every prime divisor of d also divides b/d.

Conversely, if 1 = Zye x T for some odd-order group T" = T'(a, b, c) € Cq where
d is an odd number all of whose divisors divide b/d, then 7 acts freely and linearly
on Szvd—lfor all odd v > 1.

Proof For the first statement, the Davis—Weinberger factorization implies 7 = Zpe xI'
for some e > 0 and some odd-order group I'. Note that I" acts freely and linearly on
S*+1 5o Vincent’s classification applied to I" implies that I' = I'(a, b, ¢) € Cy for
some integers a, b, ¢, and d such that d divides 2k + 1 and such that every prime
divisor of d also divides f—l Note that ab is the order of I", so a and b are odd. Also
note that d divides b, so d is odd as well.

This proves the first statement. Alternatively, we can provide an argument based
more directly on the classification of spherical space forms, and we do this here.
Applying Vincent’s theorem right away, we conclude that 7 = I'(a, b’, ¢) € C,4 for
some admissible triple (a, b’, ¢) where b’ is not necessarily odd. The representations
of I'(a, V', ¢) inducing free actions on S*+1 have degree divisible by 2d (see [54,
Theorem 5.5.10]). Consequently, 2d divides 4k +2 and hence d is odd. Write b’ = 2°b
where b is odd, and note that d divides b. From the relations defining I'(a, b’, ¢), it
follows that @ commutes with 8¢ and hence with 2. It follows that the subgroup
generated by A is isomorphic to Zoe and central in 77, and moreover that 7 factors
as a direct product Zse x I’ (a, b, cze), as claimed. Since d is odd, the property that
every prime divisor of d also divides b’ /d carries over from b’ to b, so the proof of the
first statement is complete.

For the converse, fix such a group 7 = Zye x I'(a, b, ¢) where I'(a, b, ¢) € C4 and
d is odd. Note that both ¢ and ¢>* generate the same subgroup in Z ~, the multiplicative
group of units modulo a, so we may write ¢ as &> for some ¢ € Z) . By the same
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isomorphism from the previous paragraph, we have that
T = Zpe x T (a, b, 52€> =r (a, 2¢b, E) .

Using Vincent’s classification again (specifically [54, Theorem 5.5.10]), we conclude
that 77 acts freely and linearly on S??~! and, hence, on S?¥¢~1 O

Regarding the classification of free, smooth, but not necessarily linear, actions by
finite groups on the standard sphere, we have the following realization theorem due to
Madsen, Thomas, and Wall (see [35, Theorem 0.5] and [36]).

Theorem 4.6 (Madsen—Thomas—Wall) If 7 is a finite group such that every abelian
subgroup is cyclic and every involution is central, then w acts freely and smoothly on
a standard sphere. If, moreover, 1 = Zje X I for some odd-order I" € Cqg withd > 1,
then 7 acts freely and smoothly on S*4~" for all v > 1.

The first claim follows by combining [35, Theorem 0.5] with [36]. For the second
claim, we cite [36], which shows that 7 acts freely and smoothly on a standard sphere
of dimension 2e(;r) — 1, where e(sr) is the Artin—Lam induction exponent. For our
purposes, we only need to note that groups 7 = Zye x I' with I' € Cy are (2d)-periodic
(see Lemma4.7) and that e(r) = d for such groups, which are known as Type I groups
in the literature (see [36]).

We require one more collection of facts having to do with finite groups with peri-
odic cohomology. The notion of periodic cohomology in the context of groups is the
following: H*(I'; Z) is (2d)-periodic if H' (I'; Z) = H'*?4(I"; Z) for all i > 0 (see,
for example, Adem and Milgram [2, Sect. IV.6, Definition 6.1]). It is well known that
a finite group having no subgroup of the form Z, x Z, has periodic cohomology, and
so this class includes any group of the form 7 = Zje x I" where I' € C; for some
d>1.

Lemma 4.7 (Results on finite groups with periodic cohomology) Let I be any finite
group.

(1) If T acts freely on S", then H*(I'; Z) is (n + 1)-periodic.

(2) If T € Cy, then H*(T'; Z) is (2d)-periodic.

(3) If H*(T'; Z) is periodic with periods dy and dy, then it is gcd(dy, dp)-periodic.
(4) If H*(T'; Z) is 2-periodic, then T is cyclic.

Proof The first statement is Lemma 6.2 in Adem and Milgram [2]. The second is
proved in Davis and Milgram [14, p. 229]. The third statement is immediate from the
definition. For the last statement, note that

/[T, T1= H(T; 2) = HA(T; ) = Z/|T,
where the last equality follows from [14, Theorem 1.2]. O

Finally we come to the following class of examples showing that the conjecture in
the introduction is sharp with respect to the symmetry assumption.
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n+1

Example 4.8 Let g be a prime dividing “5—. There exists a free, linear action by some

I € C; on the round n-sphere that commutes with a linear torus action of rank "'H

Proof Fix g and n such that n + 1 = 0 mod 2¢. Choose positive integers a, b, and ¢
such that the following hold:

e a is a prime congruent to one modulo ¢ (exists by Dirichlet’s theorem),

e b =¢? and

e cisless than @ and has order ¢ in the multiplicative group of units modulo a (exists
by Cauchy’s theorem).

It is straightforward to see that (a, b, c) is an admissible triple and that I' =
I'(a,b,c) € C;. Moreover, it follows by Vincent’s theorem (Theorem 4.5) that I’
acts freely on qu !"and hence on S” by taking an appropriate sum of representations.

