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Network theory has greatly contributed to an improved understanding of epidemic processes, offering an
empowering framework for the analysis of real-world data, prediction of disease outbreaks, and formu-
lation of containment strategies. However, the current state of knowledge largely relies on time-invariant
networks, which are not adequate to capture several key features of a number of infectious diseases.
Activity driven networks constitute a promising modeling framework to describe epidemic spreading
over time varying networks, but a number of technical and theoretical gaps remain open. Here, we lay the
foundations for a novel theory to model general epidemic spreading processes over time-varying, activity
driven networks. Our theory derives a continuous-time model, based on ordinary differential equations
(ODEs), which can reproduce the dynamics of any discrete-time epidemic model evolving over an activ-
ity driven network. A rigorous, formal framework is developed, so that a general epidemic process can
be systematically mapped, at first, on a Markov jump process, and then, in the thermodynamic limit, on a
system of ODEs. The obtained ODEs can be integrated to simulate the system dynamics, instead of using
computationally intensive Monte Carlo simulations. An array of mathematical tools for the analysis of the
proposed model is offered, together with techniques to approximate and predict the dynamics of the epi-
demic spreading, from its inception to the endemic equilibrium. The theoretical framework is illustrated
step-by-step through the analysis of a susceptible-infected-susceptible process. Once the framework is
established, applications to more complex epidemic models are presented, along with numerical results
that corroborate the validity of our approach. Our framework is expected to find application in the study
of a number of critical phenomena, including behavioral changes due to the infection, unconscious spread
of the disease by exposed individuals, or the removal of nodes from the network of contacts.
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temporal; time-varying.
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1. Introduction

Time-varying interactions are ubiquitous in natural and technological networks associated with the inter-
actions of dynamic agents [1–7]. In our hyper-connected and fast-changing world, the time-varying
nature of contacts between individuals plays a fundamental role on the spreading of epidemics [2, 8, 9].
The mathematical analysis of time-varying networks has contributed to an improved understanding of
epidemic spreading, far beyond the limitations imposed by time-invariant networks of contacts [1, 10–
17].

In the last few years, discrete-time activity driven networks (ADNs) have emerged as a powerful
paradigm to study epidemic spreading over realistic time-varying networks. ADNs have been success-
fully proposed to study time-varying networks, overcoming simplifying assumptions on the separation
of the time scales of the nodes’ and links’ dynamics, which are typical of time-invariant models. This
has enabled the formalization of more realistic models where the nodes’ and links’ dynamics can evolve
concurrently [2]. ADNs can account for inherent heterogeneities in populations [2, 18–20], such that
individuals could differ in their ability to form contacts and spread the disease. Initially formulated for
modeling simple epidemic models [2, 21], such as the susceptible-infected-susceptible (SIS) and the
susceptible-infected-recovered (SIR) [22], ADNs have then supported the development of realistic epi-
demic models [3, 8, 23–28]. Models have been progressively enriched by including the effect of timely
sanitary intervention, for which simulation-based analyses have been carried out [21, 24]. ADNs-based
models have also been adopted to study real outbreaks, yielding satisfactory predictions, such as in the
case of the 2014-2015 outbreak of Ebola Virus Disease in Liberia [24].

The overarching idea of ADNs lies in the definition of an activity potential associated with each
individual, sampled from a continuous distribution and used to represent the propensity of individuals
to establish contacts with others. However, many simplifying assumptions have been retained in the
very first incarnations of ADNs. A memoryless feature in the formation of links, both spatially and tem-
porally, was assumed. In contrast, real networks of contacts often present a complex structure, induced
by memory phenomena and geographic locality [29], which manifest through strong and weak ties [30].
Heterogeneity is indeed present not only in the individual activity, but also in the attractiveness [31].
The ADN paradigm has been rapidly extended over the last few years, and we have now access to a
wide range of modeling tools for studying them with: i) links that are formed with memory [5, 32], ii)
community structures [33, 34], and iii) heterogeneity in the individual attractiveness [35, 36]. Despite
these compelling improvements in the modeling of realistic outbreaks on complex networks, most of
the studies are based on extensive Monte Carlo simulations, and analytical results are only limited to
linearized mean-field approximations and asymptotic master equations for basic epidemic models [37].

In our recent work [38], we formulated a continuous-time ADN model with a discrete activity poten-
tial distribution to afford new analytical insight into epidemic spreading. Changing the classical perspec-
tive of a discrete-time dynamics for continuous distributions to a continuous-time dynamics for discrete
distributions, we were successful in linking ADN modeling to established mathematical techniques for
the study of complex systems. Our method could be interpreted as a reversed procedure of the Gillespie
algorithm [39, 40], which allows for simulating trajectories of stochastic equations of complex systems
in the presence of multiple reactions.

For the SIS model, this change of perspective leads to a rigorous analytical treatment of the epi-
demics, which affords the accurate prediction of the epidemic outbreak. Moreover, our approach is
not affected by the issues that naturally arise when selecting the time step of discrete-time dynamical
processes, which could influence the system dynamics [41, 42], and it relies on a reduced number of
parameters with respect to traditional ADNs [2, 3, 8, 21, 23–27, 34]. The dependence on a limited
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number of model parameters is critical for robust model identification from real-world data [24, 43–46].
Motivated by the potential of this novel perspective for the study of ADNs, here, we seek to gen-

eralize the framework to more realistic epidemic models, through the development of a new theory for
the analytical study of the spread of epidemics on heterogeneous time-varying networks. Our approach
has the potential of improving our comprehension of the mechanics of epidemic spreading, toward new
techniques to control and stop the spread [47–50]. The generality of our framework allows for the inclu-
sion of key real-world features that have been recently proposed for ADNs [5, 32–36], thereby offering
a comprehensive and versatile basis for analytically exploring new modeling concepts.

The main contributions of this paper are: i) the formulation of a general stochastic epidemic model
on ADNs as a continuous-time dynamical system; ii) the derivation of a deterministic approximation
valid in the thermodynamic limit of large populations; and iii) the development of an array of empow-
ering mathematical techniques for the analysis of such models.

In the general formulation of the epidemic model, we include several realistic features from the
literature, such as the presence of different health states [51], the possibility of immunization [22],
and behavioral changes due to infection [8]. Our formulation consists of a Markov jump process, con-
structed according the temporal evolution of the ADN and the specific dynamics of the epidemics. Then,
using Kurtz theorem [52], we derive a nonlinear system of ordinary differential equations (ODEs) that
approximates the stochastic epidemic model in the thermodynamic limit. With respect to mathematical
techniques, we demonstrate the possibility of using ordinary differential inclusions (ODIs) to i) estimate
the fraction of individuals per health states when the epidemic becomes endemic, and ii) accurately
predict the evolution of the epidemic curve. Also, we propose a data-driven approach to generate very
accurate short- and medium-time-horizon predictions, using few epidemics data that are sporadically
sampled at the population level.

The rest of the paper is organized as follows. In Section 2, we introduce the general formulation of
a stochastic epidemic model on ADNs and we compute its large-scale deterministic approximation. In
Section 3, we establish a range of techniques to practically tackle the analysis of the obtained epidemic
models. Section 4 is devoted to the application of these techniques to well known epidemic models,
exemplifying a number of realistic features of epidemic spreading. Finally, Section 5 summarizes the
main conclusions of this work.

2. Deterministic approximation in large-scale populations

Here, we introduce our general formulation of an epidemic model on ADNs and derive its deterministic
approximation in the thermodynamic limit. To facilitate the comprehension of our approach we provide,
step-by-step, its illustration on the simple SIS model.

2.1 From the epidemic dynamics to the stochastic process

We consider a population of n individuals, each one associated with a node of a time-varying, undirected
graph G(t) = (V,E(t)), with t ∈ R+, where R+ is the set of non-negative real numbers. V = {1, . . . ,n}
is the time-invariant node set, and E(t)⊆V×V is the time-varying edge set associated with the network
of contacts.

Let A be the set of all compartments of the model, defined as all the admissible health states for the
individuals in the population. We denote with Yv(t) ∈A the state of node v ∈ V at time t. In the simplest
case, A comprises only two states, denoting whether the node is susceptible to the infection or infected.
This is the case of the susceptible-infected (SI) or SIS models [12]. More realistic models include the
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presence of other compartments to identify individuals who already recovered from the infection and
are now immunized [22], or include different stages of the disease in an infected individual [51]. We
denote compartments with italic capital letters.

Nodes are divided into k activation classes, depending on their propensity to generate connections.
Each class i ∈ K := {1, . . . ,k} is characterized by a nominal activity rate ai, where a1 < · · · < ak are
equidistant non-negative real numbers, representing the nominal (average) number of contacts an indi-
vidual in the ith class generates during each time unit, which can be, for example, one day, or one
hour, depending on the unit of measurement used. We use the notation a(v), v ∈ V , to identify the
nominal activity rate of the vth node. The quantity ni denotes the number of nodes in the ith class.
Real-world data suggest that the actual activity rate of an individual can be reduced based on his/her
health state [8, 53, 54]. Therefore, we introduce an |A|-dimensional vector ρ ∈ [0,1]|A|, whose A-th
component ρA represents the fraction of the reduced activity rate for an individual who has health state
A (if no reduction occurs for the health state A ∈A, then ρA = 1). We name the vector ρ activity reduc-
tion vector. The effective activity rate of node v at time t is ã(v) = ρYv(t)a(v). In the absence of activity
reduction, ρA = 1, ∀A ∈ A, as in the classical SIS model.

