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Abstract—This paper considers the minimization of a general
objective function f(X) over the set of rectangular n x m
matrices that have rank at most r. To reduce the computational
burden, we factorize the variable X into a product of two
smaller matrices and optimize over these two matrices instead of
X. Despite the resulting nonconvexity, recent studies in matrix
completion and sensing have shown that the factored problem
has no spurious local minima and obeys the so-called strict saddle
property (the function has a directional negative curvature at all
critical points but local minima). We analyze the global geometry
for a general and yet well-conditioned objective function f(X)
whose restricted strong convexity and restricted strong smooth-
ness constants are comparable. In particular, we show that the
reformulated objective function has no spurious local minima
and obeys the strict saddle property. These geometric properties
imply that a number of iterative optimization algorithms (such as
gradient descent) can provably solve the factored problem with
global convergence.

Index Terms—Low-rank matrix optimization, matrix sensing,
noncovnex optimization, optimization geometry, strict saddle

I. INTRODUCTION

Consider the minimization of a general objective function
f(X) over all low-rank n x m matrices:
minimize f(X)
XGR’ILX’"L (1)
subject to rank(X) <,

where the objective function f : R™*™ — R is smooth.
Low-rank matrix optimizations of the form (1) appear in a
wide variety of applications, including quantum tomography
[2], [3], collaborative filtering [4], [5], sensor localization
[6], low-rank matrix recovery from compressive measurements
[7], [8], and matrix completion [9], [10]. Due to the rank
constraint, however, low-rank matrix optimizations of the
form (1) are highly nonconvex and computationally NP-hard
in general [11] even if f itself is convex. In order to deal
with the rank constraint and to find a low-rank solution, the
nuclear norm is widely used in matrix inverse problems [8],
[12] arising in machine learning [13], signal processing [14],
and control [15]. Although nuclear norm minimization enjoys
strong statistical guarantees [9], its computational complexity
is very high (as most algorithms require performing an expen-
sive singular value decomposition (SVD) in each iteration),
prohibiting it from scaling to practical problems.
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To relieve the computational bottleneck and provide an al-
ternative way of dealing with the rank constraint, recent studies
propose to factorize the variable into the Burer-Monteiro type
decomposition [16], [17] with X = UV?T, and optimize
over the n x r and m x r matrices U and V. With this
parameterization of X, we can recast (1) into the following
program:

minimize  h(U,V):= f(UV"). 2)

UER™*",VeRmxr

The bilinear nature of the parameterization renders the objec-
tive function of (2) nonconvex even when f(X) is a convex
function. Hence, the objective function in (2) can potentially
have spurious local minima (i.e., local minimizers that are
not global minimizers) or “bad” saddle points that prevent a
number of iterative algorithms from converging to the global
solution. By analyzing the landscape of nonconvex functions,
several recent works have shown that the factored objective
function h(U, V') in certain matrix inverse problems has no
spurious local minima [18]-[20].

We generalize this line of work by focusing on a general
objective function f(X) in the optimization (1), not necessar-
ily a quadratic loss function coming from a matrix inverse
problem. By focusing on a general objective function, we
attempt to provide a unifying framework for low-rank matrix
optimizations with the factorization approach. We provide a
geometric analysis for the factored program (2) and show
that, under certain conditions on f(X), all critical points
of the objective function h(U,V') are well-behaved. Our
characterization of the geometry of the objective function
ensures that a number of iterative optimization algorithms
converge to a global minimum.

A. Summary of Results

The purpose of this paper is to analyze the geometry of the
factored problem h(U,V) in (2). In particular, we attempt
to understand the behavior of all of the critical points of the
objective function in the reformulated problem (2).

Before presenting our main results, we lay out the necessary
assumptions on the objective function f(X). As is known,
without any assumptions on the problem, even minimizing
traditional quadratic objective functions is challenging. For
this purpose, we focus on the model where f(X) is (2r,4r)-
restricted strongly convex and smooth, i.e., for any n x m
matrices X, G with rank(X) < 2r and rank(G) < 4r, the
Hessian of f(X) satisfies

oGl < [VA(X))(G,G) < B|G|% 3)

for some positive o and 5. A similar assumption is also
utilized in [21, Conditions 5.3 and 5.4]. With this assumption



on f(X), we summarize our main results in the following
informal theorem.

Theorem 1. (informal) Suppose the function f(X) satis-
fies the (2r,4r)-restricted strong convexity and smoothness
condition (3) and has a critical point X* € R"™ ™ with
rank(X™) = r* < r. Then the factored objective function
h(U, V) (with an additional regularizer, see Theorem 3) in
(2) has no spurious local minima and obeys the strict saddle
property (see Definition 3 in Section II).

Remark 1. As guaranteed by Proposition 1 (in Section III),
the (2r,4r)-restricted strong convexity and smoothness prop-
erty (3) ensures that X ™ is the unique global minimum of (1).
Theorem 1 then implies that we can recover the rank-r* global
minimizer X * of (1) by many iterative algorithms (such as the
trust region method [22] and stochastic gradient descent [23])
even from a random initialization. This is because 1) as
guaranteed by Theorem 2, the strict saddle property ensures
local search algorithms converge to a local minimum, and 2)
there are no spurious local minima.

Remark 2. Since our main result only requires the (2r,4r)-
restricted strong convexity and smoothness property (3), aside
from low-rank matrix recovery [12], it can also be applied to
many other low-rank matrix optimization problems [24] which
do not necessarily involve quadratic loss functions. Typical
examples include robust PCA [25], [26], 1-bit matrix com-
pletion [27], [28] and Poisson principal component analysis
(PCA) [29].

Remark 3. Similar results on positive semi-definite (PSD)
matrix optimization problems (but without the rank constraint)
with generic objective functions were obtained in [30]. We
note that one cannot directly apply the results in [30] to
the optimization (1) when the matrices under consideration
are nonsymmetric or rectangular, even if we ignore the rank
constraint. One could attempt to convert minimizing f(X)
over general n X m matrices into minimizing ¢(Z) over the
cone of PSD matrices of size (m + n) x (m + n), where X
and X T form the upper right and lower left blocks of Z. The
problem with this transformation, however, is that ¢(Z) will
no longer satisfy the same properties as f(X), in particular
the restricted strong convexity and smoothness condition (3)
which is a key assumption utilized in [30]. For this reason,
one cannot apply the results for the PSD optimization in [30]
directly to our problem. In terms of the proof techniques,
although the generalization from the PSD case might not seem
technically challenging at first sight, quite a few technical
difficulties had to be overcome to develop the theory for
the general case in this paper. In fact, the non-triviality of
extending to the nonsymmetric case is also highlighted in [20],
[31].

