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Abstract—RFID technologies are making their way into
numerous applications, including inventory management, supply
chain, product tracking, transportation, logistics, etc. One
important application is to automatically detect anomalies in RFID
systems, such as missing tags, unknown tags, or cloned tags due
to theft, management error, or targeted attacks. Existing solutions
are all designed to detect a certain type of RFID anomalies,
but lack a general functionality for detecting different types of
anomalies. This paper attempts to propose a general framework
for anomaly detection in RFID systems, thereby reducing the
complexity for readers and tags to implement different anomaly-
detection protocols. We introduce a new concept of differential
Bloom filter (DBF), which turns physical-layer signal data into a
segmented Bloom filter that encodes the IDs of abnormal tags. As
a case study, we propose a protocol that builds DBF for identifying
all missing tags in an efficient way. We implement a prototype for
missing-tag identification using USRP and WISP tags to verify
the effectiveness our protocol, and use large-scale simulations for
performance evaluation. The results show that our solution can
significantly improve time efficiency, when comparing with the
best existing work.

I. INTRODUCTION

Radio-frequency identification (RFID) technologies integrate
simple communication, storage, and computation components
into attachable tags to enable wireless communications over
a distance [1]. An RFID system generally consists of three
components: One or more readers, a large number of tags, and
a backend server. The tags can be attached to different objects,
varying from products in a warehouse, merchandizes in a retail
store, animals in a zoo, or medical equipments in a hospital. A
reader can read the unique IDs of the tags or collect aggregate
information about the tagged objects by communicating with
the tags via RF signals. The research community is working
actively to expand the application scope of RFID technologies
[2]-[6]. Practical RFID systems [7] have been widely applied
to inventory and logistics management, object tracking, access
control, automatic toll payment, theft prevention, localization,
intelligent transportation systems, etc.

A large RFID system can contain thousands of tags.
Therefore, RFID anomalies, e.g., missing tags, may occur from
time to time, but are hard to be detected manually. It is of
importance to have some tools that can automate the process of
anomaly detection in RFID systems. Common anomalies in an
RFID system, which may be caused by theft, management error
or some targeted attacks, include missing tags, unknown tags,
cloned tags, etc. A missing tag is one that should exist in the
system but turns out to be not represent, an unknown tag is one
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that is not recorded by the system’s inventory list, and a cloned
tag is an illegal replica of an authentic tag in the system. A
missing, unknown, or cloned tag is also called an abnormal tag.
Timely anomaly detection is very important to RFID systems.
Consider a large storage for retired military equipment or other
long-term storages of sealed objects in civilian applications.
When no one keeps a close eye on them for a long time,
how do we know whether anything is missing? One way is
to have someone periodically walk through the place, up and
down a latter over shelve after shelve to count items. This will
be laborious and error-prone, considering that things may be
stacked together and objects on the back of shelves may be
blocked from view. But if we attach an RFID tag to each item,
the process of finding the absence of tags (and their associated
objects) may be fully automated through the communications
between tags and readers.

Because of its practical importance, tremendous efforts from
the research community have been devoted to developing
anomaly-detection solutions for RFID systems. Time efficiency
is a key concern since RFID systems operate with low-
speed communication channels. More importantly, anomaly
events should be timely detected and properly handled, thereby
minimizing their potential negative impact. For example, if the
missing tags can be identified in time, actions such as blocking
the exit may be taken to avoid the loss. The prior research
on RFID anomaly detection can generally be categorized as
follows:

Missing-tag detection: It further includes two subcategories
of research problems: (1) missing-tag event detection [8], [9],
which is to find out whether any tag is missing, and (2) missing-
tag identification [10]-[14], which deals with a harder problem
of identifying which tag(s) is missing.

Unknown-tag identification: This is to collect the IDs of all
unknown tags which have not been recorded by the inventory
list [15], [16].

Cloned-tag identification: This is to identify all the IDs of
tags cloned by adversaries [17], [18]. As a cloned tag copies all
data from an authentic tag (which may be compromised), it can
pass any authentication. Hence, cloned-tag identification needs
to verify whether an ID is carried by multiple tags.

One naive approach for anomaly detection is to collect the
IDs of all tags currently in the system and compare them with
an inventory list to see which ones are missing, unknown, or
cloned. However, when the number of tags is very large, this
approach is not efficient due to transmission collisions caused by
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channel contention. Prior work on anomaly detection generally
relies on an important observation that an abnormal tag may
cause state change of MAC-layer slots. A snapshot of an RFID
system is taken using a slotted time frame, where each tag is
mapped (by hashing its ID) to one of the slots and the tag is
supposed to transmit in that slot. The idea is that if any abnormal
tag exists, it may affect the slot it is mapped to. For example, if
the only tag mapped to a certain slot is missing, that should-be
busy slot will become an idle one as no tag will transmit during
that slot.

However, although tone of solutions have been proposed
for detecting a certain type of RFID anomalies, there is no
prior work that provides a general functionality for detecting
different types of anomalies. Since every existing solution is
tailored for a specific application of anomaly detection, it is
not trivial to adapt one to other applications. For example,
in missing-tag identification, each tag is required to transmit
one-bit information in the slot it is mapped to confirm its
presence [12]-[14]. In contrast, for cloned-tag identification,
each tag needs to transmit multiple bits in its slot such that
the reader can recognize collision slots [17]-[19]. It will incur
much complexity to implement all anomaly detection protocols,
especially for low-cost RFID tags with limited resources.

