
Atomic Norm Minimization for Modal Analysis

from Random and Compressed Samples

Shuang Li, Dehui Yang, Gongguo Tang, and Michael B. Wakin∗

December 25, 2017

Abstract

Modal analysis is the process of estimating a system’s modal parameters such as its natural frequencies
and mode shapes. One application of modal analysis is in structural health monitoring (SHM), where
a network of sensors may be used to collect vibration data from a physical structure such as a building
or bridge. There is a growing interest in developing automated techniques for SHM based on data
collected in a wireless sensor network. In order to conserve power and extend battery life, however, it
is desirable to minimize the amount of data that must be collected and transmitted in such a sensor
network. In this paper, we highlight the fact that modal analysis can be formulated as an atomic
norm minimization (ANM) problem, which can be solved efficiently and in some cases recover perfectly a
structure’s mode shapes and frequencies. We survey a broad class of sampling and compression strategies
that one might consider in a physical sensor network, and we provide bounds on the sample complexity
of these compressive schemes in order to recover a structure’s mode shapes and frequencies via ANM.
A main contribution of our paper is to establish a bound on the sample complexity of modal analysis
with random temporal compression, and in this scenario we prove that the required number of samples
per sensor can actually decrease as the number of sensors increases. We also extend an atomic norm
denoising problem to the multiple measurement vector (MMV) setting in the case of uniform sampling.

1 Introduction

Modal analysis is the process of estimating a system’s modal parameters such as its natural frequencies,
mode shapes, and damping factors. One application of modal analysis is in structural health monitoring
(SHM), where a network of sensors may be used to collect vibration data from a physical structure such
as a building or bridge. The vibration characteristics of a structure are captured in its modal parameters,
which can be estimated from the recorded displacement data. Changes in these parameters over time may
be indicative of damage to the structure. Modal analysis has been widely used in civil structures [1], space
structures [2], acoustical instruments [3], and so on.

Due to the considerable time and expense required to perform manual inspections of physical structures,
and the difficulty of repeating these inspections frequently, there is a growing interest in developing auto-
mated techniques for SHM based on data collected in a wireless sensor network. For example, one could
envision a collection of battery-operated wireless sensors deployed across a structure that record vibrational
displacements over time and then transmit this information to a central node for analysis. In order to con-
serve power and extend battery life, however, it is desirable to minimize the amount of data that must be
collected and transmitted in such a sensor network [4].

In this paper, we highlight the fact that modal analysis can be formulated as an atomic norm minimization
(ANM) problem, which can be solved efficiently and in some cases recover perfectly a structure’s mode shapes
and frequencies. We survey several possible protocols for data collection, compression, and transmission,
and we review the sampling requirements in each case. ANM generalizes the widely used `1-minimization
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framework for finding sparse solutions to underdetermined linear inverse problems [5]. It has recently been
shown to be an efficient and powerful way for exactly recovering unobserved time-domain samples and
identifying unknown frequencies in signals having sparse frequency spectra [6, 7, 8], in particular when
the unknown frequencies are continuous-valued and do not belong to a discrete grid. Sampling guarantees
have been established both in the single measurement vector (SMV) scenario [6, 9] and in the multiple
measurement vector (MMV) scenario under a joint sparse model [10, 7]; these results characterize the
number of uniform or random time-domain samples to achieve exact frequency localization as a function of
the minimum separation between the unknown frequencies. In this sense, by achieving exact recovery, ANM
can completely avoid the effects of basis mismatch [11, 12, 13] which can plague conventional grid-based
compressive sensing techniques.

To provide context in this paper, we survey a broad class of sampling and compression strategies that
one might consider in a physical sensor network, and we provide bounds on the sample complexity of these
compressive schemes in order to recover a structure’s mode shapes and frequencies via ANM. In total, we
consider five measurement schemes:

• uniform sampling, where vibration signals at each sensor are sampled synchronously at or above the
Nyquist rate and transmitted without compression to a central node,

• synchronous random sampling, where vibration signals at each sensor are sampled randomly in
time (as a subset of the Nyquist grid), but at the same time instants at each sensor,

• asynchronous random sampling, where vibration signals at each sensor are sampled randomly in
time (as a subset of the Nyquist grid), at different time instants at each sensor,

• random temporal compression, where Nyquist-rate samples are compressed at each sensor via
random matrix multiplication, before transmission to a central node, and

• random spatial compression, where Nyquist-rate samples are compressed en route to the central
node.

Note that all sensors share the same Nyquist grid in each of these measurement schemes.
Modal analysis is a particular instance of the joint sparse frequency estimation problem, which has also

been commonly studied in the context of direction-of-arrival (DOA) estimation [14]. Some conventional
methods for joint sparse frequency estimation, such as MUSIC [15], can identify frequencies using a sample
covariance matrix as long as a sufficient number of snapshots is given. However, as noted in [10], these
methods usually assume that the source signals are spatially uncorrelated and their performance would
decrease with source correlations. ANM does not have this limitation. Moreover, joint sparse frequency
estimation techniques such as MUSIC do not naturally accommodate the sort of randomized sampling and
compression protocols that we consider in this paper.

In this work, we explain how the results from [7, 10] can be interpreted in the context of exactly re-
covering a structure’s mode shapes and frequencies from uniform samples, synchronous random samples,
and asynchronous random samples. These random sampling results have an unfortunate scaling, however,
in that the number of samples per sensor actually increases as the number of sensors increases; intuition
and simulations suggest that the opposite should be true. A main contribution of our paper, then, is to
establish a bound on the sample complexity of modal analysis with random temporal compression, and in
this scenario we prove that the required number of samples per sensor can actually decrease as the number of
sensors increases. A similar phenomenon—that the estimation accuracy increases as the number of snapshots
increases—occurs in covariance fitting methods for DOA estimation [14]. We also explain how our previous
work [16] on super-resolution of complex exponentials from modulations with unknown waveforms can be
used to establish a bound on the sample complexity of modal analysis with random spatial compression. For
the noisy case, we extend the SMV atomic norm denoising problem in [17, 18] to an MMV atomic norm
denoising problem in the case of uniform sampling. We derive theoretical guarantees for this MMV atomic
norm denoising problem. Although we focus on modal analysis to put our analysis and simulations in a
specific context, our results can apply to joint sparse frequency estimation more generally.
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Figure 1: Undamped 6-degree-of-freedom boxcar system with masses m1 = 1, m2 = 2, m3 = 3, m4 = 4, m5 =
5, m6 = 6 kg and stiffness values k1 = k7 = 500, k2 = k6 = 150, k3 = k5 = 100, k4 = 50 N/m. See Section 4.1 for
simulations related to this system.

The remainder of this paper is organized as follows. In Section 2, we provide some background on modal
analysis and on the atomic norm. In Section 3, we formulate our problem, and we characterize the ability of
ANM to exactly recover a structure’s mode shapes and frequencies under each of the above five measurement
schemes. We also provide a bound on the performance of ANM in the case of noisy, uniform samples. In
Section 4, we present simulation results to illustrate some of the essential trends in the theoretical results
and to demonstrate the favorable performance of ANM. We prove our main theorems in Section 5, and we
make some concluding remarks in Section 6. The Appendix provides supplementary theoretical results.

2 Background

2.1 Modal analysis

For an N degree-of-freedom linear time-invariant system [19], the second-order equations of motion which
represent the dynamic behavior of the system can be formulated as

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (2.1)

where M, C and K denote the N ×N mass, damping, and stiffness matrices, respectively. In this equation,
x(t) ∈ RN represents a length-N vector of displacement values at time t, and f(t) ∈ RN represents the
excitation force at the N nodes. We will assume that each of the N displacement values is associated with
a wireless sensor node that can sample, record, and transmit that displacement value; as an example, one
could equip each of the six boxcars shown in Fig. 1 with a displacement sensor.

As a simplification and as in [20], we consider systems in free vibration, where the forcing input f(t) = 0
and the system vibrates freely in response to some set of initial conditions.1 In this case, the general solution
to (2.1) takes the form [25]

x(t) =

K∑
k=1

ψkqk(t),

where ψ1,ψ2, . . . ,ψK ∈ RN are a collection of mode shape vectors whose span characterizes the set of
possible displacement profiles of the structure, and q1(t), q2(t), . . . , qK(t) are modal responses in the form of
monotone exponentially-decaying sinusoids:

qk(t) = uke
−ζk2πfkt cos(2πfdkt+ θk).

Here, uk and θk are determined by the initial conditions, and the number of nonzero amplitudes K ≤ N
corresponds to the number of active modes. The parameters ζk, fk, and fdk =

√
1− ζ2

kfk denote the kth
damping ratio, the natural frequency, and the damped frequency, respectively, and these parameters along
with the mode shapes are intrinsic properties of the system determined by the mass, damping, and stiffness

1One can also consider modal analysis with forced vibration [21, 22, 23, 24], when external forces such as an earthquake,
wind, or vehicle loadings are applied.
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matrices. Modal analysis refers to the identification of these parameters—particularly the mode shapes,
damping ratios, and frequencies—from observations of the displacement vector x(t).

In recent years, blind source separation (BSS) based methods have become very popular in modal analysis.
The authors in [26] and [27] propose a new modal identification algorithm based on sparse component analysis
(SCA) to deal with even the underdetermined case where sensors may be highly limited compared to the
number of active modes. In [28], a novel decentralized modal identification method termed PARAllel FACtor
(PARAFAC) based sparse BSS (PSBSS) method is proposed. Independent component analysis (ICA) is a
powerful method to solve the BSS problem. Yang et al. present an ICA based method to identify the
modal parameters of lightly and highly damped systems, even in cases with heavy noise and nonstationarity
[29]. Despite the favorable empirical performance of these methods, few of them have been supported by
theoretical analysis. In this paper, inspired by promising recent work in line spectrum estimation, we provide
theoretical support for ANM as a powerful technique for modal analysis.

Meanwhile, over the past decade, the development of compressive sensing (CS) has highlighted the
possibility of capturing essential signal information with sampling rates much lower than the Nyquist rate [30,
31, 32]. Exploring the possibility of using CS in modal analysis, Park et al. provide a theoretical analysis
of a singular value decomposition (SVD) based technique for estimating a structure’s mode shapes in free
vibration without damping [20]. The work in [20] builds upon a previous observation [33] that with a
sufficiently large number of samples, the SVD technique can identify the mode shapes of systems with
uniformly distributed mass (which leads to mutually orthogonal mode shapes) and light or no damping;
as such, the results in [20] are limited to the assumption that the mode shapes are mutually orthogonal,
which is not satisfied for general systems. In a more recent work, Yang et al. propose a BSS based method
that can identify non-orthogonal mode shapes from video measurements [34]. The same group also develops
another BSS based method to identify modal parameters from uniformly sub-Nyquist (temporally-aliased)
video measurements [35]. Another recent work [36] also presents a new method based on a combination of
CS and complexity pursuit (CP) to solve the modal identification problem.