B. Related Works

Compared with the original program (1), the factored
form (2) typically involves many fewer variables (or variables
with much smaller size) and can be efficiently solved by sim-
ple but powerful methods (such as gradient descent [23], [32],
the trust region method [33], and alternating methods [34]) for

large-scale settings, though it is nonconvex. In recent years,
tremendous effort has been devoted to analyzing nonconvex
optimizations by exploiting the geometry of the corresponding
objective functions. These works can be separated into two
types based on whether the geometry is analysed locally or
globally. One type of work analyzes the behavior of the ob-
jective function in a small neighborhood containing the global
optimum and requires a good initialization that is close enough
to a global minimum. Problems such as phase retrieval [35],
matrix sensing [31], and semi-definite optimization [36] have
been studied.

Another type of work attempts to analyze the landscape
of the objective function and show that it obeys the strict
saddle property. If this particular property holds, then simple
algorithms such as gradient descent and the trust region
method are guaranteed to converge to a local minimum from
a random initialization [23], [32], [37] rather than requiring a
good guess. We approach low-rank matrix optimization with
general objective functions (1) via a similar geometric char-
acterization. Similar geometric results are known for a num-
ber of problems including complete dictionary learning [37],
phase retrieval [22], orthogonal tensor decomposition [23], and
matrix inverse problems [18], [19], [30]. Empirical evidence
also supports using the factorization approach for estimating a
low-rank PSD matrix from a set of rank-one measurements
corrupted by arbitrary outliers [38] and for recovering a
dynamically evolving low-rank matrix from incomplete ob-
servations [39].

Our work is most closely related to certain recent works in
low-rank matrix optimization. Bhojanapalli et al. [18] showed
that the low-rank, PSD matrix sensing problem has no spurious
local minima and obeys the strict saddle property. Similar
results were exploited for PSD matrix completion [19], PSD
matrix factorization [40] and low-rank, PSD matrix opti-
mization problems with generic objective functions [30]. Our
work extends this line of analysis to general low-rank matrix
(not necessary PSD or even square) optimization problems.
Another closely related work considers the low-rank, non-
square matrix sensing problem and matrix completion with
the factorization approach [20], [41], [42]. We note that our
general objective function framework includes the low-rank
matrix sensing problem as a special case (see Section III-C).
Furthermore, our result covers both over-parameterization
where » > r* and exact parameterization where r = r*.
Wang et al. [21] also considered the factored low-rank matrix
minimization problem with a general objective function which
satisfies the restricted strong convexity and smoothness con-
dition. Their algorithms require good initializations for global
convergence since they characterized only the local landscapes
around the global optima. By categorizing the behavior of all
the critical points, our work differs from [21] in that we instead
characterize the global landscape of the factored objective
function.

This paper continues in Section II with formal definitions
for strict saddles and the strict saddle property. We present
the main results and their implications in matrix sensing,
weighted low-rank approximation, and 1-bit matrix completion
in Section III. The proof of our main results is given in



Section IV. We conclude the paper in Section VI.

II. PRELIMINARIES
A. Notation

To begin, we first briefly introduce some notation used
throughout the paper. The symbols I and O respectively
represent the identity matrix and zero matrix with appropriate
sizes. The set of r x r orthonormal matrices is denoted by
O, :={R e R : R"R = 1}. If a function h(U, V) has
two arguments, U € R™"*" and V' € R"™*", we occasionally
use the notation h(W') when we put these two arguments into

a new one as W = . For a scalar function f(Z) with a
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matrix variable Z € R™*™ its gradient is an n X m matrix
whose (4, j)-th entry is [V f(Z)];; = égéi) foralli € [n],j €
[m]. Here [n] = {1,2,...,n} for any n € N and Z;; is the
(i,)-th entry of the matrix Z. The Hessian of f(Z) can be
viewed as an nm x nm matrix [V2f(Z)];; = %Z{éfj) for all
i,j € [nm], where z; is the i-th entry of the vectorization of
Z. An alternative way to represent the Hessian is2 by a bilinear
form defined via [V2f(Z)](A, B) = 32, ; 1, 57242 Aij Br
for any A, B € R"*™. The bilinear form for the Hessian is

widely utilized through the paper.

B. Strict Saddle Property

Suppose h : R™ — R is a twice continuously differentiable
objective function. We begin with the notion of strict saddles
and the strict saddle property.

Definition 1 (Critical points). We say x a critical point if the
gradient at x vanishes, i.e., Vh(x) = 0.

Definition 2 (Strict saddles). A critical point x is a strict
saddle if the Hessian matrix evaluated at this point has a
strictly negative eigenvalue, i.e., Amin(V2h(x)) < 0.

Definition 3 (Strict saddle property [23]). A twice differ-
entiable function satisfies the strict saddle property if each
critical point either corresponds to a local minimum or is a
strict saddle.

Intuitively, the strict saddle property requires a function
to have a directional negative curvature at all critical points
but local minima. This property allows a number of iterative
algorithms such as noisy gradient descent [23] and the trust
region method [43] to further decrease the function value at
all the strict saddles and thus converge to a local minimum.

Theorem 2. [23], [32], [33] (informal) For a twice con-
tinuously differentiable objective function satisfying the strict
saddle property, a number of iterative optimization algorithms
(such as gradient descent and the the trust region method) can
find a local minimum.

III. PROBLEM FORMULATION AND MAIN RESULTS
A. Problem Formulation

This paper considers the problem (1) of minimizing a
general function f(X) (over the set of low-rank matrices)

which is assumed to have a low-rank critical point X* with
rank(X™) = r* < r such that Vf(X™) = 0. Because of the
restricted strong convexity and smoothness condition (3), the
following result establishes that if f(X) has a critical point
X* with rank(X™) < r, then it is the unique global minimum
of (1).

Proposition 1. Suppose f(X) satisfies the (2r, 4r)-restricted
strong convexity and smoothness condition (3) with positive
a and B. Assume X* is a critical point of f(X) with
rank(X™) = r* < r. Then X* is the global minimum of
(), ie.,

[(X™) < f(X), VX e R rank(X) <r
and the equality holds only at X = X*.

Proof of Proposition 1. First note that if X is a critical point
of f(X), then

VF(X*) = 0.

Now for any X € R™*™ with rank(X) < r, the second order
Taylor expansion gives

F(X) =f(X") +(VA(X"), X - X7)

1
+ g[VQf(X)KX - X" X - X7),
where X = tX* + (1—1t)X for some t € [0, 1]. This Taylor
expansion together with Vf(X™) = 0 and (3) (both X and

X’ — X have rank at most 2r) gives

FX) = F(X*) = 5[V X)X - X7 X - X)

%

o *
21X - X
O

With this, in the sequel, we use X* to denote the global
minimum of (1) (i.e., the low-rank critical point of f(X)),
unless stated otherwise. We note that the assumption of the
existence of a low-rank critical point X* is very mild and
holds in many matrix inverse problems [8], [9], where the
unknown matrix to be recovered is a critical point of f. We
factorize the variable X = UV " with U € R"*",V € R"™*"
and transform (1) into its factored counterpart (2). Throughout
the paper, X, W and W are matrices depending on U and