Is it possible to design a general framework such that we
can smoothly switch among different categories of anomaly
detection? We observe that any abnormal tag, regardless its type,
can have some impact on the aggregate physical-layer signals
of the tags in the system. For example, the signals contributed
by a missing tag will disappear from the aggregate signals.
Therefore, instead of utilizing state changes of MAC-layer slots,
which need to be detected in significantly different ways, we
leverage the changes of aggregate physical-layer signals for
anomaly detection.

To our best knowledge, this is the first work that proposes a
general framework for anomaly detection in RFID systems. In
this paper, we introduce a new concept called differential Bloom
filter (DBF). It has the structure of a segmented Bloom filter
and identifies the abnormal tags by taking physical-layer signal
snapshots to derive differential signals such that the aggregate
information of all normal tags is subtracted away and only
the information about the small number of abnormal tags is
digitized and encoded in the Bloom filter for the purpose of
identification. As a case study, we use DBF for missing-tag
identification. We implement a prototype of DBF using USRP
and WISP tags to verify its effectiveness through small-scale
experiments, while using simulations for large-scale evaluation.
The results show that our solution can significantly improve
time efficiency in most cases, when comparing with the best
existing work.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. System Model and Assumptions

Consider a large long-term storage of objects, each of which
is attached with a tag, carrying a unique identifier. There is
one or multiple readers. The readers communicate with the tags
using RF signals. The backend server has a database storing
information about the system, and it is capable of carrying out
high-performance computations on behalf of the readers. The
readers are connected to the backend server via a high-speed

wired or wireless link, so the communication latency between
them is negligible.

There are different types of RFID tags on the market: Active
tags have their own batteries, while passive tags harvest radio
energy emitted from the readers for backscatter communication.
Passive tags are more widely used nowadays because of their
simplicity and low prices. In this paper, we focus on passive
tags that operate at Ultra-High Frequency 860-960MHz [1].
As backscatter communication is generally within a narrow
wireless band, the wireless channel between a tag ¢ and a
reader can be mathematically modeled with a complex number
h¢, incorporating both signal attenuation and phase shift of the
wireless channel [20].

The communications between a reader and tags operate
in a request-and-response mode. The reader initiates the
interrogation by broadcasting a command along with some
parameters [1]. The tags will respond in the subsequent
time frame. Following the prior work [13], [14], [21], the
uplink communication from tags to a reader is assumed to be
synchronized at symbol level by the reader, which has been
proved to be achievable by experiments in [20].

We will first consider a system of a single reader, and later
discuss the case of multiple readers. We assume that the reader
has access to a database that stores the IDs of all tags. This
assumption is necessary [8], [14]; we cannot determine if a
tag is an abnormal one if we do not even know its existence.
The assumption can be easily satisfied by a typical inventory
management procedure: the tag IDs are read into a database
when new objects are moved into the system, and they are
removed from the database when the objects are moved out.

The scope of applicability for the proposed work, which is
the same as those of [8]-[10], [12]-[19], is given as follows: We
assume a long-term storage environment with stable conditions,
where objects are statically placed. The function of anomaly
detection does not work during occasions when people move
objects in/out or rearrange them inside the storage facility.
Namely, the function is designed to work at time when such
activities are not present.

B. Problem Statement

Let N; be the set of tags in the system at time 7;, ¢ > 0.
Suppose N;_; contains no abnormal tags, and some anomaly
event happens between time 7;_; and time 7;. We focus
three common types of anomaly detection, which are listed as
follows:

1) Missing-tag identification: Suppose a set M, of tags are
missing between 7;_1 and 7T;. We have M; C N;_1, N; C
N;_1, N;_1 = M; UN; and M; N N; = (). The problem
of missing-tag identification is to identify all missing tags
in Ml

2) Unknown-tag identification: Suppose a set M; of unknown
tags are moved to the system between 7;_; and T;. We
have Mi - Ni, Ni—l - Nh Ni = Ml U Ni—l and Mi N
N;_1 = (). The problem of unknown-tag identification is
to identify all unknown tags in M;.

3) Cloned-tag identification: Suppose a set M, of tags are
cloned by an adversary between T;_; and 7;. Note that in
this case, IV; and M; can be multisets. We have M; C N;,
N,_1 € N;, N; = M; U N,;_4, and the distinct tags in
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N;_1 and N; are the same. The problem of cloned-tag
identification is to identify all cloned tags in M.

We want to design a general framework that can be applied
to any of the three types of anomaly detection. Our framework
is expected to: (1) perform anomaly detection in a time-efficient
way such that it is capable of reporting the real-time state of the
system and scaling to large systems with thousands of tags; (2)
generate no false positive or false negative in the identification
result, where a false positive is defined as a tag in N; being
mistakenly included in M;, and a false negative is defined as
a tag in M; not being identified. It would be interesting to
perform anomaly detection when different types of abnormal
tags coexist. However, due to space limitation, we will leave
this more challenging problem as our future work.

III. FRAMEWORK DESIGN

We use physical-layer snapshots to derive a new construct
called differential symbol filter, which is then digitized into a
differential Bloom filter (DBF) that encodes the membership of
the abnormal tags. When the context is clear, we also use DBF
for referring to the protocol of building the filter (this section)
and using it to identify the abnormal tags (the next section).