In a very recent paper [9], Heckel and Soltanolkotabi consider solving a generalized line spectrum esti-
mation problem with convex optimization. In particular, they recover a data vector from its compressed
measurements using an ANM formulation that has been mentioned in [5]. Several different classes of ran-
dom sensing matrices are considered for obtaining the measurements. The result for Gaussian random
matrices in [9] can be viewed as a special case of our modal analysis result for random temporal compression
(Theorem 3.4), where we have multiple measurement vectors and use a different sensing matrix for each
measurement vector. Our analysis is inspired by their proof.

Finally, Lu et al. [37] propose a concatenated ANM approach for joint recovery of frequency sparse signals
under a certain joint sparsity model. This problem differs from ours in the signal model, and the paper [37]
does not establish theoretical bounds on the sample complexity.

2.2 The atomic norm

Frequency estimation from a mixture of complex sinusoids is a classical problem in signal processing. As
mentioned in the introduction, ANM has recently been considered as a technique for solving this problem,
both in the SMV (N = 1) and MMV (N > 1) scenarios. Under the right conditions, ANM can achieve exact
frequency localization, avoiding the effects of basis mismatch which can plague grid-based techniques. In
Section 3, we survey various formulations of the ANM problem that can be used with the various compressive
measurement protocols for modal analysis. All of these formulations rely on the same core definition of an
atomic norm, which is established in [7, 10] and repeated here.

Suppose each column of an M ×N data matrix X = [x1, x2, · · · , xN ] is a spectrally sparse signal with
K distinct frequency components and denoted as

xi =
K∑
k=1

ck,ia(fk).
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Here, the vector
a(f) = [ej2πf0, ej2πf1, · · · , ej2πf(M−1)]> (2.2)

corresponds to a collection of M samples of a complex exponential signal with frequency f ∈ [0, 1). Note
that we use “>” and “∗” to denote transpose and conjugate transpose, respectively.

As shown in [7] and [10], one can define an atomic set to represent such a data matrix X with each atom
defined as

A(f, b) = a(f)b∗, (2.3)

where f ∈ [0, 1), b ∈ CN with ‖b‖2 = 1. The corresponding atomic set can be defined as

A = {A(f, b) : f ∈ [0, 1), ‖b‖2 = 1}.

The atomic norm of X is then defined as

‖X‖A = inf {t > 0 : X ∈ t conv(A)}

= inf

{∑
k

ck : X =
∑
k

ckA(fk, bk), ck ≥ 0

}
,

where conv(A) is the convex hull of A. This atomic norm is equivalent to the solution of the following
semidefinite program (SDP):

‖X‖A = inf
u∈CM , V ∈CN×N

{
1

2M
Tr(T (u)) +

1

2
Tr(V) :

[
T (u) X
X∗ V

]
� 0

}
,

where T (u) is the Hermitian Toeplitz matrix with the vector u as its first column. Tr(·) denotes the trace
of a square matrix. The proof of this SDP form can be found in [6, 7].

The dual norm of ‖ · ‖A is defined as

‖Q‖∗A = sup
‖X‖A≤1

〈Q,X〉R

= sup
f∈[0,1),‖b‖2=1

〈Q,a(f)b∗〉R

= sup
f∈[0,1),‖b‖2=1

〈b,Q∗a(f)〉R

= sup
f∈[0,1)

‖Q∗a(f)‖2

= sup
f∈[0,1)

‖Q(f)‖2,

(2.4)

where Q(f) = Q∗a(f) is known as the dual polynomial. Above, 〈Q,X〉R = Re(〈Q,X〉) corresponds to the
real inner product between two matrices.

3 Main Result

3.1 Preliminaries

As in [20], we assume the structure has no damping (C = 0) and that the real-valued displacement2 signal
has been converted to its complex analytic form, which can be accomplished by using the Hilbert transform

2Although we refer to displacement data in this work, the ANM method can also be applied to acceleration data. In
particular, the ground truth acceleration signal vector will have the same form as (3.1) but with a different set of amplitudes
Ak.
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in practice [38, 39]. In this case, the ground truth displacement signal vector can be written as

x?(t) =
K∑
k=1

Akψ
?
ke
j2πFkt, (3.1)

which is a superposition of K complex sinusoids. Here, Ak, Fk, and ψ?k = [ψ?1,k, ψ
?
2,k, · · · , ψ?N,k]> ∈ CN are

the complex amplitudes, frequencies, and mode shapes, respectively. We assume without loss of generality
that the mode shapes are normalized3 such that ‖ψ?k‖2 = 1. As in Section 2.1, N denotes the number of

sensors. Thus,
∑K
k=1Akψ

?
n,ke

j2πFkt is the displacement signal at the nth sensor.

Because we assume that x?(t) is an analytic signal, all Fk ≥ 0.4 Define Fc = max1≤k≤K Fk. If one were
to take regularly spaced Nyquist samples of x?(t) at times

T = {t1, t2, . . . , tM} = {0, Ts, . . . , (M − 1)Ts}, (3.2)

where Ts <
1
Fc

, and then stack the signal from the nth sensor as the nth column of a data matrix X?, one
would have

X? =
K∑
k=1

Ak


ψ?1,ke

j2πFkt1 ψ?2,ke
j2πFkt1 · · · ψ?N,ke

j2πFkt1

ψ?1,ke
j2πFkt2 ψ?2,ke

j2πFkt2 · · · ψ?N,ke
j2πFkt2

...
...

. . .
...

ψ?1,ke
j2πFktM ψ?2,ke

j2πFktM · · · ψ?N,ke
j2πFktM



=

K∑
k=1

|Ak|


ψ1,ke

j2πfk0 ψ2,ke
j2πfk0 · · · ψN,ke

j2πfk0

ψ1,ke
j2πfk1 ψ2,ke

j2πfk1 · · · ψN,ke
j2πfk1

...
...

. . .
...

ψ1,ke
j2πfk(M−1) ψ2,ke

j2πfk(M−1) · · · ψN,ke
j2πfk(M−1)


=

K∑
k=1

|Ak|a(fk)ψ>k =
K∑
k=1

|Ak|A(fk, bk),

(3.3)

where ψn,k = ψ?n,ke
jφAk with φAk

being the phase of the complex amplitude Ak, fk = FkTs ∈ [0, 1) are
the discrete frequencies, a(fk) are sampled complex exponentials as defined in (2.2), and A(fk, bk) are the
atoms defined in (2.3). The ability to express X? as a linear combination of K atoms from the atomic set A
inspires the use of ANM to recover X? from partial information, as we discuss below.

3.2 Modal analysis for noiseless signals

In this section, we survey a broad class of sampling and compression strategies that one might consider in a
physical sensor network, and we provide bounds on the sample complexity of these compressive schemes in
order to recover a structure’s mode shapes and frequencies via ANM.

The performance of ANM in these various scenarios will depend on the minimum separation of the
discrete frequencies fk’s, which is defined to be

∆f = min
k 6=j
|fk − fj |,

3Equation (3.1) will hold with any choice of normalization for the mode shapes, as any rescaling of ψ?
k can be simply absorbed

into Ak. Any such renormalization can be applied after the Euclidean-normalized mode shapes are recovered and thus does
not affect our results. A certain “mass normalization” is desired in some applications. Employing mass normalization requires
either knowledge of the mass matrix or extra experiments [40].

4It would not be difficult to extend our analysis to the case where the frequencies Fk in (3.1) can be negative or positive:
one would set Fc = max1≤k≤K |Fk| and Ts < 1

2Fc
, which yields discrete frequencies fk ∈ [−1/2, 1/2), which is equivalent to

the interval [0, 1).
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where |fk − fj | is understood as the wrap-around distance on the unit circle.
We also note that, because each complex mode shape vector ψ?k is multiplied by a complex amplitude Ak

in our model (3.1), recovery of these mode shapes and amplitudes is possible only up to a phase ambiguity.

We denote our estimated mode shapes as ψ̂k and measure recovery performance using the absolute inner

product |〈ψ?k, ψ̂k〉|. Because ψ?k and ψ̂k are both normalized, achieving |〈ψ?k, ψ̂k〉| = 1 corresponds to exact
recovery of the mode shape up to the unknown phase term.

3.2.1 Uniform sampling

As a baseline, we begin by considering a conventional data collection scheme, in which samples from each
sensor are collected uniformly in time with sampling rate Fs = 1

Ts
> Fc. In this case, the data matrix

X?, defined in (3.3), is fully observed. In this section, we assume the samples are collected without noise;
Section 3.3 revisits the uniform sampling scheme in the case of noisy samples.

To identify the mode shapes and frequencies in this scenario, it can be useful to consider the following
ANM formulation:

X̂ = arg min
X
‖X‖A s. t. X = X?. (3.4)

Although this problem has a trivial solution (namely X̂ = X?, which is already available), solving this
problem in a certain way can reveal information about the mode shapes and frequencies. In particular, (3.4)
is equivalent to the following SDP

X̂, û, V̂ = arg min
X,u,V

1

2M
Tr(T (u)) +

1

2
Tr(V)

s. t.

[
T (u) X
X∗ V

]
� 0, X = X?.

Certain approaches to solving this SDP5 will return the dual solution Q directly. From this, following
Proposition 1 in [7], one can formulate the dual polynomial Q(f) = Q∗a(f) to identify the frequencies and
mode shapes. In particular, one can identify the frequencies by localizing where the dual polynomial achieves
‖Q(f)‖2 = 1. Note that the data matrix X? can also be rewritten as

X? = [a(f1) · · · a(fK)][|A1|ψ1 · · · |AK |ψK ]>.

Then, using the estimated data matrix X̂ and estimated frequencies f̂k, one can solve a least-squares problem
to estimate the complex amplitudes and mode shapes:

Ψ̂A , [|Â1|ψ̂1 · · · |ÂK |ψ̂K ] = (A†
f̂
X̂)>,

where A†
f̂

denotes the pseudoinverse of the matrix Af̂ = [a(f̂1) · · · a(f̂K)]. Because the true mode shapes

are assumed to be normalized, we normalize the estimated mode shapes by setting |Âk| = ‖Ψ̂A(:, k)‖2 and

ψ̂k = Ψ̂A(:,k)

‖Ψ̂A(:,k)‖2
.

The following theorem is adapted from Theorem 4 in [10].

Theorem 3.1. [10] Assume the data matrix X? shown in (3.3) is obtained by uniformly sampling the
displacement signal vector x?(t) in time with a sampling interval Ts <

1
Fc

= 1
maxk Fk

. If the number of
samples M from each sensor satisfies

M ≥ max

{
4

∆f
+ 1, 257

}
, (3.5)

then ANM perfectly recovers all frequencies fk and all mode shapes up to a phase ambiguity, i.e., |〈ψ?k, ψ̂k〉| =
1.