Starting from t = 0, node v ∈ V becomes active after a time that is sampled from an exponentially
distributed random variable with parameter ã(v). In other words, the activations of node v ∈ V are
distributed according to the realizations of a Poisson process with rate ã(v). When node v ∈ V activates,
it contacts one node w, chosen uniformly at random over V , generating an undirected edge (v,w). We
hypothesize that the duration of this contact is instantaneous and that the epidemic propagates through
these ephemeral contacts.

By integrating such continuous-time ADNs over a time window of duration T , we obtain weighted
graphs, whose weighted edges identify the number of times the ADN mechanism activates that partic-
ular connection. Figure 1 illustrates this integration mechanism, depicting how the connectivity of the
weighted graph increases with the duration of the time window, whereby more connections will be acti-
vated. For short time windows, the weighted graph will generally be disconnected, with only a limited
number of contacts having occurred.

To model the propagation mechanism, we define a stochastic matrix Λ (A) ∈R|A|×|A|+ , for each A∈A.
The propagation mechanism of the epidemics is as follows. At time t, an instantaneous edge (v,w) enters
the edge set. If Yv(t) = A and Yw(t) = B, then node v updates its state in a stochastic fashion, such that
its new state is C ∈ A with probability Λ

(B)
AC . Similarly, node w updates its state to state D ∈ A with a

probability Λ
(A)
BD . In many real-world situations, most of the entries of the matrices Λ are zeros, and only

few transitions will actually occur. The edge is immediately removed and may activate again, according
to the same stochastic rule.

Simultaneously, individuals may update their state and change compartments spontaneously, without
any interaction with others. This is the case of the transitions between different stages of the illness, or of
the final recovery from it. In order to model these dynamics, we introduce a matrix Θ ∈R|A|×|A|+ , whose
non-null entries θAB, with A,B ∈ A, represent the rate of the spontaneous transition of each individual
from state A to state B. The quantity θ

−1
AB corresponds to the expected time needed for the transition to

occur.
Hence, if at time t node v ∈ V has state Yv(t) = A, then, for each B such that θAB is non-null, an

independent exponentially distributed random variable with parameter θAB associated with the transition
from A to B is initialized. If B is the compartment associated with the variable that realizes the minimum
among these random variables, node v updates its state to B after a time equal to the realization of such
random variable.
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(a) T = 1 (b) T = 2

(c) T = 3 (d) T = 4

FIG. 1. Integrated continuous-time ADNs. Black edges are connections generated during each time step of duration 1, red dashed
edges are connections that are activated up to time T = 1,2,3, and 4, respectively. The thickness of each edge represents its
weight.

Summing up, an epidemic model on an ADN is defined through the following variables:

• a set of individuals V = {1, . . . ,n}, partitioned into k activation classes, each one characterized by
having an activity rate ai ∈ R+, i = 1, . . . ,k;

• a set of compartments A;

• a vector ρ ∈ [0,1]|A|, called activity reduction vector;

• a set of stochastic matrices (Λ (A))A∈A, with Λ (A) ∈ R|A|×|A|+ , called pairwise interaction kernels;
and

• a non-negative (entry-wise) spontaneous transition rates matrix Θ ∈ R|A|×|A|+ .

The above mentioned dynamics constitutes a Markov jump process on the space An of all config-
urations, where the admissible transitions are those from a state y = (y1, . . . ,yn) to state y′ that differs
from y in a single component v ∈ V . When yv = A and y′v = B, we denote the corresponding transition
rate with qv(A,B|y), such that

qv(A,B|y) = δA(yv)

[
θAB +a(v)ρyv

1
n ∑

w∈V
Λ

(yw)
AB +

1
n ∑

w∈V
a(w)ρywΛ

(yw)
AB

]
. (2.1)

Here, we have used the indicator function δS(·) over a set S, defined as follows δS(·), where

δS(x) :=
{

1 if x ∈ S
0 if x /∈ S. (2.2)
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With a minor abuse of notation, when the set is the singleton S = {i}, we write δi(·) := δS(·).
In order to clarify this general framework, we illustrate its application for the SIS model [22], already

studied in [38], as a simple, but explanatory instance.

EXAMPLE 2.1 (The SIS model) In the standard SIS model, only two compartments are present: the
individuals susceptible to the infection, denoted by S, and those infected, denoted by I. Therefore,
A = {S, I}. Two dynamics are possible: i) the propagation of the infection, which occurs with a fixed
probability λ ∈ [0,1] when a susceptible individual contacts an infected one; and ii) the recovery and
transition to the susceptible state, which occurs spontaneously with a rate µ . The pairwise interaction
kernel comprises the matrices Λ (S) and Λ (I), while the spontaneous transition rates matrix is Θ ; these
matrices are defined as follows:

Λ
(S) =

(
1 0
0 1

)
, Λ

(I) =

(
1−λ λ

0 1

)
, Θ =

(
0 0
µ 0

)
. (2.3)

Here, the first row/column of the matrices refers to susceptible individuals and the second to infected
ones. Hence, entries Λ

(S)
12 , Λ

(I)
12 , and Θ12 of the matrices define transitions from compartment S to I,

while entries Λ
(S)
21 , Λ

(I)
21 , and Θ21 transitions from compartment I to S.

In the classical SIS model, no activity reduction is contemplated. Hence, by using in (2.1) the
explicit expressions for the matrices in (2.3), the non-zero transition rates of the Markov jump process
Y (t) over {S, I}n from state Y (t) = y are

qv(S, I|y) = δS(xv)

[
1
n

a(v)λ ∑
w∈V

δI(yw)+
1
n

λ ∑
w∈V

δI(yw)a(w)

]
,

qv(I,S|y) = δI(xv)µ.

(2.4)

The state space of the Markov jump process Y (t) is the space of all possible state configurations
over all the nodes of the graph, that is, An, whose size grows exponentially as the number of nodes in
the graph increases. Therefore, a brute force analysis of the process Y (t) is not feasible for the case of
large graphs, that is, when n→ ∞. To tackle this issue, we project the stochastic process on a lower
dimensional state space in a thoughtful way, such that the Markovianity of the stochastic process is
preserved by the low-dimensional process.

To this aim, we consider the |A|× k-dimensional stochastic process Z(t) = Z(Y (t)), whose generic
component ZAi(t), A ∈ A, i ∈ K corresponds to the fraction of individuals belonging to compartment
A ∈ A within the ith activation class. More specifically, we write

ZAi(t) =
|{v : a(v) = ai,Yv(t) = A}|

ni
. (2.5)

Then, the following lemma holds true:

LEMMA 2.1 Process Z(t) is a Markov jump process and its admissible transitions are those from state
Z(t) = z to a state z′ that differs from z in exactly two components that belong to the same activation
class i ∈ K: for some A,B ∈ A, the component zBi is increased by 1/ni, while the component zAi is
reduced by the same quantity. Its transition rate is

pi(A,B|z) = nizAi

[
θAB + ∑

C∈A
Λ

(C)
AB

(
aiρA ∑

j∈K

n j

n
zC j +ρC ∑

j∈K

n j

n
a jzC j

)]
. (2.6)
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Proof. After each transition of the process Y (t), a single node v of the network has updated its state
from A to B, for some A,B∈A. Let us suppose that v belongs to the ith activation class. Then, the effect
of the transition of the process Y (t) reflects on the process Z(t) as an increase of 1/ni of the component
ZBi, and a decrease of 1/ni of the component ZAi. We can compute the rate of this transition by noticing
from (2.1) that if a(v) = a(w), then qv(A,B|y) = qw(A,B|y), ∀A,B ∈A and ∀y ∈An, such that yv = yw.
Therefore, when Y (t) = y and consecutively Z(t) = Z(Y (t)) = z, we compute

pi(A,B|y) = ∑
v:a(v)=ai,yv=A

qv(A,B|y)

= ∑
v:a(v)=ai,yv=A

[
θAB +aiρA

1
n ∑

w∈V
Λ

(yw)
AB +

1
n ∑

w∈V
a(w)ρywΛ

(yw)
AB

]

= ∑
v:a(v)=ai,yv=A

[
θAB +aiρA

1
n ∑

j∈K
∑

C∈A
Λ

(C)
AB +

1
n ∑

j∈K
∑

C∈A
a jρCΛ

(C)
AB

]

= ∑
v:a(v)=ai,yv=A

[
θAB +aiρA

1
n ∑

j∈K
n j ∑

C∈A
zC jΛ

(C)
AB +

1
n ∑

j∈K
a jn j ∑

C∈A
zC jρCΛ

(C)
AB

]

= nizAi

[
θAB +aiρA ∑

j∈K

n j

n ∑
C∈A

zC jΛ
(C)
AB + ∑

j∈K

n j

n
a j ∑

C∈A
ρCzC jΛ

(C)
AB

]

= nizAi

[
θAB +aiρA ∑

C∈A
Λ

(C)
AB ∑

j∈K

n j

n
zC j + ∑

C∈A
ρCΛ

(C)
AB ∑

j∈K

n j

n
a jzC j

]
,

which only depends on z. Thus, we conclude that Z(t) is a Markov jump process. �

REMARK 2.1 By construction, the components of (2.6) satisfy the following equation:

∑
A∈A

ZAi(t) = 1, ∀ i ∈ K, ∀ t ∈ R+. (2.7)

Thus, only the first |A|−1 components of the vector Z(t) for each class are independent and they are
sufficient to reconstruct the entire state configuration (up to a relabeling of the nodes). Therefore, the
state variable of the system is a (|A|−1)× k-dimensional vector.