U Ix7 U T
W = {V]’ W = {—V]’ X=UV".
Although the new variable W has much smaller size than X
when r < min{n, m}, the objective function in the factored
problem (2) may have a much more complicated landscape
due to the bilinear form about U and V. The reformulated
objective function h(U,V') could introduce spurious local
minima or degenerate saddle points even when f(X) is
convex. Our goal is to guarantee that this does not happen.
Let X* = Qu-X*Q4,- denote an SVD of X*, where
Qu- € R™" and Qy« € R™*" are orthonormal matrices of
appropriate sizes, and X* € R™*" is a diagonal matrix with



non-negative diagonal (but with some zeros on the diagonal if
r > r* = rank(X™)). We denote

U =Qu.=""% Vv =Qy.=%

where X* = U*V*T forms a balanced factorization of X*
since U* and V'* have the same singular values. Throughout
the paper, we utilize the following two ways to stack U™ and

V™ together:
W= 5]

.U
v w5,

V*
Before moving on, we note that for any solution (U, V') to (2),
(UP, V) is also a solution to (2) for any ¥, ® € R"*" such
that U®®" VT = UV™. In order to address this ambiguity

(i.e., to reduce the search space of W for (2)), we utilize the
trick in [20], [21], [31] by introducing a regularizer

2
ou.v)=L|oTu-viv| @)
and solving the following problem

p(U,V):=fUVT)+g(U,V), (&)

minimize
UeRnxr VERmXr

where > 0 controls the term

2
HUTU — VTVHF, which will be discussed soon.

We remark that W™ is still a global minimizer of the
factored problem (5) since f(X) achieves its global minimum
over the low-rank set of matrices at X* and g(W) also
achieves its global minimum at W*. The regularizer g(W) is
applied to force the difference between the two Gram matrices
of U and V to be as small as possible. The global minimum
of g(W) is 0, which is achieved when U and V have the
same Gram matrices, i.e., when W belongs to

Ul . Ty _
[V}'U U-V V—O}. (6)

the weight for

e {w-

Informally, we can view (5) as finding a point from & that
also minimizes f(UV™). This is formally established in
Theorem 3.

B. Main Results

Our main argument is that, under certain conditions on
f(X), the objective function p(W) has no spurious local min-
ima and satisfies the strict saddle property. This is equivalent
to categorizing all the critical points into two types: 1) the
global minima which correspond to the global solution of the
original convex problem (1) and 2) strict saddles such that
the Hessian matrix VZp(W) evaluated at these points has a
strictly negative eigenvalue. We formally establish this in the
following theorem, whose proof is given in the next section.

Theorem 3. For any p > 0, each critical point W = {g]
of p(W) defined in (5) satisfies
v'v-v'v=o. (7)

Furthermore, suppose that the function f(X) satisfies the
(2r, 4r)-restricted strong convexity and smoothness condition

(3) with positive constants o and 3 satisfying g < 1.5 and
that the function f(X) has a critical point X* € R™™™ with
rank(X™) = r* < r. Set . < {% for the factored problem
(5). Then p(W) has no spurious local minima, i.e., any local
minimum of p(W') is a global minimum corresponding to the
global solution of the original problem (1): UV' = X*.
In addition, p(W') obeys the strict saddle property that any
critical point not being a local minimum is a strict saddle with

Amin (V2 (p(W))) <

—O.OSOZUT(X*), r=r* (8)
—0.05a - min {02 (W), 20,+(X*)}, r>r*
—0.1ao+ (X™), r¢ =0,

where r¢ < r is the rank of W, Amin(+) represents the smallest
eigenvalue, and oy(-) denotes the (-th largest singular value.

Remark 4. Equation (7) shows that any critical point W
belongs to £ for the objective function in the factored prob-
lem (5) with any positive p. This demonstrates the reason
for adding the regularizer g(U, V). Thus, any iterative opti-
mization algorithm converging to some critical point of p(W')
results in a solution within £. Furthermore, the strict saddle
property along with the lack of spurious local minima ensures
that a number of iterative optimization algorithms find the
global minimum.

Remark 5. For any critical point W € R™+™)X7 that is
not a local minimum, the right hand side of (8) is strictly
negative, implying that W is a strict saddle. We also note
that Theorem 3 not only covers exact parameterization where
r = r*, but also includes the over-parameterization case where
r>rr.

Remark 6. The constants appearing in Theorem 3 are not
optimized. We use p < e simply to include p = 15
which is utilized for the matrix sensing problem in [31]. If the
ratio between the restricted strong convexity and smoothness
constants g < 1.4, then we can show that p(W') has no
spurious local minima and obeys the strict saddle property
for any p < ia (where p = % is utilized for the matrix
sensing problem in [20]). In all cases, a smaller p yields
a more negative constant in (8); see Section IV for more
discussion on this. This implies that when the restricted strong
convexity constant « is not provided a priori, one can always
choose a small i to ensure the strict saddle property holds,
and hence guarantee the global convergence of many iterative
optimization algorithms.

The constant 1.5 for the dynamic range g in Theorem 3
is also not optimized and it is possible to slightly relax
this constraint with more sophisticated analysis. However,
the following example involving weighted symmetric matrix
factorization implies that the room for improving this constant
is rather limited. Let

[Ml—f—a 1 }
Q:
1 1+a

for some a > 0,

|



Now consider the following weighted low-rank matrix factor-
ization:

h(U) = %HQ@(UUT - X*
1+a 14+a
= @)

+ 5 (v
whose gradient VA(U) and Hessian V2h(U) are given by:

)

) &)
— 1) + (zy — 1)27

+1) (22 = 1)z + y(zy — 1)]
vhU) =2 |
) {(a—}—l)(yz—l)y—i-x(xy—l)
and
V2h(U) =
o [v°+ (322 1) (a+1) 22y — 1
2zy — 1 (3y*—1)(a+1)
Then,
T\ a2
is a critical point with
4 8 _ 8 _
V2h(U) = { e 0w, }
s 6 dat s -
which has eigenvalues
N = 4(a—2)(a+1) <0, a€]0,2),
o a—+2 >0, a>2,

and Ay = 4a > 0. We conclude that this U is a strict
saddle point when a < 2 and a spurious local minimum when
a > 2. This weighted symmetric matrix factorization problem
(9) satisfies the restricted strong convexity and smoothness
condition (3) with constants o = ||Q[]2;, = 1 and 8 =
1212, = 1+ a (where ||Q||mm and ||| max represent the
smallest and largest entries in 2; see Section III-C). Thus, we
have a counter example which demonstrates the existence of

spurious local minima when g > 3.

Remark 7. We finally remark that although Theorem 3 requires
the additional regularizer (4), empirical evidence (see experi-
ments in Section V) shows we can get rid of this regularizer
for many iterative algorithms with random initialization.

We prove Theorem 3 in Section IV. Before proceeding,
we present two stylized applications of Theorem 3 in matrix
sensing and weighted low-rank approximation.

C. Stylized Applications

1) Matrix Sensing: We first consider the implication of
Theorem 3 in the matrix sensing problem where

f(X) =

Here A : R™*™ — RP is a known measurement operator
satisfying the following restricted isometry property.