It suffices to construct a free action on S” that commutes with an action by a torus
of dimension ”+1 . To do this, consider the representation I' — O(2g) given by

o > diag (R(l/a), R(c/a), R(Z/a), ..., R(cqfl/a)) :

B> < 0 id)
R(/q) 0 )"
where « and 8 are as in Definition 4.4 and R () is the two-by-two rotation matrix with
angle 27 0. By taking (m,n,r,d,n’) = (a, b, c, q, q), it follows from [54, Theorem
5.5.10] that this representation is fixed-point-free. Consequently, the sum of % of
these representations induces a free action of I' on S". Moreover, this action com-
mutes with an action of 77 on S”, where r = "; L and the action is induced by the
representation 7" — O(n + 1) given by

@1, ...,6,) — diag (R®"), ..., R©1),...,R®,),...,R(@6)).

These examples show that the conjecture in the introduction is sharp with respect to
the symmetry assumption. Moreover, note that the subaction by the diagonal S! < T
is the (free) Hopf action. ]

We close this section with one additional example suggested by the referee. It
provides an additional example showing that that the symmetry assumption in the
conjecture in the introduction is sharp.

Example 4.9 The examples in Shankar [45] provide an important test case for the
conjecture. These examples are quotients of the normal homogeneous Aloff—Wallach
space Np,1 with positive sectional curvature. This space admits an isometric action
by SU(3) x SO(3), and the subaction by SO(3) is free. Let I' € SO(3) denote a
non-cyclic, finite subgroup (e.g., Zy x Z or any finite dihedral group). The quotient
N 17 1/ T has fundamental group I" and inherits positive sectional curvature and SU(3)
symmetry. In particular, this quotient has 72 symmetry.

In light of the conjecture, one notes that dimension n = 7 falls into the ¢ = 2
case. More precisely, the conjecture in dimension 7 states that the fundamental group
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is cyclic under torus symmetry of rank r > % 4+ 1 = 3. As in Example 4.8, this
example shows that the symmetry assumption is sharp.

5 Free Actions on Positively Curved Rational Spheres with Circle
Symmetry

We now consider free actions on positively curved rational homology spheres with
circle symmetry. The following obstruction is the main new tool we use in our analysis:

Proposition 5.1 Let M" be a closed, simply connected, odd-dimensional rational
homology sphere with positive sectional curvature. IfS' acts effectively by isometries,
if ' is a group of odd order acting freely by isometries, and if these actions commute,
then the following hold:

(1) If ' 2 Z, x Z, for some prime p, then 2p divides cod(MSl).
(2) IfT € Cy for some d > 1, then 2d divides cod(Msl).

1 . . . 1 .
Here cod(M S ) denotes the codimension of the fixed-point set M . By convention,

we set cod (M s! ) = n+ 1 if the fixed-point set is empty. Also, Cy is as in Definition 4.4.

Note that this proposition applies to a closed, odd-dimensional, positively curved
manifold whose universal cover is a rational homology sphere. Indeed, if M admits an
effective, isometric circle action, then its universal cover does as well. Moreover, this
action commutes with the free 1 (M)-action. Combining this observation with Propo-
sition 5.1 and the estimate cod(M Sl) < n+ 1, we deduce the following consequence:

Corollary 5.2 Let M" be a closed, positively curved Riemannian manifold whose
universal cover is a rational homology sphere. If M admits a non-trivial, isometric

circle action, then w1(M) 2 Z, x Z, for some prime p only if p < %

Restricting to dimension 7, Proposition 5.1 implies the following:

Corollary 5.3 Let M7 be a closed, positively curved Riemannian manifold whose
universal cover is a rational homology sphere. If a circle acts effectively by isometries
on M, then every subgroup I' C w1 (M) of odd order is cyclic.

Proof Denote the circle by S!. The fixed-point set M s! is another (connected) rational
homology sphere of codimension k € {2, 4, 6, 8} (see Smith [47] or Bredon [9, IT1.10.2
and IIL.10.10]). If I' © Z,, x Z, for some prime p > 2, then 2p divides k. This can

only occur if k = 6, in which case I" acts on the circle M s! , a contradiction.
Since I has odd order, Burnside’s classification implies that I" € Cy for some odd
d > 1. By Proposition 5.1 again, d < 3 with equality only if I acts on the circle.
Since groups in C3 are not cyclic, we conclude that d = 1 and hence that I" is cyclic.
O

We now proceed to the proof of Proposition 5.1. The proof is a modification of an
argument in Sun and Wang (see [49, Lemma 2.3], cf. Rong [42] and Rong—Wang [43,
Proposition 3.4] and [44]).
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Proof of Proposition 5.1 Let M = M/S', N = MSI, and N = N/S! € M. As
in the previous proof, since M is a rational homology sphere, N is another rational
homology sphere of even codimension k < n + 1, where k = n + 1 corresponds to
the case where N is empty. In particular, N is connected, so I acts on N since the
actions of I' and S! commute.

Using cohomology with rational coefficients, the Smith—Gysin sequence (see Bre-
don [9, I11.10.5])

.—> H' (M) — H™'\(M,N)® H' (N) — HT'(M,N) — HT' (M) — ...

implies that H! (M, N; Q) is Q for even indicesn —k + 1 <i <n — 1 and O for all
other i. In particular, we have

o : Lo k
X(M,N) =Y (=1)!dim H' (M, N; Q) = 5

We now consider the action of I on M, which is well defined since the actions of
S! and I' commute. In both conclusions of the lemma, I" has a subgroup generated by
some « and 8 subject to relations of the form % = 1, B2 =1,and BaB~! = . In
the first case (a, b, ¢) = (p, p, 1), and in the second case (a, b, ¢) is any admissible
triple (as in Definition 4.4) such that ¢ has order d in the multiplicative group of units
modulo a.

Since o acts as a homeomorphism on M, the induced map of «? on H*(M, N; Q)
is the identity. It therefore follows by the Lefschetz fixed-point formula that

x(M, N) = Lef(@?; M, N) = x (M, N®°).