5In practice, one can use the CVX software package [41].
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This theorem indicates that more measurements are needed at each sensor for perfect recovery as the
minimum separation ∆f decreases, i.e., as the true frequencies become closer to each other.6 As noted
in Section 2.1, Park et al. [20] have provided a theoretical analysis of an SVD based technique for modal
analysis. That work also considers uniform sampling and provides a bound on M that is similar to what
is required in (3.5). However, the analysis in [20] is limited to the case where the true mode shapes are
mutually orthogonal, a condition that we do not require here. Moreover, the SVD guarantees apply only to
approximate recovery of the mode shapes; as confirmed in Theorem 3.1, ANM can offer exact recovery of
both the mode shapes and frequencies.

3.2.2 Synchronous random sampling

As a first alternative to conventional uniform sampling, we now consider the case where vibration signals at
each sensor are sampled randomly in time, but at the same time instants at each sensor. We refer to this
data collection scheme as synchronous random sampling.

To be specific, we suppose that the random sample times are chosen as a subset of the Nyquist grid; thus,
the random samples are merely a subset of a collection of uniform samples. Equivalently, we suppose that
we observe X? (which is defined in (3.3)) on a set of indices ΩS × [N ] with [N ] , {1, 2, . . . , N} and ΩS ⊂ T ,
where T is defined in (3.2). Thus, each column of X? is observed at the same times, indexed by ΩS .

Denoting the observed matrix as X?
ΩS×[N ], the ANM problem can be formulated as

X̂ = arg min
X
‖X‖A s. t. XΩS×[N ] = X?

ΩS×[N ], (3.6)

which is equivalent to the following SDP

X̂, û, V̂ = arg min
X,u,V

1

2M
Tr(T (u)) +

1

2
Tr(V)

s. t.

[
T (u) X
X∗ V

]
� 0, XΩS×[N ] = X?

ΩS×[N ].

As in Section 3.2.1, one can solve the above SDP, obtain the estimated frequencies from the dual polynomial,
and recover the mode shapes and amplitudes by solving a least-squares problem.

The following theorem from [10] shows that we can recover X? and estimate the frequencies accurately
with high probability.

Theorem 3.2. [10] Suppose the data matrix X? is observed on the index set ΩS × [N ], with ΩS selected
uniformly at random as a subset of T . Assume that {ψ?k}Kk=1 are independent random vectors with Eψ?k = 0,
chosen independently of the fixed amplitudes Ak. That is, each ψ?k is sampled independently from a zero-
mean distribution on the complex hyper-sphere; this distribution may vary with k. If M ≥ 4

∆f
+1, then there

exists a numerical constant C such that

|ΩS | ≥ C max

{
log2

√
NM

δ
,K log

K

δ
log

√
NM

δ

}
(3.7)

is sufficient to guarantee that we can exactly recover X? via (3.6) and perfectly recover the frequencies and
mode shapes up to a phase ambiguity with probability at least 1− δ.

The above theorem indicates that the number of measurements |ΩS | needed from each sensor for perfect
recovery scales almost linearly with the number of active modes K. The number of random samples per
sensor |ΩS | also increases logarithmically with M , the number of underlying uniform samples in T . The
lower limit on M is similar to what appears in Theorem 3.1 for the uniform sampling case. Thus, the total

6The resolution limit 4
M

is commonly encountered in atomic norm minimization. A recent work [42] proposes a reweighted
atomic norm minimization algorithm that can improve upon this resolution limit.
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duration over which the signals must be observed does not change. However, what is significant is that in
many cases the lower bound on |ΩS | will be smaller than M , which confirms that in general during this time
span it is not necessary to fully sample the uniform data matrix X?; sensing and communication costs can
be reduced by randomly subsampling this matrix.

Because its derivation relies on concentration arguments such as Hoeffding’s inequality, Theorem 3.2 does
assume the mode shapes to be generated randomly, which is not physically plausible. Moreover, this result
actually requires the number |ΩS | of measurements per sensor to increase (albeit logarithmically) as the
number of sensors N increases. However, intuition suggests that the opposite should be true: the N signals
share a common structure (analogous to a joint sparse model [43] in distributed compressive sensing), and
observing more signals gives more information about this common structure.

It is reasonable to expect that one will actually need fewer measurements per sensor as the number
of sensors increases. This is supported by simulations (not shown in this paper), and it remains an open
question to support this with theory for the case of synchronous random sampling.7

3.2.3 Asynchronous random sampling

We now consider the case where vibration signals at each sensor are sampled randomly in time, but at
different time instants at each sensor. We refer to this data collection scheme as asynchronous random
sampling. To be specific, suppose that we observe X? on the indices ΩA ⊂ T × [N ]. This observation model
allows each column of X? to be observed at different times, all of which are still restricted to be drawn from
the uniform sampling grid T , defined in (3.2).

Recovery of the full data matrix from asynchronous random samples is analogous to the conventional
matrix completion problem. This problem can be solved using ANM with the same formulation as in (3.6)
but with ΩS × [N ] replaced by ΩA. The following theorem from [7] shows that one can again recover X?

and estimate the frequencies and mode shapes accurately with high probability.8

Theorem 3.3. [7] Suppose the data matrix X? is observed on the index set ΩA ⊂ T × [N ], which is selected

uniformly at random. Assume the signs
ψ?

n,k

|ψ?
n,k|

are drawn independently from the uniform distribution on the

complex unit circle (and independently of the fixed amplitudes Ak) and that M ≥ 4
∆f

+ 1. Then there exists

a numerical constant C such that

|ΩA| ≥ CN max

{
log2 MN

δ
,K log

KN

δ
log

MN

δ

}
(3.8)

is sufficient to guarantee that we can exactly recover X? via (3.6) and exactly recover the frequencies and
mode shapes up to a phase ambiguity with probability at least 1− δ.

Up to small differences in the logarithmic factors, the total number |ΩA| of samples required in Theo-
rem 3.3 is comparable to the number of sensors N times the number of samples per sensor |ΩS | required
in Theorem 3.2. Many of the same comments on the theorem apply here, including the use of a (different)
randomness assumption on the mode shapes, and the fact that the required average number of measurements
per sensor |ΩA|/N again increases logarithmically as the number of sensors N increases. Again, the lower
limit on M is similar to what happens in Theorem 3.1, and so the total duration over which the signals must
be observed does not change. However, during this time span the requisite number of asynchronous random
samples may be far lower than the number of uniform samples demanded by the Nyquist rate.

Comparing the logarithmic terms in the right hand sides of (3.7) and (3.8), we do see that the mea-
surement requirement is slightly stronger for asynchronous random sampling than for synchronous random
sampling. However, simulations (e.g., Fig. 3(b)) indicate that the opposite may be true. It remains an open
question to support this with theory.

7After the initial submission of this manuscript, [44] has appeared as a complement to [10] and improves upon the sample
complexity in Theorem 3.2 under a different random assumption on the mode shapes.

8An explicit proof of Theorem 3.3, which concerns MMV ANM, is not included in [7]. We do note that essentially the same
conclusion holds if one applies SMV ANM and uses a union bound over the N sensors.
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3.2.4 Random temporal compression

Inspired by alternatives to random sampling that have been considered in CS, we now consider the case
where the displacement signal at each sensor is compressed via random matrix multiplication before being
transmitted to a central node. We refer to this as random temporal compression. This compression strategy
was also considered in [20], which provided a theoretical analysis of an SVD based technique for modal
analysis.

Let x?n be the nth column of the data matrix X?, and let Φn ∈ RM ′×M be a compressive matrix generated
randomly with independent and identically distributed (i.i.d.) Gaussian entries. At each sensor, assume that
we compute the measurements

yn = Φnx
?
n, n = 1, . . . , N.

At the central node, the problem of recovering the original data matrix X? from the compressed measure-
ments can be formulated as

X̂ = arg min
X
‖X‖A

s.t. yn = Φnxn, n = 1, . . . , N,

X = [x1,x2, · · · ,xN ],

(3.9)

which is equivalent to

X̂, û, V̂ = arg min
X,u,V

1

2M
Tr(T (u)) +

1

2
Tr(V)

s. t.

[
T (u) X
X∗ V

]
� 0, yn = Φnxn, n = 1, . . . , N,

X = [x1,x2, · · · ,xN ]

As in Section 3.2.1, one can solve the above SDP, obtain the estimated frequencies from the dual polyno-
mial, and recover the mode shapes and amplitudes by solving a least-squares problem. We have the following
result.

Theorem 3.4. Suppose Φ1,Φ2, . . . ,ΦN ∈ RM ′×M are independently drawn random matrices with i.i.d.
Gaussian entries having mean zero and variance 1. Assume that the true frequencies satisfy the minimum
separation condition

∆f ≥
1

b(M − 1)/4c
. (3.10)

Then there exists a numerical constant C such that if

M ′ ≥ CK log(M), (3.11)

X? is the unique optimal solution of the ANM problem (3.9) and we can exactly recover the frequencies and

mode shapes up to a phase ambiguity with probability at least 1− e−
N(M′−2)

8 .

We prove Theorem 3.4 in Section 5.2, extending analysis from Theorem 2 in [9], which concerned the
SMV (N = 1) version of this problem.

From Theorem 3.4, we see that modal analysis is possible in the random temporal compression scenario
using a number M ′ of measurements per sensor that scales linearly with the number of active modes K. One
logarithmic term remains in this bound (3.11), while some of the other logarithmic terms appearing in (3.7)
and (3.8) have disappeared. Expressing the failure probability as δ for easier comparison with Theorems 3.2
and 3.3, we see that when

M ′ ≥ max

{
8

N
log

(
1

δ

)
+ 2, CK log(M)

}
, (3.12)

10



exact recovery of the mode shapes and frequencies is possible with probability at least 1 − δ. In the first
term inside this expression, the number M ′ of measurements per sensor actually decreases as the number N
of sensors increases, a contrast with Theorem 3.2 and 3.3 where the opposite trend holds. We note that the
benefit of increasing the number of sensors N comes from the fact that in the setup of Theorem 3.4, each
sensor uses a different measurement matrix Φn. When the second term in (3.12) dominates, the number M ′

of measurements per sensor still does not increase with N . Similar to the random sampling schemes, the
total duration over which the signals must be observed does not change, but within this time span significant
compression may be possible.

Also in contrast with Theorems 3.2 and 3.3, Theorem 3.4 requires no randomness assumption on the mode
shapes. This allows for its use in practical scenarios, where in general mode shapes will not be generated
randomly. It would be interesting to remove the randomness condition from Theorems 3.2 and 3.3; we leave
this as a question for future work.

3.2.5 Random spatial compression

As a final strategy to compress the data matrix, we consider the scenario where each sensor modulates its
sample value by a random number at each time sample, then the sensors transmit these values coherently
to the central node, where the modulated values add to result in a single measurement vector. As discussed
in [45], such randomized spatial aggregation of the measurements can be achieved as part of using phase-
coherent analog transmissions to the base station. This strategy is sometimes referred to as compressive
wireless sensing; we refer to it as random spatial compression.

