Information and Inference: A Journal of the IMA (2018) 00, 146
doi:10.1093/imaiai/iay003

The non-convex geometry of low-rank matrix optimization

Qiuwer L1, ZHIHUI ZHU AND GONGGUO TANG

Department of Electrical Engineering, Colorado School of Mines, CO, USA
TCorresponding author. Email: ligiuweiss @ gmail.com

[Received on 3 July 2017; revised on 11 January 2018; accepted on 25 January 2018]

This work considers two popular minimization problems: (i) the minimization of a general convex
function f(X) with the domain being positive semi-definite matrices, and (ii) the minimization of a
general convex function f(X) regularized by the matrix nuclear norm || X||« with the domain being general
matrices. Despite their optimal statistical performance in the literature, these two optimization problems
have a high computational complexity even when solved using tailored fast convex solvers. To develop
faster and more scalable algorithms, we follow the proposal of Burer and Monteiro to factor the low-rank
variable X = UU " (for semi-definite matrices) or X = uvT (for general matrices) and also replace
the nuclear norm || X||x with ( 1 ||%7 + |l V||%-) /2. In spite of the non-convexity of the resulting factored
formulations, we prove that each critical point either corresponds to the global optimum of the original
convex problems or is a strict saddle where the Hessian matrix has a strictly negative eigenvalue. Such a
nice geometric structure of the factored formulations allows many local-search algorithms to find a global
optimizer even with random initializations.

Keywords: Burer—Monteiro; global convergence; low rank; matrix factorization; negative curvature;
nuclear norm; strict saddle property; weighted PCA; 1-bit matrix recovery.

1. Introduction

Non-convex reformulations of convex optimization problems have received a surge of renewed
interest for efficiency and scalability reasons [4,19,24,25,31,34-36,40,41,48-50,52-54,56]. Compared
with the convex formulations, the non-convex ones typically involve many fewer variables, allow-
ing them to scale to scenarios with millions of variables. Besides, simple algorithms [23,33,48]
applied to the non-convex formulations have surprisingly good performance in practise. However,
a complete understanding of this phenomenon, particularly the geometrical structures of these non-
convex optimization problems, is still an active research area. Unlike the simple geometry of convex
optimization problems where local minimizers are also global ones, the landscapes of general non-
convex functions can become extremely complicated. Fortunately, for a range of convex optimization
problems, particularly for matrix completion and sensing problems, the corresponding non-convex
reformulations have nice geometric structures that allow local-search algorithms to converge to global
optimality [23-25,33,36,48,58].

We extend this line of investigation by working with a general convex function f(X) and considering
the following two popular optimization problems:

for symmetric case: minimize f(X) subjectto X > 0 (Po)
XeRllel

for non-symmetric case: minimize f(X) + A||X||x where A > 0. P
XGRHXM
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2 Q.LIETAL.

For these two problems, even fast first-order methods, such as the projected gradient descent algorithm
[8], require performing an expensive eigenvalue decomposition or singular value decomposition in each
iteration. These expensive operations form the major computational bottleneck and prevent them from
scaling to scenarios with millions of variables, a typical situation in a diverse range of applications,
including quantum state tomography [27], user preferences prediction [20] and pairwise distances
estimation in sensor localization [6].

1.1 Our approach: Burer—Monteiro-style parameterization

As we have seen, the extremely large dimension of the optimization variable X and the accordingly
expensive eigenvalue or singular value decompositions on X form the major computational bottleneck
of the convex optimization algorithms. An immediate question might be “Is there a way to directly
reduce the dimension of the optimization variable X and meanwhile avoid performing the expensive
eigenvalue or singular value decompositions?”

This question can be answered when the original optimization problems (Py) and (P1) admit a low-
rank solution X* with rank (X*) = r* « min{n, m}. Then we can follow the proposal of Burer and
Monteiro [9] to parameterize the low-rank variable as X = UU T for (Py) or X = UV for (P;), where
U e R™" and V € R™" with r > r*. Moreover, since || X||x = minimizex_gy (1U|% + [|V[%)/2, we
obtain the following non-convex re-parameterizations of (Py) and (P):

for symmetric case: minimize g(U) = f(UU "), (Fo)
Ue

Rnxr

A
for non-symmetric case: minimize g(U,V) =f(UV')+ = (||U||12v + ||V||12r>. (F1)
UeRnxr Yy eRmxr 2

Since r < {p, q}, the resulting factored problems (F() and (/) involve many fewer variables. Moreover,
because the positive semi-definite constraint is removed from (P) and the nuclear norm || X|, in (P1)
is replaced by (||U ||12F + ||V||%) /2, there is no need to perform an eigenvalue (or a singular value)
decomposition in solving the factored problems.

The past 2 years have seen renewed interest in the Burer—Monteiro factorization for solving low-
rank matrix optimization problems [4,24,25,36,37,53]. With technical innovations in analysing the non-
convex landscape of the factored objective function, several recent works have shown that with an exact
parameterization (i.e. r = r*) the resulting factored reformulation has no spurious local minima or
degenerate saddle points [24,25,36,58]. An important implication is that local-search algorithms such
as gradient descent and its variants can converge to the global optima with even random initialization
[23,33,48].

We generalize this line of work by assuming a general objective function f(X) in (Pp) and (Py),
not necessarily coming from a matrix inverse problem. This generality allows us to view the resulting
factored problems (Fp) and (F7) as a way to solve the original convex optimization problems to
the global optimum, rather than a new modelling method. This perspective, also taken by Burer
and Monteiro in their original work [9], frees us from rederiving the statistical performances of
the resulting factored optimization problems. Instead, the statistical performances of the resulting
factored optimization problems inherit from that of the original convex optimization problems, whose
statistical performance can be analysed using a suite of powerful convex analysis techniques, which have
accumulated from several decades of research. For example, the original convex optimization problems
(Po) and (P;) have information-theoretically optimal sampling complexity [15], achieve minimax
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 3

denoising rate [13] and satisfy tight oracle inequalities [14]. Therefore, the statistical performances
of the factored optimization problems (F() and (/) share the same theoretical bounds as those of the
original convex optimization problems (P) and (P;), as long as we can show that the two problems are
equivalent.

In spite of their optimal statistical performance [13-15,18], the original convex optimization
problems cannot be scaled to solve the practical problems that originally motivate their development
even with specialized first-order algorithms. This was realized since the advent of this field, where
the low-rank factorization method was proposed as an alternative to convex solvers [9]. When coupled
with stochastic gradient descent, low-rank factorization leads to state-of-the-art performance in practical
matrix recovery problems [24,25,36,53,58]. Therefore, our general analysis technique also sheds light
on the connection between the geometries of the original convex programmes and their non-convex
reformulations.

Although the Burer—Monteiro parameterization tremendously reduces the number of optimization
variables from n2 to nr (or nm to (n + m)r) when r is very small, the intrinsic bilinearity makes the
factored objective functions non-convex, and introduces additional critical points that are not global
optima of the factored optimization problems. One of our main purposes is to show that these additional
critical points will not introduce spurious local minima. More precisely, we want to figure out what
properties of the convex function f are required for the factored objective functions g to have no spurious
local minima.

1.2 Enlightening examples

To gain some intuition about the properties of f such that the factored objective function g has no
spurious local minima (which is one of the main goals considered in this paper), let us consider the
following two examples: weighted principal component analysis (weighted PCA) and the matrix sensing
problem.

Weighted PCA: Consider the symmetric weighted PCA problem in which the lifted objective
function is

700 =3 Iwe (x - x|},

where © is the Hadamard product, X* is the global optimum we want to recover and W is the known

weighting matrix (which is assumed to have no zero entries for simplicity). After applying the Burer—
Monteiro parameterization to f(X), we obtain the factored objective function

T * 2

) =3 |wo (uuT—x1)|

1
2

To investigate the conditions under which the bilinearity ¢ (U) = UU T will (not) introduce additional
local minima to the factored optimization problems, consider a simple (but enlightening) two-

. .  [JT4a 1 . _ 11 e
dimensional example, where W = [ ) m]for somea > 0,X* = [1 1] and U = [y] for

unknowns x, y. Then the factored objective function becomes

1+4+a

g(U) = T(xz_ 1) +

1
%(yz— 2+ Gy — D2, (L1)

Downloaded from https://academic.oup.com/imaiai/advance-article-abstract/doi/10.1093/imaiai/iay003/4951409

by guest
on 29 June 2018



4 Q.LIETAL.

In this particular setting, we will see that the value of a in the weighting matrix is the deciding factor for
the occurrence of spurious local minima.

Cramm 1.1 The factored objective function g(U) in (1.1) has no spurious local minima when a € [0, 2);
while for a > 2, spurious local minima will appear.

Proof. First of all, we compute the gradient Vg(U) and Hessian V2g(U):

@+ D@ = Dx+y0y —1)
V U = 2 s
8 |:(a+ D2 = Dy + x(xy — 1)
2 2
+ Bx*=1Da+1) 2xy — 1
vy =2|" :
80 |: 2xy — 1 P+ G- D@+ 1)
Now we collect all the critical points by solving Vg(U) = 0 and list the Hessian of g at these points as
follows: !
LU =00, Ve =-2[“7" 1],
2 U= (1,1, Vxewn =2, L],
4at+3--6 86
. (/e _ [a ) y2 — at? at2
3. Us ( a+2’ “+2)’ 8(U3) |: 236 da+3;-6 |’
7\'642;‘”“ NG ) a+3 /a2—4+2+27%2_4 _@
4. Uy = N , Vog(Uy) = v |
a\/@“’ —72(“:2) a—3+/a?—442—-2a =4 < —4

Note that the critical point Uys exists only for a > 2. By checking the signs of the two eigenvalues
(denoted by A; and Aj) of these Hessians, we can further classify these critical points as a local
minimum, a local maximum or a saddle point:2

1. Ay = —2(a+ 2),A» = —2a. So, Uj is a local maximum for a > 0 and a strict saddle for a = 0
(see Definition 3).

2. 01 =4@@+1) > 0,A2 =4(a+2) > 0. So, U is a local minimum (also a global minimum as

g(Uz) =0).
<0, €[0,2 . ddle point, €[0,2
3. k1=w acl ),x2=4a>O.So,U315 a saddle poy a€(0.2)
at >0, a>2 a spurious local minimum. a>?2
4. From the determinant, we have A - A, = _8a=2atD@td) _ g for g > 2. So, Uy is a saddle

a

point for a > 2. O

In this example, the value of a controls the dynamic range of the weights as max W; /min Wiz = l+a.
Therefore, Claim 1.1 can be interpreted as a relationship between the spurious local minima and the

! Note that if U is a critical point, so is —U, since Vg(—U) = —Vg(U). Hence, we only list one part of these critical points.

2 This classification of the critical points using the Hessian information is known as the second derivative test, which says a
critical point is a local maximum if the Hessian is negative definite, a local minimum is the Hessian is positive definite and a
saddle point if the Hessian matrix has both positive and negative eigenvalues.
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 5

u*  U*

(a) Small dynamic range (b) Large dynamic range

FiG. 1. Factored function landscapes corresponding to different dynamic ranges of the weights W: (a) a small dynamic range with
max Wl%/min Wl% = 1 and (b) a large dynamic range with max W;/min Wl% > 3.

dynamic range: if the dynamic range max Wl% /min Wé is smaller than 3, there will be no spurious local
minima; while if the dynamic range is larger than 3, spurious local minima will appear. We also plot the
landscapes of the factored objective function g(U) in (1.1) with different dynamic ranges in Fig. 1.

As we have seen, the dynamic range of the weighting matrix serves as a determinant factor for the
appearance of the spurious local minima for g(U) in (1.1). To extend the above observations to general
objective functions, we now interpret this condition (on the dynamic range of the weighting matrix) by
relating it with the condition number of the Hessian matrix V2£(X). This can be seen from the following
directional-curvature form for f(X):

[v2f(X)] (D,D) = |Wo D],

where [ 2f (X)] (D, D) is the directional curvature of f(X) along the matrix D of the same dimension as

X, defined by Zl Lk aXf ng?k D;Dy. This implies that the condition number kmax( 2f (X)) /Amin (sz X ))

is upper bounded by thls dynamic range:

hma (V2 (X)) _ max W
homin (V2f(X)) ~ min W3~

(1.2)

min W, D[, = [V 0] 0.D) < max|wy - | D[

Therefore, we conjecture that the condition number of the general convex function f(X) would be a
deciding factor of the behaviour of the landscape of the factored objective function and a large condition
number is very likely to introduce spurious local minima to the factored problem.