Definition 4. (Restricted Isometry Property (RIP) [8]) The
map A : R"*™ — RP satisfies the r-RIP with constant 6, if

(1=8) | XI7 < JAX)IP < 1+ 6) [ XIIm  (10)

1 *
S 1A =X

holds for any n x m matrix X with rank(X) < r.

Note that, in this case, the gradient of f(X) at X™* is

V(X7

which implies that X ™ is a critical point of f(X). The Hessian
quadrature form V2f(X)[Y,Y] for any n x m matrices X
and Y is given by

= AAX*— X*) =0

VXY, Y] = A7

If A satisfies the 4r-restricted isometry property with constant
d4r, then f(X) satisfies the (2r, 4r)-restricted strong convex-
ity and smoothness condition (3) with constants o = 1 — g4,
and 8 = 1 — d,, since

(1= 8) Y13 < JAX)|” < (1 +680) 1Y |13

for any rank-4r matrix Y. Now, applying Theorem 3, we can
characterize the geometry for the following matrix sensing
problem with the factorization approach:

minimize 1 HA(UVT - X

2
+g9U,V),
UER™ ", VER X" 2 2 g )

(1)

where g(U, V) is the added regularizer defined in (4).

Corollary 1. Suppose A satisfies the 4r-RIP with constant
Ogr < 5, and set n < 1= 5“ Then the objective function
in (11) has no spurious local minima and satisfies the strict
saddle property.

This result follows directly from Theorem 3 by noting that
ﬁ = 1*‘;‘“ < 1.5 if Oy § <. We remark that Park et al. [20,
Theorem 43] provided a 51m11ar geometric result for (11).
Compared to their result which requires dy, < 100, our result
has a much weaker requirement on the RIP of the measurement
operator.

2) Weighted Low-Rank Matrix Factorization: We now con-
sider the implication of Theorem 3 in the weighted matrix
factorization problem [44], where

FX) = 5920 (X~ X
Here 2 is an n x m weight matrix consisting of positive

elements and o denotes the point-wise product between two
matrices. In this case, the gradient of f(X) at X* is

Vi(XT)

which implies that X * is a critical point of f(X). The Hessian
quadrature form V2 f(X)[Y,Y] for any n x m matrices X
and Y is given by

V2F(X

Thus f(X) satisfies the (2r,4r)-restricted strong convexity
and smoothness condition (3) with constants o = ||£2]|?
and 8 = ||Q2,,, since

=NoNo (X*—X*) =0,

Y, Y] =|QoY|%.

min

12 1Y 17 < 1920 Y7 < IR0 Y 17,

min max



where ||| min and ||| max represent the smallest and largest
entries in €2, respectively. Now we consider the following
weighted matrix factorization problem:
minimize 1
UeRn*7 VeRnxr 2
where g(U,V) is the added regularizer defined in (4). For
an arbitrary weight matrix €2, it is proven that the weighted
low-rank factorization can be NP-hard [45] and has spurious
local minima. When the elements in the weight matrix €2 are
concentrated, it is expected that (12) can be efficiently solved
by a number of iterative optimization algorithms as it is close
to an (unweighted) matrix factorization problem (where €2 is
a matrix of ones) which obeys the strict saddle property [40].
The following result characterizes the geometric structure in
the objection function of (12) by directly applying Theorem 3.

HQo(UVT—X*) i+g(U,V), (12)

121170
Y

min

Corollary 2. Suppose 2 satisfies ‘I < 1.5 Set p <

2
7“91‘%“‘“. Then the objective function in (12) has no spurious

local minima and satisfies the strict saddle property.

3) 1-bit Matrix Completion: Finally, we consider the prob-
lem of completing a low-rank matrix from a subset of 1-bit
measurements [27]. Given X° € R"X™  a subset of indices
Q) C [m] x [n], and a differentiable function ¢ : R — [0, 1],

we observe
v — +1  with probability ¢(X7;),
“7 | =1 with probability 1 — ¢(X? ),

for all (i,5) € €. Typical choices for ¢ include the logistic
regression model where ¢(z) = 1_7_; and the probit regression
model where ¢(z) = 1 — ®&(—x/0) = ®(z/c). Here ®
is the cumulative distribution function (CDF) of a mean-
zero Gaussian distribution with variance ¢2. In [27], the
authors attempt to recover X © from the incomplete nonlinear
measurements {Yj;}; jyeo by minimizing the negative log-
likelihood function

Foy(X)i== 3 (Lo -nlog(a(Xi,))
(2,7)€Q

13)

+ Ly, =1y log(1 — ¢(X; 1))

which results in a maximum likelihood (ML) estimate.

We note that Fq y is a convex function for both the logistic
model and the probit model. The following result also estab-
lishes that Fo y satisfies the restricted strong convexity and
smoothness condition if we observe full 1-bit measurements,
ie., Q= [n] x [m].

Lemma 1. Suppose Q = [n] x [m]. Let

((q’(%))2 —q(x)q" (x)

0g4 = min min
|z|<v

and

B4,y = Max max
o<~y

(@%ﬂVQ@M%@

q*(x) ’
Wwﬁkﬂl—ﬂ@MW@)
(1 —g(x))? '

Then Fqy satisfies the restricted strong convexity and
smoothness condition:

agA|GlE < [V2Foy (X)(G,G) < B,4[GlI%
for any G € R"™ and || X ||oo < 7.

The proof of Lemma 1 is given in Appendix A. Now we
consider the logistic regression model where ¢(x) = %

Corollary 3. Suppose Q2 = [n] x [m] and v < 1.3. Consider
the logistic regression model where q(x) = 15:3* Then
Fo vy satisfies the restricted strong convexity and smoothness

condition with

@igLa
Qg

Proof of Corollary 3. Applying Lemma 1 with direct calcula-
tion gives

/ e'Y
Qg =(q (v) = m,
e 1
fro =4O =g =7

where ¢/ (z) = ﬁ Now if we restrict || X || < 1.3, we
have
Ban

Qq,y

61'3

= 4y <15

O

Under the assumption that X ° is low-rank, a nuclear norm
constraint is utilized in [27] to force a low-rank solution.
Corollary 3 implies that we can apply matrix factorization
for 1-bit matrix recovery given that the elements of X are
bounded. For the setting where €2 is only a subset of [n] x [m],
[46] considered the 1-bit matrix completion problem with the
rank constraint and established a stronger statistical recovery
guarantee than that in [27]. Empirical evidence (see [46] and
Section V-C) supports that matrix factorization also works for
1-bit matrix completion.

IV. PROOF OF THEOREM 3

In this section, we provide a formal proof of Theorem 3.
The main argument involves showing that each critical point
of p(W) either corresponds to the global solution of (1) or is
a strict saddle whose Hessian V2p(W) has a strictly negative
eigenvalue. Specifically, we show that W is a strict saddle
by arguing that the Hessian V2p(W) has a strictly negative
curvature along A := W — W*R, i.e., [VZp(W)]|(A,A) <
—7||A||% for some 7 > 0. Here R is an 7 x r orthonormal
matrix such that the distance between W and W™ rotated
through R is as small as possible.