Now « has odd order, so it and > generate the same subgroup. In particular, the fixed-
p_oint sets of @ and a2 coincide. Moreover, the fixed-point set of the induced action on
N is empty since « acts freely on N. Putting all of this together, we conclude

(M%) = k
X =5

We now bring f into the picture. Since 8 normalizes the subgroups («) and S, it
acts on M. Of course, M* might have many components. We claim the following:
If, for some i, ﬂi acts on some component of M®, then ,Bi and « generate a cyclic
subgroup. Given this claim for a moment, we conclude the lemma as follows:

(1) In the first case of the lemma, g’ and o generate Zp x Zp forall 0 < i < p,
so B! cannot act on any component of M* if 0 < i < p. Therefore, § partitions
the components of M into groups of p such that each group represents a unique
homeomorphism type. In particular, x (M%) = 0 mod p, so p divides k/2.

(2) In the second case, if B acts on some component of M, we would conclude
from the claim that 8/ and @ commute. The relations defining I'(a, b, ¢) imply
that this only occurs if d divides i. As in the previous case, we partition M into
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groups according to the orbits of the (8)-action on the set of components of M.
In this case, we conclude that x (M*) = 0 mod d, so d divides k/2.

It suffices now to prove the claim. Indeed, suppose that 8¢ acts on some component
A C M. Let P: M — M be the projection. It follows that ¢ acts isometrically on
the preimage P~'(A) and that this action commutes with the circle action. It follows
by a Theorem of Rong (see [49, Theorem 2.1]) that B’ preserves some circle orbit in
P~1(A) (cf. the proof of [49, Lemma 2.3]). But « acts on every circle orbit of P~ 1(A),
hence the subgroup generated by A’ and « acts freely on a circle and is therefore cyclic.

O

6 Free Actions on Positively Curved Rational Spheres with Torus
Symmetry

In this section, we apply the obstructions (Propositions 3.2, 4.1, and 5.1) from the
previous three sections to derive a further obstruction for positively curved rational
homology spheres with torus symmetry. The following proposition essentially implies
most of the theorems stated in the introduction in the special case where the universal
cover of M is a rational sphere. In particular, it together with Propositions 3.2 and
4.1imply Theorem B, and this proof is included in this section.

Proposition 6.1 Let M" be a simply connected, rational sphere that admits a Rie-
mannian metric with positive sectional curvature and T" symmetry. If M admits a free
action by a finite, odd-order group I that commutes with the action by T", then the
following hold:

(1) IfT" 2 Z,, x Z, for some prime p, then r < "2i1 andr < % +

P
(2) If T € Cq for some d > 1, thenr < %

]St

Moreover, if the torus action has no fixed points, then n 4 1 is divisible by 2p in the
first case and by 2d in the second.

The proof of Proposition 6.1 uses Propositions 3.2 and 5.1. Before getting to it,
we discuss two corollaries. The first improves the result (Theorem 1.2) of Rong and
Wang mentioned in the introduction.

Corollary 6.2 (Theorem B) If M" is a closed Riemannian manifold with positive
sectional curvature and T" symmetry such that n > 25 and r > %, then one of the
following occurs:

o 71(M) acts freely and linearly on S>.
o r= %, and 11 (M) acts freely both by diffeomorphisms on a standard S® and by
isometries on a simply connected, positively curved mod 2 and mod 3 homology

5-sphere. Moreover, the latter action commutes with an isometric circle action.

As mentioned in Rong and Wang’s paper, it is possible that the last conclusion
could be improved by better understanding fundamental groups of positively curved 5-
manifolds with circle symmetry (see also Fang—Rong [17]). The proof is a combination
of Proposition 6.1 and the results of Sect. 4.
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Proof of Corollary 6.2 (Theorem B) We lift the positively curved metric and torus
symmetry to M. The fundamental group acts freely by deck transformations on the
universal cover, and this action commutes with the torus action on M.

Assume 711 (M) is not a three-dimensional spherical space form group. A careful
reading of the proof of Theorem 1.1 in [44] implies all of the following (see [44,
Remark 4.1] regarding Case 3.(a) of the proof of Statement (2.3.1) of Lemma 2.3):

e 11 (M) acts freely by isometries on a positively curved, simply connected, five-
dimensional rational homology sphere M, _1.

e This action commutes with an isometric circle action.

e M contains a pair of transversely intersecting, totally geodesic submanifolds of
codimension Six.

e There is a sequence of inclusions M,_1 — M,_» — ... > My = M of codi-
mension six such that M; — M;_ is (dim M;)-connected for 2 < i < r — 1
and (n — 12 + 1)-connected for i = 1. (This follows by the connectedness lemma
since the M; are totally geodesic submanifolds and M; can be expressed as the
transverse intersection of two codimension six, totally geodesic manifolds, M;_
and M/_, in M; 5 fori > 2.)

The first of these conclusions implies that 71 (M) admits a Davis—Weinberger fac-
torization 7y (M) = Zje x I' for some e > 0 and some odd-order group I' (see
Proposition 4.1). The third conclusion implies that M has 6-periodic Z,-cohomology
and Z3-cohomology for the same reason as in the proof of Proposition 3.2. It follows
by [32, Proposition 1.3] that M is a mod 2 homology sphere and by Proposition 3.2
that M is a mod 3 homology sphere. The fourth conclusion implies that M, _; is also
amod 2 and mod 3 homology sphere. This completes the part of the claim regarding
a free, isometric action of 7 (M).