Matrix Sensing: The above conjecture can be further verified by the matrix sensing problem, where
the goal is to recover the low-rank positive semi-definite (PSD) matrix X* € R™" from the linear
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6 Q.LIETAL.

measurement y = A(X*) with A : R"*" — R™ being a linear measurement operator. Consider the
factored objective function g(U) = f(UU ") with U € R™" . In [5,36], the authors showed that the non-
convex parametrization UU " will not introduce spurious local minima to the factored objective function,
provided the linear measurement operator .4 satisfies the following restricted isometry property (RIP).

DEeFINITION 1.2 (RIP) A linear operator A : R"*" — R™ gsatisfies the -RIP with constant &, if
2
(1= 8)IIDIF < | AD) > <a+ 8- IDIIF (1.3)

holds for all n x n matrices D with rank(D) < r.

Note that the required condition (1.3) essentially says that the condition number of Hessian matrix
sz (X) should be small at least in the directions of the low-rank matrices D, since the directional
curvature form of f(X) is computed as [V2f(X)]|(D, D) = [ AD)|3.

From these two examples, we see that as long as the Hessian matrix of the original convex function
f(X) has a small (restricted) condition number the resulting factored objective function has a landscape
such that all local minima correspond to the globally optimal solution. Therefore, we believe that
such a restricted well-conditioned property might be the key factor that brings us a benign factored
landscape, i.e.

alDI} < [V3(0 | (0.D) < BIDIE with /o being small,

which says that the landscape of f(X) in the lifted space is bowl-shaped, at least in the directions of
low-rank matrices.

1.3 Our results
Before presenting the main results, we list a few necessary definitions.

DEFINITION 1.3 (Critical points) A point x is a critical point of a function if the gradient of this function
vanishes at x.

DEeFINITION 1.4 (Strict saddles or ridable saddles [48]) For a twice differentiable function, a strict
saddle is one of its critical points whose Hessian matrix has at least one strictly negative eigenvalue.

DEFINITION 1.5 (Strict saddle property [25]) A twice differentiable function satisfies strict saddle
property if each critical point either corresponds to the local minima or is a strict saddle.

Heuristically, the strict saddle property describes a geometric structure of the landscape: if a critical
point is not a local minimum, then it is a strict saddle, which implies that the Hessian matrix at this point
has a strictly negative eigenvalue. Hence, we can continue to decrease the function value at this point
along the negative-curvature direction. This nice geometric structure ensures that many local-search
algorithms, such as noisy gradient descent [23], vanilla gradient descent with random initialization [33]
and the trust region method [48], can escape from all the saddle points along the directions associated
with the Hessian’s negative eigenvalues, and hence converge to a local minimum.
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 7

THEOREM 1.6 (Local convergence for strict saddle property [23,30,32,33,48]) The strict saddle
property> allows many local-search algorithms to escape all the saddle points and converge to a local
minimum.

Our primary interest is to understand how the original convex landscapes are transformed by the
factored parameterization X = UU' or X = UV, particularly how the original global optimum is
mapped to the factored space, how other types of critical points are introduced and what are their
properties. To answer these questions and conclude from the previous two examples, we require that
the function f(X) in (Pp) and (P;) be restricted well-conditioned:*

a|D|% < [v2f(X)] (D, D) < BIID|% with B/a < 1.5 whenever rank(X) < 2 and rank(D) < 4r.
©)

We show that as long as the function f(X) in the original convex programmes satisfies the restricted
well-conditioned assumption (C), each critical point of the factored programmes either corresponds to
the low-rank globally optimal solution of the original convex programmes, or is a strict saddle point
where the Hessian matrix V2g has a strictly negative eigenvalue. This nice geometric structure coupled
with the powerful algorithmic tools provided in Theorem 1.6 thus allows simple iterative algorithms to
solve the factored programmes to a global optimum.

THEOREM 1.7 (Informal statement of our results) Suppose the objective function f(X) satisfies the
restricted well-conditioned assumption (C). Assume X* is an optimal solution of (Py) or (P;) with
rank(X*) = r*. Set r > r* for the factored variables U and V. Then any critical point U (or (U, V))
of the factored objective function g in (F¢) and () either corresponds to the global optimum X* such
that X* = UUT for (Py) (or X* = UV for (P))) or is a strict saddle point (which includes a local
maximum) of g.

First note that our result covers both over-parameterization where r > r* and exact parameterization
where r = r*, while most existing results in low-rank matrix optimization problems [24,25,36] mainly
consider the exact parameterization case, i.e. r = r*, due to the hardness of fulfilling the gap between
the metric in the factored space and the one in the lifted space for the over-parameterization case.
The geometric property established in the theorem ensures that many iterative algorithms [23,33,48]
converge to a square-root factor (or a factorization) of X*, even with random initialization. Therefore,

3 To be precise, Lee et al. [32] showed that for any function that has a Lipschitz continuous gradient and obeys the strict
saddle property first-order methods with a random initialization almost always escape all the saddle points and converge to a local
minimum. The Lipschitz-gradient assumption is commonly adopted for analysing the convergence of local-search algorithms,
and we will discuss this issue after Theorem 3.1. To obtain explicit convergence rate, other properties (like the gradient at the
points that are away from the critical points is not small) about the objective functions may be required [21,23,30,48]. In this
paper, similar to [25], we mostly focus on the properties of the critical points, and we omit the details about the convergence rate.
However, we should note that, by utilizing the similar approach in [58], it is possible to extend the strict saddle property so that we
can obtain explicit convergence rate for certain algorithms [23,30,48] when applied for solving the factored low-rank problems.

B

4 Note that the constant 1.5 for the dynamic range & in (C) is not optimized, and it is possible to slightly relax this constraint

with more sophisticated analysis. However, the example of the weighted PCA in (1.1) implies that the room for improving this
constant is rather limited. In particular, Claim 1.1 and (1.2) indicate that, when g > 3, the spurious local minima will occur for
the weighted PCA in (1.1). Thus, as a sufficient condition for any general objective function to have no spurious local minima,

a universal bound on the condition number should be at least no larger than 3, i.e. g < 3. Also, aside from the lack of spurious

local minima, as stated in Theorem 1.7, the strict saddle property is the other one that needs to be guaranteed.
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8 Q.LIETAL.

we can recover the rank-r* global minimizer X* of (7P) and (P;) by running local-search algorithms
on the factored function g(U) (or g(U, V )) if we know an upper bound on the rank r*. For problems
with additional linear constraints, such as those studied in [9], one can combine the original objective
function with a least-squares term that penalizes the deviation from the linear constraints. As long as the
penalization parameter is large enough, the solution is equivalent to that of the constrained minimization
problems, and hence is also covered by our result.

1.4 Stylized applications

Our main result only relies on the restricted well-conditioned assumption of f(X). Therefore, in addition
to low-rank matrix recovery problems [24,25,36,53,58], it is also applicable to many other low-rank
matrix optimization problems with non-quadratic objective functions, including 1-bit matrix recovery,
robust PCA [24] and low-rank matrix recovery with non-Gaussian noise [44]. For ease of exposition,
we list the following stylized applications regarding the PSD matrices. But we note that the results listed
below also hold for the cases where X is general non-symmetric matrices.

1.4.1 Weighted PCA We already know that in the two-dimensional case, the landscape for the
factored weighted PCA problem is closely related with the dynamic range of the weighting matrix.
Now we exploit Theorem 1.7 to derive the result for the high-dimensional case. Consider the symmetric
weighted PCA problem, where the goal is to recover the ground-truth X* from a pointwisely weighted
observation Y = W © X*. Here W € R™" is the known weighting matrix and the desired solution
X* > 01is of rank r*. A natural approach is to minimize the following squared ¢, loss:

L1 T 2
minimize — HW@ U’ - X%
UeRnxr 2 F

1.4

Unlike the low-rank approximation problem where W is the all-ones matrix, in general there is no
analytic solutions for the weighted PCA problem (1.4) [47] and directly solving this traditional £, loss
(1.4) is known to be NP-hard [26]. We now apply Theorem 1.7 to the weighted PCA problem and
show the objective function in (1.4) has nice geometric structures. Towards that end, define f(X) =
% IWoX—X%) ||12r and compute its directional curvature as

[v2reo] @.0) = 1w o DI}

Since B/« is a restricted condition number (conditioning on directions of low-rank matrices), which
must be no larger than the standard condition number Apax (V2f (X)) /Amin (sz (X)). Thus, together with
(1.2), we have

2 2
B _ Fmax (VE(X0) _ max Wl.j.
@ = dnin (VX)) ~ min W2

Now we apply Theorem 1.7 to characterize the geometry of the factored problem of (1.4).
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 9

COROLLARY 1.8 Suppose the weighting matrix W has a small dynamic range ::Wg < 1.5. Then the

i

objective function of (1.4) with r > r* satisfies the strict saddle property and has no spurious local
minima.

1.4.2 Matrix sensing We now consider the matrix sensing problem which is presented before in
Section 1.2. To apply Theorem 1.7, we first compare the RIP (1.3) with our restricted well-conditioned
assumption (C), which is copied below:

a|D||% < [v2f(X)] (D, D) < B||D||% with 8/« < 1.5 whenever rank(X) < 2r and rank(D) < 4r.

Clearly, the restricted well-conditioned assumption (C) would hold if the linear measurement operator
A satisfies the 4r-RIP with a constant §, such that

1 + 04,

I
<15 < ¢ 0,-|.
1oy = 4’6[ 5}

Now we can apply Theorem 1.7 to characterize the geometry of the following matrix sensing problem
after the factored parameterization:

1 2
minimize Hy — AU H . (1.5)
UeRnxr 2 2

CorOLLARY 1.9 Suppose the linear map A satisfies the 4r-RIP (1.3) with 84, € [0, 1/5]. Then the
objective function of (1.5) with r > r* satisfies the strict saddle property and has no spurious local
minima.

1.4.3  I-Bit matrix completion 1-Bit matrix completion, as its name indicates, is the inverse problem
of completing a low-rank matrix from a set of 1-bit quantized measurements

Y; = bit (X,.*j) for (i,j) € 2.

Here, X* € R™"*" is the low-rank PSD matrix of rank r*, £2 is a subset of the indices [n] x [n] and bit(-)
is the 1-bit quantifier which outputs O or 1 in a probabilistic manner:

. 1, with probability o (x),
bit(x) = . .
0, with probability 1 — o (x).
One typical choice for o (x) is the sigmoid function o (x) = % To recover X*, the authors of [17]
propose to minimizing the negative log-likelihood function
minimize (X) := - 3 [Y,-j log (o (X;)) + (1 — ;) log (1 — a(x,j))] (1.6)

(ij)es2
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10 Q.LIETAL.

and show that if | X*|l, < cn/r*, max;; |X;‘j| < ¢ for some small constant ¢, and §2 follows
certain random binomial model, solving the minimization of the negative log-likelihood function
with some nuclear norm constraint would be very likely to produce a satisfying approximation to
X* [17, Theorem 1].

However, when X* is extremely high-dimensional (which is the typical case in practise), it is not
efficient to deal with the nuclear norm constraint, and hence we propose to minimize the factored
formulation of (1.6):

minimize g(U) := — Y | [Yl-j log (a <(UUT)ij)> + (1 — Y;) log (1 s ((UUT>ij)) } (1.7)

U RV!XY
N (ij)ef

In order to utilize Theorem 1.7 to understand the landscape of the factored objective function (1.7), we
then check the following directional Hessian quadratic form of f(X):

(Voo =Y oo},

(iHes2

For simplicity, consider the case where 2 = [n] x [n], i.e. observe full quantized measurements.
This will not increase the acquisition cost too much, since each measurement is of 1-bit. Under this
assumption, we have

é _ max o' (X))
% = mino (X

. 2 2 2
ming’ (X IDIE < [ V00| (0, D) = maxo'(XpIDIF < mino’ (X;)

LEMMA 1.10 Let £2 = [n] x [n]. Assume || X[ := max |X;;| is bounded by 1.3169. Then the negative
log-likelihood function (1.6) f(X) satisfies the restricted well-conditioned property.