A. Supporting Results

We first present some useful results. The (2r, 4r)-restricted
strong convexity and smoothness assumption (3) implies the
following isometry property, whose proof is given in Ap-
pendix B.



Proposition 2. Suppose the function f(X) satisfies the
(2r, 4r)-restricted strong convexity and smoothness condition
(3) with positive o and (. Then for any n X m matrices
Z, G, H of rank at most 2r, we have

2
a+p

ﬁ_

[V2f(2)(G, H) - (G, H)| < 51

(0%
Gl IH]| -
S GlE I H] R

The following result provides an upper bound on the energy
of the difference WW T — W*W*T when projected onto the
column space of W. Its proof is given in Appendix C.

Lemma 2. Suppose f(X) satisfies the (2r,4r)-restricted
strong convexity and smoothness condition (3). For any critical
point W of (5), let Py, € RUMT)X(m41) be the orthogonal
projector onto the column space of W. Then
b —«
B+a

We remark that Lemma 2 is a variant of [20, Lemma 3.2].
While the result there requires the 4r-RIP condition of the
objective function, our result depends on the (2r, 4r)-restricted
strong convexity and smoothness condition. Our result is also
slightly tighter than [20, Lemma 3.2].

In addition, for any matrices C, D € R™*", the following
result relates the distance between CCT and DD™ to the
distance between C' and D.

WWT - WW Py || <2 X — X*|| -
F

Lemma 3. For any matrices C, D € R™*" with ranks r1 and
ro, respectively, let R = arg mingco ||C — DR'||p. Then

|lcc™ - DDY|%/||IC — DRJ[%
> max {2(@ ~ 1)0%(D),min {02 (C), 0%, (D)}} .
If C =0, then we have

We present one more useful result in the following Lemma.

Lemma 4. [30, Lemma 3.6] For any matrices C, D € R"*",
let P be the orthogonal projector onto the range of C. Let
R = arg mingcp |C — DR'||p. Then

2
T T 2
cc® - DD Hon,%Q(D) IC — DR|>.

|C(C~DR)" |3 < {|¢CT - DD
1
2(v2-1)

Finally, we provide the gradient and Hessian expressions
for p(W). The gradient of p(W) is given by

Vup(U,V)=Vf(X)V+uUUU-VTV),
Vvp(U, V)=V X)'U - uV(UU - VTV).

+6+ )(cC™ — DD™)Pc||%.

Standard computations give the the Hessian quadrature form
[VZp(W)](A,A) for any A = {iU}
%
RNXT'7AV e RmXT':
[VZp(W)](A, A)
= [V2A(X))(AuVT+UAY, ApVT +UAY)
+2(VI(X), AvAy) + [VIg(W)(A, A),

where Ay €

where
—~T ~T
[V2g(W)J(A,A) = (W W, A" A)
—~ o~ —~ —~T
(WA AWT) + ((WW, AAT).

B. The Formal Proof

Proof of Theorem 3. Any critical point W of p(W) satisfies
Vp(W) =0, ie.,

VHX)V + U (UTU - VTV ) =0, (14)
VHX)TU - uv (UTU - VTV> —0. (15
By (15), we obtain
UTVF(X)=p (UTU - VTV) VT
Multiplying (14) by U" and plugging in the expression for
UV f(X) from the above equation V' gives
v -v'viviv4+utuwtu -v'tv) =o,
which further implies
v'vv'u =vivv'v.

Note that UTU and VTV are the principal square roots
(i.e., PSD square roots) of UTUUTU and VTVVTV,
respectively. Utilizing the result that a PSD matrix has a unique
principal square root [47], we obtain

v'u=v'v. (16)

Thus, we can simplify (14) and (15) by
Vup(U,V) = VA(X)V =0, (7
Vvp(U,V) =Vf(X)TU =0. (18)

Now we turn to prove the strict saddle property and that there
are no spurious local minima.

First, note that as guaranteed by Proposition 1, X* is the
unique n X m matrix with rank at most r. Also the gradient of
f(X) vanishes at X since (1) is an unconstraint optimization
problem. Denote the set of critical points of p(W) by

C:= {W e RHMXT 7 p(W) = 0} .
We separate C into two subsets:
Ci:=CnN {W e Rtmxr . gy T = X*} ,
Cri=Cn{W eR OVT £ X,

satisfying C = C; U Cs. Since any critical point W satisfies
(16), g(W) achieves its global minimum at W. Also f(X)
achieves its global minimum at X ™. We conclude that W is
the globally optimal solution of p for any W € C;. If we
show that any W € (s is a strict saddle, then we prove that
there are no spurious local minima as well as the strict saddle
property. Thus, the remaining part is to show that Cs is the set
of strict saddles.

To show that Cy is the set of strict saddles, it is sufficient
to find a direction A along which the Hessian has a strictly



negative curvature for each of these points. We construct A =
W — W™ R, the difference from W to its nearest global factor
W™, where

R = arg min|W - W*R'
R'€O,

Such A satisfies A # 0 since X # X* implying WW™T #
W*W*T . Then we evaluate the Hessian bilinear form along
the direction A:

[VZp(W)(A,A) =2(Vf(X), AuAy)
I
+ V(XA VT +UAT, ApVT + UAT)
Iz
(WA AWT) 4 (WW ', AAT).

H3 H4

I

19)

The following result (which is proved in Appendix E) states
that IT; is strictly negative, while the remaining terms are
relatively small, though they may be nonnegative:

I < —a|X - X*|5, I <B|WAT|3,

(20)
I < [[WAT|3, T < 2[|X — X*||3.
Now, substituting (20) into (19) gives
[V2p(W)](A, A)
= 2H1 + HQ +,U,H3 + ,LLH4
< =20||X - X*|%+ (B +p) - [WAT|
+2p]|X - X%
0) o
< (—2a+21) | X — X2
TG+ 24 ) (E ) X - X2
v V2-1" 8+« F
(D)
< 020X - X*|[3,
2n

where (¢) utilizes Lemmas 2 and 4, (i) utilizes the following
inequality (which is proved in Appendix F)

2
HWWT —wwH| <ax - XA, @
F

and (ii) holds because 2 < 1.5 and y < L. Thus, if X #
X*, [V2p(X)] (A, A) is always negative. This implies that
W is a strict saddle.

To complete the proof, we utilize Lemma 3 to further bound
the last term in (21):

[V2p(W))(A,A) < —0.050|WWT — W*W*" |2
2(v/2 — 1)o2(W™), r=r*,
< —0.05a]|A|% { min {o2.(W),02.(W")}, r>7r%,
o2 (W), r. =0,

where ¢ is the rank of W, the fist inequality utilizes (22), and
the second inequality follows from Lemma 3. We complete the
proof of Theorem 3 by noting that o7(W™*) = 20,(X*) for
all £ € {1,...,7*} since

Qu-="?