In random spatial compression, the collected measurements can be expressed as

ym = 〈X?>(:,m), b̃m〉 = 〈X?>, b̃me
>
m〉, m = 1, . . . ,M

where b̃m ∈ CN×1 and em ∈ RM×1 is the mth canonical basis vector. This allows us to formulate the modal
analysis problem as an ANM problem:

X̂ = arg min
X
‖X‖A

s. t. ym = 〈X>, b̃me>m〉, 1 ≤ m ≤M,
(3.13)

which is equivalent to

X̂, û, V̂ = arg min
X,u,V

1

2M
Tr(T (u)) +

1

2
Tr(V)

s. t.

[
T (u) X
X∗ V

]
� 0, ym = 〈X>, b̃me>m〉, 1 ≤ m ≤M.

As in Section 3.2.1, one can solve the above SDP, obtain the estimated frequencies from the dual poly-
nomial, and recover the mode shapes and amplitudes by solving a least-squares problem. The following
theorem follows from our previous work [16] on super-resolution of complex exponentials from modulations
with unknown waveforms.

Theorem 3.5. [16] Suppose we observe the data matrix X? with the above random spatial compression
scheme. Assume that the random vectors b̃m are i.i.d. samples from an isotropic and µ−incoherent dis-
tribution (see [16] for details). Also, suppose that ψ?k are drawn i.i.d. from the uniform distribution on
the complex unit sphere and that the minimum separation condition (3.10) is satisfied. Then there exists a
numerical constant C such that9

M ≥ CµKN log

(
MKN

δ

)
log2

(
MN

δ

)
(3.14)

9Note that the bound in (3.14) contains M on both sides. One could remove M from the right hand side using the Lambert
W-function as in [46, (64)–(66)]. Here, we prefer the form in (3.14) for simplicity and to highlight the relationship between M
and K,N .

11



is sufficient to guarantee that we can exactly recover X? via (3.13) and exactly recover the frequencies and
mode shapes up to a phase ambiguity with probability at least 1− δ.

In random spatial compression, the central node receives exactly one compressed measurement at each
time instant. Thus, the number of time samples M equals the total number of compressed measurements.
Thus, Theorem 3.5 states that it is sufficient for the total number of compressed measurements to scale
essentially linearly with KN (as long as (3.10) is also satisfied). Since K is the number of active modes and
N is the number of sensors (and thus the length of each unknown mode shape), the number of unknown
degrees of freedom in this problem scales with KN . In this sense, the result in Theorem 3.5 compares
favorably with those in Theorems 3.2, 3.3, and 3.4. Theorem 3.5 does require a randomness assumption on
the mode shapes.

We note that, in some applications, once (3.10) is satisfied (which imposes a lower bound on M that
is comparable to what appears in Theorems 3.1–3.4), it could be the case that (3.14) is also satisfied. In
this case, the same uniform data matrix X? that suffices for perfect recovery according to Theorem 3.1 can
be completely compressed in the spatial dimension, reducing the total number of samples from MN to M .
Thus, significant savings may be possible in structures where the number of sensors N is large. Indeed, up to
the point where (3.14) becomes a stronger condition than (3.10), one could continue adding sensors without
increasing the requisite number of compressed samples.

3.3 Modal analysis for noisy signals

In this section, we revisit the uniform sampling scenario where a data matrix is fully observed, but we now
consider the case where the samples are corrupted by additive white Gaussian noise. While the analysis in
this section may be of its own independent interest, it is also used in our proof of Theorem 3.4.

We consider observations of the form Y = X? + W, where the entries of W satisfy CN (0, σ2), and we
consider the following atomic norm denoising problem:

min
X

1

2
‖Y −X‖2F + λ‖X‖A. (3.15)

The theorem below provides an upper bound on the recovery error in Frobenius norm and is proved in
Section 5.3.

Theorem 3.6. Suppose the true data matrix X? is given as in (3.3) with the true frequencies satisfying the
minimum separation condition (3.10). Given the noisy data Y = X? + W, where the entries of W are i.i.d.

complex Gaussian random variables which satisfy CN (0, σ2), the estimate X̂ obtained by solving the atomic
norm denoising problem (3.15) (with regularizing parameter λ = ησ

√
4MN log(M) and with η ∈ (1,∞)

chosen sufficiently large) will satisfy

‖X̂−X?‖2F ≤ Cσ2KN log(M) (3.16)

with probability at least 1− 1
M2 for a numerical constant C.

Corollary 3.1. Under the assumptions of Theorem 3.6, the estimate X̂ obtained by solving the atomic norm
denoising problem (3.15) (with regularizing parameter λ = ησ

√
4MN log(M) and with η ∈ (1,∞) chosen

sufficiently large) will satisfy

E‖X̂−X?‖2F ≤ Cσ2KN log(M). (3.17)

Note that Theorem 3.6 provides a bound which extends the SMV case in [18] to the MMV case. Corollary
3.1 is a direct consequence of Theorem 3.6 and is proved in Section 5.4. The above MMV atomic norm
denoising problem (3.15) is also considered in [7]. However, there the authors provide only an asymptotic

bound on E‖X̂−X?‖2F .
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4 Simulation Results

In this section, we present some experiments on synthetic data to exhibit the performance of ANM based
modal analysis in the various sampling and compression scenarios.10 We use the modal assurance criterion
(MAC) to evaluate the quality of recovered mode shapes, which is defined as

MAC(ψ?k, ψ̂k) = |〈ψ?k, ψ̂k〉|,

where ψ̂k is the kth estimated mode shape and ψ?k is the kth true mode shape.11 A value of MAC = 1
would indicate perfect recovery of the true mode shape. We consider mode shape recovery to be a success if

MAC(ψ?k, ψ̂k) ≥ 0.99 for all k. We consider data matrix recovery to be a success if ‖X̂−X?‖F
‖X?‖F ≤ 10−5.

4.1 Uniform sampling

As mentioned in Section 3.2.1, the full data, uniform sampling case has previously been considered in [10]. In
this experiment, we compare the ANM based algorithm with the SVD based algorithm from [20] on a simple
6-degree-of-freedom boxcar system. The boxcar system is shown in Fig. 1. We consider this undamped
system under the context of free vibration. The system parameters are set as follows: the masses are
m1 = 1, m2 = 2, m3 = 3, m4 = 4, m5 = 5, m6 = 6 kg, and the stiffness values are k1 = k7 = 500,
k2 = k6 = 150, k3 = k5 = 100, k4 = 50 N/m. Thus, the mass, damping and stiffness matrices in (2.1) are
given as M = diag([m1, . . . ,m6]), C = 0, and

K =


k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 0 0 0

0 −k3 k3 + k4 −k4 0 0
0 0 −k4 k4 + k5 −k5 0
0 0 0 −k5 k5 + k6 −k6

0 0 0 0 −k6 k6 + k7

 ,

respectively. The true mode shapes and natural frequencies of this system can be obtained from the (normal-
ized) generalized eigenvectors and square root of the generalized eigenvalues of the stiffness matrix K and
mass matrix M. In particular, the true frequencies are F1 = 0.5384, F2 = 0.8964, F3 = 1.2404, F4 = 1.7434,
F5 = 1.7881, and F6 = 4.1218 Hz. We collect M = 100 uniform samples from this system with sampling
interval Ts = 0.9/Fc, where Fc = max1≤k≤6 |Fk|. The amplitudes are set as A1 = 1, A2 = 0.85, A3 = 0.7,
A4 = 0.5, A5 = 0.25 and A6 = 0.1. We apply both ANM and SVD to the obtained data matrix to identify
the modal parameters of this boxcar system. (Note that the SVD based algorithm only estimates the mode
shapes and not the frequencies.) Figure 2(a) shows how the dual polynomial from ANM can be used to
localize the frequencies. In particular, we identify the frequencies by identifying where the dual polynomial
achieves ‖Q(f)‖2 = 1. The true frequencies and estimated frequencies are presented in Fig. 2(b). The
estimated mode shapes from the two algorithms are illustrated in Fig. 2(c). As mentioned in Section 2.1, the
SVD based algorithm can only return mode shape estimates that are mutually orthogonal (in fact they are
orthogonal singular vectors of the data matrix). The true mode shapes in this experiment are not orthogonal,
which hampers the performance of the SVD. The ANM algorithm is not restricted to returning orthogonal
mode shape estimates, and in this experiment it recovers the mode shapes perfectly. In particular, the MAC
for AMN is (1, 1, 1, 1, 1, 1), while the MAC for SVD is (0.9176, 0.7231, 0.8060, 0.9749, 0.9659, 0.9883).

In this experiment, the minimum separation ∆f = 0.0098. Theorem 3.1 guarantees that perfect recovery
is possible via ANM when M ≥ max{ 4

∆f
+ 1, 257} = max{410, 275}. We see perfect recovery in this

simulation with M = 100 uniform samples.
In the following sections, for convenience we will use random mode shapes and/or discrete frequencies to

test the ANM based algorithms.

10We use ADMM [7] to solve the atomic norm denoising problem in Section 4.5. All other simulations are implemented with
CVX [41].

11To correctly pair the recovered mode shapes with the true ones, we assume the true frequencies fk are in ascending order,
and we adopt the same convention for the estimated frequencies.
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Figure 2: Uniform sampling in the boxcar system. (a) ANM based frequency localization from dual polyno-
mial Q(f). The horizontal axis is shown in units of Hz, which corresponds to the digital frequency f times
the sampling rate 1

Ts
. (b) Estimated frequencies by ANM. (c) Estimated mode shapes by ANM and SVD.

4.2 Asynchronous vs. synchronous random sampling

In this experiment, we compare the performance of asynchronous and synchronous random sampling in a
case where the mode shapes are randomly generated but also correlated.12 An example of such correlated
mode shapes is shown in Fig. 3(a). (Only the first two mode shapes are correlated.) The true discrete
frequencies are set to f1 = 0.1, f2 = 0.15, and f3 = 0.5. We collect M = 80 uniform samples from each
sensor. However, from these, on average, we keep only M ′ < M random samples from each sensor, where
the value for M ′ ranges from 2 to 20. In the case of synchronous random sampling, we keep exactly M ′

samples from each sensor at the same times. In the case of asynchronous random sampling, we generate ΩA
uniformly at random, with |ΩA| = M ′N .

Other parameters are set the same as in Section 4.1. We perform 300 trials (each with a new set of mode
shapes) for each value of M ′. Figure 3(b) shows that when compared with synchronous sampling, asyn-
chronous random sampling needs fewer observed measurements to achieve the same probability of successful
recovery. This observation is reasonable (given the additional diversity in the asynchronous observations)
but stands in contrast with the relative difference between the theoretical bounds in Theorems 3.2 and 3.3.
More work may be needed to theoretically characterize the performance difference between asynchronous
and synchronous random sampling.