EXAMPLE 2.2 (The SIS model (cont’d)) In the SIS model, already analyzed in Ex. 2.1, the state variable
of the system is a k-dimensional vector with |A| = 2. In this case, the notation can be simplified to
Zi := ZIi with ZSi = 1−Zi. Therefore, when Z(t) = z,

pi(S, I|z) = ni(1− zi)λ

[
ai ∑

j∈K

n j

n
z j + ∑

j∈K

n j

n
a jz j

]
,

pi(I,S|z) = niziµ.

(2.8)

2.2 From the stochastic process to a set of differential equations

In this paper, we consider the thermodynamic limit of large populations, that is, n→∞. In this case, we
suppose that the fraction of nodes in each class ni/n is always bounded away from 0 and converges to a
fixed ratio ηi > 0, when n→ ∞. Before presenting our approach to construct a system of ODEs, whose
solution approximates the stochastic process as the number of nodes n grows, we define the following
quantities.
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DEFINITION 2.3 We define the asymptotic transition rates as

p̃i(A,B|z) := lim
n→∞

pi(A,B|z)
ni

, ∀ i ∈ K, A,B ∈ A, (2.9)

when the limit exists. From (2.6), we have that

p̃i(A,B|z) = zAi

[
θAB + ∑

C∈A
Λ

(C)
AB

(
ρAai ∑

j∈K
η jzCi +ρC ∑

j∈K
η ja jzC j

)]
. (2.10)

LEMMA 2.2 (Thermodynamic limit) Let ζ (t) be the solution of the following system of ODEs:

ζ̇Ai = ∑
B∈A

p̃i(B,A|ζ )− ∑
C∈A

p̃i(A,C|ζ ), A ∈ A, i ∈ K, (2.11)

with initial conditions ζAi(0) = ZAi(0). Then, ∀T > 0 ,∃C > 0 such that

P

[
sup

t∈[0,T ]
||Z(t)−ζ (t)||> ε

]
6 2k(|A|−1)exp(−Cnε

2), (2.12)

where P[·] is the probability.

Proof. The estimation in (2.12) is a straightforward consequence of the application of Kurtz’s theo-
rem [52] to the Markov jump process Z(t). We note that regularity conditions for the application of
Kurtz’s theorem, that is, Lipschitz-continuity of the terms in (2.10), are always verified. Remark 2.1
allows for considering only the first |A|−1 components of each class, when computing the thermody-
namic limit within Kurtz’s theorem, thereby obtaining the multiplicative coefficient in (2.12). �

The interpretation of Lemma 2.2 for large scale networks is intuitive. In fact, formula in (2.12)
guarantees that the solution of the system of ODEs in (2.11) is arbitrarily close to the stochastic process
Z(t), in the sense that during any finite time-horizon, the probability that the distance between the
stochastic and deterministic trajectories is larger than a fixed constant approaches 0 exponentially fast
in n.

As an example, we present the system of ODEs associated with the SIS model.

EXAMPLE 2.4 (The SIS model (cont’d)) For the SIS model, introduced in Ex. 2.1, with the simplified
notation presented in Ex. 2.2, the asymptotic transition rates are

p̃i(S, I|z) = (1− zi)λ

[
ai ∑

j∈K
η jz j + ∑

j∈K
η ja jz j

]
,

p̃i(I,S|z) = ziµ.

(2.13)

Therefore, the system of ODEs in (2.11) reads

żi = (1− zi)λ

[
ai ∑

j∈K
η jz j + ∑

j∈K
η ja jz j

]
− ziµ, i ∈ K. (2.14)

3. Techniques for the analysis of the system of ODEs

Although the system of ODEs in (2.11), obtained in the thermodynamic limit through Lemma 2.2, offers
an elegant representation of the epidemic spreading, its analytical treatment and implementation to real-
world scenarios poses a number of technical and practical challenges. With respect to the analytical
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treatment, the right-hand-side of (2.11) is, in general, a nonlinear function of all the other variables,
hampering the computation of an exact solution or tight approximations.

With respect to real-world applications, this system cannot be readily employed for predictions of
infectious disease outbreaks, since its numerical implementation requires the knowledge of detailed
initial conditions in the form of the fraction of nodes for each different state within each class. Unfortu-
nately, in real-world scenarios, it is only possible to measure, or at least estimate, global variables such
as the fraction of individuals per compartment (overall), and information about classes is in general not
available.

3.1 The macroscopic variables

A thoughtful change of variables may help in both the analytical treatment and real-world applications.
Specifically, given ζ (t) as in Lemma 2.2, we introduce the set of macroscopic variables

M(t) = {MA j(t)}A∈A, j∈K, (3.1)

whose generic element is

MA j(t) = ∑
i∈K

ηia
j−1
i ζAi(t), j ∈ K, A ∈ A. (3.2)

Similar to Z(t) and ζ (t), the set M(t) can be naturally sorted in a |A|× k-dimensional vector. We refer
to the subscript j as the order of the macroscopic variables, such that, given a compartment A ∈ A, the
corresponding first-order macroscopic variable is MA1, the second-order variable is MA2, and so on.

The first-order macroscopic variables have a straightforward interpretation as the overall fraction of
individuals for each compartment. The second-order macroscopic variables can be interpreted as the
average activation rates of individuals for each compartment. In general, the jth-order macroscopic
variables will account for the ( j−1)th statistical moment of the activity rate distribution for each com-
partment. Even though variables in (3.2) may be defined for any integer order j > 1, we will prove in
the following that those with j > k are linearly dependent on the first k variables, where we recall that k
is the number of activation classes. However, in the remainder of this paper we will keep using variables
of order k+1, defined as MA(k+1)(t) = ∑i∈Kηiak

i ζAi(t), ∀A ∈ A, to retain a compact notation.

LEMMA 3.1 (Change of variables) The set of macroscopic variables M(t) represents the whole state of
the system without any missing degree of freedom, and its components evolve according to the following
system of ODEs:

ṀA j(t) = ∑
B∈A

MB jθBA−MA j ∑
B∈A

θAB + ∑
B∈A

ρBMB( j+1) ∑
C∈A

Λ
(C)
BA MC1 + ∑

B∈A
MB j ∑

C∈A
Λ

(C)
BA ρCMC2

+ρAMA( j+1) ∑
B∈A

MB j ∑
C∈A

Λ
(B)
AC −MA j ∑

B∈A
ρBMB( j+1) ∑

C∈A
Λ

(B)
AC ,

(3.3)
for all A ∈ A and j ∈ K.

Proof. First, we need to show that the whole state of the system is represented by M(t). The change of
variables can be written in a vectorial form as M(t) = Qζ (t), which takes a simplified form due to the
fact that MA1, . . . ,MAk only depend on the components related to compartment A of the vector ζ (t), for
any A ∈A, yielding a block-diagonal structure for Q. Thus, each block of Q encapsulates the change of



10 of 31 L. ZINO ET AL.

variables for a single compartment A and its corresponding k equations, as
MA1(t)
MA2(t)
MA3(t)
. . .

MAk(t)

=


1 1 1 . . . 1
a1 a2 a3 . . . ak
a2

1 a2
2 a2

3 . . . a2
k

. . . . . . . . . . . . . . .

ak−1
1 ak−1

2 ak−1
3 . . . ak−1

k




η1 0 0 0 0
0 η2 0 0 0
0 0 η3 0 0
0 0 0 . . . 0
0 0 0 0 ηk




ζA1(t)
ζA2(t)
ζA3(t)
. . .

ζAk(t)


.

(3.4)

To avoid the loss of degrees of freedom in this change of variables, each block of matrix Q should be
full rank. From (3.4), we notice that the first matrix is the transpose of a Vandermonde matrix, which
is full rank, and the second matrix is a diagonal full-rank matrix. Therefore, the product between these
two matrices is non-singular.

Next, we consider that, ∀A ∈ A and ∀ j ∈ K, the following equation holds:

ṀA j(t) = ∑
i∈K

ηia
j−1
i ζ̇Ai(t). (3.5)

A direct substitution of the explicit expressions of the terms ζ̇Ai(t) from (2.11) into (3.5) yields the
claim. �

We introduce the following notation for the jth statistical moments of the activity rates distribution
for large scale networks:

α j := lim
n→∞

∑
i∈K

ni

n
a j

i = ∑
i∈K

ηia
j
i , (3.6)

where α0 = 1.

REMARK 3.1 Using the definition in (3.2) and the claim in Remark 2.1, we find

∑
A∈A

MA j(t) = ∑
A∈A

∑
i∈K

ηia
j−1
i ζAi(t) = ∑

i∈K
ηia

j−1
i ∑

A∈A
ζAi(t) = ∑

i∈K
ηia

j−1
i = α j−1. (3.7)

Similarly to the case of Remark 2.1, equation (3.7) allows for reducing the number of linearly indepen-
dent variables in M(t). Selecting a compartment A ∈A, its corresponding macroscopic variables can be
written as a function of the remaining macroscopic variables, as

MA j(t) = α j−1− ∑
B∈Ar{A}

MB j(t) ∀ j ∈ K. (3.8)

Then, system (3.3) can be reduced by eliminating the equations corresponding to the compartment A
and rewriting the remaining right-hand-side of (3.3) using (3.8) when needed.