Next, we have that M is a rational homology sphere, so Proposition 6.1 applies.
Sincer > %, there is no subgroup Z,, x Z,, € I' with p > 3. Since M is also a mod
3 homology sphere, there is no subgroup Z3 x Z3 < I'. Hence every abelian subgroup
of I is cyclic. By Burnside’s classification (Theorem 4.3), I' = I'(a, b, ¢) € Cy4 for
some d > 1. But now Proposition 6.1 applies again, giving the estimate d < % <3.
Since we have assumed 1 (M) is not cyclic, d # 1. Since d is odd, we have d = 3
and r = %. It now follows from the realization theorem of Madsen, Thomas, and

Wall (Theorem 4.6) that 771 (M) acts freely by diffeomorphisms on S°. O

The second result is an interpretation of Proposition 6.1 in dimensions 9 and 13.
Here, an easy argument actually produces a sharp conclusion. In fact, it establishes
the conjecture from the introduction in the smallest possible dimension, 2¢ — 1, when
q € {5, 7}, under the additional assumption that the universal cover of the manifold is
a rational sphere. The proof also foreshadows the proof of Proposition 6.1 in higher
dimensions.

Corollary 6.3 Let M" be a closed, positively curved Riemannian manifold whose
universal cover is a rational sphere. If n € {9, 13} and M admits T* symmetry, then
w1 (M) is cyclic.
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Proof As in the proof of the previous corollary, we lift to the universal cover M. By
Proposition 4.1, w1 (M) factors as Zpe x I' for some odd-order group I'. _
First suppose that I' © Z,, x Z, for some prime p. Consider any sequence M 2

MT' > MT* where both inclusions are strict. Each fixed-point set is another rational
sphere of odd dimension, hence Proposition 5.1 applies to both inclusions. In particular,
each inclusion has codimension at least 2 p. Since cod (A;ITZ) < dim(M) +1 < 14,
this implies 2p + 2p < 14, or p = 3. Moreover, if p = 3, then both codimensions
equal six, n = 13, and hence M’ is a circle. Since the action by I" restricts to M Tz,
this is a contradiction.

Suppose therefore that every abelian subgroup of I" is cyclic. By Burnside’s classi-
fication (Theorem 4.3), I" € C,; for some (odd) d > 1. Applying the above argument
once more implies d = 1 and hence that I and 71 (M) are cyclic. O

We spend the rest of this section on the proof of Proposition 6.1. First, we note that
the last claim follows immediately from Proposition 5.1. Indeed, when the torus has
no fixed point, there is a circle inside whose fixed-point set is empty and hence has
codimension n + 1, so Proposition 5.1 implies the result.

Second, by Berger’s theorem (Theorem 2.1), either 7" or a codimension one
subtorus 77! C T fixes some point x € M. The subtorus acts on the normal sphere
at that fixed point, and an inductive argument shows that there exists a sequence

T0§T1§~~§Tr_l

such that the inclusion M T cM Tt has positive codimension forall 1 <i <r —1.
Since cod (MT) = n+1when M7 is empty, we have that the inclusion M c M
has positive codimension as well.

Third, the fact that M is a rational homology sphere implies that each M ' s
another (possibly empty) rational homology sphere of odd dimension. Indeed this
follows by Smith’s theorem as in the proof of Proposition 5.1. In particular, each M r
is connected, and the action by I restricts to each M”". Proposition 5.1 therefore

implies that inclusion MT" > M ™! has codimension at least 2 p (resp. 2d) in Case
1 (resp. Case 2). The codimension of M T" is therefore at least 2 pr (resp. 2dr). On
the other hand, cod (M Tr) <n—1ifit MT" is non-empty, and cod (M T'.) =n+1
by convention otherwise. This concludes the proof that 2pr < n + 1 in Case 1 (resp.
2dr < n + 11in Case 2).

It suffices to prove that r < ”4i1 + % in Case 1. For this, we refine the above
argument using Proposition 3.2. Set ko = 4p. Let j > 0 be maximal such that there
exists a sequence

Tongg...gTr
of subtori such that the following hold: 7"~! fixes a point x € M, the induced

action of 7" on submanifold M; = M T' has i-dimensional kernel for all i , and
ave(ko, k1, ..., kj) > 4p, where ave denotes the average and k; = cod (M; C M;_1).
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Note that Proposition 5.1 implies that k; = 2p or k; > 4p for every i. Using this
fact together with the maximality of j, we claim the following:

Lemma 6.4 The following hold:

o ko+ki+...+kj=4p(j+1). .
o [fr — j >3 then theref exists T/ € H C T/*2 such that MTJJrl and MH have
codimension 2p in MT" and intersect transversely with intersection M it

Proof For the first statement, note that ave(ko, ..., k;) > 4p implies ko +...+k; >
4p(j+1).Ontheotherhand,ifko+...+k; > 4p(j+1),thenko+...+k; > 4p(j+
1) + 2p. In particular, ave(ko, ..., kjy1) > 4p, a contradiction to the maximality of
j-

For the second claim, suppose that r — j > 3. Observe that k;; = 2p, since
kji1 > 4p would imply ave(ko, ..., k;y1) > 4p, another contradiction to maximal-
ity. Similarly, k12 < 4p.

Next, since j +2 < r — 1, T/*? has a fixed point x € M. Consider the isotropy
representation of TJ+2 at x. There exists an (j + 1)-dimensional torus H between T/
and T7%2 such that H fixes some direction tangent to M T/ and normal to M7""" at
x. Note that M ¥ lies strictly between M 7% and M1, By Proposition 5.1, both of
these inclusions have codimension divisible by 2 p. The maximality of j then implies
cod (M7 € M;) = 2p. Finally, since H and T/*! generate T/*2, it follows that

Jj+2 . . . . J Jj+1
MT'™ is the transverse intersection in M7’ of M and M7’ . o

We are ready to complete the proof. Let n; denote the dimension of M”" for all
i. Since induced T” action on M; has i-dimensional kernel, M; admits an isometric,
effective (r — i)-dimensional torus action that commutes with the action of I".