A. Motivation

The prior work generally encodes each tag to a separate slot,
thereby identifying the abnormal ones based on the observed
slot states. Hence, it takes at least O(n) time slots, where n
is the number of the tags in the system. In a large system,
the tags of interest, i.e., the abnormal ones, can be small
[10]-[14]. Can we identify all of them with O(m) time slots
instead, where m is the number of abnormal tags? Moreover,
in order identify different types of abnormal tags, different
types of slots are needed [8]-[19], rendering those protocols
not universally applicable. This motivates us to design a new
differential Bloom-filter approach below.

The idea is that we actually do not need a snapshot of
O(n) time slots with all tags being recorded separately. We
only need a “snapshot” of the m abnormal tags, while the
information of the normal tags is of no interest. This can be
achieved through physical-layer signals: Suppose we encode
all n tags in each snapshot of O(m) time slots. It is likely
that there is no singleton since there are too few slots. Instead
of ternary collision/singleton/empty information, each snapshot
now records the physical signals carried in the slots from all
tags. By combining two consecutive snapshots, we can subtract
away the unchanged information from the normal tags and
produce differential symbols (signals), which were transmitted
by the abnormal tags, either in the first snapshot or the second
snapshot. But the real challenge is how to design the differential
symbols and how to use them for anomaly detection.

In this paper, we present a design of differential symbols
that can be digitized into binary states, which together form a
Bloom filter [22], encoding the set of m abnormal tags only.
The new approach only requires each tag transmits a few ‘1’s,
while staying silent for most of the time. As a result, only a
small number of tags will transmit in each slot.

Fig. 1: In this example, the physical-layer snapshot consists of
three segments, and each segment contains four symbols. The
representative symbols of tag t; are F}'[1], F?[2], and F}[3],
which are shown in grey. The symbol F?[2] is a representative
for both ¢; and t».

B. Physical-layer Snapshot

At time Tj;, the reader constructs a physical-layer snapshot
F; based on the tags’ responses. The snapshot consists of &
segments (one segment during each time frame), denoted as
Fj, 1 < 5 <k, each of which consists of l symbols (received
by the reader from the tags), denoted as F/[s], 1 < s <.

By hashing its ID and j, each tag t is mapped to one
symbol in each segment F7, which is called a representative
symbol of ¢. (Such a mapping function is also required by
[8]-[19].) Each tag has exactly one representative symbol in
every segment and k representatives in total, while each symbol
Ff [s] may be a representative for multiple tags, denoted as a set
R![s], that happen to be mapped to the same symbol. Note that
when cloned tags exist, R][s] can be a multiset. An illustrative
example is shown in Fig. 1.

For each segment, FLJ , 1 < j < k, the reader broadcasts a
command to initiate the construction. The duration for every
symbol, referred to as a time slot, is fixed. Each tag ¢ will wait
until the time of its representative symbol and transmit a signal
x¢. What the reader actually receives is

Yt = hewy + ey, ()

where h; was introduced earlier in the system model, and
e; 1s a term of channel error. Note that the tags can be
resynchronized by the reader’s command before the construction
of each segment, which significantly reduces the negative effect
caused by clock drift of the tags. If the segment is too long, we
may divide it into blocks and require the reader to synchronize
the tags at the beginning of each block.

Due to random mapping of tags to symbols in the segment,
there can be other tags that share the same representative symbol
as ¢t and thus transmit simultaneously. Hence, what the reader
receives may be the combination of transmissions from multiple
tags. More specifically, considering an arbitrary symbol F} [s]
that the reader receives, we have

Fllsl= Y w. )

teER![s]

Each tag transmits only once in each segment and stays silent
for the rest of the time. Hence, each time slot records the
transmissions from 7 tags on average. By choosing a sufficient

value for [, we can reduce % to an arbitrarily small value.

C. Differential Symbol Filter

Suppose the reader constructs a new physical-layer snapshot
after a certain time interval and uses it together with the previous
snapshot for anomaly detection. To ensure timely detection,
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one may want to set the time interval, 7; — T;_1, between the
constructions of the two consecutive snapshots small.

Over time, the reader constructs a series of snapshots, Fj,
i > 0. For each new snapshot Fj constructed where ¢ > 0,
the reader derives a differential symbol filter D; based on the
new snapshot and its predecessor F;_ ;1 as follows: Let D! be
the jth segment of the differential filter and D [s] be the sth
differential symbol in the segment, 1 < j <k and 1 <s <.

Z Yt — Zyt

teR] s tERI[s]

Dils] = Fy[s) ~ FY[s] =

3)
teR]_,[s|AR][s]

where ‘A’ is the symmetric difference operator of sets, and
R} [s|AR;[s] = (Ri_y[s] — Ri[s]) U (Ri[s] — Rj_,]s]).

D. Convert Differential Symbol Filter to Bloom Filter

We convert each differential symbol filter D; to a binary filter
B, consisting of k segments, denoted as Bf, 1 <j <k, each
of which consists of [ bits, denoted as B/[s], 1 < s < [. The
conversion is performed as follows: Vj € [1,k], s € [1,1],

5l = {

where the operator ||.|| calculates the magnitude of D?[s], and 6
is a threshold value that should be significantly larger than the
magnitude of channel error. In practice, the reader may keep
monitoring the channel, and set 6 accordingly. Obviously, the
signal strength transmitted by the tags should be much larger
than 6. Suppose the aggregate channel error is smaller than 6.
It is straightforward to see the following proposition.