Proof. First of all, we claim o (x) is an even, positive function and decreasing when x > 0. This is
because the sigmoid function o (x) is odd, o/ (x) = 6 (x) (1 —o(x)) > Oby o(x) € (0,1) and 6" (x) =

(et | max o’ (X;;) ’(0
_% < 0 for x > 0. Therefore, for any |X;;| < 1.3169, we have mina’(le;) = mmm;’fgél)@) <

1.49995 < 1.5. O

We now use Theorem 1.7 to characterize the landscape of the factored formulation (1.7) in the set
By :={U € R™ : |UU" ||loo < 1.3169}.

COROLLARY 1.11 Setr > r*in (1.7). Then the objective function (1.7) satisfies the strict saddle property
and has no spurious local minima in By.

We remark that such a constraint on || X|| s is also required in the seminal work [17], while by using
the Burer—Monteiro parameterization, our result removes the time-consuming nuclear norm constraint.

1.4.4 Robust PCA For the symmetric variant of robust PCA, the observed matrix ¥ = X* 4+ S with S
being sparse and X* being PSD. Traditionally, we recover X* by minimizing ||Y — X||; = Zij |Y;; — Xl
subject to a PSD constraint. However, this formulation does not directly fit into our framework due to
the non-smoothness of the £; norm. An alternative approach is to minimize Zij ha(Yj; — Xj5), where
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 11

h,(.) is chosen to be a convex smooth approximation to the absolute value function. A possible choice
is hy(x) = alog((exp(x/a) + exp(—x/a))/2), which is shown to be strictly convex and smooth in
[50, Lemma A.1].

1.4.5 Low-rank matrix recovery with non-Gaussian noise Consider the PCA problem where the
underlying noise is non-Gaussian:

Y=X"+72,

i.e. the noise matrix Z € R™" may not follow the Gaussian distributions. Here, X* € R™" is a PSD
matrix of rank r*. It is known that when the noise is from normal distribution, the according maximum
likelihood estimator (MLE) is given by the minimizer of a squared loss function minimizeyo % 1Y—=X ||12¢.
However, in practise, the noise is often from other distributions [45], such as Poisson, Bernoulli,
Laplacian and Cauchy, just to name a few. In these cases, the resulting MLE, obtained by minimizing
the negative log-likelihood function, is not the square-loss one. Such a noise-adaptive estimator is more
effective than square-loss minimization. To have a strongly convex and smooth objective function, the
noise distribution should be log-strongly-concave, e.g. the Subbotin densities [44, Example 2.13], the
Weibull density f5(x) = Bx#~lexp(—xf) for B > 2 [44, Example 2.14] and the Chernoff’s density
[3, Conjecture 3.1]. Once the restricted well-conditioned assumption (C) is satisfied, we can then apply
Theorem 1.7 to characterize the landscape of the factored formulation. Similar results apply to matrix
sensing and weighted PCA when the underlying noise is non-Gaussian.

1.5 Prior arts and inspirations

Prior Arts in Non-convex Optimization Problems. The past few years have seen a surge of
interest in non-convex reformulations of convex optimization problems for efficiency and scalability
reasons. However, fully understanding this phenomenon, mainly the landscapes of these non-convex
reformulations could be hard. Even certifying the local optimality of a point might be an NP-hard
problem [38]. The existence of spurious local minima that are not global optima is a common issue
[22,46]. Also, degenerate saddle points or those surrounded by plateaus of small curvature could also
prevent local-search algorithms from converging quickly to local optima [16]. Fortunately, for a range
of convex optimization problems, particularly those involving low-rank matrices, the corresponding
non-convex reformulations have nice geometric structures that allow local-search algorithms to
converge to global optimality. Examples include low-rank matrix factorization, completion and sensing
[24,25,36,58], tensor decomposition and completion [2,23], dictionary learning [50], phase retrieval [49]
and many more. Based on whether smart initializations are needed, these previous works can be roughly
classified into two categories. In one case, the algorithms require a problem-dependent initialization
plus local refinement. A good initialization can lead to global convergence if the initial iterate lies
in the attraction basin of the global optima [2,4,12,51]. For low-rank matrix recovery problems, such
initializations can be obtained using spectral methods [4,51]; for other problems, it is more difficult
to find an initial point located in the attraction basin [2]. The second category of works attempts to
understand the empirical success of simple algorithms such as gradient descent [33], which converge to
global optimality even with random initialization [23-25,33,36,58]. This is achieved by analysing the
objective function’s landscape and showing that they have no spurious local minima and no degenerate
saddle points. Most of the works in the second category are for specific matrix sensing problems with
quadratic objective functions. Our work expands this line of geometry-based convergence analysis by
considering low-rank matrix optimization problems with general objective functions.
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12 Q.LIETAL.

Burer—Monteiro Reformulation for PSD Matrices. In [4], the authors also considered low-rank and
PSD matrix optimization problems with general objective functions. They characterized the local
landscape around the global optima, and hence their algorithms require proper initializations for global
convergence. We instead characterize the global landscape by categorizing all critical points into global
optima and strict saddles. This guarantees that several local-search algorithms with random initialization
will converge to the global optima. Another closely related work is low-rank and PSD matrix recovery
from linear observations by minimizing the factored quadratic objective function [5]. Low-rank matrix
recovery from linear measurements is a particular case of our general objective function framework.
Furthermore, by relating the first-order optimality condition of the factored problem with the global
optimality of the original convex programme, our work provides a more transparent relationship between
geometries of these two problems and dramatically simplifies the theoretical argument. More recently,
the authors of [7] showed that for general semi-definite programmes with linear objective functions and
linear constraints, the factored problems have no spurious local minimizers. In addition to showing non-
existence of spurious local minimizers for general objective functions, we also quantify the curvature
around the saddle points, and our result covers both over and exact parameterizations.

Burer—Monteiro Reformulation for General Matrices. The most related work is non-symmetric
matrix sensing from linear observations, which minimizes the factored quadratic objective function
[42]. The ambiguity in the factored parameterization

UV = (UR)(VR™ ") for all non-singular R

tends to make the factored quadratic objective function badly conditioned, especially when the matrix R
or its inverse is close to being singular. To overcome this problem, the regularizer

O, V) = |[UTU - VTV (1.8)

is proposed to ensure that U and V have almost equal energy [42,53,57]. In particular, with the
regularizer in (1.8), it was shown in [42,57] that g(U,V) = f v + uO®g(U, V) with a properly
chosen ;> 0 has similar geometric result as the one provided in Theorem 1.6 for (P)), i.e. (U, V)
also obeys the strict saddle property. Compared with [42,53,57], our result shows that it is not necessary
to introduce the extra regularization (1.8) if we solve (P;) with the factorization approach. Indeed,
the optimization form HX ”* = miny_;yT (” U ||12p + H V||12p) /2 of the nuclear norm implicitly requires
U and V to have equal energy. On the other hand, we stress that our interest is to analyse the non-
convex geometry of the convex problem (P;) which, as we explained before, has a very nice statistical
performance such as it achieves minimax denoising rate [13]. Our geometrical result implies that instead
of using convex solvers to solve (P;), one can turn to apply local-search algorithms to solve its factored
problem (F7) efficiently. In this sense, as a reformulation of the convex programme (P), the non-
convex optimization problem (/1) inherits all the statistical performance bounds for (P;). Cabral et al.
[10] worked on a similar problem and showed all global optima of (F7) corresponds to the solution of
the convex programme (P;). The work [28] applied the factorization approach to a more broad class of
problems. When specialized to matrix inverse problems, their results show that any local minimizer U
and V with zero columns is a global minimum for the over-parameterization case, i.e. r > rank(X*).
However, there are no results discussing the existence of spurious local minima or the degenerate saddles
in these previous works. We extend these works and further prove that as long as the loss function f(X)
is restricted well-conditioned, all local minima are global minima, and there are no degenerate saddles
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 13

with no requirement on the dimension of the variables.We finally note that compared with [28], our
result (Theorem 1.7) does not depend on the existence of zero columns at the critical points, and hence
can provide guarantees for many local-search algorithms.

1.6 Notations

Denote [n] as the collection of all positive integers up to n. The symbols I and 0 are reserved for the
identity matrix and zero matrix/vector, respectively. A subscript is used to indicate its dimension when
this is not clear from context. We call a matrix PSD, denoted by X > 0, if it is symmetric and all its
eigenvalues are non-negative. The notation X > ¥ means X — Y > 0,i.e. X — Y is PSD. The setof r x r
orthogonal matrices is denoted by O, = {R € R™" : RRT = I,}. Matrix norms, such as the spectral,
nuclear and Frobenius norms, are denoted by ||-]|, || - ||« and || - ||r, respectively.

The gradient of a scalar function f(Z) with a matrix variable Z € R™*" is an m x n matrix, whose
(i, Dtheentry is [VF(2)];,; = af (Z) for i € [m], j € [n]. Alternatively, we can view the gradient as a linear

form [Vf(2)1(G) = (Vf(2Z), G = Z” agéZ) Gy for any G € R™*". The Hessian of f(Z) can be viewed

9’f(2)
QZUBZk]
for i, k € [m], j, | € [n]. Similar to the linear form representation of the gradient, we can view the Hessian
as a bilinear form defined via [V2f(2)](G, H) = Y ikl azfazk, G;Hy, forany G, H € R™*". Yet another
9% (2)
0z;07j
the ith entry of the vectorization of Z. We will use these representations interchangeably whenever the
specific form can be inferred from context. For example, in the restricted well-conditioned assumption
(C), the Hessian is apparently viewed as an n? 2 2

as a fourth-order tensor of dimension m x n x m x n, whose (i, j, k, [)th entry is [sz Dlijri1 =

way to represent the Hessian is as an mn x mn matrix [sz(Z) lij = for i, j € [mn], where z; is

x n* matrix and the identity I is of dimension n? x n?.
For a matrix-valued function ¢ : RP*? — R™*" it is notationally easier to represent its gradient
(or Jacobian) and Hessian as multi-linear operators. For example, the gradient, as a linear operator

from R4 to R™", is defined via [VI$(DG]5 = Ve icia] —oa Gy for i € [m], j € [n]

Uk
and G € RP*Y; the Hessian, as a bilinear operator from RP*? x RP*? to R™*", is defined via
32[p (U)];i . .
[V2[¢(U)](G,H)]ij = Zkl,kQE[p],h,lze[q] %kal‘lkﬂz fori € [m],j € [n] and G,H € RP>4,

Using this notation, the Hessian of the scalar function f(Z) of the previous paragraph, which is also the
gradient of Vf(Z) : R™" — R™*" can be viewed as a linear operator from R™*" to R"*" denoted by
[VZ£(2)1(G) and satisfies ([V*f(Z2)1(G), H) = [V*f(2)|(G, H) for G,H € R™*",

2. Problem formulation

This work considers two problems: (i) the minimization of a general convex function f(X) with the
domain being positive semi-definite matrices, and (ii) the minimization of a general convex function
f(X) regularized by the matrix nuclear norm || X||, with the domain being general matrices. Let X* be
an optimal solution of (Py) or (P;) of rank r*. To develop faster and scalable algorithms, we apply
Burer—Monteiro-style parameterization [9] to the low-rank optimization variable X in (Py) and (P):

for symmetric case: X = ¢(U) := uu’,

for non-symmetric case: X = (U, V) := UV,
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14 Q.LIETAL.

where U € R™" and V € R™*" with r > r*. With the optimization variable X being parameterized, the
convex programmes are transformed into the factored problems (Fo)—(F1):

for symmetric case: minimize g(U) = f(¢(U)),
UG]RHXI‘

A
for non-symmetric case:  minimize  g(U, V) = f(¥(U, V)) + = (||U||% + ||V||,%).
UeRnxr, VeRmxr 2

Inspired by the lifting technique in constructing SDP relaxations, we refer to the variable X as the lifted
variable, and the variables U, V as the factored variables. Similar naming conventions apply to the
optimization problems, their domains and objective functions.