When considering the system of ODEs obtained in Lemma 3.1 for the epidemic spreading in terms of
the macroscopic variables, we note that several of the challenges posed by the formulation in Lemma 2.2
are resolved. We gather these observations in the following remark.

REMARK 3.2 Equation (3.3) indicates that the evolution of MA j(t) depends only on few other variables,
corresponding to orders 1, 2, j, and j+1. Moreover, in practical epidemic models many transitions are
not possible; thus, many of the elements of matrices Θ and Λ are null. These considerations yield a
distinctive block structure for (3.3), which facilitates the computation of the epidemic threshold of the
model, that is, the conditions for which the disease-free equilibrium is globally asymptotically stable.
An example of such a computation is presented in the following.
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EXAMPLE 3.1 (The SIS model (cont’d)) For the SIS model, using Remark 3.1, we can reduce the system
obtained in (3.3) to a k-dimensional system of ODEs. Consistently with [38], we opt for reducing
the system using only the macroscopic variables related to the compartment I, recalling that MS j =
α j−1−MI j. Hence, (3.3) reads

ṀI1 = (λα1−µ)MI1 +λMI2−2λMI1MI2,

ṀI2 = λα2MI1 +(λα1−µ)MI2−λMI1MI3−λM2
I2,

ṀI j = λα jMI1 +λα j−1MI2−µMI j−λMI1MI( j+1)−λMI2MI j,

(3.9)

with j = 3, . . . ,k.
The epidemic threshold of the SIS model can be computed from (3.9) by linearizing in the vicinity

of the origin and studying the stability of the resulting linear system. Due to Remark 3.2, the linearized
system is block-triangular, such that stability is controlled by the 2× 2 block associated with the first
two macroscopic variables MI1 and MI2, namely,

J =

[
λα1−µ λ

λα2 λα1−µ

]
. (3.10)

This leads to the epidemic threshold
λ

µ
<

1
α1 +

√
α2
, (3.11)

which is in agreement with [2, 8, 21].

With respect to real-world applications, the initial conditions for the first-order macroscopic vari-
ables (corresponding to the initial fraction of individuals in each compartment) is often available, or
at least it is possible to estimate it with a reasonable precision. However, some issues have still to be
addressed in order to provide useful estimations of the evolution of the epidemics. In fact, even though
the low-order macroscopic variables can be measured or estimated from available epidemics data, it is
not straightforward to estimate high-order statistical moments of activation rates from raw epidemics
data. According to several studies [2, 55], the distribution of the activity rates follows a power-law dis-
tribution, possibly with some cutoff. High-order statistical moments of power-law distributions tend to
blow up, and, while beneficial, cutoffs could still cause numerical instability. Besides problems in the
estimation of the initial condition, the direct application of (3.3) could introduce numerical issues for
the integration of high-order macroscopic variables, thereby propagating initial errors in the estimation
of the initial condition.

In order to tackle these issues, we propose two possible approaches. On the one hand, as discussed
in Section 3.2, the system of equations can be reduced by using bounds that eliminate the high-order
macroscopic variables, which could cause numerical issues and whose initial conditions are difficult to
measure. Following this approach, we estimate the distribution of the health states among the individu-
als in the endemic state and in the transient phase. On the other hand, Section 3.3 presents a data-driven
approach, which uses epidemic data sampled at the population level during the evolution of the epi-
demics to perform a prediction of the epidemic dynamics.

3.2 A low-dimensional system of differential inclusions

We propose a reduced system based on a subset of equations of the system of macroscopic vari-
ables (3.3), obtained from its block structure. By extending the technique developed in [38] for the
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SIS model, we consider only the equations corresponding to macroscopic variables up to a select order
k∗. According to Remark 3.2, the ODE for a general jth order macroscopic variable with j < k∗ does
not depend on any of the eliminated macroscopic variables. On the other hand, the ODEs correspond-
ing to the k∗th order variables may depend on the (k∗+1)th order ones, that is, MA(k∗+1), with A ∈ A.
Thus, system (3.3) cannot be simply truncated to order k∗. To overcome this issue, we put forward
some bounds relating MA(k∗+1) to lower-order variables and to the statistical moments of the activity
rate distribution. Similar to [38], some elementary bounds are derived as

MA(k∗+1)(t) ∈ I[MA(k∗+1)(t)] := [a1MAk∗ ,min{akMAk∗(t),αk∗}] , ∀A ∈ A, ∀ t ∈ R+. (3.12)

We observe that bounds in (3.12) are only based on structural properties of the network and the activity
distribution. Tighter bounds on MA(k∗+1) may be established if more information about the activity rate
distribution is available, or some observations from epidemic data can be accessed.

Using bounds established in (3.12), or tighter bounds if available, in the system of ODEs in (3.3),
a system of ODIs can be obtained. The system is composed of |A|(k∗ − 1) ODEs, referring to the
macroscopic variables of the first k∗−1 orders, and |A| ODIs for the k∗th order macroscopic variables.
These ODIs have the following general formulation:

ṀAk∗(t) ∈ ∑
B∈A

MBk∗θBA−MAk∗ ∑
B∈A

θAB+

+ ∑
B∈A

ρBI[MB(k∗+1)(t)] ∑
C∈A

Λ
(C)
BA MC1 + ∑

B∈A
MBk∗ ∑

C∈A
Λ

(C)
BA ρCMC2+

−ρAI[MA(k∗+1)(t)] ∑
B∈A

MBk∗ ∑
C∈A

Λ
(B)
AC −MAk∗ ∑

B∈A
ρBI[MB(k∗+1)(t)] ∑

C∈A
Λ

(B)
AC .

(3.13)

REMARK 3.3 Recalling the variable reduction in (3.8) based on Remark 3.1, the system of ODIs can be
reduced to a (|A|−1)k∗-dimensional system composed of (|A|−1)(k∗−1) ODEs and |A|−1 ODIs.

REMARK 3.4 In general, the ODE for MA(k∗+1)(t) may depend on macroscopic variables up to the
(k∗+ 2)th order. However, based on the features of the model, such a dependence may not be present
for some A ∈ A. In this case, instead of using the bounds in (3.12) for MA(k∗+1)(t), one may add the
following ODI to (3.13):

ṀA(k∗+1)(t) ∈ ∑
B∈A

MB(k∗+1)θBA−MA(k∗+1) ∑
B∈A

θAB + ∑
B∈A

MB(k∗+1) ∑
C∈A

Λ
(C)
BA ρCMC2, (3.14)

with the understanding that any occurrence of I[MA(k∗+1)(t)] in the system is replaced by MA(k∗+1)(t).
This reduced system of ODIs has a relevant use in the special cases k∗ = 1 and k∗ = 2. In the first

case, one can bound the values of the zeros on the right-hand sides of (3.3), which coincides with the
proportion of individuals per health state at the endemic equilibria. Most of the epidemic models used
in epidemiology have a unique endemic equilibrium [56, 57], but in general there could exist more than
one. In order to construct such bounds, one should take into account the dependence of the growth of the
first-order macroscopic variables on the variables we are seeking to bound (in this case, second-order
variables) through (3.12). For a choice of a first-order macroscopic variable and a higher-order variable,
we aim at understanding whether the upper-bound for the higher-order quantity translates into an upper-
or a lower-bound on the first-order variable. This analysis, as shown later in this paper, is performed by
studying the right-hand-side of (3.3).
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In the case k∗ = 2, one can bound the evolution of the fraction of individuals per each compartment,
that is, the first-order macroscopic variables, during the transient phase, as the epidemic approaches the
endemic state. In order to construct such bounds, one should take into account the dependence of the
growth of the first-order macroscopic variables on the third-order variables, similar to the case k∗ = 1,
discussed above. By following this procedure, we can substitute either the maximum or the minimum
value (depending on the exhibited dependence) of the third-order macroscopic variables from (3.12) to
establish an upper-bound and a lower-bound for the evolution of the first-order variables in the transient
phase.

EXAMPLE 3.2 (The SIS model(cont’d)) For the SIS model, setting k∗ = 1 we bound

MI2 ∈ [a1MI1,min{α1,akMI1}], (3.15)

thereby obtaining

ṀI1 ∈ (λα1−µ)MI1 +λ (1−2MI1) [a1MI1,min{α1,akMI1}] . (3.16)

The fraction of infected individuals in the endemic state can be bounded by setting the right-hand-side
of (3.16) to 0 and finding an interval for the solution, that is,

M̄I1 ∈
[

λ (a1 +α1)−µ

2λa1
,min

{
λα1

λα1 +µ
,

λ (ak +α1)−µ

2λa1

}]
if λα1 < µ;

M̄I1 =
1
2

if λα1 = µ;

M̄I1 ∈
[

max
{

λα1

λα1 +µ
,

λ (ak +α1)−µ

2λa1

}
,

λ (a1 +α1)−µ

2λa1

]
if λα1 > µ.

(3.17)

The analysis of the dependence on MI2 has been carried out by considering the right-hand-side of the
ODE for MI1 in (3.9). We observe that the multiplicative coefficient of the term MI2 is greater than 0
if and only if MI1 < 1/2. Thus, we conclude that MI1 has more marked increase when MI2 is larger,
if MI1 < 1/2; the opposite behavior is exhibited when MI1 > 1/2. Similar arguments are used in other
models throughout the paper. Explicit computations are detailed in [38].