4.3 Random temporal compression

In the next set of experiments, we generate a series of random matrices Φn ∈ CM ′×M , n = 1, . . . , N to
compress a set of M = 80 uniform samples at each sensor. In the first experiment, we recover the data
matrix and mode shapes both jointly (via the MMV approach from (3.9)) and separately (by solving N
separate SMV problems) to show the advantage of joint recovery. We choose M ′ between 3 and 30 and
perform 100 trials for each value of M ′. We use random mode shapes, all generated with i.i.d. Gaussian
entries and then normalized. The true discrete frequencies are set to f1 = 0.1, f2 = 0.15, and f3 = 0.5,
giving a separation of ∆f = 0.05, which is slightly smaller than the separation condition prescribed in
(3.10). Figures 4(a), (b) show the probability of successful recovery for the data matrix and mode shapes,
respectively, when we use separate ANM (dashed lines) and joint ANM (solid lines). The number on each line
denotes the number of sensors N used in the experiments. It can be seen that joint recovery outperforms
separate recovery significantly. Moreover, these results also indicate that the number of sensors has an
important effect on the performance of joint recovery. In particular, for a given number of measurements

12We generate the first and third mode shapes randomly with i.i.d. Gaussian entries and then normalize. The second mode
shape is generated by slightly perturbing the first mode shape and then normalizing.

14



2 4 6 8 10M
od

e 
S

ha
pe

 1
-0.5

0

0.5
Correlated Mode Shapes

True

2 4 6 8 10M
od

e 
S

ha
pe

 2

-0.5

0

0.5

Node
2 4 6 8 10M

od
e 

S
ha

pe
 3

-0.2
0

0.2
0.4

(a)

Average # of measurements per sensor (M 0)
5 10 15 20

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss
fu

l r
ec

ov
er

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Asynchronous
Synchronous

(b)

Figure 3: Asynchronous vs. synchronous random sampling. (a) Correlated random mode shapes used in
experiments. (b) Probability of successful recovery of mode shapes with each sampling scheme.
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Figure 4: Random temporal compression. (a) Recovery of data matrix via joint ANM (solid lines) and
separate ANM (dashed lines). (b) Recovery of mode shapes via joint ANM (solid lines) and separate ANM
(dashed lines). (c) Probability of successful recovery for mode shapes with ANM when N = 10 is fixed.

M ′, the probability of successful joint recovery will increase as the number of sensors increases, which is
consistent with our theoretical analysis. In contrast, the probability of successful separate recovery will
decrease.

In the second experiment, we set the number of sensors to be N = 10 and investigate the minimal number
of measurements per sensor M ′ needed for perfect joint recovery with various numbers of active modes K.
The true mode shapes are generated randomly and we set M = 100. For each value of K, we randomly
pick K discrete frequencies from a frequency set F = 0.03 : Sep : 0.99, where Sep = 2/M . The amplitudes
Ak, k = 1, . . . ,K are chosen randomly from the uniform distribution between 0 and 1. It can be seen in
Fig. 4(c) that the minimal number of measurements needed by each sensor for perfect recovery does scale
roughly linearly with the number of active modes K, as indicated in Theorem 3.4.

4.4 Random spatial compression

Using the same parameters as in Section 4.2, we simulate the random spatial compression strategy with ANM
based modal analysis and compare to the SVD algorithm studied in [20], which we apply to a full M × N
data matrix. We generate mode shapes randomly, testing both orthogonal mode shapes and correlated
mode shapes. It can be seen from Fig. 5(a), (b) that the SVD based method performs poorly when the mode

15



2 4 6 8 10M
od

e 
Sh

ap
e 

 1
0.2

0.4

Orthogonal Mode Shapes
True Spatial SVD

2 4 6 8 10M
od

e 
Sh

ap
e 

 2

0.1
0.2
0.3
0.4
0.5

Node
2 4 6 8 10M

od
e 

Sh
ap

e 
3

0.1
0.2
0.3
0.4
0.5

(a)

2 4 6 8 10M
od

e 
Sh

ap
e 

1

0.2
0.4
0.6

Correlated Mode Shapes
True Spatial SVD

2 4 6 8 10M
od

e 
Sh

ap
e 

2

0.2
0.4
0.6

Node
2 4 6 8 10M

od
e 

Sh
ap

e 
3

0.2
0.4
0.6

(b)

Figure 5: Random spatial compression. (a) Estimated mode shapes by ANM (on compressed data) and SVD
(on uncompressed data) with orthogonal mode shapes. (b) Estimated mode shapes with correlated mode
shapes.
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Figure 6: Atomic norm denoising. (a) Recovered MSE with respect to different noise levels. (b) Relative
error with respect to different SNR levels.

shapes are correlated. However, the proposed ANM based algorithm performs well in both cases. Note
that although SVD based method performs very well when the mode shapes are orthogonal, this is using
M · N = 80 · 10 = 800 samples while the ANM based algorithm uses only M = 80 spatially compressed
measurements to recover both the mode shapes and the frequencies.

4.5 Noisy data

Finally, we simulate the atomic norm denoising problem presented in Section 3.3. We assume the entries of W
are i.i.d. random variables from the distribution CN (0, σ2). We set the signal-to-noise ratio (SNR) between 15
and 50 dB, which corresponds to values of σ between 0.1754 and 0.0031. We perform 50 trials for each value
of σ, with random mode shapes in each trial. The regularization parameter is set to λ = σ

√
4MN log(M)

with M = 80 and N = 10. Other parameters are set the same as in Section 4.2. We define ‖X̂−X?‖2F and
‖X̂−X?‖F
‖X?‖F as the mean square error (MSE) and relative error, respectively. It can be seen in Fig. 6(a) that

the MSE is linearly correlated with σ2, which is consistent with the theory in Section 3.3. We also present
Fig. 6(b) to illustrate how the relative error behaves with different noise levels.
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5 Proofs

In this section, we will prove Theorem 3.4, Theorem 3.6, and Corollary 3.1. Some proof techniques are
inspired by the work in [5, 9, 17, 18].

5.1 Convex analysis

We first review some basic concepts from convex analysis [47]. A set Λ is a cone if

θx ∈ Λ for anyx ∈ Λ,

where θ is a nonnegative constant. Λ is a convex cone if

θ1x1 + θ2x2 ∈ Λ

holds for any x1, x2 ∈ Λ and θ1, θ2 ≥ 0. The polar cone of a cone Λ is

Λ◦ , {z : 〈x, z〉 ≤ 0 ∀ x ∈ Λ}.

The tangent cone and normal cone at X with respect to the scaled unit ball ‖X‖A conv(A) are defined
as

TA(X) , cone{D : ‖X + D‖A ≤ ‖X‖A},

and

NA(X) , {S : 〈S,D〉 ≤ 0,∀ D s. t. ‖X + D‖A ≤ ‖X‖A},

respectively. Note that the tangent cone TA(X) is the set of descent directions of the atomic norm ‖ · ‖A at
X. The normal cone NA(X) is the polar cone of the tangent cone TA(X) and vice-versa.

Let Ω be a subset of SMN−1, where SMN−1 , {Z ∈ CM×N : ‖Z‖F = 1} denotes the unit sphere. Then,
the Gaussian width of Ω is

ω(Ω) , EH

[
max
Z∈Ω
〈H,Z〉

]
, (5.1)

where H is a Gaussian matrix with i.i.d. entries from the distribution N (0, 1).

5.2 Proof of Theorem 3.4

We start by showing that the number of measurements M ′ needed for perfect recovery can be lower bounded
with a Gaussian width in Section 5.2.1. Then, we upper bound the Gaussian width with the expectation of
the recovery error obtained from the atomic norm denoising problem (3.15) in Section 5.2.2.

5.2.1 Bounding M ′ with a Gaussian width

It can be shown that the ANM problem in (3.9) is equivalent to the following optimization problem

min
D
‖X? + D‖A

s.t. Φndn = 0, n = 1, . . . , N,

D = [d1,d2, · · · ,dN ].

In particular, the above equivalent optimization problem can be obtained by eliminating the equality con-
straints in (3.9). Let X = X? + D with Φndn = 0, n = 1, . . . , N . It can be seen that the two optimization
problems are equivalent.
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Let Φ = [Φ1,Φ2, · · · ,ΦN ]. With a slight abuse of notation, we define

null(Φ) , {D ∈ CM×N : Φndn = 0, n = 1, . . . , N}

as a set of matrices with columns belonging to the null space of the corresponding sensing matrix. We also
define a block diagonal matrix diag(Z) corresponding to a matrix Z = [z1, z2, · · · , zN ] ∈ CM×N as

diag(Z) ,


z1

z2

. . .

zN

 ∈ CMN×N . (5.2)

Inspired by [5], we have the following proposition which gives us an optimal condition for exact recovery.

Proposition 1. X̂ = X? is the unique optimal solution to the ANM (3.9) if and only if

TA(X?) ∩ null(Φ) = {0}.

Proof. On one hand, if X? is the unique optimal solution, then ‖X? + D‖A > ‖X?‖A holds for all D ∈
null(Φ)/{0}. It follows that D /∈ TA(X?). Thus, we can get TA(X?) ∩ null(Φ) = {0}.

On the other hand, if TA(X?) ∩ null(Φ) = {0}, then, for all D ∈ null(Φ)/{0}, i.e., Φndn = 0, n =
1, . . . , N, we have ‖X? + D‖A > ‖X?‖A. Thus, X? is the unique optimal solution.

Define Ω = TA(X?) ∩ SMN−1, where SMN−1 = {Z ∈ CM×N : ‖Z‖F = 1}. It can be seen that Ω is a
subset of the unit sphere. According to Proposition 1, to show that X? is the unique optimal solution to
(3.9), we hope to demonstrate that Z /∈ null(Φ) holds for any Z = [z1, z2, · · · , zN ] ∈ Ω, i.e.,

N∑
n=1

‖Φnzn‖2 > 0,

which will hold if

N∑
n=1

‖Φnzn‖22 = ‖[Φ1z1 Φ2z2 · · · ΦNzN ]‖2F = ‖ΦẐ‖2F > 0.

Therefore, we need to show

‖ΦẐ‖F > 0,

where Φ = [Φ1,Φ2, · · · ,ΦN ] ∈ RM ′×MN , and Ẑ = diag(Z) ∈ CMN×N as is defined in (5.2). Note that we

have ‖Ẑ‖F = ‖Z‖F = 1 since Z is in a subset of the unit sphere.

Next, we will show that ‖ΦẐ‖F > 0 holds for all Z ∈ Ω = TA(X?) ∩ SMN−1 with high probability. It
then follows that X? is the unique optimal solution of ANM (3.9).

Theorem 5.1. Let Φ = [Φ1,Φ2, · · · ,ΦN ] ∈ RM ′×MN be a random matrix with i.i.d Gaussian entries which

satisfy N (0, 1). Let Ω be a subset of SMN−1. For all Z = [z1, z2, · · · , zN ] ∈ Ω, define Ẑ = diag(Z) as (5.2).
Then, we have

E
[
min
Z∈Ω
‖ΦẐ‖F

]
≥ λM ′N − ω(Ω),

where λM ′N = EG∼N (0,I)‖G‖F ≥
√
NM ′√
M ′+1

and ω(Ω) is the Gaussian width of Ω defined in (5.1).

Remark 5.1. The above theorem is based on Gordon’s work [48], and provides us a lower bound for the
minimum gain of the operator Φ restricted to a set Ω. The proof of this theorem is given in Appendix A.1.