0 if | D[]l <6

1 if | DI[s]]| > o, @

Proposition 1. Vi > 0,5 € [1,k],s € [1,1], Bl[s| = 0 if and
only if Rj[s] = R{_,[s].

Each bit in the binary filter B; represents the differential state
of a slot: Zero means that there is no state change and one means
that there is a state change, indicating one or multiple abnormal
tags. Hence, B; can serve as a tool for anomaly detection.
Furthermore, we show below that B; can be used to identify the
IDs of the abnormal tags as well because it is actually a Bloom
filter that encodes those abnormal tags. (It is interesting to point
out that even if the channel error is sometimes greater than 6
and causes some bits to ones, it only increases false positives,
which already exist in the Bloom filter and will be handled by
our protocol shortly.)

Recall that NN; is the set of tags at the time when F; is
constructed, IV;_; the set at the time when F;_; is constructed,
and the set of abnormal tags is M;. The following theorem
shows that B; is a segmented Bloom filter for M;. Each member
t in M; is pseudo-randomly mapped to k bits, each from one
segment, in the same way as ¢ was mapped to F; — these bits
are called the representative bits of tag t. Tag t is encoded in
B; if all its representative bits are ones.

Theorem 1. B; is a segmented Bloom filter for M;. That is, a
bit in B; is one if and only if it is a representative bit of a tag
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Fig. 2: An example of creating a Bloom filter of missing tags:
F;_1 is the (¢ — 1)th physical-layer snapshot with four tags,
where a white rectangle represents no signal from tags, a light-
grey rectangle represents a symbol from a single tag, and a
dark-grey rectangle represents a combined symbol from signals
of multiple tags. F; is the ith physical-layer snapshot with two
tags. D; is the differential symbol filter generated by subtracting
F; from F;_4, symbol by symbol. Its non-zero symbols (light or
dark grey rectangles) are exactly those that are representatives
of the missing tags. B; is the Bloom filter derived from D;.

Proof: Consider an arbitrary bit B/[s], Vj € [1,k],s €
[1,1]. We have two cases.

o Case I: Bg [s] is a representative bit for some tag t in M;.
We need to show that B}[s] = 1. Because tag ¢ is mapped
to B][s], it must also be mapped to the corresponding
symbols, F/[s] and F}_,[s]. Since ¢ is an abnormal tag in
M, it only belongs to either R?_, [s] or R?[s] by definition.
Therefore, R?[s] # R?_,[s], which means B/[s] = 1 by
Proposition 1.

o Case 2: B][s] is not a representative bit for any tag in M;.
We need to show that B [s] = 0. Because no abnormal tag
is mapped to the corresponding symbols F? [s] and F}_,[s],
we must have R/[s] = R} |[s], which means B![s] = 0
by Proposition 1.

|

Fig. 2 gives an illustrative example of missing-tag event,
where four tags in /V;_; are mapped to F;_1, two tags in N; are
mapped to F; (with two tags missing), only the signals from
the missing tags will be recorded by the differential symbol
filter D;, and B; is in fact a segmented Bloom filter for the two
missing tags.

An interesting observation is that even when the number of
tags is very large, the size of the filters can be small as long as
there are not too many abnormal tags. In the above example, the
same filters can be used when there are many more tags. Each
slot will carry the signals from more tags, but as the signals
from non-missing tags are subtracted away, in the end we will
get the same B; as long as only the two tags are missing.

It is well known that the size of an optimal Bloom filter is
— (Eggg |M;|, where py is the false-positive ratio. Although we
do not know |M;|, we may set the filter size (thus the physical-
layer snapshot size) based on an estimated upper bound of
abnormal tags, which we will be further discussed later.

E. Using Differential Bloom Filter to Identify Abnormal Tags

We know that the differential Bloom filter encodes the IDs of
all abnormal tags. Using the Bloom filter, we can identify a set
of candidate missing tags for missing-tag identification or a set
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of cloned tags for cloned-tag identification. Since Bloom filters
do not lead to false negatives, but can cause false positives, all
missing tags or cloned tags must be contained in the candidate
set. The reader then can ping each tag in the candidate set
(whose size is generally small), to verify if it is missing or
cloned. The process of identifying unknown tags is a little
different since the reader does not know the IDs of the unknown
tags. To collect IDs from those unknown tags, the reader can
broadcast the Bloom filter, and any tag passes the membership
check should report its ID.

IV. CASE STUDY: DBF FOR MISSING-TAG IDENTIFICATION

In this section, we apply the DBF framework to missing-tag
identification, an anomaly-detection problem that has been well
studied in the literature. The RFID reader knows the IDs of all
tags in the original set Ny; note that if some tags are moved in
or out from the system by normal activities, we need to take a
new snapshot for the new tag set as Ny. After constructing each
filter, the reader will identify the missing ones and thus know
the remaining ones. As the inductive assumption, suppose the
reader knows the correct set NV;_; of remaining tags. We show
in this section that the reader is able to figure out the correct
set of M; (thus N;) after obtaining B;.

A. Prior Art

Li et al. [12] proposed a series of protocols for missing-
tag identification based on a simple idea: If one and only one
tag is mapped to a slot (which is called a singleton) and that
slot turns out to be empty, then the tag must be missing. Their
most efficient protocol (called THP) ensures that each tag will
be mapped to a singleton and thus all missing ones can be
identified. The number of time slots needed is O(n) in order
to encode the information of all tags in separate slots, where
n is the number of tags in the system. Liu et al. proposed two
protocols called MMTI [10] and SFMTI [11] to improve the
time efficiency of THP based on the similar idea. Zhang et al.
considered the case of multiple readers, and Protocol 3 is their
most efficient protocol [13].