In the case k∗ = 2, we observe from the second equation in (3.9) that MI2 has more marked increase
when MI3 is smaller. Recalling how MI1 depends on MI2 for k∗ = 1, we conclude that MI1 has more
marked increase when MI3 is smaller, if MI1 < 1/2, and it exhibits the opposite behavior otherwise.
Thus, two ancillary ODEs for the evolution of the macroscopic variable MI2 can be constructed that
combine the upper- and the lower-bound in (3.12) based on the dependency discussed above, in order to
act as upper- and lower-bound on MI1. The coupling of each of these equations with the first equation
in (3.9) produces an upper- and a lower-bound on the evolution of the variable MI1, as the epidemic
becomes endemic (explicit computations are detailed in [38]).

3.3 Short- and medium-time-horizon predictions

An alternative approach entails the use of epidemic data, sampled at the population level at every time
period T , where T is the forecast horizon of the predictions. The goal of these predictions is to approx-
imate the epidemic curve, described by the evolution of the first-order macroscopic variables. Con-
sidering the accuracy obtained in the estimation of the transient evolution of the process obtained in
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Section 3.2 using k∗ = 2, we construct a reduced system of 2×|A| ODEs for the first- and second-order
macroscopic variables, and we hypothesize the third-order variables to be linearly dependent on the
first-order ones as

MA3(t) = KAMA1(t), ∀A ∈ A. (3.18)

where the proportionality constant KA is estimated from the available epidemic data. Therefore, the
system of equations reduces to

ṀA1(t) = ∑
B∈A

MB1θBA−MA1 ∑
B∈A

θAB+

+ ∑
B∈A

ρBMB2 ∑
C∈A

Λ
(C)
BA MC1 + ∑

B∈A
MB1 ∑

C∈A
Λ

(C)
BA ρCMC2+

−ρAMA2 ∑
B∈A

MB1 ∑
C∈A

Λ
(B)
AC −MA1 ∑

B∈A
ρBMB2 ∑

C∈A
Λ

(B)
AC

ṀA2(t) = ∑
B∈A

MB2θBA−MA2 ∑
B∈A

θAB+

+ ∑
B∈A

ρBKBMB1 ∑
C∈A

Λ
(C)
BA MC1 + ∑

B∈A
MB2 ∑

C∈A
Λ

(C)
BA ρCMC2+

−ρAKAMA1 ∑
B∈A

MB2 ∑
C∈A

Λ
(B)
AC −MA2 ∑

B∈A
ρBKBMB1 ∑

C∈A
Λ

(B)
AC .

(3.19)

Here, we note that the number of equations in (3.19) can be reduced to 2(|A|−1), following Remark 3.1.
The algorithm generates piece-wise predictions, named M(h)

A j (t), with A ∈ A, j = {1,2}, and h ∈
N, where N is the set of non-negative integers and M(h)

A j (t) is the prediction of the evolution of the
macroscopic variable MA j(t) in the time interval t ∈ [hT,(h+1)T ), defined as follows.

We suppose that at time t = 0 some epidemic data are available. Specifically, we assume to have
access to the fraction of individuals per compartment MA1(0), ∀A ∈ A. Then, the algorithm is imple-
mented as follows.

Algorithm 3.3 (Prediction algorithm) We initialize the algorithm by setting M(0)
A1 (0) = MA1(0), ∀A ∈

A. If information about the value of the second-order macroscopic variables is available, then M(0)
A2 (0)

can also be initialized. Otherwise, we set M(0)
A2 (0) = α1MA1(0), where α1 in (3.6) is obtained from the

power-law distribution of the activity rate distribution. We initialize K(0)
A = α2 and KA = K(0)

A , ∀A ∈ A.
Then, we set h = 0 and the algorithm loops through the following steps:

1. the system of ODEs in (3.19) is numerically integrated from time hT to time (h+1)T , producing
the solutions M(h)

A j (t), A ∈ A, j = {1,2};

2. at time t = (h+ 1)T , we sample epidemic data at the population level. Specifically we measure
MA1(t), ∀A ∈ A, and, if data is accessible, we measure also MA2(t), ∀A ∈ A;

3. we set the initial conditions M(h+1)
A1 (t) = MA1(t), ∀A ∈ A and, if available, M(h+1)

A2 (t) = MA2(t),
∀A ∈ A;
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4. using the sampled epidemic data, we update the proportionality constants

K(h+1)
A = f (K(h)

A ,M(h+1)
A j (t),MA j(t)). (3.20)

If MA2(t) is not accessible, we set M(h+1)
A2 (t) = f (M(h+1)

A j (t),MA1(t)), ∀A ∈ A; and

5. h is incremented by 1, and the process resumes from step 1.

EXAMPLE 3.4 (The SIS model (cont’d)) In the case of the SIS model, predictions can be generated by
integrating the system

ṀI1 = −µMI1 +λα1MI1 +λMI2−2λMI1MI2,

ṀI2 = −µMI2 +λα2MI1 +λα1MI2−λKM2
I1−λM2

I2,
(3.21)

where the proportionality constant, initially set to K(0) = α2, updated by choosing a parameter β > 0,
according to [38], follows:

K(h+1) = K(h)

[
1+β

MI1((h+1)T )−M(h)
I1 ((h+1)T )

1−2MI1((h+1)T )

]
. (3.22)

4. Application to representative epidemic models

Here, we focus on some representative epidemic models, each one exemplifying some unique features
with respect to the standard SIS model. Each model is analyzed within the continuous-time discrete-
distribution paradigm of ADNs developed in Section 2, by using the mathematical techniques presented
in Section 3.

At first, in Section 4.1, we consider the presence of behavioral changes due to infection [8]. There-
after, in Section 4.2, we investigate the presence of an intermediate phase between the susceptible and
the infected one [51], in which an individual has already been exposed to the pathogen, but he/she is
not aware of this fact. This model is typically referred to as susceptible-exposed-infected-susceptible
(SEIS), where exposed individuals may be latent (not contagious [58]) or contagious [51]. Finally, in
Section 4.3, we include the mechanism of immunization [22], which can be temporary in the case of the
susceptible-infected-recovered-susceptible model (SIRS), used for influenza [59], or permanent in the
case of the susceptible-infected-recovered model (SIR), used for smallpox [60]. The possible state tran-
sitions characterizing these three models are illustrated in Fig. 2. All of these features can be combined,
generating more involved and realistic epidemic models.

In each section, along with the mathematical derivation of the specific model, we test our approach
against Monte Carlo simulations (over 200 trials) of the stochastic process, generated by means of a
Gillespie algorithm [39, 40]. In all these examples, we set the model parameters based on the flu case
study in a university campus proposed in [38]. Specifically, the model parameters are: n= 30896, k = 59
(a1 = 0.12, a59 = 6), γ = 2.09, λ = 0.43, µ = 0.138, α1 = 0.317, α2 = 0.381, and the time unit is a day.
Details on the derivation of these parameters are in [38], along with a comparison of the epidemic curve
and of the accuracy of our prediction techniques using a set of parameter based on a different case study.
Only model-specific, new parameters will be mentioned in the figure captions and their effect will be
analyzed in the simulations.
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FIG. 2. State transitions characterizing the epidemic models analyzed in this paper. Black lines are spontaneous transitions,
colored lines are transitions taking place after a contact with a node of a specific compartment (color of the line). Dashed lines
are transitions that may not take place, depending on the specific model implementation.

4.1 SIS model with behavioral changes due to infection

Here, we consider a model where individuals reduce their activity because of the infection. The addition
of this new feature is based on real-world evidence, which suggests that infected individuals tend to
reduce their activity, due to the epidemics itself (sick people may not go to work, for example) and
control policies, such as quarantine [61, 62]. For the sake of simplicity, we focus on the SIS model,
which we extend by including the activity reduction vector ρ = [1,σ ], where the parameter σ ∈ [0,1]
represents the reduction of activity of the infected individuals. Notably, ρ = 0 means that infected
individuals do not generate links, whereas σ = 1 indicates the absence of behavioral changes. In contrast
with [8], where modeling behavioral changes requires the use of two different parameters, the present
continuous-time discrete-distribution framework allows for the use of a single parameter σ .

Following the same approach sketched for the standard SIS model in Ex. 2.2 and Ex. 2.4, the system
of ODEs in the thermodynamic limit (Lemma 2.2) reads

żi = (1− zi)λ

[
ai ∑

j∈K
η jz j +σ ∑

j∈K
η ja jz j

]
− ziµ, i ∈ K. (4.1)

A comparison between the numerical integration of (4.1) and the simulation of the stochastic Markov
process (both single trajectories and Monte Carlo average estimation) for different values of n is pre-
sented in Fig. 3, demonstrating the accuracy of the deterministic approximation as n grows.

By using the change of variables in Lemma 3.1, we obtain the following k-dimensional system of
ODEs:

ṀI1 = (λα1−µ)MI1 +σλMI2− (1+σ)λMI1MI2,

ṀI2 = λα2MI1 +(σλα1−µ)MI2−λMI1MI3−σλM2
I2,

ṀI j = λα jMI1 +σλα j−1MI2−µMI j−λMI1MI( j+1)−σλMI2MI j,

(4.2)

with j = 3, . . . ,k.