2.1 Consequences of the restricted well-conditioned assumption

First the restricted well-conditioned assumption reduces to (1.3) when the objective function is
quadratic. Moreover, the restricted well-conditioned assumption (C) shares a similar spirit with (1.3)

in that the operator ﬂer m [V2f(X)] preserves geometric structure for low-rank matrices:

PROPOSITION 2.1 Let f(X) satisfy the restricted well-conditioned assumption (C). Then

B—a

<
B+a

2 1o, 1
’m [V f(X)] (G, H) — (G, H) IGIFIHIF = g”G”F”H”F 2.1

for any matrices X, G, H of rank at most 2r.

Proof. We extend the argument in [11] to a general function f(X). If either G or H is zero, (2.1) holds
since both sides are zero. For non-zero G and H, we can assume ||G||r = ||H||r = 1 without loss of
generality.’ Then the assumption (C) implies

@G- HI} < [V | (G —H.G—H) < BIG - HI}.,
@G +HI} = [VF00| G+ H.G+H) < B1G+HI}.

Thus, we have

B—a
2

2[v3 0] 6.1 = (B+@) (G.1)| = === (IGIF + 1HIF) = p —a = (8 — @) [Glle| Hlr.

—_———

=2 =1

We complete the proof by dividing both sides by 8 + «:

‘ > [vr@]@.m —G.m| < EX 6ipmir < 246111 < L1611
B+ ’ = e I = g ey MRS = SR
where in the last inequality we use the assumption that 8/« < 1.5. O

5 Otherwise, we can divide both sides of the equation (2.1) by ||G||r||H|| r, and use the homogeneity to get an equivalent version
of Proposition 2.1 with G = G/||G||r and H = H/||H||f,ie. |G|r = |H|F = 1.
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 15

Another immediate consequence of this assumption is that if the original convex programme (7))
has an optimal solution X* with rank(X*) < r, then there is no other optimum of (Py) of rank less than
or equal to r:

PROPOSITION 2.2 Suppose the function f(X) satisfies the restricted well-conditioned assumption (C). Let
X* be an optimum of (Py) with rank(X*) < r. Then X* is the unique global optimum of (Py) of rank at
most r.

Proof. For the sake of a contradiction, suppose there exists another optimum X of (P) with rank(X) < r
and X # X*. We begin with the second-order Taylor expansion, which reads

1
OO0 =F (X) +(Vf (£) X = X') 4+ 5 [V (2 + (1 = 0x) | (X = X" x = x°),

for some ¢ € [0, 1]. The Karush-Kuhn-Tucker (KKT) conditions for the convex optimization problem
(Po) state that Vf(X*) = 0 and Vf(X*)X* = 0, implying that the second term in the above Taylor
expansion

(V/(X"). X = X*) = (Vf(X*).X) = 0,

since X is feasible, and hence PSD. Further, since rank(zXX* + (1 — 1)X) < rank(X) + rank(X*) < 2r
and similarly rank(X — X*) < 2r < 4r, then from the restricted well-conditioned assumption (C)
we have

[V ] (x = x".x = x*) = X = X[ .

Combining all, we obtain a contradiction when X # X*:
* 1 * |2 1 « ]2
fOO =z X + S X —Xx*| 5 = f00 + 3 X = x*||7 > FX),

where the second inequality follows from the optimality of X* and the third inequality holds for any
X # X~ O

At a high level, the proof essentially depends on the restricted strongly convexity of the objective
function of the convex programme (7)), which is guaranteed by the restricted well-conditioned
assumption (C) on f(X). The similar argument holds for (P;) by noting that the sum of a (restricted)
strongly convex function and a standard convex function is still (restricted) strongly convex. However,
showing this requires a slightly more complicated argument due to the non-smoothness of || X ||, around
those non-singular matrices. Mainly, we need to use the concept of subgradient.

PRrROPOSITION 2.3 Suppose the function f(X) satisfies the restricted well-conditioned assumption (C). Let
X* be a global optimum of (P;) with rank(X*) < r. Then X* is the unique global optimum of (P;) of
rank at most r.

Proof. For the sake of contradiction, suppose that there exists another optimum X of (P;) with
rank(X) < r and X # X*. We begin with the second-order Taylor expansion of f(X), which reads

1
FOO =f(X*)+(Vf(X*). X -X*) + 5 [sz(tX* +(1— t)x)] (X —X*, X — X*)
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16 Q.LIETAL.
for some ¢ € [0, 1]. From the convexity of || X||, for any D € 9 || X*|,, we also have
IXIls > 1IX* [l + (D, X — X*).

Combining both, we obtain

£+ XL S f (X*) -+ |x*, +(Vf (X*) + 1D, X — X*)

+ 5 [P+ a = 0x)] (x - xx - x)

VO
N =

FO) 42 [+ 3 [P+ - 00)] (- XX - )

V@

* * 1 * 2
£ 1R+ g -

l®

1
SO+ MIX]Ls + zo [X = x* 7
2 100 + AIX].,

where (1) holds for any D € 9 || X*||,.. For @), we use fact that 9f; + df> = 9 (f1 + f>) for any convex
functions f1, f2, to obtain that Vf(X*) + A9||X*|l« = 3(f(X*) + A||X*||+), which includes 0 since X* is
a global optimum of (P;). Therefore, ) follows by choosing D € 9|/ X*||. such that Vf(X*) + 1D = 0.
(® uses the restricted well-conditioned assumption (C) as rank(zX* 4+ (1 — 1)X) < 2r and rank(X —
X*) < 4r. (® comes from the assumption that both X and X* are global optimal solutions of (7).
(® uses the assumption that X # X*. O

3. Understanding the factored landscapes for PSD matrices

In the convex programme (Pp), we minimize a convex function f(X) over the PSD cone. Let X* be an
optimal solution of (Py) of rank r*. We re-parameterize the low-rank PSD variable X as

X=¢U)=UU",

where U € R™" with r > r* is a rectangular, matrix square root of X. After this parameterization, the
convex programme is transformed into the factored problem (J() whose objective function is g(U) =

f@)).

3.1 Transforming the landscape for PSD matrices

Our primary interest is to understand how the landscape of the lifted objective function f(X) is
transformed by the factored parameterization ¢(U) = UU', particularly how its global optimum
is mapped to the factored space, how other types of critical points are introduced and what their
properties are.

We show that if the function f(X) is restricted well-conditioned, then each critical point of the
factored objective function g(U) in (F) either corresponds to the low-rank global solution of the original
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 17

convex programme (P) or is a strict saddle where the Hessian V2g(U) has a strictly negative eigenvalue.
This implies that the factored objective function g(U) satisfies the strict saddle property.

THEOREM 3.1 (Transforming the landscape for PSD matrices) Suppose the function f(X) in (Pp) is
twice continuously differentiable and is restricted well-conditioned assumption (C). Assume X* is an
optimal solution of (Pp) with rank(X*) = r*. Set r > r* in (Fy). Let U be any critical point of g(U)
satisfying Vg(U) = 0. Then U either corresponds to a square-root factor of X*, i.e.

X*=uu',

or is a strict saddle of the factored problem (F,). More precisely, let U* € R™*" such that X* = U*U*T
and set D = U — U*R with R = argming. g, U — U*R||12p, then the curvature of V2g(U) along D is
strictly negative:

—0.24 min {p(U)%, p(X*)} |D||Z  when r > r*;
[Vzg(U)] (D, D) < { —0.19ap(X*)|ID|| when r = r*;
—0.24ap(X*)|ID|1% when U = 0
with p(-) denoting the smallest non-zero singular value of its argument. This further implies
—0.24a min {p(U)%, p(X*)} when r > r*;
Aomin (Vzg(U)) <1 -0.19apx*) when r = r*;
—0.240p(X*) when U = 0.

Several remarks follow. First, the matrix D is the direction from the saddle point U to its closest
globally optimal factor U*R of the same dimension as U. Secondly, our result covers both over-
parameterization where r > r* and exact parameterization where » = r*. Thirdly, we can recover
the rank-r* global minimizer X* of (Pp) by running local-search algorithms on the factored function
g(U) if we know an upper bound on the rank r*. In particular, to apply the results in [32] where the
first-order algorithms are proved to escape all the strict saddles, aside from the strict saddle property,
one needs g(U) to have a Lipschitz continuous gradient, i.e. |Vg(U) — Vg(V)|lr < L ||U — V||F or
IV2g(U)|| < L. for some positive constant L. (also known as the Lipschitz constant). As indicated by
the expression of V2g(U) in (3.5), it is possible that one cannot find such a constant L. for the whole
space. Similar to [30] which considers the low-rank matrix factorization problem, suppose the local-
search algorithm starts at Uy and sequentially decreases the objective value (which is true as long as the
algorithm obeys certain sufficient decrease property [S5]). Then it is adequate to focus on the sublevel
setof g

Ly, = {U: g(U) < (o)}, (3.1
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18 Q.LIETAL.

and show that g has a Lipschitz gradient on Ly,. This is formally established in Proposition 3.2, whose
proof is given in Appendix A.

ProposiTION 3.2 Under the same setting as in Theorem 3.1, for any initial point Up, g(U) on Ly,
defined in (3.1) has a Lipschitz continuous gradient with the Lipschitz constant

2

V2 (F (UoU]) —rx)
2(V2=1) p(?)

L= 213\/ (UoUg) = F(X*) + 2V X)) Ip +48 [ 1U*1IF +

where p(-) denotes the smallest non-zero singular value of its argument.

3.2 Metrics in the lifted and factored spaces

Before continuing this geometry-based argument, it is essential to have a good understanding of the
domain of the factored problem and establish a metric for this domain. Since for any U, ¢ (U) = ¢ (UR)
where R € O, the domain of the factored objective function g(U) is stratified into equivalence classes
and can be viewed as a quotient manifold [1]. The matrices in each of these equivalence classes differ by
an orthogonal transformation (not necessarily unique when the rank of U is less than ). One implication
is that, when working in the factored space, we should consider all factorizations of X*:

.A* — {U* c Rnxr . ¢(U*) =X*}.

A second implication is that when considering the distance between two points Uy and U», one should
use the distance between their corresponding equivalence classes:

d(U1,Uz) =  min __ ||URy — UsRz||F = min ||[U; — UsR||F. (3.2)
R €0, Ry€0), ReO,
Under this notation, d(U, U*) = Mmingeo, HU — U*RH 7 Tepresents the distance between the class

containing a critical point U € R"*" and the optimal factor class .A*. The second minimization problem
in the definition (3.2) is known as the orthogonal Procrustes problem, where the global optimum R is
characterized by the following lemma:

LeEMMA 3.3 [29] An optimal solution for the orthogonal Procrustes problem

R = argmin ” U, — UZRHIZ,, = argmax(Ul, U21~€>
Re@, Re@,

is given by R = LP', where the orthogonal matrices L, P € R"™ " are defined via the singular value
decomposition of U;Ul = LYPT. Moreover, we have UIFUZR = (U,R)"U; > 0 and (U, ULR) =
1} Ual..

For any two matrices Uj, Uy € R™*", the following lemma relates the distance || Uj UlT — U U2T || F
in the lifted space to the distance d(U, U>) in the factored space. The proof is deferred to Appendix B.
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 19

LEMMA 3.4 Assume that Uy, U; € R™". Then
T T .
|07 = vsUF | = min {pw), p(U }dwr, U,

In particular, when one matrix is of full rank, we have a similar but tighter result to relate these two
distances.

LEMMA 3.5 [53, Lemma 5.4] Assume that U, Uy € R™*" and rank(U;) = r. Then
|07 - vaU] || = 272 = DpWndwL, ).