First, suppose that ¥ — j > p + 1. By the second part of Lemma 6.4, M; contains
a pair of transversely intersecting, totally geodesic submanifolds of codlmensmn 2p.
Moreover, since cod(M; 2 M;41) > 2p for alli > j and dim(M,) > —1 (with
equality corresponding to the case where M, = MT" is empty), we have

dim(M;) > 2p)(r — j) —1=2p(p+1) — 1 > max(19, 2p2).
Proposition 3.2 now implies that M; is a mod p homology sphere and hence that
Zp X Z, cannot act freely on M. This is a contradiction.

We may assume therefore that r — j < p. Here we can show that the codimension
of M, is large since cod(M; 2 M;+1) = 4p forall i < j. Specifically, we have
n+ 1z cod(My) = (4p)j + 2p)(r = ) = 4p)(r = p) + 2p)(p) = 4pr —2p.

Solving for r proves the required bound.

7 Proof of Theorem D

So far, we have mainly considered simply connected manifolds that admit free actions
by finite groups. Clearly the application is to the action of the fundamental group on
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the universal cover. The main results were the obstructions presented in Propositions
3.2,5.1, and 6.1. From now on, M will denote a (not necessarily simply connected)
Riemannian manifold and M will denote the universal cover. The purpose of this
section is to prove Theorem D from the introduction. The theorem is included in the
following:

Theorem 7.1 (Theorem D) Let M" be a closed Riemannian manifold with positive

. _ 3
sectional curvature and T" symmetry. If n = 1 mod 4 and r > logy 3 (%), then
T (M) = Zpe x T for some e > 0 and some odd-order group T'. Moreover, the
following hold:

(1) If U 2 Zp X Z, for some prime p, thenr < % andr < % + %.

(2) If T ;é Zp x ZLp for all primes p, then T' € Cy for some positive, odd integer
d< % In particular, w1 (M) contains a normal, cyclic subgroup of index d and
acts freely and smoothly on §2d-1,

First, we make a few remarks. Using Burnside’s classification (Theorem 4.3), the
property that I' 2 Z,, x Z,, for all primes p implies thatI" € C, for some d > 1. Since
I" has odd order, d is also odd by the definition of Cy4 (see Definition 4.4). Moreover,
the properties of the class C; imply the statement about the normal, cyclic subgroup
of index d (see Lemma 4.7), and the Madsen—Thomas—Wall classification implies the
existence of a free action by diffeomorphisms on S24—1 (see Theorem 4.6). With these
comments in mind, we note that Conclusion (2) is equivalent to the following:

(2) If I € C; for some d > 1, thend < %L

We proceed to the proof of Theorem 7.1. The proof is a fairly straightforward
combination of Proposition 6.1 (for the case where M is a rational sphere) and an
inductive argument using Proposition 2.5 (for the case where M is not a rational
sphere). However the argument only starts to work easily in large dimensions, so for
simplicity we take a moment to prove the following lemma. Note thatr > logy 3 (%)

in dimensions up to 97 implies that r > </n — 1.

Lemma 7.2 (Dimensions up to 97) If M" is as in Theorem 7.1 except that we assume
thatn < 97 andr > ~/n — 1, then m{(M) = Zpe x T for some e > 0 and some
odd-order group T'. Moreover, T 2 Z,, x Z, for all primes p, and T € Cq for some
odd d < min (3, %) In particular, (M) acts freely and smoothly on S°. In fact,
w1 (M) is cyclic if n < 33.

The last statement will not be required for the rest of the proof, but it follows easily
from the proof below. It provides a new result in dimension 33, as far as the author
can tell.

Proof of Lemma 7.2 We lift the metric and torus action to the universal cover M, and
we consider the free, isometric action of 71 (M) on M that commutes with the torus
action.

First suppose that M is a rational homology sphere. By Proposition 4.1, w1 (M)
admits a Davis—Weinberger factorization as Zye x I' for some ¢ > 0 and some odd-
order group I". Consider the subaction by I" on M. Proposition 6.1 implies that I D
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Ly x Z, for some prime p only if r < "“ and r < ”4i1 g. Since n < 97 and

r > «/n — 1, the first of these inequalltles 1mphes p = 3 and n > 37. Given that
p = 3, the second inequality implies a contradiction. Hence I' 2 Z, x Z, for any
prime p. As argued above before the statement of Conclusion (2'), we have thatT" € Cy4
for some odd d > 1 and that 771 (M) has a normal, cyclic subgroup of index d and
acts freely by diffeomorphisms on S??~!. Applying Proposition 6.1 again, we have
thatd < % As with the estimate on p above, we have d < 3, with equality only if
n > 37. This completes the proof in this case.

Now suppose that M is not a rational homology sphere. For n < 21 or n = 29, the
symmetry assumption implies r > % + 1, so w1 (M) is cyclic (and hence 7y (M) =
Zpe x T for some cyclic group I € Cy) by the result of Frank—Rong—Wang (Theorem
1.1). Moreover, for n = 25, the symmetry assumption implies » > 5, so w1(M) is
cyclic by a theorem of Wang mentioned in the introduction (see [S1, Theorem B]).
Assume therefore that 33 < n < 97. In this range, an analogue of Proposition 2.5
holds under the assumption that s = r — 2 > /n — 1 — 2. Indeed, as in the proof
of Proposition 2.5, it suffices to check Inequality (1). This can be checked on a case-
by-case basis. Given this analogue, our assumption that M is not a rational sphere
implies the existence of an involution ¢ € 7" and a component N C M such that
cod(N) = 0mod 4, 7! < cod(N) < 5!, and dimker(T*|y) < 1. Since M is a
not a rational sphere, we may assume further that dim ker(7"|y) < 1 by Lemma 2.3.
In particular, cod(N) is divisible by four and at least %, and the rank of torus
symmetry of N is at least r — 1 > /n — 1 — 1. Combining these estimates, it can
be checked on a case-by-case basis that N satisfies the symmetry assumption of the

lemma. Since cod(N) < %, w1 (M) acts on N and so, by induction, it follows that

(M) = Zye x I for some odd-order I' € C; such that d < min (3 %)

Since n > 17 and r > +/n — 1, this implies d < min (3 "Z'H) Moreover, d = 3
cannot occur if n = 33, so the proof is complete. O

With this lemma out of the way, we have that Theorem 7.1 holds for dimensions
up to 97. It therefore suffices to prove it for dimensions n > 101.