The previous binary-state solutions throw away a lot of
useful information at the signal level. A slot only takes a
binary value (busy or empty) even though the signal in the
slot received by the reader carries more details. Zheng et
al. proposed P-MTI [14] to utilize that information. Each of
the n tags simultaneously transmits a pseudo-random number,
consisting of physical-layer symbols (signals) representing ‘0’s
or ‘1’s. Assuming bit-level synchronization, the reader receives
a sequence of aggregate symbols. Each aggregate symbol is
the combination of individual symbols from n tags, which
may be in thousands. At a later time, the reader performs the
same operation for a second sequence of aggregate symbols.
If some tags are missing, based on the theory of compressive
sensing, P-MTI tries to identify these tags by solving a convex
optimization problem formulated from the difference between
the two sequences of aggregate symbols. The difference is
modeled as continuous signal waves. The convex optimization
does not guarantee the identification of all missing tags,
especially when the number of missing tags exceeds a threshold
[14]. This is not acceptable for the applications that require the
identification of every missing tag. Moreover, all tags in P-MTI

Fig. 3: An illustration of finding potentially missing tags using
Bloom filter with three segments. t3 and ¢4 are two missing
tags, while ¢; and ¢ are not missing tags, with £, causing a
false positive.

transmit pseudo-random numbers simultaneously. With on-off
keying where signals are transmitted only for ‘I’s, there are
n/2 tags transmitting at any bit time on average. P-MTI assumes
that when multiple tags transmit simultaneously, the aggregate
symbols received by the reader exhibit as the superposition of
the individual symbols from tags. Experiments show that it
is true for a small number of tags, e.g., 5 tags in [14], but
the result may not be extrapolateable to a large number of
tags in thousands. Each tag has small variation in its signals.
The accumulated variation among a small number of tags may
remain insignificant, but the accumulated variation among a
very large number of tags that transmit together can be large.

B. DBF for Identifying the IDs of Potentially Missing tags

Recall from Section III-D that the segmented Bloom filter B;
encodes M;. For each tag in M;, its k representative bits in the
filter are all ones. The reader performs a lookup for every tag
t in N;_;. Knowing the ID of ¢, the reader can generate the
same pseudo-random bits that the tag uses to map itself to its
representatives in the segments. If all & representative bits are
ones, the reader inserts the tag’s ID to a set M/ for possible
missing tags.

A Bloom filter does not have false negatives [22], which
means that M; C M/. All missing tags will be found in M.
However, a Bloom filter may have false positives, which means
that tags in N;_; — M; (not missing) may end up in M because
all their representative bits may happen to be ones. Fig. 3 gives
an example. The Bloom filter encodes two missing tags, t3 and
t4, whose representative bits are all ones, and thus they will be
inserted into M. Tag ¢ is not missing and thus not encoded
in B;. Because some of its representative bits are zeros, it will
not be inserted into M. Tag t5 is not missing either, but all its
representative bits are ones because they happen to be also the
representative bits of ¢35 or £4. In this case, to will end up in

For an arbitrary tag in N;_; — M;, the probability for one of
its representative bits to be one is 1—(1—1) IM:l The probability
for all k representative bits to be ones, also called false-positive
ratio and denoted as py, is

pr=(—(- M= - )

which can be made arbitrarily small by increasing the value of

l. For example, suppose |N;_1| = 10000, k = 10, = 720, and

|M;| = 500. The false-positive ratio will be just 0.001.
Therefore, the expected size of M is given as follows:

E(|M]]) = M| + ps|Ni—1 — M. (6)

With the parameters of the previous example, E(|M/]) will be
510.
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C. Confirming the Missing Tags

The reader confirms whether the tags in M/ are actually
missing through a simple polling phase: The reader transmits the
tag IDs in M/ one after another and requires any tag receiving
its own ID to acknowledge. A tag must be missing if the
expected acknowledgement is not received. After the polling
phase, all missing tags will be identified.

D. Performance Improvement through Singleton Bits in B;

A performance improvement step may be introduced before
the polling phase based on a simple observation: If a tag ¢ in
M is mapped a bit b in B; that no other tag in M/ is mapped
to, then ¢ must belong to M;, i.e., it is a missing tag. This
observation follows directly from Theorem 1: The fact that b is
a representative bit of a tag in M/ means that b must be one
because otherwise the tag would not be inserted into M in the
first place. By the theorem, there must be a missing tag mapped
to b. All missing tags are in M/, and ¢ is the only tag in M/
mapped to b, which can only mean that ¢ is missing.

We call a bit with only one tag mapped to it as a singleton
bit. Hence, after mapping the tags in M/ to the bits in B;, the
reader finds out which tags are mapped to singleton bits and
those tags must be missing. We have the following proposition,
the proof of which is omitted due to space limitation.

Proposition 2. The probability ps of a missing tag t to be
mapped to a singleton bit is

pe=1—(1—(1— DyPsi-1y

l
>

(i) X x! XS(|M1|,£C) 1)\Mi’7M¢|)k (7
1<z<min{l,|M;|}

X (1—=
where S(|M;|,xz) = % S (1) () (x - i)1Mil,

1I1M;] x

Note that p; is also the probability for any missing tag in M;
to be confirmed from M based on singleton bits. Continuing
the previous numerical example, with |N;_1| = 10000, k& = 10,
[ = 720, |M;| = 500, and |M]| = 510, the value of p, is
0.9987.