In order to analyze the stability of the disease-free equilibrium, we can take advantage of the partic-
ular block structure of the system in (4.2). Similar to [8], we derive the epidemic threshold

λ

µ
<

2

(1+σ)α1 +
√
(1−σ)2α2

1 +4σα2

. (4.3)

REMARK 4.1 The expression in (4.3) simplifies to (α1 +
√

α2)
−1 in the case of the standard SIS model

when σ = 1, in agreement with Ex. 3.1.
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FIG. 3. Representative subset of Monte Carlo simulation of the evolution of the fraction of infected individuals in the stochastic

process (thin cyan) and average estimation over 200 trials (solid blue) compared with the solution of the deterministic system of

ODEs from (4.1) (dashed red) for the flu case study [38] with σ = 0.5, for two different population sizes n.
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FIG. 4. Monte Carlo simulations (averaged over 200 trials) of the evolution of the fraction of infected individuals in the stochastic

process (blue) for the flu case study [38], and bounds (red) obtained with k∗ = 1, for different values of the behavioral parameter

σ .

Next, we consider the k∗-dimensional system of ODIs obtained by using the bounds on MI(k∗+1) in

the k∗th equation of (4.2), presented in Section 3. Similar to Ex. 3.2, we use the case k∗ = 1 to estimate

the fraction of infected individuals at the endemic equilibrium M̄I1, such that

M̄I1 ∈
[

λ (σa1 +α1)−μ
(1+σ)λa1

,min

{
λα1σ

λα1σ +μ
,

λ (σak +α1)−μ
(1+σ)λak

}]
if λα1 < μ;

M̄I1 =
σ

1+σ
if λα1 = μ;

M̄I1 ∈
[

max

{
λα1σ

λα1σ +μ
,

λ (σak +α1)−μ
(1+σ)λak

}
,

λ (σa1 +α1)−μ
(1+σ)λa1

]
if λα1 > μ.

(4.4)

Figure 4 demonstrates the application of these bounds for the flu case study, showing the accuracy of the

bounds obtained for the fraction of infected individuals in the endemic state. From the comparison of

panels (a) and (b) in Fig. 4, the amplitude of the bounds seems to be influenced by the model parameters,

yielding predictions of different accuracy for the fraction of infected individuals.

The epidemic curve, instead, could be estimated by using k∗ = 2, which leads to a system of ODIs,
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FIG. 5. Monte Carlo simulations (averaged over 200 trials) of the evolution of the fraction of infected individuals in the stochastic

process (blue) for the flu case study [38] and bounds (red) obtained with k∗ = 2, for different values of the behavioral parameter

σ .

whose solutions can be bounded by coupling the first equation from (4.2) with the following two ancil-

lary ODEs:

ṀI2 = λ (((α2 −φε,MI2
(MI1))))MI1 +(λσα1 −μ)MI2 −λσM2

I2, (4.5)

ṀI2 = λ (((α2 −φε̄,MI2
(1−MI1))))MI1 +(λσα1 −μ)MI2 −λσM2

I2, (4.6)

in the limit ε → 0. Here, φε,MI2
(MI1) is a continuous monotone function such that

φε,MI2
(MI1) =

{
a1MI2 if MI1 < σ/(1+σ)− ε/2,
min{α2,akMI2} if MI1 > σ/(1+σ)+ ε/2.

(4.7)

Similar to Ex. 3.2, (4.5) and (4.6) are obtained by analyzing the dependence of MI1 on MI3. Figure 5

illustrates the implementation of the bounds on the epidemic curve for the flu case study [38]. As already

noticed in the case k∗ = 1, the amplitude of the bounds is influenced by the model parameters. However,

satisfactory predictions of the evolution of the fraction of infected individuals in the population are

obtained for both the values of the behavioral parameter σ used in the simulations.

Finally, accurate finite-time-horizon predictions, based on the availability of few epidemic data at

the population level at each fixed time (daily or weekly) can be gathered through Algorithm 3.3). In the

case of an SIS model with behavioral changes due to infection, the equations for the first to macroscopic

variables (3.19) reduces to

ṀI1 = λα1MI1 +λσMI2 −μMI1 − (1+σ)λMI1MI2,

ṀI2 = λα2MI1 +(λσα1 −μ)MI2 −λKM2
I1 −λσM2

I2.
(4.8)

This system presents a single proportionality constant K = K(h), which we initially set to K(0) = α2, and

dynamically update, according to our prediction algorithm, following:

K(h+1) = K(h)

[
1+β

MI1((h+1)T )−M(h)
I1 ((h+1)T )

ρ − (1+ρ)MI1((h+1)T )

]
. (4.9)

Similar to Ex. 3.4, this equation is obtained by considering the dependence of MI1 on MI2 and MI3

and introducing an update parameter β > 0. Figure 6 illustrates two examples of the application of
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FIG. 6. Simulation of the evolution of the fraction of infected individuals in the stochastic process (blue) for the flu case study [38]
and our predictions over a weekly time-horizon (red) for different values of σ .

this prediction technique, over a weekly time-horizon, for different values of the parameter σ . From
this figure, we appreciate the accuracy of our predictions, which are only based on few epidemic data,
sporadically sampled at the population level. From our findings, as σ decreases we may conjecture
that the quality of the prediction slightly decreases, even if it is still accurate. This could be due to the
fact that the lower σ is, the higher is the influence of the estimated term containing K in (4.8), which,
differently from other terms, does not depend on σ .

4.2 Presence of unconscious infected individuals

As a second application, we study a more complex and realistic epidemic model, obtained by adding
a new health state (compartment) for the individuals. Beyond the classical susceptible and infected
compartments, we include the exposed one. The reason for this addition lies in the fact that, immediately
after an individual has been exposed to the pathogen, his/her symptoms and signs may still not be
evident. Therefore, an exposed individual could behave as a susceptible subject, generating contacts
without reducing his/her activity. However, he/she has already contracted the infection and might be
able to spread the epidemic through a contact with a susceptible individual. We consider the case in
which an exposed individual is contagious within the SEIS model [58]. We note that the case where
exposed individuals are latent can be easily obtained from the SEIS model, as we show further on.

In the SEIS model, we distinguish two possible types of contact: the contact between a suscepti-
ble individual and an exposed one, and the contact between a susceptible individual and an infected
one. Therefore, we introduce two different infection probabilities, denoted by ψ ∈ [0,1] and λ ∈ [0,1],
respectively. This distinction allows to model different scenarios. The case ψ < λ models situations
where the inception of symptoms increases the likelihood of contagion, such as in the case of influenza
with coughing and sneezing. On the other hand, ψ > λ models those cases where individual aware-
ness about personal health state triggers precautions toward the others. When exposed individuals are
not contagious, we set ψ = 0. The transition between exposed and infected compartments is sponta-
neous: after a time that is drawn from an exponentially distributed random variable with parameter ν ,
first symptoms appear and the exposed individual becomes conscious of his/her illness, turning into an
infected individual. The parameter ν can be identified when specializing the model to a given pathogen,
whereby ν−1 is the expected duration of the incubation period.

Hence, we set A = {S,E, I} and ρ = [1,1,σ ]. The pairwise interaction kernel consists of the fol-
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lowing matrices, where the first row/column refers to the compartment S, the second one to E, and the
last one to I:

Λ
(S) =

 1 0 0
0 1 0
0 0 1

 , λ
(E) =

 1−ψ ψ 0
0 1 0
0 0 1

 , λ
(I) =

 1−λ λ 0
0 1 0
0 0 1

 , (4.10)

while the spontaneous transition rates matrix is

Θ =

 0 0 0
0 0 ν

µ 0 0

 . (4.11)

Next, in the thermodynamic limit (Lemma 2.2), the process can be approximated through the solu-
tion of the following system of ODEs:

ζ̇Ei =−νζEi +(1−ζEi−ζIi)

[
ψ(ai ∑

j∈K
η jζE j + ∑

j∈K
η ja jζE j)+λ (ai ∑

j∈K
η jζI j +σ ∑

j∈K
η ja jζI j

]
,

ζ̇Ii =−µζIi +νζEi,
(4.12)

where the variables referring to the compartment S, that is, ζSi, have been treated as linearly dependent
on the others, based on the method for reducing the number of variables presented in Remark 2.1.

The system of ODEs in (4.12) can be rewritten in terms of the macroscopic variables ME j and MI j,
according to the change of variables in Lemma 3.1, thereby leading to

ṀE1 = (α1ψ−ν)ME1 +α1λMI1 +ψME2 +λσMI2−2ψME1ME2
−(1+σ)λMI1MI2− (λ +ψ)ME2MI1− (λσ +ψ)ME1MI2,

ṀE2 = α2ψME1−νME2 +α2λMI1 +ψα1ME2 +λσα1MI2−ψME1ME3−ψM2
E2

−λMI1MI3−ψσM2
I2−ψME1ME3− (ψ +λσ)ME2MI2−λME3MI1,

ṀE j = α jψME1−νME j +α jλMI1 +ψα j−1ME2 +λσα j−1MI2
−ψME1ME( j+1)−ψME2ME j−λMI1MI( j+1)−ψσMI2MI j−ψME1MI( j+1)
−ψME2MI j−λME( j+1)MI1 +λσME jMI2,

ṀIl = −µMIl +νMEl ,

(4.13)

with j = 3, . . . ,k and l ∈ K.
The technique presented in Section 3.2 can be employed to estimate the fraction of infected (and

exposed) individuals in the endemic state. Comparing with a binary dynamics, such as the SIS model
or the one described in Section 4.1, a few more technical expedients should be put forward to tackle the
increased dimensionality of this system. In particular, from (4.13), we notice that the ODEs for the jth
order macroscopic variables referring to compartment I depend only on the two macroscopic variables
MI j and ME j and not on higher-order variables.