Proof of Theorem 7.1 for n > 101. We again lift to the universal cover M. We also
recall the discussion above that Conclusion (2) and Conclusion (2') are equivalent.
With this in mind, the theorem follows immediately when M is a rational homology
sphere by the Davis—Weinberger factorization (Proposition 4.1) and Proposition 6.1.
We assume therefore that M is not a rational homology sphere.

By Berger’s lemma, some T"~! C T has a fixed point x € M. Consider the map
¢ : Zg_l — Zg"_l)/ 2 C SO(T, M) induced by the isotropy representation at x. For
L€ Z;fl, the Hamming weight of ¢ (1) € Zé"_l)/ 2 equals half the codimension of
the fixed-point component N C M" containing x. Hence an even Hamming weight
corresponds to a fixed-point component of codimension divisible by four. Since the
map ¢ is linear, there exists Z;_z C Zg_l such that every ¢ € Zg_z satisfies cod(N) =
0 mod 4 where N C Mt is the component containing x. Sets = r — 2.

Since M is not a rational sphere, Proposition 2.5 implies the existence of an ¢ €
Z3 such that some component N of its fixed-point set satisfies cod(N) = 0 mod 4,
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cod(N) > 22, cod(N) < 5!, and dimker(7*|y) < 1. By Lemma 2.3, we may

assume further that dim ker(7"|y) < 1 since otherwise M would be a rational sphere.
The actions of 71 (M) and T° commute, so 1(M) acts on the fixed-point set M*.
Moreover, Frankel’s theorem and the property that cod(N) < % implies that N €

M is the only component of dimension greater than %, so (M) acts on N. Moreover,
the other properties enjoyed by N imply that N satisfies the induction hypothesis. In
particular, the estimates cod(N) > % and dimker(7”|y) < 1 imply that N admits

T* symmetry with s > r — 1 > logy 3 (%) By induction, we conclude that
w1(M) = Zye x T for some odd-order group I'.

We proceed to the proof of Conclusion (1). Suppose that I' 2 Z,, x Z, for some
prime p. By induction again, Conclusion (1) holds for N. This implies both of the

following inequalities:

_ dim(N) + 1

1 2
r < 2 , ()
dim(N) + 1
pog < dMMFL P 3)
4p 2

Note that the bound on r implies r > 4. Hence %r < r — 1. In addition, the right-

hand side of Inequality (2) is at most % (w) since cod(N) > %. Putting this

2p
together, we conclude r < %, which is the first part of Conclusion (1).

ntl
4p
e Ifn+ 1 <4p(p — 2), then the estimate

It now suffices to prove r < + % We break the proof into cases.

. 3 n+1
dim(N) +1 <Z(n+1)§T+P(P_2)

together with Inequality (2) implies

dim(N 1 1
r§&+l<i+£.
2p 4p 2

e Ifn+3 > 16p, then cod(N) > % > 4p and hence Inequality (3) implies

dim(N) + 1 1
4p 2 4p

p
+2.

o Ifdp(p—2) <n+1landn+3 < 16p,then p < Sandhencen < 16p —3 < 77,
a contradiction. Hence one of the previous two cases occurs.

It suffices to prove Conclusion (2). By the remarks following Theorem 7.1, this is
equivalent to proving Conclusion (2'). Suppose then that I € C,4 for some d > 1. The

task is to show that r < % But this follows by induction using the argument for

Conclusion (1) that showed r < %, so the proof is complete. O
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8 Proof of Theorem C

Theorem C has two parts. The first part involves the assumptions that » > % + 1 and
n > 23, and the result is a direct generalization of Theorems A and B in Sun—Wang
[49]. We discuss the proof of this first. For convenience, we restate our theorem here:

Theorem 8.1 Let M" be a closed, positively curved manifold with T" symmetry. If
n>23andr > % + 1, then w1 (M) acts freely and smoothly on a standard sphere.

Besides the application of the realization theorem of Madsen, Thomas, and Wall
(Theorem 4.6), the only substantive improvement here upon the results of Sun and
Wang is the conclusion that w1 (M) 2 Z3 x Z3 under the conditions of the theorem.
The place in Sun and Wang’s argument where Z3 x Z3 cannot be excluded is in Lemma
1.5 of their paper. Our strategy for proving Theorem 8.1 is not to improve Lemma 1.5
in their paper. Instead, we look in their proof where Lemma 1.5 is applied, and we
provide an alternative argument based on Proposition 3.2.

Proof By Theorem 4.6, it suffices to show that 771 (M) 2 Z, x Z, for every prime
p and that every involution 71 (M) is central. The second of these claims follows by
Theorem B in [49]. It suffices to show that 771 (M) 2 Z, x Z,, for any prime p.

We follow the proof in [49, Sect. 1] and adopt the authors’ notation for the remain-
der of this proof. In particular, let F C M denote the fixed-point component of an
involution, chosen so that the codimension cod(F') is minimal. If cod(F) is two or
four, the proof carries through without change. In particular, 7r1 (M) is cyclic in the
first case and isomorphic to a three-dimensional spherical space form group in the
second. Next, if cod(F) > 8 orif cod(F) = 6 and F is not fixed by a circle in 77, the
proof again carries through using either the induction hypothesis if dim(F) > 23 or
previous lower-dimensional results.