We remove the confirmed missing tags (based on singleton
bits) from M/ and pass the remaining tags to the polling
phase described in the previous subsection. Following the above
numerical example, with |NV;_1| = 10000, k = 10, [ = 720, and
|M;| = 500, we find that |M]| = 510 before this performance
improvement step and |M/| = 10 after the step, which will
greatly reduce the polling overhead.

E. Setting the System Parameters

The values of the system parameters, [ and k, are under our

control. Below we show how to set their optimal values.

1) Optimal Value of [: Under an arbitrary value of k, below
we find an optimal value of [ that minimizes the false-positive
ratio py. Taking the logarithm of both sides of (5) and then the
first derivative of Inp; with respect to I, we have

d(np;)  dp;  —k _ 1oy BRle g
a " ppdl 1 In(1—e ) 1_67%6 . (®

By setting d(lziff) to zero and solving the equation, we obtain
the optimal value of [ as follows:
In2’

(C))

which is a function of |M;| (see further discussion shortly).

2) Optimal Value of k: The execution of the DBF protocol
mainly consists of two phases: (1) Construct a differential
Bloom filter to identify a set M/ of potentially missing tags;
(2) Poll the tags in M/ to confirm their presence/absence. There
exists a tradeoff between the time costs of these two phases: If
k is larger, longer physical-layer snapshots are built in phase
one such that py will be smaller and p, will be larger. In this
case, the execution time of phase one will rise, but the time
expenditure for the polling phase will decrease since fewer
unidentified tags will be left in M/. The opposite is true if
k is smaller. Hence, our objective is to find the optimal value
of k that minimizes the overall execution time 7" of the DBF
protocol, which can be expressed as follows:

T =k(te +1x ts) + | M| (tiqg + ts), (10
where ¢, is the duration for the reader broadcasting a command
to initialize the construction of a segment of the physical-layer
snapshot. The expected value of T is

E(T) = k(te +1 x ts) + BE(|M;])(tig + ts) an
=k

(te +1 % ts) + (IMil(1 — ps) + |Ni|pg) (tia + ts).

The value of ps approaches to 1 quickly with the increase
of k, and |M;| is generally much smaller compared to |N;|.
Therefore, the term |M;|(1—ps) in (11) can be made negligibly
small and is omitted for simplicity. Meanwhile, we let [ = ﬁ I;‘ s
Eq. (11) is simplified as

E(T) ~ k(t. + | Mi] X ts) + | N;| X (%)k X (tig + ts). (12)

In2

Take the first derivative of (12) with respect to k and set it to
zero, we have

dE(T) |M;| Lk
~ le s —1 % % s 5 = U.
I t+1n2t n2><\N|x(td+t)><(2) 0. (13)

As a result, the optimal value for £ is
_ In(In2|Ni|(tig + ) — In(te + 24le,)
- In2 ’

k* (14)
Note that k is a non-negative integer. We should round k* either
to the ceiling or to the floor, depending on which one results in
a smaller value of E(T).

F. Unknown Value of |M;]|

From (9) and (14), the optimal values of [ and k are functions
of |M;|, which is however unknown. In practical applications,
we may substitute it with an estimated upper bound C' based on
historical data, as what’s been done in [14]. We stress that all
missing tags will be identified in our design, even if |M;| turns
out to be larger than C'. When that happens, the only negative
effect is that the DBF protocol may take more time than what
the optimal setting could have achieved with the knowledge of
|M;|. We will investigate the impact of C' on the performance
of DBF in Section V.
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G. Overhead

In the DBF protocol, each tag only needs to generate k log [ =
klog % pseudo-random bits to index its k representative
symbols, where k is typically a small number. Each tag needs
to transmit those & symbols (bits). The reader needs to generate
|N;—1]klog % bits to index all tags’ representatives, and the
computation complexity of producing the differential symbol
filter and the segmented Bloom filter is O(kl) = O(kC).
Because C' must be set smaller than the number of existing tags,
| N;_1], the overall computation complexity is O(|N;_1|k log C)
at the reader. The communication complexity for the reader to
take a snapshot is O(kl) = O(kC') since the total number of
symbols in the snapshot is kl.

H. Multiple Readers

The communication range of a single RFID reader is limited
(e.g., 10 meters) due to power constraints. Hence, multiple
readers should be deployed to ensure all tags in the system
can be covered. If multiple readers share the same channel,
the reader-to-reader collision problem may arise. Namely, if
two readers broadcast their commands simultaneously, the tags
located in their overlapping area cannot resolve the collided
messages. A basic solution to avoid reader-to-reader collision
is to divide the readers into non-interfering groups and schedule
each group at different times for missing-tag identification,
with the readers in the same group executing the protocol in
parallel. Each non-interfering group can be determined through
experiments at the time when readers are installed. Reader
scheduling can be implemented by the back-end server. The
union of missing tags identified by all readers gives the set of
missing tags in the system. Therefore, the problem of missing-
tag identification in the multi-reader scenario can be reduced to
reader scheduling plus missing-tag identification in each non-
interfering group. Since the readers in the same group will run
in parallel, the time efficiency for each group is determined
by the bottleneck reader in the group that has the maximum
number of tags in its coverage area. Therefore, the comparison
of different missing-tag identification protocols under a multi-
reader scenario is equivalent to the sum of the comparison under
single bottleneck readers.