Thus, to estimate the fraction of individuals per health state in the endemic state, we can consider
a three-dimensional system of ODIs composed of the three equations describing the dynamics of ME1,
MI1, and MI2 from (4.13), in which only the term ME2 is bounded using (3.12), that is, a1ME1 6ME2 6
min{akME1,α1}. The resulting system comprises two ODIs for ṀE1 and ṀI2 and an ODE for ṀI1.
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The fraction of exposed and infected individuals at the endemic equilibrium (M̄E1 and M̄I1, respec-
tively) can be estimated by considering that, at the equilibrium point, the two equations for the macro-
scopic variables MI1 and MI2 yield

MI1 =
ν

µ
ME1 and MI2 =

ν

µ
ME2. (4.14)

Hence, equilibrium conditions for the equation ṀE1 from (4.13) reduce to the computation of the roots
of the following expression:

(α1ψ +α1λ
ν

µ
−ν)ME1 +

[(
ψ +λσ

ν

µ

)
−
(

1+
ν

µ

)(
2ψ +(1+σ)λ

ν

µ

)
ME1

]
ME2. (4.15)

These roots can be conveniently estimated by recalling that ME2 ∈ [a1ME1,min{akME1,α1}] and com-
puting the zeros of (4.15) at each of the extremes of such bounding interval, thereby obtaining the
following three solutions:

MA
E1 =

ψ(α1 +a1)+λ
ν

µ
(α1 +σa1)−ν

a1(1+ ν

µ
)
(

2ψ +(1+σ)λ ν

µ

) ,

MB
E1 =

ψ(α1 +ak)+λ
ν

µ
(α1 +σak)−ν

ak(1+ ν

µ
)
(

2ψ +(1+σ)λ ν

µ

) ,

MC
E1 =

(
ψ +λσ

ν

µ

)
α1

ν

µ
α1

(
2ψ +(1+σ)λ ν

µ

)
+α1

(
ψ +λσ

ν

µ

)
+ν

.

(4.16)

Using (4.14), these three solutions yield

MA
I1 =

ν

µ
MA

E1, MB
I1 =

ν

µ
MB

E1, and MC
I1 =

ν

µ
MC

E1. (4.17)

In order to establish consistent bounds for the endemic equilibrium, roots (4.16) should be sorted.
This can be done by analyzing the dependence of ME1 on ME2. Specifically, we find from the first
equation of (4.13) that the upper-bound for ME2 yields an upper-bound also for ME1 when 2ψME1 +
(λ +ψ)MI1 < ψ , otherwise it yields a lower-bound for ME1. As a consequence, the following intervals
for the endemic state can be derived:

• if α1ψ +α1λν/µ > ν , then M̄E1 ∈ [max{MB
E1,M

C
E1},MA

E1] and M̄I1 ∈ [max{MB
I1,M

C
I1},MA

I1];

• if α1ψ +α1λν/µ < ν , then M̄E1 ∈ [MA
E1,min{MB

E1,M
C
E1}] and M̄I1 ∈ [MA

I1,min{MB
I1,M

C
I1}]; and

• if α1ψ +α1λν/µ = ν , then we can explicitly compute

M̄E1 =
ψ +λσ

ν

µ(
1+ ν

µ

)(
2ψ +(1+σ)λ ν

µ

) and M̄I1 =

ν

µ
ψ +λσ

ν2

µ2(
1+ ν

µ

)(
2ψ +(1+σ)λ ν

µ

) . (4.18)
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FIG. 7. Monte Carlo simulations (averaged over 200 trials) of the evolution of the fraction of infected individuals (solid red)

and exposed individuals (solid blue) in the stochastic process for the flu case study [38] with unconscious infected individuals.

Filled areas illustrate the bounds obtained with k∗ = 1 (a) and k∗ = 2 (b). The behavioral parameter σ has been set to 0.5, while

parameters related to the exposed compartment, ψ = 0.25, and ν = 0.5, are derived from [59]).

Figure 7(a) demonstrates the application of these bounds for the estimation of the endemic equilibrium

in the flu case study with the addition of unconscious infected individuals. We observe that the addition

of more compartments and transitions with respect to the SIS model in Fig. 4 does not challenge the

feasibility of our approach. We are able to provide consistent bounds, whose accuracy depends on the

specific model parameters. Also in this case, simulations with different model parameters, not reported

here for brevity, yield bounds of different amplitude.

The epidemic curve, instead, can be estimated by using k∗ = 2. Taking advantage of the simple

structure of equation ṀI3 in (4.13), we use Remark 3.4 to construct the corresponding ODI, whereas the

bounds on the macroscopic variables in (3.12) are only used to bound a1ME2 � ME3 � min{α2,akME2}.

Thus, the reduced ODI system derived from (4.13) comprises three ODEs, namely those governing the

evolution of ME1, MI1 and MI2, and two ODIs, governing the evolution of ME2 and MI3.

The upper- and lower-bounds on the first-order macroscopic variables ME1 and MI1 are derived by

studying their dependence on ME3. Considering the equation governing ME1 from (4.13), we note that

if 2ψME1 +(λ +ψ)MI1 > ψ , then ME1 has more marked increase when ME2 is smaller, and vice versa;

the opposite behavior is exhibited if 2ψME1 +(λ +ψ)MI1 < ψ . From the equation governing ME2, we

observe that ME2 has more marked increase when ME3 or MI3 are smaller. Finally, from the equation

for MI3, it is straightforward to note that MI3 has more marked increase when ME3 is larger. Hence, we

conclude that when 2ψME1 +(λ +ψ)MI1 > ψ , ME1 has more marked increase when ME3 is smaller,

and vice versa.

In accordance with these observations, we define a continuous monotone function φε,ME2
such that

φε,ME2
(ME1,MI1) =

{
a1ME2 if 2ψME1 +(λ +ψ)MI1 < ψ − ε/2,
min{α2,akME2} if 2ψME1 +(λ +ψ)MI1 > ψ + ε/2,

(4.19)

and φ̄ε,ME2
(ME1,MI1) = a1ME2+min{α2,akME2}−φε,ME2

(ME1,MI1). We introduce two pairs of ancil-

lary ODEs and we couple each of them with the three equations for the evolution of ME1,MI1, and MI2

from (4.13), producing two five-dimensional systems of ODEs to bound the evolution of the fraction of
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FIG. 8. Simulation of the evolution of the fraction of infected individuals (blue) and exposed ones (orange) in the stochastic
process for the flu case study [38] with ψ = 0.25 and ν = 0.5 [59], modeled as an SEIS, along with data-driven predictions over
a weekly time-horizon (red and green, for exposed and infected, respectively) for different values of σ .

infected individuals (as ε → 0). These two pairs of ancillary equations are, respectively,

ṀE2 = α2ψME1−νME2 +α2λMI1 +ψα1ME2 +λσα1MI2−ψM2
E2−λMI1MI3

−ψσM2
I2−ψME1MI3− (ψ +λσ)ME2MI2− (ψME1 +λMI1)φε,ME2(ME1,MI1),

ṀI3 = −µMI3 +νφε,MI2(ME1,MI1);
(4.20)

and

ṀE2 = α2ψME1−νME2 +α2λMI1 +ψα1ME2 +λσα1MI2−ψM2
E2−λMI1MI3

−ψσM2
I2−ψME1MI3− (ψ +λσ)ME2MI2− (ψME1 +λMI1)φ̄ε,ME2(ME1,MI1),

ṀI3 = −µMI3 +νφ̄ε,MI2(ME1,MI1).

(4.21)

The application of this technique for the flu case study is illustrated in Fig. 7(b), from which we obtain
results comparable with those obtained for the simpler SIS model with behavioral changes due to infec-
tion, in Fig. 5.

In real-world applications, exposed individuals may not be conscious of their status, thereby hinder-
ing the possibility to measure the initial conditions for the macroscopic variables ME j. This problem
can be tackled by estimating the fraction of exposed individuals (and higher-order macroscopic vari-
ables referring to the exposed compartment) through the combination of available historical data on
breakouts of similar epidemics (for example, using the epidemic curve of previous seasons’ breakouts
of influenza).

Thus, short- and medium-time horizon predictions could be produced by using Algorithm 3.3, by
considering a system of ODEs composed of ṀE1, ṀE2, ṀI1, ṀI2, and ṀI3, from (4.13), where each
occurrence of the term ME3 is replaced with KME1, where K = K(h) is dynamically updated from an ini-
tial condition K(0) = α2. At the beginning of each time period, epidemic data sampled at the population
level are used to update the initial conditions and the proportionality constant K. Figure 8 demonstrates
the accuracy of this technique for the flu case study, which does not seem to be affected by the increased
number of compartments.