* * 2
W* = QV*E*l/Q = {QU/

oo (\/52*1/2)1

is an SVD of W*, where we recall that X* = Q- Z* Q1+
is an SVD of X*. O

Remark 8. From (21), we observe that a smaller p yields
a more negative bound on [V?p(X)] (A, A). This can be
explained intuitively as follows. First note that any critical
point W satisfies (16) provided x4 > 0, no matter how
large or small p is. The Hessian information about g(W) is
represented by the terms II3 and II,. We have

Ty + 11, = <v’[73T, AWT> + <V’VV’I7T,AAT>
= (W A, A™W) + (W AW A)
- <VT/TA, W A+ ATW)

0,

where the last line holds since for any r x r matrix A,
<A,A+AT>
:%<A+AT,A+AT>+%<A—AT,A+AT>
- % |4 +ATH1 >0,

Thus the Hessian of p evaluated at any critical point W is a
PSD matrix! instead of having a negative eigenvalue. In low-
rank, PSD matrix optimization problems, the corresponding
objective function (without any regularizer such as g(W)) is
proved to have the strict saddle property [18], [30]. Therefore,
h(W) is also expected to have the strict saddle property, and
so is p(W') when p is small, i.e., the Hessian of g(W') has
little influence on the Hessian of p(W') when p is small. Our
results also indicate that when the restricted strict convexity
constant « is not provided a priori, we can always choose
a small p to ensure the strict saddle property of p(W) is
met, and hence we are guaranteed the global convergence of
a number of local search algorithms applied to (5).

V. EXPERIMENTS

In this section, we present a set of experiments on matrix
sensing, matrix completion, and 1-bit matrix completion to
demonstrate the performance of iterative algorithms for low-
rank matrix optimization. Unless noted otherwise, we de-
note the matrix factorization approach by NVX and use the
minFunc package? to perform the local search algorithms for
the factored problem.

A. Matrix Sensing

We first present some experiments to illustrate the perfor-
mance of local search algorithms for the matrix sensing prob-
lem with the factorization approach (11). In these experiments,
we set n = 50, m = 50 and vary the rank r from 1 to 19.
We generate a rank-r n x m random matrix X* by setting

~ ~T ~ ~
X* = UV where U and V are respectively n x r and

IThis can also be observed since any critical point W is a global minimum
point of p(W), which directly indicates that VZp(W) = 0.

2Software available at
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html



m X r matrixes of normally distributed random numbers. We
then obtain p random measurements y = A(X™) with

Yi = <X*aYi>a

where the entries of each nxm matrix Y ; are independent and
identically distributed (i.i.d.) normal random variables with
zero mean and variance % for i € {1,2,...p}. For each pair
of r and the number of measurements, 10 Monte Carlo trials
are carried out and for each trial, and we claim matrix recovery
to be successful if the relative reconstruction error satisfies

X" — X||r

. <1074,
1 X" F

where we denote by X the reconstructed matrix. Figure 1
displays the phase transition for factorized gradient descent
starting from a random initialization, the singular value pro-
jection (SVP) method proposed in [48] which requires a SVD
in each iteration, and the convex approach which solves

minimize || X ||

X (23)

subject to y = A(X).
We see that there are only negligible differences between the
different approaches for matrix sensing; these approaches also
have very similar performance guarantees when the Gaussian
sensing operator A satisfies the RIP [12]. We note that with
or without the regularizer g as defined in (4), local search al-
gorithms have similar performance with random initialization.
Hence, throughout all of the experiments, we simply discard
the regularizer g, but we stress that identical performance is
observed if we have this regularizer g.

The previous experiments suppose that r is known for SVP
and the matrix factorization approach. We note, however, that
our result in Theorem 3 also covers the over-parameterization
case where r > r*. To illustrate the possible influence of
over-parameterization, we generate a rank-r* random matrix
X* € R with v* = 4 and n = m = 50 and obtain
p = 4Rn random measurements (so that the measurement
operator A satisfies the RIP of rank R), where R = 7. We then
solve the matrix factorization problem® with » = 4, 5,6, 7 and
display the corresponding convergence results in Figure 2. As
can been seen, the matrix factorization approach converges
to the target matrix X in both the exact-parameterization
and over-parameterization cases. However, we also observe
that it converges slower in the over-parameterization case (i.e.,
r > r*) than in the exact-parameterization case (i.e., 7 = r*).

B. Matrix Completion

We compare the performance of the matrix factorization
approach with SVP [48], the convex approach, and singular
value thresholding* (SVT) [50] for matrix completion where
we want to recover a low-rank matrix X* from incomplete
measurements { X7 }(; jyeq, where Q C [n] x [m]. Let Pq
denote the projection onto the index set (2. The convex

3To avoid tuning the parameters (such as step-size) for different 7, we
use the minFunc package with the default setting, which solves the factored
problem by the “LBFGS” algorithm [49].

4Software available at http://svt.stanford.edu/
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Figure 1. Rate of success for matrix sensing by (a) solving the factorized

problem (11) with gradient descent; (b) SVP [48]; (c) solving the convex
problem (23).
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Figure 2. The performance in terms of (a) objective value and (b) the relative
Frobenius norm of the error versus the iteration k for the matrix factorization
approach solving matrix sensing with r* =4,n =m = 50,p =4Rn,R =
7 and r varying from r* to R.

(b)

approach (denoted by CVX) attempts to use the nuclear norm
as a convex relaxation of the rankness and solves

minimize || X ||,
X

(24)
subject to Pq(X) = Pa(X™).

To make the recovery of X* well-posed, we require X ™ to be
incoherent such that the information in X is not concentrated
in a small number of entries [9]. A matrix X € R™*™ with
singular value decomposition X = LXQ7 is u-incoherent
if [48, Definition 2.1]

m u
max | L;| < \/>7 max Qi < 4/ —.
ij n ij m

Though Pq does not satisfy the »-RIP (10) for all low-rank
matrices X, it satisfies the RIP when restricted to low-rank
incoherent matrices.

Theorem 4. [48, Theorem 4.2] Without loss of generality,
assume n > m. There exists a constant C' > 0 such that for



Q € [n] x [m] chosen according to the Bernouli model with

) 5 o 9 i o 8000 1 8000 1
density greater than Cu®r?logn/d*m, with probability at
least 1 —e~™1°8" the RIP holds for all p-incoherent matrices eooo 6000
X of rank at most r.
. ) . P4000 4000
Thus, if local search algorithms (such as gradient descent)
start with a random initialization and the iterates remain 2000 2000
incoherent, then Theorem 3 guarantees the global convergence
of the matrix factorization approach with these algorithms. We 10 20 0
note that this hypothesis is also required for SVP [48]. Though "
1 8000 1
6000
P4000
2000
0

we can add a regularizer for incoherence as in [19], empirical (a)
evidence supports this hypothesis that the iterates in gradient 8000
descent are incoherent.