18



Corollary 5.1. Let Φ = [Φ1,Φ2, · · · ,ΦN ] ∈ RM ′×MN be a random matrix with i.i.d. Gaussian entries
which satisfy N (0, 1). Define Ω , TA(X?) ∩ SMN−1 as a subset of the unit sphere. Then, X? is the unique

optimal solution of ANM (3.9) with probability at least 1− e−
N(M′−2)

8 if

M ′ ≥ 4

N
ω2(Ω). (5.3)

Remark 5.2. Corollary 5.1 is an immediate consequence of Theorem 5.1. It can be seen that the number
of measurements M ′ needed for exact recovery can be lower bounded by a Gaussian width. The proof details
(presented in Appendix A.2) are based on a Gaussian concentration inequality [49].

5.2.2 Bounding the Gaussian width

This section is dedicated to finding an upper bound on ω(TA(X?)∩SMN−1). First, we define the mean-square
distance of a set C as

dist(C) = EG∼N (0,I)

[
min
D∈C
‖G−D‖2F

]
.

Inspired by the work in [5] and [9], we have

ω2(TA(X?) ∩ SMN−1)

≤
[
EG

[
min

D∈T ◦A(X?)
‖G−D‖F

]]2

≤ EG

[
min

D∈T ◦A(X?)
‖G−D‖F

]2

=EG

[
min

D∈T ◦A(X?)
‖G−D‖2F

]
=dist(T ◦A(X?))

= dist(cone(∂‖X?‖A)) ≤ dist(λ∂‖X?‖A)

= max
σ>0

EG[‖X̂(X? + σG, σλ)−X?‖2F ]

σ2
,

where the first two inequalities follow from Proposition 3.6 in [5] and Jensen’s inequality, respectively. The
third equality and last inequality can be found in equation (67) in [9] while the last equality comes from
Theorem 1.1 in [50]. Note that T ◦A is the polar cone of TA, as defined at the beginning of Section 5.1. Here,

X̂(Y, λ) is the solution to the MMV atomic norm denoising problem (3.15) with λ being the regularization
parameter. With the inequality given in (3.17), we have

EG[‖X̂(X? + σG, σλ)−X?‖2F ]

σ2
≤ CKN log(M),

which implies

ω2(TA(X?) ∩ SMN−1) ≤ CKN log(M). (5.4)

Thus, plugging (5.4) into (5.3), we can get (3.11) and finish the proof of Theorem 3.4.

5.3 Proof of Theorem 3.6

In this section, we prove Theorem 3.6 by extending the results in [17] and [18] to the MMV case. For the
SMV case, it is shown in [17] that a good choice of the regularization parameter can achieve accelerated
convergence rates. Inspired by their choice of the regularization parameter, we use

λ ≈ ηE‖W‖∗A
in the MMV atomic norm denoising problem (3.15). Here, η ∈ (1,∞) is some constant which ultimately
must be set large enough to enable the proof of Lemma 5.6, and W is a complex Gaussian matrix. To set
λ, we need to find an upper bound for E‖W‖∗A.
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5.3.1 Bounding E‖W‖∗A
Lemma 5.1. Let W ∈ CM×N be a random matrix with i.i.d. complex Gaussian entries from the distribution
CN (0, σ2). Then, there exists a numerical constant C such that

E‖W‖∗A ≤ Cσ
√
MN log(M).

Proof. According to the definition of the dual atomic norm in (2.4), we have

(‖W‖∗A)2 = sup
f∈[0,1)

‖W∗a(f)‖22 = sup
f∈[0,1)

N∑
n=1

∣∣∣∣∣
M−1∑
m=0

W∗
mne

j2πfm

∣∣∣∣∣
2

= sup
f∈[0,1)

N∑
n=1

M−1∑
m,p=0

W∗
mnWpne

j2πf(m−p)

= sup
f∈[0,1)

WM

(
ej2πf

)
,

where the polynomial WM is defined as

WM

(
ej2πf

)
,

N∑
n=1

M−1∑
m,p=0

W∗
mnWpne

j2πf(m−p).

For all f1, f2 ∈ [0, 1) we have

WM

(
ej2πf1

)
−WM

(
ej2πf2

)
≤
∣∣ej2πf1 − ej2πf2∣∣ sup

f∈[0,1)

W ′M
(
ej2πf

)
≤ 2πM |f1 − f2| sup

f∈[0,1)

WM

(
ej2πf

)
by using the mean value theorem and Bernstein’s inequality for polynomials [51]. By letting f2 take any of
the L values 0, 1

L , . . . ,
L−1
L , we have

sup
f∈[0,1)

WM

(
ej2πf

)
≤ max
l=0,...,L−1

WM

(
ej2πl/L

)
+

2πM

L
sup

f∈[0,1)

WM

(
ej2πf

)
.

It follows that

(‖W‖∗A)2 = sup
f∈[0,1)

WM

(
ej2πf

)
≤
(

1− 2πM

L

)−1

max
l=0,...,L−1

WM

(
ej2πl/L

)
≤
(

1 +
4πM

L

)
max

l=0,...,L−1
WM

(
ej2πl/L

)
,

where the last inequality holds if L ≥ 4πM . Then, we get

‖W‖∗A ≤
(

1 +
4πM

L

) 1
2
[

max
l=0,...,L−1

WM

(
ej2πl/L

)] 1
2

(5.5)

and

E‖W‖∗A ≤
(

1 +
4πM

L

) 1
2
[
E max
l=0,...,L−1

WM

(
ej2πl/L

)] 1
2

.

Define

xl ,
1

σ
√
M

M−1∑
m=0

W∗
mne

j2πlm/L
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for l = 0, 1, . . . L−1. It can be seen that xl is complex Gaussian variable satisfying CN (0, 1) since the entries
of W satisfy CN (0, σ2). Then, we have

E
[

max
l=0,...,L−1

WM

(
ej2πl/L

)]
= E

 max
l=0,...,L−1

N∑
n=1

∣∣∣∣∣
M−1∑
m=0

W∗
mne

j2πlm/L

∣∣∣∣∣
2


≤
N∑
n=1

E

 max
l=0,...,L−1

∣∣∣∣∣
M−1∑
m=0

W∗
mne

j2πlm/L

∣∣∣∣∣
2


=
1

2
σ2M

N∑
n=1

E
[

max
l=0,...,L−1

2 |xl|2
]

≤ σ2MN(logL+ 1),

where the last inequality uses the result that E
[
maxl=0,...,L−1 2 |xl|2

]
≤ 2 log(L) + 2, see Lemma 5 in [17].

Choosing L = 4πM log(M) gives

E‖W‖∗A ≤ σ
(

1 +
1

log(M)

) 1
2 √

MN [log(M) + log(4π log(M)) + 1]

≤ Cσ
√
MN log(M).

Note that C is a constant which belongs to (1, 2) when M is large.

5.3.2 Bounding ‖X̂−X?‖2F
Now, we can set the regularizing parameter in the MMV atomic norm denoising problem (3.15) as λ =
ησ
√

4MN log(M) for some η ∈ (1,∞). Then

‖W‖∗A ≤
λ

η
(5.6)

holds with high probability. In particular, we have the following lemma.

Lemma 5.2.

P
[
‖W‖∗A ≥

λ

η

]
≤ 1

M2
.

Proof. As is shown in (5.5), letting L = M , we have

‖W‖∗A ≤ (1 + 4π)
1
2

[
max

l=0,...,M−1
WM

(
ej2πl/M

)] 1
2

= (1 + 4π)
1
2

 max
l=0,...,M−1

N∑
n=1

∣∣∣∣∣
M−1∑
m=0

W∗
mne

j2πml/M

∣∣∣∣∣
2
 1

2

≤ (1 + 4π)
1
2

 max
l=0,...,M−1

(
N∑
n=1

∣∣∣∣∣
M−1∑
m=0

W∗
mne

j2πml/M

∣∣∣∣∣
)2
 1

2

= (1 + 4π)
1
2 max
l=0,...,M−1

N∑
n=1

∣∣∣∣∣
M−1∑
m=0

W∗
mne

j2πml/M

∣∣∣∣∣
, (1 + 4π)

1
2 max
l=0,...,M−1

Zl.
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It can be seen that Zl is stochastically upper bounded by a zero-mean Gaussian random variable with
variance σ2MN [9]. Then, for any β > 1√

2π
, we have

P[|Zm| ≥ σ
√
MNβ] ≤ 2e−β

2

.

Let β =
√

4 log(M), we can get

P
[
‖W‖∗A ≥

λ

η

]
= P

[
‖W‖∗A ≥ σ

√
4MN logM

]
≤ 2Me−4 log(M) ≤ 1

M2
,

where the first inequality comes from the union bound.

The following lemma derived from convex analysis provides optimality conditions for X̂ to be the solution
of (3.15).

Lemma 5.3. (Optimality Conditions): X̂ is the solution of (3.15) if and only if

1. ‖Y − X̂‖∗A ≤ λ,

2. 〈Y − X̂, X̂〉 = λ‖X̂‖A.

Define an atomic measure as

µ(f) =

K∑
k=1

|Ak|bkδ(f − fk)

with f ∈ [0, 1), ‖bk‖2 = 1. Then, we have

X? =

K∑
k=1

|Ak|a(fk)b∗k =

∫ 1

0

a(f)µ∗(f)df.

Similarly, the recovered data X̂ can be represented as

X̂ =

∫ 1

0

a(f)µ̂∗(f)df

for some measure µ̂(f). Define the difference measure as ν = µ̂− µ. Then, the error matrix is given as

E , X̂−X? =

∫ 1

0

a(f)ν∗(f)df.

It follows that

‖E‖2F = |〈E,E〉| =
∣∣∣∣〈E,

∫ 1

0

a(f)ν∗(f)df

〉∣∣∣∣
=

∣∣∣∣∫ 1

0

〈E,a(f)ν∗(f)〉 df
∣∣∣∣

=

∣∣∣∣∫ 1

0

a∗(f)Eν(f)df

∣∣∣∣
=

∣∣∣∣∫ 1

0

ξ∗(f)ν(f)df

∣∣∣∣
≤
∣∣∣∣∫
F

ξ∗(f)ν(f)df

∣∣∣∣+
K∑
k=1

∣∣∣∣∫
Nk

ξ∗(f)ν(f)df

∣∣∣∣

(5.7)
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where ξ(f) , E∗a(f) is defined as a vector-valued error function. Here,

Nk , {f : d(f, fk) ≤ 0.16/M}, k = 1, . . . ,K

F , [0, 1)/ ∪Kk=1 Nk
(5.8)

are defined as the kth near region corresponding to fk and the far region, respectively.
With a little abuse of notation, we define

‖ξ(f)‖2,∞ , sup
f∈[0,1)

‖ξ(f)‖2. (5.9)

It turns out that

‖ξ(f)‖2,∞ = sup
f∈[0,1)

‖E∗a(f)‖2

= sup
f∈[0,1)

‖(X̂−Y)∗a(f) + W∗a(f)‖2

≤ sup
f∈[0,1)

‖(Y − X̂)∗a(f)‖2 + sup
f∈[0,1)

‖W∗a(f)‖2

= ‖Y − X̂‖∗A + ‖W‖∗A
≤ 2λ

if the bound condition in (5.6) holds. The last inequality also follows from the first optimality condition in
Lemma 5.3.