Clearly, the same arguments can be used to analyze more complex epidemic models, in which the
infected compartment might be split into several sub-compartments, modeling progressive phases of the
illness [51]. Moreover, the exposed compartment could be split into two distinct compartments, namely
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latent and exposed. Susceptible individuals would enter the latent compartment immediately after the
infection, while latent individuals are already infected but still not infectious, causing a natural delay in
the dynamics. Latent individuals will spontaneously become exposed, being unconsciously infectious.
For example, in the case of influenza, the incubation period lasts 1−3 days, but only in the last day the
infected individual becomes infectious [59].

4.3 Presence of immunization

Finally, we consider the case in which, after recovering, individuals become immune to the disease for a
period of time, which can be finite (such as in influenza), or theoretically infinite (such as for smallpox
and measles [60]).

At first, we consider the case in which immunization is temporary. The simplest model that includes
this feature is the SIRS model [22]. Infected individuals, after recovering, enter the recovered com-
partment. Then, after a time that is the realization of a random variable exponentially distributed with
parameter ν , they become susceptible again. Hence, ν−1 is the expected duration of the immunity. The
limit case, ν→ 0, models the case in which immunity is never lost (or the individual dies) and is treated
later in this Section.

To cast this model in our framework, we set A = {S, I,R} and the activity reduction vector ρ =
[1,σ ,1]. In addition, the pairwise interaction kernel is composed of the following matrices, where the
first row/column refers to the compartment S, the second to I, and the third one to R:

Λ
(S) = Λ

(R) =

 1 0 0
0 1 0
0 0 1

 , Λ
(E) =

 1−λ λ 0
0 1 0
0 0 1

 . (4.22)

The spontaneous transition rates matrix is

Θ =

 0 0 0
0 0 µ

ν 0 0

 . (4.23)

The thermodynamic limit (Lemma 2.2) yields the following system of ODEs:

ζ̇Ii = −µζIi +λ (1−ζIi−ζRi)(ai ∑
j∈K

η jζI j +σ ∑
j∈K

η ja jζI j),

ζ̇Ri = µζIi−νζRi,
(4.24)

where the variables referring to the compartment S have been written as linear combinations of the other
variables, according to Remark 2.1.

Next, the system in (4.24) can be rewritten in terms of the macroscopic variables MI j and MRl , using
the change of variables in Lemma 3.1, as follows:

ṀI1 = (λα1−µ)MI1 +λσMI2− (1+σ)λMI1MI2−λMR2MI1−λσMR1MI2,

ṀI2 = λα2MI1 +(λα1σ −µ)MI2−λMI1MI3−λσM2
I2−λMR3MI1−λσMR2MI2,

ṀI j = λα jMI1 +λα j−1σMI2−µMI j−λMI1MI( j+1)−λσMI2MI j−λMR( j+1)MI1−λσMR jMI2,

ṀRl = µMIl−νMRl ,
(4.25)

with j = 3, . . .k and l ∈ K.
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The epidemic threshold of the SIRS model is equal to the one computed for the SIS model with
behavioral changes due to infection, reported in (4.3). In fact, the linearization process of (4.25) close
to the disease-free equilibrium cancels the terms related to the macroscopic variables of the recovered
compartment.

The estimation of the fraction of infected and recovered individuals at the endemic equilibrium can
be performed similar to the SEIS model. First, the simplicity of the equations MRl suggests to consider
an additional ODI for the evolution of MR(k∗+1) instead of the bounds for that variable. Then, we
consider the reduced system of ODIs with k∗ = 1 and we prove that, at the endemic equilibrium,

MR1 =
µ

ν
MI1 and MR2 =

µ

ν
MI2. (4.26)

Hence, the equilibrium conditions reduce to bound the root of the following expression:

(λα1−µ)MI1 +λ

[
σ − (1+σ)

(
1+

µ

ν

)
MI1

]
MI2, (4.27)

with MI2 ∈ [a1MI1,min{akMI1,α1}]. The analysis of the dependence of MI1 on MI2 is carried out similar
to the case of the SIS model with behavioral changes due to infection. Thus, we obtain the following
intervals:

M̄I1 ∈

[
λ (a1 +α1σ)−µ

(1+σ)(1+ µ

ν
)λa1

,min

{
λα1σ

λα1σ(1+ µ

ν
)+µ +λα1

µ

ν

,
λ (ak +α1σ)−µ

(1+σ)(1+ µ

ν
)λa1

}]
if λα1 < µ;

M̄I1 =
σ

(1+σ)
(
1+ µ

ν

) if λα1 = µ;

M̄I1 ∈

[
max

{
λα1σ

λα1σ(1+ µ

ν
)+µ +λα1

µ

ν

,
λ (ak +α1σ)−µ

(1+σ)(1+ µ

ν
)λak

}
,

λ (a1 +α1σ)−µ

(1+σ)(1+ µ

ν
)λa1

]
if λα1 > µ.

(4.28)
The corresponding intervals for M̄R1 can be written using (4.26).

The techniques from Section 3, both for the estimation of the epidemic curve and the derivation of
accurate finite-time-horizon predictions, can be applied to this model, similar to the SEIS model. The
epidemic curve can be estimated by first reducing (4.25) to a system of five ODIs. These five ODIs
govern the evolution of MI1, MI2, MR1, MR2, and MR3, using the bounds a1MI2 6MI3 6min{α2,akMI2}
from (3.12) and studying the dependence between the growth of MI1 and the magnitude of MI3. Due to
the absence of unconscious infected individuals, issues in the estimation of the initial conditions do not
arise. In a similar vein, in our prediction algorithm we consider the five-dimensional system of ODEs
obtained by substituting each occurrence of MI3 with KMI1, where K is dynamically updated, along
with the initial conditions of the macroscopic variables, at each iteration of the estimation process, from
the available epidemic data.

The limit case in which immunization is permanent (for example, in the case of Ebola Virus Disease,
measles, and smallpox [24, 60]) is obtained by setting ν = 0. This model goes under the name of the
susceptible-infected-recovered (SIR) model [22]. In the case of the SIR model, the system always
converges to a disease-free state, in which some of the individuals are susceptible and some others, after
having contracted the disease, recover (or are removed from the system, such as in the case of deaths).

To analyze the SIR model, we let ν = 0 in (4.24), obtaining

ζ̇Ii = −µζIi +λ (1−ζIi−ζRi)(ai ∑
j∈K

η jζI j +σ ∑
j∈K

η ja jζI j),

ζ̇Ri = µζIi;
(4.29)
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FIG. 9. Simulation of the evolution of the fraction of infected individuals (blue) and recovered ones (orange) in the stochastic
process for the flu case study [38] modeled as an SIR for different values of σ , along with data-driven predictions over a weekly
time-horizon (red and green, for infected and recovered, respectively).

and the system of ODEs in (4.25) reads

ṀI1 = (λα1−µ)MI1 +λσMI2− (1+σ)λMI1MI2−λMR2MI1−λσMR1MI2,

ṀI2 = λα2MI1 +(λα1σ −µ)MI2−λMI1MI3−λσM2
I2−λMR3Ix1−λσMR2MI2,

İ j = λα jMI1 +λα j−1σMI2−µMI j−λMI1MI( j+1)−λσMI2MI j−λMR( j+1)MI1−λσMR jMI2,

ṀRl = µMIl ,
(4.30)

with j = 3, . . . ,k and l ∈ K.

The technique used in the analysis of the SIRS model for the estimation of the epidemic curve can
be adapted to this limit case, considering k∗ = 2 with an additional ODI derived from the equation
ṀR3 = µMI3, instead of the bounds on MR3, according to Remark 3.4. Moreover, very accurate data-
driven finite-time-horizon predictions can be obtained using Algorithm 3.3, as explained above for the
SIRS model. As shown in Fig. 9, therein we apply this technique to the flu case study for different values
of the behavioral parameter σ . Our data-driven finite-horizon prediction technique seems to offer better
performance in the presence of immunization dynamics.

5. Conclusion

In this paper, we have developed a new continuous-time theory for stochastic epidemic models on ADNs
with a discrete activity distribution, which allows for an analytical treatment of the spreading dynam-
ics. One of the main contributions of this work is the derivation of a deterministic approximation valid
in the thermodynamic limit of large population. We have developed several empowering mathemati-
cal techniques for the analysis of such models, which can be used to generate accurate predictions of
the evolution of the epidemic process. We have demonstrated the possibility of studying a number of
prominent modeling variants (such as a model with behavioral changes due to infection, SEIS, SIRS,
and SIR) within our new framework. Numerical results confirm the effectiveness of our approach, which
i) reproduces the dynamics of discrete-time Monte Carlo simulations avoiding the confounds associated
with the selection of the discrete sampling time; and ii) affords the implementation of mathematical
techniques to analyze the endemic equilibrium and of the evolution the spreading dynamics.

Several improvements to our model are envisaged and will be subject of further research. First,
future work should seek to clarify the relationship between our predictions based on analytical bounds
and model parameters, which is presently opaque. Second, future work should elucidate the truncating
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procedure toward enhancing accuracy and minimize computational costs in treating several macroscopic
variables. Third, a further effort should be devoted to cast the finite-time-horizon prediction techniques
in an optimization context, to ease the selection of sampling periods and assess accuracy a priori. Finally,
we aim at further empowering our framework with realistic phenomena, relevant from an epidemic
modeling point of view, such as memory processes in link formation, spatial locality, formation of
communities, and non-Markovianity.

The achievement of the envisaged research efforts would lead to the development of a general and
powerful paradigm for the analytical treatment of realistic epidemic processes on time-varying networks,
otherwise tractable only through extensive numerical simulations.
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