This leaves the case where cod(F) = 6 and F is fixed by a circle in 7. In this
case, the authors apply [49, Lemma 1.5] to conclude that 7{(M) 2 Z, x Z, for
any prime p # 3. To exclude the possibility that 7 (M) D Z3 x Z3, we apply the
following argument. By [49, Lemma 1.1], there is a second fixed-point component F’
of an involution in 7" with cod(F) < % that is fixed by at most a one-dimensional
subtorus of T". The proof is again complete if cod(F’) # 6 by repeating the above
arguments, so we assume cod(F’) = 6.

If F N F’ is not transverse, then the intersection is a codimension two, totally
geodesic submanifold of either F’ or of the fixed-point component of the product of
the two involutions under consideration. It follows immediately that 1 (M) is cyclic
in this case (e.g., see [49, Lemma 1.4]). If, on the other hand, the intersection F N F’
is transverse, then we are in the setting of Proposition 3.2, which implies that M is a
mod 3 homology sphere and hence that 7 (M) 2 Z3 x Z3, as claimed. O

We proceed to prove the second part of Theorem C. It is an immediate consequence
of the following result (take g = 3).

Theorem 8.2 Let M" be a closed, positively curved Riemannian manifold with T"
symmetry. If n = 1 mod 4 and r > % + g for some real number q > 0, then
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1 (M) = Zpe x I where I has odd order. In particular, every involution is central.
Moreover, the following hold:

(1) If T 2 Zp X Z, for some prime p, then2 < p < q.

(2) If T 2 Z, x Z, for any prime p, then T' € Cq for some odd d > 1 such that
d < 2q. As a consequence, w1 (M) contains a normal, cyclic subgroup of index
d and acts freely and smoothly on the standard sphere of dimension 2d — 1.

This result provides an obstruction to the existence of subgroups Z, x Z, € m1(M)
for all primes p larger than a prescribed number ¢, and the symmetry assumption is
precisely what is required to do this, given the techniques of this paper.

The proof of this theorem is a straightforward application of Theorem 7.1 and
Lemma 7.2.

Proof First observe thatn > 5and 0 < ¢ < 1 imply that » > 7 + 1, hence (M) is
cyclic by Wilking’s theorem (Theorem 1.1). We assume from now on that n > 5 and
q > 1. In particular, the symmetry assumption implies that r > %.

If n < 97, then the result follows immediately from Lemma 7.2 since

n—1

4q

rz=

+qg=vn—1.

Suppose now that n > 101. In this range, r > +/n — 1 implies that r >
log, 3 (“£2), so Theorem 7.1 applies. The conclusion of Theorem 7.1 is that 1 (M)
factors as Zpe x I' for some odd-order group I" such that

() if ' 2 Zp x Z), for some prime p, then r < % and r < % + %, and

(2) if T' 2 Z, x Z, for any prime p, then I' € C4 for some odd d > 1 such that
d < % In particular, 771 (M) contains a normal, cyclic subgroup of index d and
acts freely and smoothly on S2¢~1

Suppose for a moment that I' 2 Z, x Z, for some prime p. By (1), we conclude that

r < % and r < % + &. For p > 2¢, this implies that

n—+1 n—+1

=<

r < S
- 2p 4q

which contradicts the bound on r and the assumption that ¢ > 1. Similarly, g < p <
2g — 1 implies that

n+1+ 1
4q q >

n—+1

<<
= 4P

p
=<
+2_

which leads to a similar contradiction. Hence p must be less than ¢, as claimed in
Conclusion (1) of the theorem. The proof of Conclusion (2) is immediate from the
combination of the estimates d < % and r > % above, so the proof is complete.

O
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9 Proof of Theorem A

We reproduce the first part of Theorem A here for easy reference.

Theorem 9.1 Let M" be a closed, odd-dimensional Riemannian manifold with pos-
itive sectional curvature and T" symmetry. Assume that the universal cover of M is

a homotopy sphere. If r > % + 1 where q is the smallest prime dividing %, then
w1 (M) is cyclic.

Proof First, if n is a dimension such that ¢ = 2, then the theorem holds by Wilking’s
result (Theorem 1.1). We may assume therefore that ¢ > 3. In other words, 2 does not
divide %, which means that n = 1 mod 4. By the Davis—Weinberger factorization,
w1(M) = Zye x T for some odd-order group I'.

Consider the free I'-action on the universal cover of M. By Smith’s theorem (Theo-
rem 3.1), every abelian subgroup of I' is cyclic. By Burnside’s classification (Theorem
4.3), T € Cy for some odd d > 1. It suffices to prove thatd = 1.

On one hand, Lemma 4.7 implies that I" has ged(2d, n 4 1)-periodic cohomology.
By the same lemma, it suffices to show that this period is two. To show this, first note
that Proposition 6.1 implies d < % < g. In particular, any prime divisor of d will
be less than ¢g. By the definition of g, any such prime will not divide % Hence d is

relatively prime to ”TH, which implies that gcd(2d, n + 1) = 2, as required. O

We proceed to the proof of the other special case of the conjecture stated in the
introduction. It is the second part of Theorem A, which we reproduce here.

Theorem 9.2 Let g be a prime. Let n be an odd, positive integer such that q is the
smallest prime dividing % Let M™ be a closed, positively curved manifold with T”
symmetry such that r > % + 1. If n > 16¢* and if the fixed-point set of T" is empty,

then w1 (M) is cyclic.

For each ¢, this confirms the conjecture in all but finitely many dimensions under
the additional assumption that the torus action has no fixed points. To illustrate how
this assumption is used, we prove the following:

Lemma 9.3 Let M" be a closed, positively curved Riemannian manifold with n =
1 mod 4. If M admits an isometric torus action of rank r > 2./n such that there are
no fixed points, then any I' C w1 (M) of odd order satisfies the following:

(1) If ' 2 Z, x Z, for some prime p, then 2p divides n + 1.
(2) If T € Cy for some d > 1, then 2d divides n + 1.

Theorem 9.2 follows easily by combining Lemma 9.3 with Theorem 7.1, so we
prove it now.