3.3 Proofidea: connecting the optimality conditions

The proof is inspired by connecting the optimality conditions for the two programmes (Pp) and (Fo).
First of all, as the critical points of the convex optimization problem (Py), they are global optima and
are characterized by the necessary and sufficient KKT conditions [8]

VF(X*) = 0, VF(X*)X* = 0,X* > 0. (3.3)

The factored optimization problem (Fp) is unconstrained, with the critical points being specified by the
zero gradient condition

Vg(U) =2Vf(¢(U))U = 0. (3.4)
To classify the critical points of (F(), we compute the Hessian quadratic form [V2 g(U)I(D, D) as
[Ve@)] @. D) =2(1(0)). DDT) + [V (¢))| (DUT + UDT.DUT +UDT).  (3.5)

Roughly speaking, the Hessian quadratic form has two terms—the first term involves the gradient of
S(X) and the Hessian of ¢ (U), while the second term involves the Hessian of f(X) and the gradient
of ¢(U). Since ¢(U 4+ D) = ¢(U) + UDT +DUT + DDT, the gradient of ¢ is the linear operator
[Vé(U)|(D) = UDT + DU and the Hessian bilinear operator applies as %[V2¢>(U)](D, D) =DDT.
Note in (3.5) the second quadratic form is always non-negative since V2f > 0 due to the convexity of f.

For any critical point U of g(U), the corresponding lifted variable X := UU is PSD and satisfies
Vf(X)X = 0. On one hand, if X further satisfies Vf(X) > 0, then in view of the KKT conditions (3.3)
and noting rank(X) = rank(U) < r, we must have X = X*, the global optimum of (Py). On the other
hand, if X # X*, implying Vf(X) # 0 due to the necessity of (3.3), then additional critical points can
be introduced into the factored space. Fortunately, Vf(X) % 0 also implies that the first quadratic form
in (3.5) might be negative for a properly chosen direction D. To sum up, the critical points of g(U) can
be classified into two categories: the global optima in the optimal factor set A* with VFA(UUT) = 0 and
those with VF(UUT) % 0. For the latter case, by choosing a proper direction D, we will argue that the
Hessian quadratic form (3.5) has a strictly negative eigenvalue, and hence moving in the direction of D
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L/i(

FIG. 2. The matrix D = U — U*R is the direction from the critical point U to its nearest optimal factor U*R, whose norm
|U— U*R||F defines the distance d(U, U*). Here, U is closer to —U* than U*, and the direction from U to —U* has more negative
curvature compared to the direction from U to U*.

in a short distance will decrease the value of g(U), implying that they are strict saddles and are not local
minima.

We argue that a good choice of D is the direction from the current U to its closest point in the optimal
factor set A*. Formally, D = U — U*R where R = argming.gq, [|U — U*R||F is the optimal rotation
for the orthogonal Procrustes problem. As illustrated in Fig. 2 where we have two global solutions U*
and —U* and U is closer to —U*, the direction from U to —U* has more negative curvature compared
to the direction from U to U*.

Plugging this choice of D into the first term of (3.5), we simplify it as

<Vf(UUT),DDT> = <Vf(UUT), UUT —URUT — UWUR)T + UUT)

vrwuh, ururt
< )

= (vrwun,vurT - uuT), (3.6)

where both the second line and last line follow from the critical point property Vf(UU U = 0. To
gain some intuition on why (3.6) is negative while the second term in (3.5) remains small, we consider
a simple example: the matrix PCA problem.

Matrix PCA Problem. Consider the PCA problem for symmetric PSD matrices

1
minimize foca (X) := > |X — X*|7. subject to X = 0, (3.7
XeRan 2
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 21

where X* is a symmetric PSD matrix of rank r*. Trivially, the optimal solution is X = X*. Now consider
the factored problem

2

ce . L Ty 1 T * x|
minimize g(U) := fpcaA(UU ') = - |UU —U'U
UcRnxr 2

where U* € R™*" satisfies ¢ (U*) = X*. Our goal is to show that any critical point U such that X :=
UUT # X* is a strict saddle.

Controlling the first term. Since Vfpca (X) = X — X*, by (3.6), the first term of [V2g(U)](D, D) in
(3.5) becomes

2 <prCA(X), DDT> = 2(Vfpca(X), X* — X) = 2(X — X", X* — X) = 2 | X — x*| %, (3.8)

which is strictly negative when X # X*.

Controlling the second term. We show that the second term [sz (@ (U))1(DU T+UuD", DU T—|—UDT)
vanishes by showing that DUT = 0 (hence, UDT = 0). For this purpose, let X* = Qdiag(k)Q—r =
er;l )Ll-q,-ql.T be the eigenvalue decomposition of X*, where Q = [q1 qr*] e R™" has ortho-
normal columns and A € R”" is composed of positive entries. Similarly, let ¢ (U) = Vdiag(u)V' =

er;l /LiV,'VlT be the eigenvalue decomposition of ¢ (U), where ¥ = rank(U). The critical point U
satisfies —Vg(U) = 2(X* — ¢(U))U = 0, implying that

r/
0=| X — ZﬂiViV,T vj =X*Vj—MjVj,j= 1,...,r.
i=1

This means (i, v;) forms an eigenvalue—eigenvector pair of X* for each j =1, ..., r’. Consequently,

M =)u,y and vj =q,‘j,j= 1,...,7.

Hence, ¢ (U) = Z]r;l )Liqu-jquT, = Z]r;l Ajsjqjqu. Here s; is equal to either O or 1, indicating
which of the eigenvalue—eigenvector pair (Aj,q j) appears in the decomposition of ¢ (U). Without
loss of generality, we can choose U* = Q[diag(«/x) 0]. Then U = Q[diag(«/x Os) 0] VT for
some orthonormal matrix V € R™" and s = [s1 s,*], where the symbol © means pointwise
multiplication. By Lemma 3.3, we obtain R = V' Plugging these into DUT = UU" — U*RU" gives
DUT =0.

Combining the two. Hence, [Vzg(U)](D, D) is simply determined by its first term
2
[Vzg(U)] (D, D) = —2 H vuT — ururT ‘F

< —2min | p @)%, p(U*)*} IDI

= —2min {p(@U)), p(X*)} DI}
= —2p(X")||D|}.
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where the second line follows from Lemma 3.4 and the last line follows from the fact that all the
eigenvalues of UUT come from those of X*. Finally, we obtain the desired strict saddle property
of g(U):

i (V22(1)) = =20(X").

This simple example is ideal in several ways, particularly the gradient Vf (¢ (U)) = ¢ (U) — ¢ (U*),
which directly establishes the negativity of the first term in (3.5), and by choosing D = U — U*R and
using DUT = 0, the second term vanishes. Neither of these simplifications hold for general objective
functions f(X). However, the example does suggest that the direction D = U — U*R is a good choice
to show [V2g(U)1(D,D) < —t ||D||%f0r some 7 > 0. For a formal proof, we will also use the direction
D = U — U*R to show that those critical points U not corresponding to X* have a negative directional
curvature for the general factored objective function g(U).

3.4 A formal proof of Theorem 3

Proof Outline. We present a formal proof of Theorem 3.4 in this section. The main argument involves
showing each critical point U of g(U) either corresponds to the optimal solution X* or its Hessian matrix
V2g(U) has at least one strictly negative eigenvalue. Inspired by the discussions in Section 3.3, we will
use the direction D = U — U*R and show that the Hessian V?g(U) has a strictly negative directional
curvature in the direction of D, i.e. [Vzg(U)](D,D) < —r||D||%, for some 7 > 0.

Supporting Lemmas. We first list two lemmas. The first lemma separates ||(U — Z)U T ||129 into two
terms: || vut —zz" ||12p and H(UUT - 7ZHooT" ||f, with QQT being the projection matrix onto

Range(U). It is crucial for the first term || vu' —zz" ||12p to have a small coefficient. In the second
lemma, we will further control the second term as a consequence of U being a critical point. The proof
of Lemma 3.6 is given in Appendix C.

LEMMA 3.6 Let U and Z be any two matrices in R"*” such that U'Z = Z" U is PSD. Assume that Q is
an orthogonal matrix whose columns span Range(U). Then
T T T 1 H T 5T T H2
H(U U H HUU 7z “F+(3+—2ﬁ_2> wuT -zz100" .

We remark that Lemma 3.6 is a strengthened version of [5, Lemma 4.4]. While the result there
requires (i) U to be a critical point of the factored objective function g(U), and (ii) Z to be an optimal
factor in A* that is closest to U, i.e. Z = U*R with U* € A* and R = argming.ger_y |W — W*R||F.
Lemma 3.6 removes these assumptions and requires only U' Z = ZT U being PSD.

Next, we control the distance between UU T and the global solution X* when U is a critical point of
the factored objective function g(U), i.e. Vg(U) = 0. The proof, given in Appendix D, relies on writing
VX)) = Vf(X*) + fol [VZf(tX + (1 — HX*)](X — X*) dr and applying Proposition 2.1.

LemmMA 3.7 (Upper Bound on || wu't —uvrurHooT ”12,) Suppose the objective function f(X) in (Pp)
is twice continuously differentiable and satisfies the restricted well-conditioned assumption (C). Further,
let U be any critical point of (F() and Q be the orthonormal basis spanning Range(U). Then

’

H(UUT v r oo H ’UUT UrurT

<fvel
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NON-CONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 23

Proof of Theorem 3.1 Along the same lines as in the matrix PCA example, it suffices to find a direction
D to produce a strictly negative curvature for each critical point U not corresponding to X*. We choose
D = U — U*R where R = argming.gg7_y, [|W — W*R||p. Then

[ve)] 0. D)
- 2<Vf(X), DDT> [v f(X)] (DUT +uD",DUT + UDT) By Eq. (3.5)
= 2(VF(X), X* — [v f(X)] (DUT +uD", DUT + UDT> By Eq. (3.4)

2(VF(X) — VF(X*), X* — X)+ [sz(X)] (DUT +uD", DUT + UDT). By Eq. (3.3)

1§81

I,

In the following, we will bound IT; and I, respectively.

Bounding IT;.

1
M = =2(Vf(X*) — Vf(X), X* — X) o —2</0 [v2f(tx +1 - t)X*)] X*—-X)dt, X* — X>

1
_ _2f [sz(tX +(1— t)X*)] X* — X, X* —X) dt
0

®

< —2a|IX* - X|7,

where (1) follows from the Taylor’s Theorem for vector-valued functions [39, Eq. (2.5) in Theorem 2.1],
and (@ follows from the restricted strong convexity assumption (C) since the PSD matrix tX + (1 — 1) X*
has rank of at most 2r and rank(X* — X) < 4r.

Bounding IT,.

M, = [sz(X)] (DUT +uDp", DUT + UDT)

2
<B HDUT +uDT HF By ()
2
<alou]:
[ 1 * 112 1 *
<48 | gIX = X1 + (3+m> H(x X*)00 H } By Lemma 3.6
<4p l-i— ( ! ) (¢~ a)z IX — x*||% By Lemma 3.7
8 2V2-2) (B+a)
< 1760 |X* = X| . By B/a < 1.5
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Combining the two. Hence,
My + My < —0.24e | X* — X 7.

Then, we relate the lifted distance || X* — X ||12F with the factored distance || U— U"R”}Zp using Lemma 3.4
when r > r*, and Lemma 3.5 when r = r*, respectively:

Whenr > r* : [Vzg(U)] (D, D) < —0.24a min [p(U)z, 0 (U*)Q] D% By Lemma 3.4
— —0.24a min [p(U)2, o (X*)} IDI3.
When r = r* - [Vzg(U)] (D, D) < —0.19p (U*)* |DII> By Lemma 3.5

= —0.19p (X*) | DI 7.
For the special case where U = 0, we have

(V4] . D) = —024a |0 - x|

IA

—0.24a | U U*T |2

IA

—0.24ap(U? |U*]%

—0.2400 (X*)|IDI[7

where the last second line follows from

” UrurT ”12: _ Zai4(U*) _ Z Gl-4(U*) > mip OJiZ(U*) Z sz (U*) :pz(U*) ” U*| i,
i i:0:(U*) 0 Lai(U# Jj:0j(U*)#0

and the last line follows from D = 0 — U*R = —U*R when U = 0. Here o;(-) denotes the ith largest
singular value of its argument. g

4. Understanding the factored landscapes for general non-squared matrices

In this section, we will study the second convex programme (71): the minimization of a general convex
function f(X) regularized by the matrix nuclear norm || X||, with the domain being general matrices.
Since the matrix nuclear norm || X||, appears in the objective function, the standard convex solvers
or even faster tailored ones require performing singular value decomposition in each iteration, which
severely limits the efficiency and scalability of the convex programme. Motivated by this, we will instead
solve its Burer—Monteiro re-parameterized counterpart.