In the first set of experiments, we set n = m = 100 6000
and vary the rank r from 1 to 30. Similar to the setup P4000
for matrix sensing in Section V-A, we generate a rank-r
random matrix and randomly obtain p entries, i.e., |Q2] = p. 2000
Figure 3 displays the phase transition for gradient descent with
a random initialization, SVP [48], singular value thresholding

(SVT) [50], and the convex approach. As can been seen, the 0, 2

matrix factorization approach has similar phase transition to (©) (d)
SVP, and is slightly better than SVT and the convex approach Figure 3. Rate of success for matrix sensing by (a) the matrix factorization
in terms of the number of measurements needed for successful approach with gradient descent; (b) SVP [48]; (c) solving the convex problem

(24); (d) SVT [48].
recovery.

In the second set of experiments, we set » = 5 and p =
3r(2n—r) (3 times the number of degrees of freedom within a
rank-r m X n matrix), and vary n from 40 to 5120. We compare
the time needed for the four approaches in Figure 4; our matrix
factorization approach is much faster than the other methods.

>
D
The time savings for the matrix factorization approach comes
from avoiding performing the SVD, which is needed both for g ——SVP
SVT and SVP in e.ach iteration. We also obserw? that cgnvex o ——— o— NVX
approach has the highest computational complexity and is not - CVX
scalable (which is the reason that we only present its time for 10—3 . . . .
n up to 640). 40 80 160 320 640 1280 2560 5120
n

Figure 4. Average computation time needed for different algorithms solving

C. 1-bit Matrix Completion marix completion.

In the last set of experiments, we compare the performance _ ) . ' o
of the matrix factorization approach with the convex approach’ ~ factorize X into UV " and solve the fqllowmg optimization
in [27] for 1-bit matrix completion. We first note that to make problem over the n x r and m x r matrices U and V:

the recovery pr(?blem well-posed, a const.raint on HX loo (the minimize po.y (U, V) = foy (UVT). (25)
entry-wise maximum of the matrix X)) is applied in [27] to u,v

require that the matrix is not too “spiky”. Instead of using the To evaluate the performance of this factorization approach

constraint on || X [|oo, we add a smooth regularizer || X||% and  on 1-bit matrix completion, we generate n x r matrices U°

turn to minimize the following objective function and V° with entries drawn i.i.d. from a uniform distribution

. on [—%, 2] and construct a random n X n matrix X° with

fQ,Y(X) = FQ,Y(X) + §||XH%7 rank r. Similar to the setup in [27], the matrix is then scaled

so that || X°|| = 1. We obtain 1-bit observations {Y; ;} ¢ j)eq
which is also a convex function over X and satisfies a similar by adding Gaussian noise of variance o and recording the
restricted strong convexity and smoothness condition to Fq y  sign of the resulting value (13), where the subset of indices
in Lemma 1. In the case where we only observe part of €2 is chosen at random with E[Q| = p. We compare the
the entries, then in light of Theorem 4, the corresponding performance of the factorization approach and the convex
objective function is expected to satisfy the strong convexity —approach [27] over a range of different values of n, p, r or o.
and smoothness condition for all incoherent matrices. Thus, we  Figures 5(a)—(d)Ash0w the normalized squared Frobenius norm

of the error % (where X denotes the reconstructed
5Software available at http:/mdav.ece.gatech.edu/software/ matrix) and average the results over 10 draws of Monte
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Carlo trials. We observe that matrix factorization approach
has slightly better performance than the convex approach
for 1-bit matrix completion [27]. Note that this phenomenon
(the factorization approach having better performance) is also
observed in [46]. We repeat these experiments but obtaining
1-bit observations with the logistic regression model where
g(z) = 75+ for (13) and display the results in Figure 6.
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Figure 5. The performance in terms of the relative Frobenius norm of the
error for the matrix factorization approach (denoted by NVX) and the convex
approach in [27] (denoted by CVX) for solving the 1-bit matrix completion
with probit regression model and (a) varying n and 0 = 0.3, r =7, p =
0.5n2; (b) varying p and ¢ = 0.3, n = 200, »r = 7; (c) varying r and
o = 0.3, n = 200, p = 0.25n2; (d) varying ¢ and n = 200, r = 4,
p = 0.25n2. The results are plotted in the log scale.
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Figure 6. The performance in terms of the relative Frobenius norm of the
error for the matrix factorization approach (denoted by NVX) and the convex
approach in [27] (denoted by CVX) for solving the 1-bit matrix completion
with logistic regression model and (a) varying n and r = 2, p = 0.5n?; (b)
varying p and n = 200, r = 2. The results are plotted in the log scale.
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VI. CONCLUSION

This paper considers low-rank matrix optimization on gen-
eral (nonsymmetric and rectangular) matrices with general
objective functions. By focusing on general objective func-
tions, we provide a unifying framework for low-rank matrix
optimizations with the factorization approach. Although the
resulting optimization problem is not convex, we show that

11

the reformulated objection function has a simple landscape:
there are no spurious local minima and any critical point not
being a local minimum is a strict saddle such that the Hessian
evaluated at this point has a strictly negative eigenvalue. These
properties guarantee that a number of iterative optimization
algorithms (such as gradient descent and the trust region
method) will converge to the global optimum from a random
initialization.
APPENDIX A

PROOF OF LEMMA 1

Proof of Lemma 1. We compute the partial derivative of I y
in terms of X; ; as

OFoy ((Xa) ¢ (X,)
=—lyi,=) 7% 5 Vi =17 v )
0Xi,j =X, T T T = g(Xy)
which implies
PFoy 4 (¢'(Xij))* — a(Xi;)q"(Xiy)
90X, ;0X;,; =Y 7*(Xij)
(0" (X)) + (1 — a(Xiz))g" (Xi)
+]]‘(Yz -1) 1 2
(1—q(Xi;))
and
PFoy 0
8Xi,j8XM o
for all (k,£) # (4, 7). Thus, the bilinear form for the Hessian
of V2Fg y(X) can be computed as
PFoy
V2F, o9y a2
[VFay (X ZZ 0X;;0X;; ™
for any G € R"*™. Now since by assumption || X || < 7,

we have

gy ||IGllE < [V2Fay (X)(G,G) < Bes|GlE-

APPENDIX B
PROOF OF PROPOSITION 2

Proof of Proposition 2. This proof follows similar steps to

the proof of [51, Lemma 2.1]. First note that the bilinear
form [V2f(Z)(G,H) = ¥, W%Gwﬂm implies
[V2£(Z)](G, H) is invariant under all scalings for both G

and H, i.e.,
[V?f(2))(aG,bH) = ab|V*[(Z))(G, H)

for any a,b € R. If either G or H is zero, (3) holds since
both sides are 0.

Now suppose both G or H are nonzero. By the scaling
invariance property of both sides in (3), we assume |G| r =
|H ||z = 1 without loss of generality. Note that the (2r,4r)-
restricted strong convexity and smoothness condition (3) im-
plies

a|G+ H|[ < [V*f(X)(G+H,G+H)

<BIGEH|}.