Next, we extend Lemmas 1, 2 and 3 in [18] to our MMV case and then bound the energy of the error
matrix.

Lemma 5.4. Since each entry of the vector-valued error function ξ(f) = E∗a(f) is an order-M trigono-
metric polynomial, we have

‖E‖2F ≤ ‖ξ(f)‖2,∞
[∫

F

‖ν(f)‖2df + I0 + I1 + I2

]
(5.10)

with

Ik0 =

∥∥∥∥∫
Nk

ν(f)df

∥∥∥∥
2

,

Ik1 = M

∥∥∥∥∫
Nk

(f − fk)ν(f)df

∥∥∥∥
2

,

Ik2 =
M2

2

∫
Nk

(f − fk)2‖ν(f)‖2df

Il =
K∑
k=1

Ikl , for l = 0, 1, 2.

The proof of Lemma 5.4 is given in Appendix A.3.1.

Lemma 5.5. There exist some numerical constants C0 and C1 such that

I0 ≤ C0

(
Kλ

M
+ I2 +

∫
F

‖ν(f)‖2df
)
,

I1 ≤ C1

(
Kλ

M
+ I2 +

∫
F

‖ν(f)‖2df
)
.
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The proof of Lemma 5.5 is given in Appendix A.3.2.

Lemma 5.6. For some sufficiently large η > 1, set the regularizing parameter as λ = ησ
√
MN log(M).

Then there exists a numerical constant C such that∫
F

‖ν(f)‖2df + I2 ≤
CKλ

M

holds if ‖W‖∗A ≤ λ
η .

The proof of Lemma 5.6 is given in Appendix A.3.3.
Using the above three lemmas, we have that

‖X̂−X?‖2F ≤
CKλ2

M
= Cσ2KN log(M)

holds if η is sufficiently large and if ‖W‖∗A ≤ λ
η . It follows from Lemma 5.2 that the above recovery error

bound holds with probability at least 1− 1
M2 . Thus, we finish the proof of Theorem 3.6.

5.4 Proof of Corollary 3.1

As mentioned in the previous sections, once we set λ = ησ
√

4MN log(M), then

‖W‖∗A ≤
λ

η

holds with probability at least 1− 1
M2 , which implies that the error bound in (3.16) holds with probability

at least 1− 1
M2 .

Note that

E[‖E‖2F ] = E
[
‖E‖2F1

{
‖W‖∗A <

λ

η

}]
+ E

[
‖E‖2F1

{
‖W‖∗A ≥

λ

η

}]
, (5.11)

where 1 is an indicator function. Theorem 3.6 implies that

E
[
‖E‖2F1

{
‖W‖∗A <

λ

η

}]
≤ Cσ2KN log(M), (5.12)

which can be proved with the definition of expectation. Also, by the Cauchy-Schwarz inequality, we have

E
[
‖E‖2F1

{
‖W‖∗A ≥

λ

η

}]
≤
√
E[‖E‖4F ]

√
P
[
‖W‖∗A ≥

λ

η

]
≤ Cσ2N log(M), (5.13)

where the last inequality follows from the following lemma and Lemma 5.2.

Lemma 5.7. √
E [‖E‖4F ] ≤ Cσ2MN log(M). (5.14)

Combining (5.11), (5.12), and (5.13) completes the proof of Corollary 3.1. Now, we are left with proving
Lemma 5.7.

Proof. To prove Lemma 5.7, we first prove the following lemma.

Lemma 5.8. There exists some numerical constant C such that the energy of the error matrix E can be
upper bounded with

‖E‖2F ≤ 8‖W‖2F + Cλ2 K

M
= 8‖W‖2F + Cη2σ2KN log(M).
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Proof. The optimality of X̂ implies

1

2
‖Y − X̂‖2F + λ‖µ̂‖2,TV ≤

1

2
‖Y −X?‖2F + λ‖µ‖2,TV ,

which is equivalent to

1

2
‖E‖2F + λ(‖PF (µ̂)‖2,TV + ‖PFc(µ̂)‖2,TV ) ≤ 〈E,W〉+ λ‖µ‖2,TV . (5.15)

Since µ̂ = ν + µ, we have

‖PF (µ̂)‖2,TV = ‖PF (ν + µ)‖2,TV
= ‖µ‖2,TV + ‖PF (ν)‖2,TV
= ‖µ‖2,TV + ‖ν‖2,TV − ‖PFc(ν)‖2,TV
= ‖µ‖2,TV + ‖ν‖2,TV − ‖PFc(µ̂)‖2,TV .

Then, the inequality (5.15) becomes

1

2
‖E‖2F + λ‖ν‖2,TV ≤ 〈E,W〉,

which implies
1

2
‖E‖2F ≤ 〈E,W〉 − λ‖ν‖2,TV

= 〈E,W〉 − λ
∫ 1

0

ν∗(f)Q(f)df

= 〈E,W〉 − λ〈E,Q〉.

(5.16)

We have used Parseval’s theorem in the last equality. Moreover,

−λ〈E,Q〉 ≤ λ‖E‖F ‖Q‖F =

(
‖E‖F

2

)
(2λ‖Q‖F )

≤ 1

8
‖E‖2F + 2λ2‖Q‖2F .

(5.17)

Combining (5.16) and (5.17) and using the Cauchy-Schwarz inequality, we get

3

8
‖E‖2F ≤

(
‖E‖F

2

)
(2‖W‖F ) + 2λ2‖Q‖2F

≤ 1

8
‖E‖2F + 2‖W‖2F + 2λ2‖Q‖2F .

As a consequence, we have

‖E‖2F ≤ 8‖W‖2F + 8λ2‖Q‖2F
= 8‖W‖2F + 8λ2〈Q(f),Q(f)〉
≤ 8‖W‖2F + 8λ2‖Q(f)‖1‖Q(f)‖∞

≤ 8‖W‖2F + Cλ2 K

M
,

where the last inequality follows from ‖Q(f)‖1 ≤ C K
M as is shown in (A.12). This completes the proof of

Lemma 5.8.
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Now, continuing the proof of Lemma 5.7, note that ‖W/σ‖2F is a χ2 distribution with MN degrees of
freedom. It follows that

E[‖W‖2F ] = σ2MN,

E[‖W‖4F ] = σ4MN(MN + 2) ≤ Cσ4M2N2.

Then, with Lemma 5.8, we have

E[‖E‖4F ] ≤ 64E[‖W‖4F ] + CE[‖W‖2F ]η2σ2KN log(M) + Cη4σ4K2N2 log2(M)

≤ Cσ4M2N2 + Cη2σ4MKN2 log(M) + Cη4σ4K2N2 log2(M)

≤ Cσ4M2N2 log2(M).

By taking the square root, we obtain (5.14). This completes the proof of Lemma 5.7.

6 Conclusion

ANM can be used for modal analysis under a variety of different spatio-temporal sampling and compression
schemes. In the noiseless case, theoretical analysis shows that perfect recovery of mode shapes and frequencies
is possible under certain conditions. In particular, a minimum separation condition is required for all of the
theorems in Section 3.2: to distinguish any closely spaced pair of frequencies, it is necessary to observe the
signals over a long time span, regardless of whether or how the samples are compressed.

While compression does not allow the observation time span to be shortened, it does allow the number of
samples to be reduced. Using synchronous random sampling, asynchronous random sampling, and random
temporal compression, for example, exact recovery of mode shapes and frequencies is possible when the
average number of samples per sensor is roughly proportional to the number of active modes. Using random
spatial compression, exact recovery is possible when the total number of compressed measurements scales
with the number of degrees of freedom.

Currently, the theoretical results for random sampling and for random spatial compression require ran-
domness assumptions on the mode shapes and, for random sampling, indicate that the performance worsens
as the number of sensors increases. Removing and improving these aspects of the results would be worthy
of further study. Another open question is to theoretically characterize the performance improvements of
asynchronous random sampling over synchronous random sampling.

Damping and external forces may be present in practical scenarios. In this work, we have focused on
developing a theoretical foundation for the idealized model of free vibration without damping. Extending the
ANM framework and analysis to accommodate damping and forced inputs are interesting questions for future
work. We do note, however, that although our theory has focused on systems with no damping, ANM can
empirically work well even on systems with slight proportional damping. To show this, we repeat the uniform
sampling experiment on the 6-degree-of-freedom system but with damping. For simplicity, we only consider
proportional damping of the form C = αM+βK with α = 0.01 and β = 0.006. Here, we change the stiffness
values to k1 = k7 = 500, k2 = 300, k3 = 100, k4 = 50, k5 = 400, k6 = 200 N/m in order to slightly increase
the minimum separation of true frequencies. The other parameters are the same as in Section 4.1. Similarly,
the true mode shapes and undamped natural frequencies of this system are obtained from the (normalized)
generalized eigenvectors and square root of the generalized eigenvalues of K and M. In particular, the true
undamped natural frequencies are F1 = 0.6239, F2 = 0.9820, F3 = 1.7161, F4 = 1.9365, F5 = 2.3272, F6 =
4.6879 Hz. The damping ratios of this system are ξ1 = 0.0130, ξ2 = 0.0193, ξ3 = 0.0328, ξ4 = 0.0369, ξ5 =
0.0442, ξ6 = 0.0885, and the true damped natural frequencies are given as Fdk = Fk

√
1− ξ2

k. In particular,
Fd1 = 0.6239, Fd2 = 0.9819, Fd3 = 1.7151, Fd4 = 1.9351, Fd5 = 2.3250, Fd6 = 4.6595 Hz. The true
amplitudes are set as A1 = 1, A2 = 0.85, A3 = 0.7, A4 = 0.5, A5 = 0.25, A6 = 0.7. In order to make the
experiment as close to realistic as possible, we first collect 300 real-valued uniform samples from this system
with sampling interval Ts = 0.5/Fc, where Fc = max1≤k≤6 |Fk|. We then compute the Hilbert transform of
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Figure 7: Uniform sampling in the boxcar system with damping. (a) Uniform samples from each node
(sensor). (b) Estimated mode shapes by ANM and SVD.

these real-valued samples to obtain the analytic samples. To eliminate border effects, we perform ANM only
on the first 100 analytical samples.