Downloaded from https://academic.oup.com/imaiai/advance-article-abstract/doi/10.1093/imaiai/iay003/4951409
by guest
on 29 June 2018
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4.1 Burer—Monteiro reformulation of the nuclear norm regularization

Recall the second problem is the nuclear norm regularization (P):

minimize f(X) + 1| X||x where A > 0. P1)

XeRnx

This convex programme has an equivalent SDP formulation [43, p. 8]:

A
minimize f(X) + = (trace(®) + trace(¥)) subject to q?r X > 0. 4.1)
XER"X'",Q)GR"X",WGR’"X’" 2 X lI/

When the PSD constraint is implicitly enforced as the following equality constraint

|
2 3L xeomomweans

we obtain the Burer—Monteiro factored reformulation (F7):

L. A
minimize g(U,V) = f(UVT) + = (||U||% + ||V||1%) . (FD)
UeRan’ VeRmxl 2

The factored formulation (F;) can potentially solve the computational issue of (P;) in two major
respects: (i) avoiding expensive SVDs by replacing the nuclear norm || X||, with the squared term
(% ||12F + ||V||12p) /2; and (ii) a substantial reduction in the number of the optimization variables from
nmto (n+ m)r.

4.2 Transforming the landscape for general non-square matrices

Our primary interest is to understand how the landscape of the lifted objective function f(X) + A || X]|«
is transformed by the factored parameterization v (U, V) = UV ". The main contribution of this part is
establishing that under the restricted well-conditioned assumption of the convex loss function f(X), the
factored formulation (/) has no spurious local minima and satisfies the strict saddle property.

THEOREM 4.1 (Transforming the landscape for general non-square matrices) Suppose the function f(X)
satisfies the restricted well-conditioned property (C). Assume that X* of rank #* is an optimal solution
of (P1) where A > 0. Set r > r* in the factored programme (). Let (U, V) be any critical point of
g(U, V) satistying Vg(U, V) = 0. Then (U, V) either corresponds to a factorization of X*, i.e.

X*=uv',

Downloaded from https://academic.oup.com/imaiai/advance-article-abstract/doi/10.1093/imaiai/iay003/4951409

by guest
on 29 June 2018



26 Q.LIETAL.

or is a strict saddle of the factored problem

—0.12¢ min {0.5,02(W), ,o(X*)} when r > r*;
Amin (V22U V) = 1 ~0.099ap (x*) when r = r*:
—0.120p(X™) when W = 0,

where W := [UT VT]T and p(W) is the smallest non-zero singular value of W.

Theorem 4.1 ensures that many local-search algorithms® when applied for solving the factored
programme (/) can escape from all the saddle points and converge to a global solution that corresponds
to X*. Several remarks follow.

The Non-triviality of Extending the PSD Case to the Non-symmetric Case. Although the general-
ization from the PSD case might not seem technically challenging at first sight, we must overcome
several technical difficulties to prove this main theorem. We make a few other technical contributions
in the process. In fact, the non-triviality of extending to the non-symmetric case is also highlighted in
[36,42,53]. The major technique difficulty to complete such an extension is the ambiguity issue existed
in the non-symmetric case: uvT = wH/ )T for any non-zero ¢. This tends to make the factored
quadratic objective function badly conditioned, especially when ¢ is very large or small. To prevent
this from happening, a popular strategy utilized to adapt the result for the symmetric case to the non-
symmetric case is to introduce an additional balancing regularization to ensure that U and V have equal
energy [36,42,53]. Sometimes these additional regularizations are quite complicated (see Eq. (13)-(15)
in [51]). Instead, we find for nuclear norm regularized problems, the critical points are automatically
balanced even without these additional complex balancing regularizations (see Section 4.4 for details).
In addition, by connecting the optimality conditions of the convex programme (P;) and the factored
programme (F7), we dramatically simplify the proof argument, making the relationship between the
original convex problem and the factored programme more transparent.

Proof Sketch of Theorem 4.1. We try to understand how the parameterization X = v (U, V) transforms
the geometric structures of the convex objective function f(X) by categorizing the critical points of the
non-convex factored function g(U, V). In particular, we will illustrate how the globally optimal solution
of the convex programme is transformed in the domain of g(U, V). Furthermore, we will explore the
properties of the additional critical points introduced by the parameterization and find a way of utilizing
these properties to prove the strict saddle property. For those purposes, the optimality conditions for the
two programmes (7)) and (F) will be compared. O

4.3 Optimality condition for the convex programme

As an unconstrained convex optimization, all critical points of (P;) are global optima, and are
characterized by the necessary and sufficient KKT condition [8]:

V(X*) € =A0lIX* ||, (4.3)

6 The Lipschitz gradient of g at any of its sublevel set can be obtained with similar approach for Proposition 3.2.
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where 9 || X* ||« denotes the subdifferential (the set of subgradient) of the nuclear norm || X ||, evaluated at
X*. The subdifferential of the matrix nuclear norm is defined by

3lIX|lx = {D € R™™:||Y|ls = [IX]l« + (Y = X, D), all Y € R™"}.

We have a more explicit characterization of the subdifferential of the nuclear norm using the singular
value decomposition. More specifically, suppose X = PXQ' is the (compact) singular value
decomposition of X € R with P € R™", Q € R™*" and X being an r x r diagonal matrix. Then the
subdifferential of the matrix nuclear norm at X is given by [43, Equation (2.9)]

Xl ={PO" +E:PTE=0,EQ=0,|E| <1}.

Combining this representation of the subdifferential and the KKT condition (4.3) yields an equivalent
expression for the optimality condition

VI(X")Q* = —AP",
VX TP = —10", (4.4)
[vrexen | <
where we assume the compact SVD of X* is given by
X* =P*2*Q"" with P* € R™, Q" e R™, T* e R

Since r > r* in the factored problem (F;), to match the dimensions, we define the optimal factors
U* e R, V* € R™ forany R € O, as

Ut = p* [«/2* orﬁx(,_,*)] R,

4.5)
Vs = o* [Jz_ om(,_,,)] R.

Consequently, with the optimal factors U*, V* defined in (4.5), we can rewrite the optimal condition
(4.4) as

VF(X*)V* = —AU*,
VX)) TU* = —AV?, (4.6)
[vroe] < 2.

Stacking U*, V* as W* = [KV’] and defining

M VFX)

2X) = |:Vf(X)T o i| for all X 4.7
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yield a more concise form of the optimality condition:

2(X*)W* =0,
4.8)
[wroe] <2

4.4  Characterizing the critical points of the factored programme

To begin with, the gradient of g(U, V) can be computed and rearranged as

_ -Vhfg(l]7‘/)

VeV =1 gy ew, V>]
_ [ vfwvhHv +aU
[ VAWUVTHTU+ AV

[ au vivH][u
| VrovhHT Al 1%

(4.9)

_" |V
= 2V )|:V:|’

where the last equality follows from the definition (4.7) of E(-). Therefore, all critical points of g(U, V)
can be characterized by the following set:

X = {(U, V): B(UVT) [ﬂ = 0}.

We will see that any critical point (U, V) € X forms a balanced pair, which is defined as follows:

DEFINITION 4.2 (Balanced pairs) We call (U, V) is a balanced pair if the Gram matrices of U and V are
the same: U'U — VTV = 0. All the balanced pairs form the balanced set, denoted by £ := {(U, V) :
Ulu—-viv =0}

By Definition 4.2, to show that each critical point forms a balanced pair, we rely on the following
fact:

W= [U} W= [_UV} with (U,V) eE W W=WW=UTU-VTV=0. (4.10)

Now we are ready to relate the critical points and balanced pairs; the proof of which is given in
Appendix E.

PROPOSITION 4.3 Any critical point (U, V) € X forms a balanced pair in £.
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4.4.1 The properties of the balanced set In this part, we introduce some important properties of the
balanced set £. These properties basically compare the on-diagonal-block energy and the off-diagonal-
block energy for a certain block matrix. Hence, it is necessary to introduce two operators defined on

block matrices:
D Aip A\ . [An 0
M\ [A21 A2|) T L0 A’
Pt A Ay _| 0 Ap
\|A An|) T A 0 |
for any matrices Aj; € R, A, € R™ Ay € R™", Ay € R™™,

According to the definitions of Py, and Pogr in (4.11), when P, and Pogr are acting on the product
of two block matrices W W2T ,

P (WiW] ) = P ([ U105 UVETY Z[0UT 0 T MW £,
on 2 *\|viuy wivy) 0 wv] 3 ,

4.11)

(4.12)

T T Al I VAR VAR VA TAY
Poff(WlW;)zpon([Ule U1V2j|>=|: 0 U1V2:| —1 2 ! 2.

Viuy Vivy viu; 0 2

Here, to simplify the notations, for any Uy, U, € R"*" and Vi, V, € R™*", we define

U =~ U U2 =~ | U
el me[u) wef) we[)

Now, we are ready to present the properties regarding the set £ in Lemma 4.4 and Lemma 4.5, whose
proofs are given in Appendix F and Appendix G, respectively.

LEMMA 4.4 Let W = [UT VT]—r with (U,V) € . Then for every D = [D], D?/—]T of proper
dimension, we have

[Putow ], = [Pasow D

Lemva 45 Let Wi = [U] V] ]T, Wa =[U] V] with (U1, V1), (Us, V2) € E. Then

4.5 Proofidea: connecting the optimality conditions

2 2
Pon (W1 W] - WzWJ)HF < [P (wiw] = wow]) HF

First observe that each (U*, V*) in (4.5) is a global optimum for the factored programme (we prove this
in Appendix H):

PROPOSITION 4.6 Any (U*, V*) in (4.5) is a global optimum of the factored programme (F):

g(U*, V") < g(U,V),forall U ¢ R™",V ¢ R™,
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However, due to non-convexity, only characterizing the global optima is not enough for the factored
programme to achieve the global convergence by many local-search algorithms. One should also
eliminate the possibility of the existence of spurious local minima or degenerate saddles. For this
purpose, we focus on the critical point set X and observe that any critical point (U,V) € X of the
factored problem satisfies the first part of the optimality condition (4.8):

EXOW =0

by constructing W = [UT V']T and X = UV, If the critical point (U, V) additionally satisfies
|VF(UVT)| < A, then it corresponds to the global optimum X* = UV .

Therefore, it remains to study the additional critical points (which are introduced by the para-
meterization X = ¥ (U, V)) that violate |[Vf(UVT)|| <. In fact, we intend to show the following:
for any critical point (U, V), if X* # UV', we can find a direction D, in which the Hessian
V2g(U,V) has a strictly negative curvature [V2g(U,V)I(D, D) < —r||D“I2: for some 7 > 0. Hence,
every critical point (U, V) either corresponds to the global optimum X* or is a strict saddle
point.

To gain more intuition, we take a closer look at the directional curvature of g(U, V) in some direction
p=[p] DJ]":

[Vzg(U, V)] (D, D) = <E(X), DDT> + [sz(X)] (DUVT +UDY, DyVT + UDJ) L 413)

where the second term is always non-negative by the convexity of f. The sign of the first term
(E(X),DDT) depends on the positive semi-definiteness of E (X), which is related to the boundedness
condition ||Vf(X)| < A through the Schur complement theorem [8, A.5.5]:

SX) =00 - %Vf(X)TVf(X) =0 & VOl <

Equivalently, whenever |Vf(X)|| > A, we have E(X) # 0. Therefore, for those non-globally optimal
critical points (U, V), it is possible to find a direction D such that the first term (E (X), DDT)is strictly
negative. Inspired by the weighted PCA example, we choose D as the direction from the critical point

W= [U T VT]T to the nearest globally optimal factor W*R with W* = [U*—r V*T]T, ie.
D =W — W*R,

where R = argming.ge7_, || W—W*R H p- We will see that with this particular D, the first term of (4.13)
will be strictly negative while the second term retains small.

4.6 A formal proof of Theorem 4.1

The main argument involves choosing D as the direction from W = [UT VT]T to its nearest
optimal factor: D= W—W*R with R = argming.ge7_y [|[W — W*R| F, and showing that the Hessian
V2g(U,V) has a strictly negative curvature in the direction of D whenever W # W*. To that
end, we first introduce the following lemma (with its proof in Appendix I) connecting the distance
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|| uvl — x* ||F and the distance H(WWT —WwHoo" ||F (where QQ is an orthogonal projector
onto the Range(W)).