Proof Theorem 9.2 The theorem holds at ¢ = 2 by Wilking’s result (Theorem 1.1),
so we may assume g > 3. In particular, the divisibility assumption implies that n =
1 mod 4.
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Since n > 16¢2, the symmetry assumption implies

3
r > max <2\/ﬁ, 10g4/3 <n—é_ )) .

In particular, Theorem 7.1 and Lemma 9.3 apply. Together these results imply that
w1 (M) = Zpe x T for some e > 0 and some odd-order group I" such that the following
hold:

(1) If T 2 Z, x Z,, for some prime p, then p < M and 2p divides n + 1.
) IfT e Cd for some d > 1,thend < ”+1 and 2d divides n + 1.

Since r > ”2+ and ¢ is the minimum prime dividing 21, the first of these implies

that every abelian subgroup of I" is cyclic. By Burn51de S cla351ﬁcat10n, I' € Cy for
some d > 1. But now the second statement similarly implies that d = 1. By definition
of C4, I is cyclic, which implies that 771 (M) is cyclic. O

We proceed to the proof of Lemma 9.3, which occupies the rest of this section.
First, if M is a rational homology sphere, then the lemma follows immediately from
Proposition 6.1. Assume therefore that M is not a rational sphere.

Next, note that 2,/n > % + 1 for all n < 81, so I' is cyclic by the result of Frank—
Rong—Wang (Theorem 1.1). Conclusion (1) is vacuously true, and Conclusion (2) is
trivially true since d = 1 and n = 1 mod 2.

Assume therefore that n > 81. In this range, Proposition 2.4 implies that the fixed-
point set of every involution in T has codimension greater than /7.

As in the proof of Theorem 7.1, we may choose a subtorus 7" ! C T fixing a
point x € M and a subgroup ZS_Z C 77! all of whose elements 7 have cod (M T ) =
0 mod 4. Here and throughout this section, the notation M} denotes the component
of the fixed-point set of t that contains x.

Choose 1] € ngz such that N; = M;' has minimal codimension. By minimality,
at most a two-dimensional subtorus of 7" fixes N1. Moreover, since r —2 > 2log, (n)
in this range of dimensions, N1 has codimension less than % Indeed, this follows from
an estimate using error correcting codes (e.g., take ¢ = 2 in [33, Lemma 1.8]).

Choose any Z;f3 - ngz that does not contain ¢1, and choose further a subgroup
Z£_4 - Z§_3 all of whose involutions T satisfy cod ((Nl);) = 0 mod 4. Choose
1 € 23_4 such that cod ((N])? C Nl) is minimal. By minimality, at most a two-
dimensional subtorus of the one acting on N fixes (N1)*2, and hence an at most
four-dimensional subtorus of 7" fixes (N1)}2. Moreover, since r —2 > 2 log, (dim Ny),
we again have that the codimension of (N7)2 € Nj is less than half of dim(Ny).
Consider the isotropy at x, we see that we may replace ¢, by ¢t2, if necessary, so that
Ny = M2 has codimension less than 5. By the connectedness lemma (see second
remark following Theorem 2.2), the intersection N1 N N is connected and equals
(N1)$2. Finally note that dim(N1)?? = dim(N;) mod 4 by the choice of Z£_4, )
dim(N; N Ny) = 1 mod 4.

Finally, set Nj» = M'>. We make the following:

Claim 9.4 IfT contains a copy of Z,, x Z,, for some prime p, then2 p divides dim(N )+
1 for every N € {Ny1, N2, N12, N1 N Na}.
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Proof of claim First, we have already established that cod(N;) < n/2 fori € {1, 2}
and that N1 N N, is connected. Consequently, Frankel’s theorem implies that N; is the
only component of M"“ with dimension greater than % In particular, I" acts on each
N; and hence on Nj N Nj. Since Ny N Ny = M2/ is contained in Njp = MY, T
acts on N as well.

Second, we have also established that cod(N;) > +/n foreachi € {1, 2}. Moreover,
since N1 and N> have codimension less than n/2, Lemma 2.3 implies that each N;
admits an isometric 7"~! action commuting with the action of I'. Since

r—1>2Jn—1>2/n—n>2/dim(N;),

and since cod(N;) = 0 mod 4, we have by induction that 2 p divides dim(N;) + 1 for
i e{l,2}.

Third, if cod(N12) < 7, then the argument from the previous paragraph applied to
Ni2 implies that 2 p divides dim(Nj2) + 1. Otherwise, cod(N2) > % Since N1 N N,

admits 77 ~* symmetry commuting with the I'-action, so does Ny;. Since

r—4>2Jn—4>2/n/2>2/dimNp),

for n > 81, we have by induction that 2 p divides dim(Ny2) + 1.

Finally, we claim that 2p divides dim(N; N N») + 1. If some two-dimensional
torus acting on N fixes N| N N» = (N1)$2, then N is a rational homology sphere by
Lemma 2.3. It follows then by Proposition 5.1 that

dim(N;y N Ny) + 1 =dim(N;) + 1 =0mod 2p,

as required. If there is no such two-dimensional torus, then Ny N N> admits 7" -2
symmetry. By an estimate similar to those above, we have r —2 > 2.,/dim(N| N N3).
Moreover, since we chose ¢ and ¢5 so that

dim(N; N Np) = dim(N;) = 1 mod 4

and so that I" acts on N1 N N3, we have by induction that 2 p divides dim(N{ N Np) + 1.
O

Given the claim, we conclude that 2 p divides n+ 1 from the following observation:
n + 2dim(N; N N2) = dim(Ny) + dim(N2) + dim(Np2).

This completes the proof of Conclusion (1) of Lemma 9.3. The proof of Conclusion
(2) is similar, so the proof of Lemma 9.3 and hence of Theorem 9.2 is complete.
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