V. PERFORMANCE EVALUATION OF DBF FOR MISSING-TAG
IDENTIFICATION

We use simulations to evaluate the performance of DBF for
missing-tag identification in large RFID systems, which will be
complemented with a small-scale implementation for feasibility
demonstration. We compare the proposed DBF with the state-of-
art protocols P-MTI [14], THP [12], SFMTI! [10] and Protocol
3 [13]. Since it takes much more time to identify all tags
in a large RFID system, we do not include tag identification
protocols in the comparison.

A. Simulation Setup

Following the parameter setting in [14], we assume both
the reader-to-tag transmission rate and the tag-to-reader
transmission rate are 40kbps. We measure the execution time in
terms of the number of time slots, each of which can carry one

ISFMTI and MMTI [11] are proposed by the same authors. SFMTI
outperforms MMTI, so MMTI is not included for comparison.
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Fig. 4: Number of identified missing tags by P-MTI, and other
protocols including DBF, THP, SFMTI and Protocol 3.

symbol from tags. The time slot is a generic concept which fits
with different interpretations in the literature. For example, the
experiments in [14], [20] show that the bit-level synchronization
of off-shelf passive RFID tags is achievable after adopting drift
correction. In this case, a time slot is the time of transmitting
a bit. However, those experiments are performed for only a
small number of consecutive symbols (bits), while the protocols
under comparison in this section all require transmissions of
long sequences of consecutive symbols in thousands. A more
conservative interpretation of slots can be found in [12], where
each slot includes one symbol and a waiting time (0.30ms
used in [12] according to the Philips I-code specification [23]
and 0.27ms used in [9] according to the EPC C1G2 standard
[1]). Even more conservatively, each slot includes a reader-
tag exchange, with the reader issuing a command and tags
responding with a symbol [24]. The reader’s command also
serves for the purpose of synchronization. Our protocols also
require the reader to transmit tag IDs (96 bits each) to resolve
false positives. We conservatively count each bit from the reader
also as a slot.

P-MTI has to set the value of C' large in order to guard
against false negatives. In the original paper, it is set as a
fraction of |N;_1|. We set it as 0.1|N;_1| by default unless
it is otherwise explicitly specified. Our protocols do not require
such a large value of C' because they do not have false negatives.
We nevertheless set C' = 0.1|N;_;| in order to compare our
protocols with P-MTI on the same footing even though that
can cause longer execution time for our protocols.

Under each parameter setting, we run the simulation 500
times and average the results.

B. Number of Identified Missing Tags

One important performance metric for a missing-tag
identification protocol is whether it can exactly identify all
missing tags. We set |NV;_1| = 1000, vary |M;| from 5 to 40 at
steps of 5, and set C' to 20 for DBF and P-MTI. Fig. 4 illustrates
the numbers of missing tags identified by these protocols. All
protocols except P-MTI can always exactly identify all missing
tags. Although P-MTI has no false positive, it fails to identify
some missing tags when |M;| becomes close to or larger than C,
resulting in false negatives. In missing-tag identification, false
negatives tend to be worse than false positives. For example, if
a stolen product is not detected in time, we may miss the best
time to trace it and get it back.

C. Execution Time

The second performance metric to study is time efficiency. In
the first set of simulations, we vary |N;_1| from 1000 to 10000
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Fig. 5: Left plot: Execution time of DBF, P-MTI, THP, SFMTI
and Protocol 3 with different numbers of tags. Right plot:
Execution time of DBF, P-MTI, THP, and SEMTI with different
numbers of missing tags.

at steps of 1000. For each N;_j, we let |M;| = 0.05|N;_1],
and C = 0.1|N;_y| for DBF and P-MTI. The left plot of
Fig. 5 shows the results, from which we can see that DBF
is much more efficient than P-MTI, THP, SFMTI and Protocol
3, especially when the number of tags is getting larger. For
example, when the number of tags in the system is 10000, DBF
only takes 32.6% of the execution time of P-MTI, 32.5% of the
execution time of SEMTI, 23.4% of the execution time of THP,
and 2.7% of the execution time of Protocol 3, respectively, to
identify the 500 missing tags.

In the second set of simulations, we set | N;_1| = 1000, C =
0.1|IV;_1| for DBF and P-MTI, and vary |};| from 10 to 150 at
steps of 10. The right plot of Fig. 5 presents the execution time
of DBE, P-MTI, THP, and SFMTI with respect to the number
of missing tags. Protocol 3 takes approximately 50,000 slots to
identify all missing tags, much more time-consuming than the
other four protocols. To make the trend of protocol execution
time with respect to |M;| more legible, we do not plot Protocol
3 so that we can reduce the vertical scale. Recall that when
|M;| > C, P-MTI cannot identify all missing tags. Therefore,
we only consider the execution time of P-MTI when |M;| <
C =100 for fair comparison. In general, DBF outperforms the
other four protocols in terms of time efficiency. We observe that
the execution time of THP, SFMTI and P-MTTI is not sensitive
to the change of |M;|. In contrast, the performance of DBF
increases when |M;| > C.

D. Impact of Channel Error

Finally, we investigate the impact of channel error on the
performance of DBF in identifying missing tags. We adopt the
random channel error model. The model is characterized by a
parameter p.,, called error rate, which means any symbol in
the differential filter has a probability p.,, to be corrupted by
the channel error (whose magnitude exceeds the threshold 6.).
As a result, the corresponding bit in the Bloom filter will be set
to 1 according to (4), resulting in a higher false-positive ratio.