LemMA 4.7 Suppose the function f(X) in (P) is restricted well-conditioned (C). Let W = [UT VT]T
with (U,V) € X, W* = [U*—r V’*T]T correspond to the global optimum of (P;) and QQ" be the
orthogonal projector onto Range(W). Then

| (wwT —wwT) 00T < Z%IIUVT — X

Proof of Theorem 4.1 Let D = W — W*R with R = argming.ge7_y, |[W — W*R||r. Then

(Ve 1] 0.0)

(200,007 + [¥270)] (BuV™ + 0D7, Dy + 0]

(500w W —ww) + [72700] (DuVT + UDg, VT + Uy

=00 -2 (x). wwT —wwT )+ [v30] (DovT + U] DuvT + DY)
<

=[ Al Vf(X):|_|: Al Vf(X*)] W*W*T_WWT>

VEX)T Al VEXHT Al

+ [sz(X)] (DUVT +UDY, DyVT + UDE)

® <[g Jo [V2F(x* +1x SO - X) dt] T WWT>

+ [sz(X)] (DUVT +UD|,DyV'" + Upg)
1
=— /0 [VZf(X*+ X - x*))](X XX — X*) dr+ [v2f(x)] (DUVT +UDY,DyVT + UDJ),

where (@ follows from Vg(U,V) = E(X)W = 0 and (4.9). For ), we note that (E(X*), W*W*T —
WWT) < 0since E(X*)W* = 0 in (4.8) and E(X*) > 0 by the optimality condition. For 3, we first
use x = (fol [VZF(X* 4+ 1(X — X*)](X — X*) dt)T for convenience and then it follows from the Taylor’s
Theorem for vector-valued functions [39, Eq. (2.5) in Theorem 2.1]:

1

VF(X) — Vf (X*) = /0 [V (X 4 10x = X) | (X = x°) a.
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Now, we continue the argument:
[V2sw.v] @.)
1
< —2/ [ V27 (X 41 (X = X)) ] (X = X, X = X*) dr
0
+ [sz(X)] (DUVT +UDY, DyVT + UDJ)

2 u|xt —x|24p [DovT +up] Hi

® 2 2 2
= —050 |[ww —wwT| 428 (HDUVT |+ |voy HF>
® T — T|?
© _05a HWW —ww ‘F+/3HDW HF
@ B—a ? T T2
< | —0.50 + B/8 +4.2088 <—> HWW Wt ‘
B+ F
2
< —0.06x H wwT — wewT ’F
—0.060 min { p*(W), p*>(W*)} IDII%, By Lemma 3.4 when r > r*
@ _ 2 * 2 ok
< 0.0495p (W )||D||F, By Lemma 3.5 when r = r
—0.060p%(W*)|ID|1%, when W = 0,

where (3) uses the restricted well-conditioned assumption (C) since rank(X* + t#(X — X*)) < 2r,
rank(X — X*) < 4r and rank(DyV' + UD]) < 4r. ® comes from Lemma 4.5 and the fact

||x + y||i. < 2 <||x||12, + ||y“12,,) (© follows from Lemma 4.4. () first uses Lemma 3.6 to bound

||DW—r ||12r = ||(W — WRWT ||12r since W W* > 0 and then uses Lemma 4.7 to further bound

H (W*—=W)QQ" Hi (® holds when 8/« < 1.5. (&) uses the similar argument as in the proof of Theorem
3.1 to relate the lifted distance and factored distance. Particularly, three possible cases are considered:
(1) r > r*, (il) r = r* and (iii) W = 0. We apply Lemma 3.4 to Case (i) and Lemma 3.5 to Case (ii). For
the third case that W = 0, we obtain from (s) that

[Vzg(U, V)] (D, D) < —0.06 H wrw*T ‘i < —0.06ap (W*)? [W*|2 = —0.06ap (W*)* | D|13.

where the last equality follows from D = 0 — W*R = —W*R because W = 0.
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The final result follows from the definition of U*, V* in (4.5):

- [o B [

which implies oy (W*) = /20, (X*). [l

5. Conclusion

In this work, we considered two popular minimization problems: the minimization of a general convex
function f(X) with the domain being positive semi-definite matrices and the minimization of a general
convex function f(X) regularized by the matrix nuclear norm | X||,, with the domain being general
matrices. To improve the computational efficiency, we applied the Burer—Monteiro re-parameterization
and showed that, as long as the convex function f(X) is (restricted) well-conditioned, the resulting
factored problems have the following properties: each critical point either corresponds to a global
optimum of the original convex programmes or is a strict saddle, where the Hessian matrix has a strictly
negative eigenvalue. Such a benign landscape then allows many iterative optimization methods to escape
from all the saddle points and converge to a global optimum with even random initializations.
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Appendix A. Proof of Proposition 3.2

To that end, we first show that for any U € Ly, ||U||r is upper bounded. Let X = UU T and consider
the following second-order Taylor expansion of f(X):

1
fX) =f(X*)+(Vf (X)X - X*)+ %/ [sz (X" + (1 - z)x)] (X—X"X—-X) dt
0

* 1 ! 2 * * *
> f( )+5/0 [Vf(tX +(1—I)X)](X—X,X—X)dt

* (o4 *
= () + % - x 2.

which implies that
2

12'? =a (f (UUT) —f( *)> < 5 (f (UoUoT) —f( *)) (A1)

H vuT — x*
o

with the second inequality following from the assumption U € Ly,. Thus, we have

V2 (UoUg) — £ (x0)
2(f— 1>,O(U*) '

JouT —x*| .
< U+

WUlF < |U*||p+d (U U*) < U] +
F d 2(V2=1) p W)

(A2)
Now we are ready to show the Lipschitz gradient for g at L,:
2 2 2
Hv <(U) ” = max )[v g(U)] D, D)‘
IDlr=1
= max )2<Vf (UUT> DDT> n [V2f (UUT>] (DUT +uDp",pUT + UDT>‘
F
<2 max, KVf (UUT> ,DDT> + max ‘[V2f (UUT)] (DUT +uDp",DUT + UDT)‘
F= F=

<2 g o (00) =100, 07) 421550, o0 007

20 ()| + 41U

2

V2 (UoUd) — o)
2(vV2=1) (1)

= 2/3\/ (F (VoUg) —f (X9)+ 21 VF (X 1+ 48 | 1U* 16 +
= Lz.
The last inequality follows from (A.1) and (A.2). This concludes the proof of Proposition 3.2.

Appendix B. Proof of Lemma 3.4

Let X; = U; UIT, X = UzUzT and their full eigenvalue decompositions be

n n
Xi=) mppl,  Xa=) naq),
j=1 j=1
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where {A;} and {n;} are the eigenvalues in decreasing order. Since rank(U;) = ry and rank(U3) = r,
we have A; = 0 for j > ry and n; = 0 for j > r,. We compute || X; — X2||12,, as follows

I1X1 — XalF = IX1 113 + 1X20F — 2(X1, X2)

n

n n n
_ Zkzz i Z 77,2 — Z ZZAiﬂj(pi, QJ'>2
i=1 j=1

i=1 j=1

n n
2 Zkz Z pi. ) + Z n; Z ) = > 2nmpiq))
i=1 j=1 j=1 i=1

i=1 j=1

@ i 2”: (hi— ’7.1')2 (pi’qf>2

i=1 j=1

=Y (V- i) (V) el

i=1 j=1

gmin {m’m}z ii <\/)T,— \/W_j)z(Pi,Qj>2

i=1 j=1

2
X2
F

© min {Ariomr} ’

where (D uses the fact Y7, (pl,q]> = ||pi Hz = 1, with {q;} being an orthonormal basis and similarly
> <pl, q]) = ||q]||2 = 1. (@ is by first an exchange of the summations, secondly the fact that A; = 0
for j > ry and n; = 0 for j > r and thirdly completing squares. (@ is because {4;} and {n;} are sorted
in decreasing order. (@ follows from @ and that {,/A;} and {,/7j} are eigenvalues of /X1 and /X2,
the matrix square root of X and X, respectively.

Finally, we can conclude the proof as long as we can show the following inequality:

H\/» \/)?2” > m1n ||U1—U2R||12;. (B.1)

By expanding || - ||12,, in (B.1) and noting that <J)T, \/)Tﬁ:trace(Xl) = trace (Ul U;r) and (\/)72, «/X_2> =
trace(Xz) = trace (U2 U;r), (B.1) reduces to

(fl,\/fz) < max (U).U:R) (B.2)

1,

To show (B.2), we write the SVDs of U, U as Uy = PlElQT and Uy = P EZQ;, respectively, with
P1,P, e R 31,3 € R™" and Q1, 0> € R™7. Then we have v/X| = P121PT,«/X2 = PzEzP;.
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On one hand,

Right-hand side of (B.2) = max <P121Q1T,P222Q2T R>
R:RRT =I,

= max <P121,P222Q2TRQ1>

R:RRT=I,

= max (P;Z),P25:R) ByR < Q, RQ:
R:RRT=I,

= | (P2%2) " Pim4] . By Lemma 2

On the other hand,

Left-hand side of (B.2) = <P1 $1P] . Py5,P] )
T T
= ((Pzzz) P12, P, P1>
= H (P222)TP1 X H* HP2TP1 H By Holder’s Inequality

T .
< |(P2zo) TPz Since [P P1| < IP2N1P1] < 1
This proves (B.2), and hence completes the proof of Lemma 3.4.

Appendix C. Proof of Lemma 3.6

The proof relies on the following lemma.

LEmMA 10 [5, Lemma E.1] Let U and Z be any two matrices in R"*" such that U'Z =Z"Uis PSD.
Then

R

2
o227

Proof of Lemma 5. Define two orthogonal projectors

Q=00" and Q;=0,0],
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so Q is the orthogonal projector onto Range(U) and Q| is the orthogonal projector onto the orthogonal
complement of Range(U). Then

|w-2uT|; 2 |w-onuT Hi +|QuzuT Hi

@ H(U —ozuT Hi n <ZTQLZ, UTU>

2 zﬁ%z vUT - (92)(Q2)7 Hi +(zTeiz.uTu 7T 0z) + (77 Q.2.7" 0z)
2 M;—z vuT - 0zz7" Hi + <zT 0. zZUU-ZT QZ> + <zT 0,777 QZ>
© oo e oo

+ <ZT 0.7,7" QZ> , (C.1)

where (0 is by expressing (U —Z) U as the sum of two orthogonal factors (U — QZ) Uland —Q,ZUT.
@ is because | QZUT |3 = (Q12UT,Q.2U7) = (Q.2UT,2UT) = (ZTQ.Z, UTU). ® uses
Lemma 10 by noting that UT QZ = (QU)TZ = U'Z > 0 satisfying the assumptions of Lemma
10. @ wses the fact that |UUT — (92)(Q2)T||7 = |uUT — QzzT Q| < |UUT — QzzT Q| +
|Qzz7 Q. |7 = |UUT = Q22T Q - Q22T Q| = |UUT — QZZT |3 ® uses the following basic

inequality that
Lo 2 VAT L
Al + 21BlF = 2\ SlIAIFIBIE = IAIFIBlF = (A, B),

whereA=2T7Q,ZandB=U"U-2"0Z.
The Remaining Steps. The remaining steps involve showing the following bounds:

2 2
R
2
(ZT 0,277 QZ> < H vuT — QZZT‘ - (C.3)
T T 2 T T 2
HU U-z QZHF < HUU — o7z HF (C.4)

This is because when plugging these bounds (C.2)—(C.4) into (C.1), we can obtain the desired result:

2 1 2 1 2
U—ZUTH <—HUUT—ZZTH 34— H(UUT—ZZT) TH
H( ) F— 8 Pt +2ﬁ—2 e F
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Showing (C.2).

|7ra.z], = (zz 0. 0.227)

e

<QJ_ZZT 01,0777 Q¢>

0,720, H;

1®

0,zz" —uuHQ, ”i

2

IN®

AR UUT(

k)

F

where () follows from the idempotence property that Q3 = 9Q; 9 . @ follows from QU = 0.
® follows from the non-expansiveness of projection operator:

|ow (22" -vuT) ou, < (22" - vvT) @] = ez - w7
Showing (C.3). The argument here is pretty similar to that for (C.2):
(27012.27Qz) = (022", 227 0.