Thus we have Now let Z = (WWT — W*W*T )W'. which gives
Zwt = (Ww?T — WW*T)Py,. Here 1 denotes the

p—a 2 2
T g (”GHF +[[H HF) pseudoinverse of a matrix and Pyy is the orthog%)nal pro-
<2[V*f(2)] (G, H) - (a+8) (G, H) jector onto the range of W. Utilizing the fact W W = 0
- B — from (7), we further connect the left hand side of (27) with

« 2 2
- (Il + 7).

2
H (WWT - W*W*T) PWH by
which further implies r

o+ o+ a+ ), ==T
‘2 [VQf(Z)] (G,H) — (a+ ) (G,H)] 5 ﬁ'lg = B-Ig + 1 ﬂ(WW ZWT)
<f—-—a=pL—-a)|G H| ..
B ( MG g 1 H| _ @ jl' B <WWT —WWT (WWT B W*W*T> PW>
O
—~* —~*T
+ W (wwT - wrwT) Py
APPENDIX C 4
PROOF OF LEMMA 2 > @ Z B <WWT —ww*T, (WWT _ W*W*T> PW>
Proof of Lemma 2. First recall the notation X = UVT, a+p T T 2
X* = U'V*, and = |(wwT - ww ) Py |
wel] w5 =] w5 N
v -V v v where the inequality follows because

It follows from (17) and (18) that any critical point W satisfies <ﬁ7*ﬁ7*T W*W*TPW> — 0 (noting that W*Tﬁ}* —0)

—~*% —~*xT

—~* —~x*xT
{W(OX)T vf(()X)]WO, and (W'W WwTPy) = (WW ww?T) >0
since it is the inner product between two PSD matrices.

which gives On the other hand, we give an upper bound on the right

0= ({vf(g()T Vf(X)} Zw™) hand side of (27):
0 k)
~(| 0 EA P X - X7 | ZovT + Uz
VAX)T -V f(xHT 0 ;

2
Uzl H
v F

a+p
2

2
<X - X*||, \/2 HZUVTHF +2

= (Vf(X) - Vf(X*) - (X - X*),ZyV' +UZY)

<IX =X [(WWT - wrwT) Py

T
a+f * T T 2
+ 2 <X - X% ZyV© + UZV> where the last line follows because HZUVTHF +
2 2 2
T HZVUTH - HZUUTH n HZVVTH (since UTU =
(26) F F o, F )
2] e VTV), implying 2 HZUVTH 42 HUZ‘T/H - HZWTH .
_ n+m)Xr 3 13 I
forany Z = [ Zv €R - Here the second line utilizes ;¢ together with (27) and (28) completes the proof. B

the fact Vf(X*) = 0. We bound 71y by first using integral

form of the mean value theorem for V f(X): A D
PPENDIX

T = PROOF OF LEMMA 3

1
/ (VZftX +(1-t)X")] (X — X™, ZyVT +UZY,)dt  Proof of Lemma 3. When C # 0, the proof follows directly
0 from the following results.
a+p
2 Lemma 5. [30, Lemma 3.4] For any matrices C, D € R™*"

Noting that all the three matrices tX + (1 — ) X", X — X™  \ith rank ry and ro, respectively, let R = arg ming o, [|C—
and Zy V7T + UZ;F/ have rank at most 2r, it follows from  DR)|| 5. Then ’

Proposition 2 that

<X —x* ZyVvT 4 UZ‘T/> .

—a . ‘CCTfDDTH > min {o,, (C), 0, (D)} - ||C — DR|| .
=2 X X |7V ozl | = min{o,,(C), 0., (D)} - I
which when plugged into (26) gives Lemma 6. [31, Lemma 5.4] For any matrices C, D € R™*"
a+ B with rank(D) = r, let R = arg ming_, ||C —DR)||p. Then
To=-"Th
2w @7 |t - DDTH2 > 2(v2 - 1)02(D) ||C — DR||?
<2 HX—X*||FHZUVT+UZ‘T,HF. Fe r F

12



If C = 0, then we have

HccT—DDTHi—kui—iam
ZU D)||C - DRJ|%.
O
APPENDIX E

PROOF OF (20)

Proof of (20). We prove the upper bounds for the four terms
as follows.

Bounding term II;: Utilizing the fact that Ay = U —U*R
and Ay =V — V*R, we have

= (Vi(X), AvAY)
=(Vf(X),(U-U'R)(V-V*R)")
_ <Vf(X)7X +X* - UR'VT - URTV*T>
Y (VX)X - X7)

—(Vf(X) - Vf(X*
(#47)

< —Oé”X X HF7

(g) )7X_X*>

where () follows from (17) and (18), (i) utilizes V f(X™) =
0, and (ii7) follows by using the (2r,4r)-restricted strict
convexity property (3):

(VA(X) -

/1 VX +(1-)X")] (X - X", X - X")dt

VHX), X - X7)

1
2/ a(X - X* X — X*)dt
0
2
=a|X - X%,

where the first line follows from the integral form of the mean
value theorem for vector-valued functions, and the second line
uses the fact that both tX + (1 — ¢)X* and X — X have
rank at most 2r, and the (2r,4r)-restricted strong convexity
of the Hessian V2 f(-).

Bounding term II5: By the smoothness condition (3), we have
= [V21(X)] (AuVT +UAY, ApVT +UAT)
2
<8 HAUVT + UA‘T,HF
2 2
<23 ([Jaov?[, + Joat]})
F F
2
sl
F

2 2
where the last line holds because HDUTH = HDVTH for
F F

any D € RP*" with arbitrary p > 1 since any critical point
W satisfies U'U = V'V,

13

Bounding term II3:
I3
= (UAL, AyUY) + (VAL Ay VT —2(UAT, Ay VT

2
< Joas], +[vav, +Joas], + [vas],

= [way,
F

Bounding term II,:

I, =
0)

<ﬁ7ﬁ7T (W - W'R) (W -W'R)")
<WW ww?T W*W*T>

<

+ <VAVV/I7 WWT W*W*T>

(i)
< —

—~ ~T

wWw o wwT — W*W*T>

—~ ~T —~x —~*T T « T
—<WW —WwW o wwT —ww >
<2|X - X*|%,

where (¢) holds because W W 0, and (i%) follows because

W W = 0 and WwW" ,WWT> > 0 since it is the
inner product between two PSD matrices. O

APPENDIX F
PROOF OF (22)
Proof of (22). To show (22), expanding the left hand side
of (22), it is equivalent to show
HUUT o U*U*T

2 2
+HVvvT v vt <2 X - X*5.
F F F

Expanding both sides of the above equation and utilizing the
fact UTU = VTV and U*'U* = V*TV*, the remaining
step is to show

trace (UUTU*U*T) + (VVTv*V*T)
> 2trace (UVTV*U*T> .

Thus, we obtain (22) by noting that the above equation is
equivalent to

trace ((U*TU - V*TV>2) > 0.
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