In the simulations, we set |N;,_1| = 1000, C = 0.1|N;_1],
and vary |M;| from 10 to 150 at steps of 10. The value of pe,,
is set to 0.01, 0.05 and 0.1, respectively. The left plot of Fig.
6 shows the execution time of DBF under different channel
error rates. It is clear that the execution time of DBF is not
significantly affected. Even if p.,, = 0.1, the execution time
increases less than 10% when comparing with the execution
time without channel error. The right plot of Fig. 6 shows the
increased number of false positives as the channel error rate
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WISP tags USRP

Fig. 7: A testbed for the DBF protocol. Two circular antennas
are mounted to USRPI that is connected to a laptop to work as
an RFID reader.

increases, which is expected. When |M/;| is small, the number
of false positives is negligible. When |M;| > C, the number
of false positives is still in an acceptable range. For example,
when pe, = 0.1 and |M;| = 150, there are 8.4 false positives
(=~ 1%) on average. We emphasize that DBF does not have any
false negative, with or without channel error.

VI. PROTOTYPE IMPLEMENTATION

We implemented a prototype of DBF using USRP1 and WISP
programmable tags [25] for missing-tag identification. As shown
in Fig. 7, two circular antennas are mounted to USRP1 that is
connected to a laptop to serve as an RFID reader. The software
defined reader works in the 915MHz UHF band and has full
control over the RFID physical layer. We set the sampling rate
of the reader to 4MHz and the backscatter link frequency of the
WISP tags to 24KHz. Besides the mandatory commands (e.g.,
Query, Select, Read), C1G2 allows the users to defined a set of
custom commands. To enable the reader and tags to run DBF,
they should support the DBF command, which is added as a
custom command.

The parameters of DBF were set as follows: Each physical-
layer snapshot consisted of two segments, i.e., k& = 2, each
segment allowed transmissions of 20 symbols, i.e., [ = 20, and
there are 16 tags. The experiments are performed in our lab.
Fig. 8 shows two executions of DBF. After the reader started
(0.35ms), it first powered up the tags by transmitting continuous
carrier waves (0.35-1.48ms). During the first execution, the
reader broadcasts a DBF command (1.48-2.19ms) to initiate the
DBEF protocol. Upon receiving the DBF command, each of the
16 tags randomly selected its representative in each segment and
sent a response to the reader (2.33-3.47ms), which formed the
Ist physical-layer snapshot. In the second execution, two tags
were programmed to keep silent to emulate missing tags, and
the remaining 14 tags responded as usual. The reader broadcast
another DBF command (4.14—4.86ms), and the 14 non-missing
tags chose their representatives (the same ones as in the first



IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

carrier physical—-layer physical—layer
snapshot snapshot
sl waves / /
3060
=
5
< 041
g
reader \ DBF \ DBF
0.2} | starts command command
0 L
0 2 4 6 8
time (ms)

Fig. 8: Two executions of DBF with 16 WISP tags.
oor : —— 1st snapshot
0.8F | d
07 } ]
0.6 1
oor : — 2nd snapshot

Magnitude

0.8 \ g
OJMMMMWPMW
0.6 L

0.2F ' ——differential filter }

1
90000100000000000100:0000000001000100000Q

B " AMM. s jhwxh.ui bohasals J‘Am

o sl
0 0.2 0.4 06 0.8 1
Time (ms)

Fig. 9: Two physical-layer snapshots received by the reader and
the corresponding differential Bloom filter.

execution) to send responses to the reader (5.00-6.12ms), which
formed the 2nd physical-layer snapshot.

The construction of a differential Bloom filter is shown by
Fig. 9, where the magnitude of each signal is depicted. The first
plot from the top shows the 1st physical-layer snapshot for 16
initial tags. The dashed line in the middle shows the boundary
of the two segments in the snapshot. The second plot shows
the 2nd snapshot for 14 tags after while two tags are missing.
By subtracting the aggregate signals in the 2nd physical-layer
snapshot from the 1st physical-layer snapshot, we obtained
the differential symbol filter, which is presented in the third
plot. Despite the slight jitters in tags’ responses, the aggregate
signals can be roughly aligned [20]. From the differential
symbol filter we can clearly recognize the representatives of
the missing tags, which are the sixth symbol and the eighteenth
symbol in the first segment, and the tenth symbol and the
fourteenth symbol in the second segment, exactly matching
the true representatives of the missing tags. After that, the
differential symbol filter is converted to a segmented Bloom
filter for missing-tag identification as discussed in Section III.
The Bloom filter is shown in the third plot.

VII. CONCLUSION

In this paper, we introduce a new concept called differential
Bloom filter, which is constructed from physical-layer
differential symbols. It is carefully designed such that the
filter only encodes the abnormal tags. Based on this concept,
we propose a general framework for anomaly detection that
guarantees the identification of all abnormal tags and in the
meantime significantly reduces the execution time. We apply
the proposed framework to missing-tag identification as a case
study. The simulation results demonstrate that our solution
drastically outperforms the best existing protocols for missing-
tag identification. In addition, We implement a prototype using
USRP and WISP tags to verify the effectiveness of the proposed

solution. In our future work, we will study how to apply
the framework to anomaly detection where different types of
abnormal tags coexist. This is a more practical and complicated
problem that has not yet be investigated.
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