=(0zz7 01,0277 0.}

2
o,

e

o) (ZZT - UUT> Q, Hi

IN®

b}

2
0777 — UUT( i

where () is by @, U = 0. @ uses the non-expansiveness of projection operator and QUU T = UUT.
Showing (C.4). First by expanding || - ||12F using inner products, (C.4) is equivalent to the following
inequality

2 2 2 2
R A e R e T
(C.5)

First of all, we recognize that

2
F’

o], = S = JouT]

R B A B T A B L o
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where we use the idempotence and non-expansiveness property of the projection matrix Q in the second
line. Plugging these to (C.5), we find (C.5) reduces to

2
<UTU, ZTQZ> > <UUT, QZZT> - <UUT,ZZT> - H UTZHF. (C.6)
To show (C.6), let QX PT be the SVD of U with = € R”*" and P € R™" where # is the rank of U.
Then
U'u=rx’PT, 0=UPx! and Q=00" =uPz?P'U". (C.7)
Now

where (D is by (C.7) and (@ uses the assumption that Z'U = U'Z > 0. In (), we define G :=
PT(UTZ)P. ® is because |G|z = |PT (UTZ) PH; = | UTZ”i due to the rotational invariance of
Il - |r. @ is because

2
HEGE" H2 = % 2
F 0'.2 v
ij J
2 2
[op O;
I CASAL
i=j i>j 9; o

2 9i\ (9 2
=y a32(3)(2)
i=j i>j J !
2
=).G;
]

2
= |Gl

where the second line follows from the symmetric property of G since G = P (UTZ) P > 0 and
U'z>o. O
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Appendix D. Proof of Lemma 3.7
Let X = UU and X* = U*U*T. We start with the critical point condition Vf(X)U = 0 which implies

VIX)UU" = VF(X)00" =0,

where T denotes the pseudoinverse. Then for all Z € R, we have

- <Vf(X),ZQQT> —0
19} <Vf(X*) + /01 [V2f (X +(1— t)X*)] (X — X*) dr, ZQQT> —0

= <Vf( *) ,ZQQT) + Uol V2 (X + (1 — 0X*) dt} (X—X*,ZQQT) =0

3 |- zeer) - e z00T) < S -l [e07],
= |5ra (v 2007+ {x - x2007) = G - 00T
S| tvree) oxeen) - x e[| = B k-l Jx - xee],

S ol e-xy 00T} Jx-x et = G

pa < pra XXl -x)e07],

-~ o-xye07], =1kl

where (1) uses the Taylor’s Theorem for vector-valued functions [39, Eq. (2.5) in Theorem 2.1].
(@ uses Proposition 1 by noting that the PSD matrix [tX* 4+ (1 — £)X] has rank at most 2r for all
t € [0, 1] and rank(X — X*) < 4r,rank (ZQQT) < 4r. (3 is by choosing Z = X — X*. (» follows
from (Vf(X*), (X — X*)QQ") > 0 since

(). (x = x7)e0T ) 2 (v (1) x - xr00T) L vy (7). x) o,

where (i) follows from XQQ "'=UUT QQ"=UUT since QQ" is the orthogonal projector onto Range(U),
(i1) uses the fact that

Vf (X*) X* =0 =X"Vf (X*)
and (iii) is because Vf(X*) = 0,X = 0. O
Appendix E. Proof of Proposition 4.3
For any critical point (U, V ), we have

Ve(U,V) = E (UVT) W =0,
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where W = [UT VT]T. Further denote W = [UT —VT]T. Then
SRV, V) + Ve, V) W =0

BwTe (UVT) W+w'e (UVT) W=0

Q [UT _ VT] |:vf(()}{/T)T Vf (ZVT)] [‘(i] n [UTVT] |:vf (;;/T)T \%4 (}fJIVT):| |:_Uv] _o

%) (2UTU— 2VTV)+ U’ (Vf (UVT) —vf (UVT)> Vv <Vf (UVT)T— vf (UVT)T)Uz 0

=0 o

=20 (UTU - VTV> =0
QuTu-viv=o,
where @ follows from Vg(U, V') = 0 and @ follows from Vg(U,V) = E (UVT) W. @ follows by

plugging the definitions of W, W and E(-) into the second line. (o follows from direct computations.
(® holds since A > 0.

Appendix F. Proof of Lemma 4.4

i LI R S P A ]

By performing the following change of variables

First recall

Wi < D, W1<—5, Wy < W, Wz(—W
in (4.12), we have
T 2 1 T iyl 2 1 T N T T =yl
HPOH(DW )HF=ZHDW +DW HF=Z<DW +DWT,pWT +DW >
21 R R
‘DWT —DWT HF =3 <DWT —DWT.pwT — DWT>.

[PasowD], =]

Then it implies that
T2 -2 1 T AT T AT
[P~ [pia (097 = 4 fow 570w 457

1 ~ ~
- (pwT —DWT.pwT — DWT)
= (pWT.DWT) = (DTD, W W) =0,
since WT W = 0 from (4.10).
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Appendix G. Proof of Lemma 4.5

To begin with, we define Wl = [—U‘;1:|’ Wz = [_Uéz:|. Then

2 2
[ (07 )~ e (07— )|

2 2
| Pon (WiWT) = Pon (2w ) | = | PorcWiwD) = P (w7 ) |
@ [WiW] + WiW]  Waw, + Wo W) wiw —wiw ww,) — Wa W)
B 2 2 2 2
[ wiw] —wow] W W —ww, WiWw] —WoW,  WiW[ — Wo W,
B 2 2 2 2

F F

Q <W1 WIT — WQW;, W] WII’ — WZW;>
= <W1 WIT, Wl WF) + <W2W2T, WzW;> — <W1 WlT, sz;) — <W1 WlT, W2W2T>
@_ (WIWIT, W2W2T> - <I7V1W1T, W2W2T>
2o,

where (1) is due to the linearity of Py and Pogr. @) follows from (4.12). (3 is by expanding || - ||12¢.
(» comes from (4.10) that
Wiw, =w'Ww, =0, fori=1,2.

() uses the fact that

Wi WIT >0, W] W]T >0, W2W2T >0, WzWZT > 0.

Appendix H. Proof of Proposition 4.6

From (4.5), we have

(o4 1v2) 25 (]

1
2
(%

2 2
P[0 o] [ [0 o]

;)

2
oV

2

= |vF
F
®

| x*

*°
where () uses the definitions of U* and V* in (4.5). @) uses the rotational invariance of || - ||r. ) is

2
because H\/ >+ - Y iok(X*) = 1X*],.
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Therefore,
F(UvT) (1001 + 1vIE) 2 2 7(x7) + 2 X7,
< £ + 1IX].s
©)

27 (ovT) +aovT,
27 (ovT) 42 (W0 + Vi) /2.

where () comes from the optimality of X* for (P). @ is by choosing X = UV'. (@ is because
|| uv’ || o = (II U II%- + V||%) /2 by the optimization formulation of the matrix nuclear norm [43, Lemma

5.1] that
. 1 2 2
Xl = min_= (1013 + IVIE).
X=uvT 2

Appendix I. Proof of Lemma 4.7

LetZ = [éu} with arbitrary Zy € R™" and Zy € R™*". Then
1%

= (EXOW,2) = (0,2) =0
- <E(X) —E(XY) + E(X*),ZWT) =0

> {[wror "] [t 7]zt =0

= <:Vf(X)T —OVf(X*)T VIO —OVf(X*)] + E(X*),ZWT> —0

N < g o IV FX* + 01X SXDIK X dr} LB, ZWT> _o

_ <:<) TV (xr +1(x . X*))] X - X dt] , I:gl‘jg::: ggip N <: (x*) ’ZWT> —0

= /01 (V2 (¢ + 1 (X = X)) (X =X 20VT + UZ]) de+ (200,20 T) =0,

where the fifth line follows from the Taylor’s Theorem for vector-valued functions [39, Eq. (2.5) in
Theorem 2.1] and for convenience x = (fol [sz (X* + t(X — X*))] (X — X*) dt)T in the fifth and
sixth lines. Then, from Proposition 1 and Eq. (4.12), we have

2
‘ B+a

(2 (). 2w )+ (Por (WWT = wwT) . zwT) .

< ﬁ% Jx = X[ [ Pes (27) |

@) M) M3(2)
(L1)
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The Remaining Steps. The remaining steps are choosing Z = (WWT - W*W*T) wT' and showing
the following

1 (Z) = 0, 1.2)
= - wew)oo
M5(Z) < H (WWT - W*W*T) 00" ”F (1.4)

Then plugging (1.2)—(1.4) into (I.1) yields the desired result:

% H (WWT _ W*W*T) 007 Hi < ﬁ;z |x —X*“F H(WWT _ W*va) QQT‘

F’
or equivalently,

B—a
B+a
Showing (I.2). Choosing Z = (WW'™ — W*W*T) WT and noting that 00T = WTWT', we have
ZWT = (WWT —ww Y WT'wT = (WWT — w*W*T) QQ". Then

M@ = (20, (WwT = wwT)00T) = (2 (x7). wwT) = 0,

|x —x*

|(ww? —wwT) oo < I

where the second equality holds since WWTQQT = WWT and E(X*)W* = 0 by (4.8). The inequality
is due to E(X*) > 0.

Showing (L.3). First recognize that Pog (WWT —W*W*T) = L(WWT —w*W*T —WWT +W*W*T).
Then

M2@) = (Porr (WWT = w*wT), zwT)

1
= <WWT —wwrT, (WWT _ W*W*T> QQT>

_ %<WWT — W, (WWT _ W*W*T> QQT>‘
Therefore, (1.3) follows from
(WWT — W T, (wwT —ww*T) 00" ) = (W, —w*wT) + (— W, ww") <0,
where the first equality uses (4.10) and the inequality is because
WwT =0, wwT=0  WW'=0  WW' =0
Showing (L4). Plugging Z = (WWT — W*W*T) W7 gives

M52 = |[Po ((WWT = w*w*T) 00|

s

F

which is obviously no larger than H (WW—r - W*W*T) 00" ” by the definition of the operation Pogy.

Downloaded from https://academic.oup.com/imaiai/advance-article-abstract/doi/10.1093/imaiai/iay003/4951409

by guest
on 29 June 2018



	The non-convex geometry of low-rank matrix optimization
	1. Introduction
	1.1 Our approach: Burer--Monteiro-style parameterization
	1.2 Enlightening examples
	1.3 Our results
	1.4 Stylized applications
	1.5 Prior arts and inspirations
	1.6 Notations

	2. Problem formulation
	2.1 Consequences of the restricted well-conditioned assumption

	3. Understanding the factored landscapes for PSD matrices
	3.1 Transforming the landscape for PSD matrices
	3.2 Metrics in the lifted and factored spaces
	3.3 Proof idea: connecting the optimality conditions
	3.4 A formal proof of Theorem 3

	4. Understanding the factored landscapes for general non-squared matrices
	4.1 Burer--Monteiro reformulation of the nuclear norm regularization
	4.2 Transforming the landscape for general non-square matrices
	4.3 Optimality condition for the convex programme
	4.4 Characterizing the critical points of the factored programme
	4.5 Proof idea: connecting the optimality conditions
	4.6 A formal proof of Theorem 4.1

	5. Conclusion
	Appendix A. Proof of <0:hbox > Proposition 3.2</0:hbox>
	Appendix B. Proof of <0:hbox > Lemma 3.4</0:hbox>
	Appendix C. Proof of <0:hbox > Lemma 3.6</0:hbox>
	Appendix D. Proof of <0:hbox > Lemma 3.7</0:hbox>
	Appendix E. Proof of <0:hbox > Proposition 4.3</0:hbox>
	Appendix F. Proof of <0:hbox > Lemma 4.4</0:hbox>
	Appendix G. Proof of <0:hbox > Lemma 4.5</0:hbox>
	Appendix H. Proof of <0:hbox > Proposition 4.6</0:hbox>
	Appendix I. Proof of <0:hbox > Lemma 4.7</0:hbox>