The damped real-valued uniform samples and the reconstructed mode shapes are presented in Figure 7.
Although the input signals contain damping, we use the conventional undamped version of ANM to estimate
the frequencies and the mode shapes. It can be seen that ANM still performs much better than SVD in general
since the true mode shapes are not mutually orthogonal. In particular, the MAC for ANM is (0.9996, 0.9986,
0.9825, 0.9129, 0.8452, 0.9579), while the MAC for SVD is (0.9882, 0.9380, 0.8726, 0.7288, 0.9435, 0.7547).
In addition, the estimated frequencies are F̂1 = 0.6245, F̂2 = 0.9824, F̂3 = 1.7205, F̂4 = 1.9218, F̂5 =
2.3122, F̂6 = 4.5608 Hz. Although the ANM algorithm returns reasonably accurate estimates, because it
does not explicitly account for damping, it cannot perfectly recover the mode shapes and frequencies. We
leave the development of such a damped ANM algorithm to future work.

Finally, in the noisy case, we have extended the SMV atomic norm denoising problem to an MMV atomic
norm denoising problem and derived non-asymptotic theoretical bounds for the recovery error. While this
analysis may be of its own independent interest, it is also used in our proof of Theorem 3.4.
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A Appendix

A.1 Proof of Theorem 5.1

This proof is modified from [48]. For Z ∈ Ω ⊂ SMN−1, Z̃ ∈ SM ′N−1 , {Z̃ ∈ CM ′×N : ‖Z̃‖F = 1}, define
two Gaussian processes

WZ,Z̃ = 〈G, Z̃〉+ 〈H,Z〉, W̃Z,Z̃ = 〈ΦẐ, Z̃〉.

Here, G and H are random matrices with i.i.d. entries from the distribution N (0, 1). For all Z, Z′ ∈ Ω,
Z̃, Z̃′ ∈ SM ′N−1, it can be shown that

E|WZ,Z̃ −WZ′,Z̃′ |
2 − E|W̃Z,Z̃ − W̃Z′,Z̃′ |

2

=4− 〈Z̃′, Z̃〉 − 〈Z′,Z〉 − 〈Z̃, Z̃′〉 − 〈Z,Z′〉 −
N∑
n=1

〈zn, zn〉〈z̃n, z̃n〉 −
N∑
n=1

〈z′n, z′n〉〈z̃′n, z̃′n〉

+
N∑
n=1

〈zn, z′n〉〈z̃′n, z̃n〉+
N∑
n=1

〈z′n, zn〉〈z̃n, z̃′n〉

=4− 2 Re(〈Z̃′, Z̃〉)− 2 Re(〈Z,Z′〉)−
N∑
n=1

(
‖zn‖2‖z̃n‖2 + ‖z′n‖2‖z̃′n‖2 − 2 Re(〈zn, z′n〉〈z̃′n, z̃n〉)

)
≥Re

(
4− 2〈Z̃′, Z̃〉 − 2〈Z,Z′〉 −

N∑
n=1

N∑
m=1

(
‖zn‖2‖z̃m‖2 + ‖z′n‖2‖z̃′m‖2 − 2〈zn, z′n〉〈z̃′m, z̃m〉

))
= Re

(
2− 2〈Z̃′, Z̃〉 − 2〈Z,Z′〉+ 2〈Z,Z′〉〈Z̃′, Z̃〉

)
=2 Re

(
(1− 〈Z̃′, Z̃〉)(1− 〈Z,Z′〉)

)
≥0.

The first inequality holds since

‖zn‖2‖z̃m‖2 + ‖z′n‖2‖z̃′m‖2 − 2〈zn, z′n〉〈z̃′m, z̃m〉
≥‖zn‖2‖z̃m‖2 + ‖z′n‖2‖z̃′m‖2 − 2‖zn‖‖z̃m‖‖z′n‖‖z̃′m‖ ≥ 0.

Then, by [48] we have

E
[
min
Z∈Ω

max
Z̃∈SM′N−1

WZ,Z̃

]
≤ E

[
min
Z∈Ω

max
Z̃∈SM′N−1

W̃Z,Z̃

]
,

which is equivalent to

E
[
min
Z∈Ω

max
Z̃∈SM′N−1

〈G, Z̃〉+ 〈H,Z〉
]
≤ E

[
min
Z∈Ω

max
Z̃∈SM′N−1

〈ΦẐ, Z̃〉
]
. (A.1)

Since ‖Z̃‖F = 1, using Cauchy-Schwarz inequality, we have

〈ΦẐ, Z̃〉 ≤ ‖ΦẐ‖F . (A.2)
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Plugging (A.2) into (A.1) gives

E
[
min
Z∈Ω
‖ΦẐ‖F

]
≥ E

[
min
Z∈Ω

max
Z̃∈SM′N−1

〈ΦẐ, Z̃〉
]

≥ E
[
min
Z∈Ω

max
Z̃∈SM′N−1

〈G, Z̃〉+ 〈H,Z〉
]

= EG‖G‖F + EH

[
min
Z∈Ω
〈H,Z〉

]
≥ EG‖G‖F − EH

[
max
Z∈Ω
〈H,Z〉

]
= λM ′N − ω(Ω).

Moreover, we have

λM ′N = EG‖G‖F = E

√√√√ N∑
n=1

‖gn‖22

≥ E
√
N min

n∈[1,N ]
‖gn‖22 =

√
NE
√

min
n∈[1,N ]

‖gn‖22

=
√
NE

[
min

n∈[1,N ]
‖gn‖2

]
≥
√
NM ′√
M ′ + 1

,

where the last inequality uses the result that the expected length of an M ′-dimensional Gaussian random
vector is lower bounded by M ′√

M ′+1
[5], [48].

A.2 Proof of Corollary 5.1

First, we will show that the following function

f : Φ→ min
Z∈Ω
‖ΦẐ‖F

is Lipschitz with respect to the Frobenius norm with constant 1.
Define a function fZ(Φ) = ‖ΦẐ‖F with Z = [z1, z2, · · · , zN ] and Ẑ = diag(Z). The gradient of fZ(Φ) is

∇ΦfZ(Φ) =
ΦẐẐ∗

‖ΦẐ‖F
.

Thus, using the mean value theorem, we can get

|fZ(Φ1)− fZ(Φ2)| = |〈∇ΦfZ(Φ),Φ1 −Φ2〉| ≤ ‖∇ΦfZ(Φ)‖F ‖Φ1 −Φ2‖F

=
1

‖ΦẐ‖F
‖ΦẐẐ∗‖F ‖Φ1 −Φ2‖F

≤ ‖Φ1 −Φ2‖F .

So, the function fZ(Φ) = ‖ΦẐ‖F is Lipschitz with respect to the Frobenius norm with constant 1. According

to Lemma 2.1 in [54], we can conclude that f : Φ → minZ∈Ω ‖ΦẐ‖F is also Lipschitz with respect to the
Frobenius norm with constant 1.
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The Gaussian concentration inequality for Lipschitz functions provided in [49] implies that

P
{

min
Z∈Ω
‖ΦẐ‖F ≥ E

[
min
Z∈Ω
‖ΦẐ‖F

]
− t
}
≥ 1− e− t2

2

holds for any t > 0. Using Theorem 5.1, we can get

P
{

min
Z∈Ω
‖ΦẐ‖F ≥ λM ′N − ω(Ω)− t

}
≥ 1− e− t2

2 .

Thus, we can choose M ′ such that

λM ′N − ω(Ω)− t > 0,

which is equivalent to

λ2
M ′N > (ω(Ω) + t)2 , ε2.

So, we can let

NM ′2

M ′ + 1
> ε2,

which means that we need

M ′ >
ε2 +

√
ε4 + 4Nε2

2N
. (A.3)

Thus, we can choose

M ′ ≥ ε2 +
√
ε4 + 4Nε2 + 4N2

2N
=

1

N
ε2 + 1 =

1

N
(ω(Ω) + t)2 + 1

to satisfy the above condition (A.3). Moreover, if M ′ ≥ 4
N ω

2(Ω), we have

M ′ =
M ′

2
+
M ′ − 2

2
+ 1 ≥ 2

N
ω2(Ω) + 2

(√
M ′ − 2

2

)2

+ 1

≥

(
ω(Ω)√
N

+

√
N(M ′ − 2)

2
√
N

)2

+ 1

=
1

N

[
ω(Ω) +

√
N(M ′ − 2)

2

]2

+ 1.

Taking t =

√
N(M ′−2)

2 , the proof for Corollary 5.1 is finished.

A.3 Proof of key lemmas in Section 5.3.2

To prove these lemmas, we need the following theorem, which is an extension of Theorem 4 in [18].

Theorem A.1. Let B = {b ∈ CN : ‖b‖2 = 1} be a set of vectors with unit `2 norm. For any f1, f2, . . . , fK
satisfying the minimum separation condition (3.10) , there exists a vector-valued trigonometric polynomial
Q(f) = Q∗a(f) satisfying the following properties for some Q ∈ CM×N .

1. For each k = 1, . . . ,K, Q(fk) = bk with bk ∈ B.
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2. In each near region Nk = {f : d(f, fk) < 0.16/M}, there exist constants Ca and C ′a such that

‖Q(f)‖2 ≤ 1− Ca
2
M2(f − fk)2 (A.4)

‖bk −Q(f)‖2 ≤
C ′a
2
M2(f − fk)2. (A.5)

3. In the far region, i.e., f ∈ F = [0, 1)/ ∩Kk=1 Nj, there exists a constant Cb > 0 such that

‖Q(f)‖2 ≤ 1− Cb. (A.6)

Proof. Proposition 5.1 and inequality (47) in [10] guarantee the first and third statements. The second
statement can be proved by following the proof strategies in Section 2.4 of [55] and Appendix A of [56].

In the remainder of this section, we will prove the three key lemmas presented in Section 5.3.2.

A.3.1 Proof of Lemma 5.4

We define F , {f1, f2, . . . , fK} as a set containing the true frequencies. Recall that the near region Nk
corresponding to fk and the far region F are defined in (5.8). Using the Cauchy-Schwarz inequality, we have∣∣∣∣∫

F

ξ∗(f)ν(f)df

∣∣∣∣ ≤ ∫
F

|ξ∗(f)ν(f)|df ≤
∫
F

‖ξ(f)‖2‖ν(f)‖2df ≤ ‖ξ(f)‖2,∞
∫
F

‖ν(f)‖2df, (A.7)

where ‖ξ(f)‖2,∞ is defined in (5.9).
Let u be any vector with unit `2 norm. Define

γ(f) , u∗ξ(f),

which is a trigonometric polynomial with degree M . According to Bernstein’s inequality for polynomials
[51], we have

sup
f
|γ′(f)| ≤M sup

f
|γ(f)|, (A.8)

sup
f
|γ′′(f)| ≤M2 sup

f
|γ(f)|. (A.9)

Note that

sup
f
‖ξ′(f)‖2 = sup

f,u
|u∗ξ′(f)| = sup

f,u
|γ′(f)|

≤M sup
f,u
|γ(f)| = M sup

f,u
|u∗ξ(f)| = M sup

f
‖ξ(f)‖2,

which implies

‖ξ′(f)‖2,∞ ≤M‖ξ(f)‖2,∞.

Using a similar argument, we can get

‖ξ′′(f)‖∞ ≤M2‖ξ(f)‖2,∞.

Note that the Taylor expansion of γ(f) at fk is

γ(f) = γ(fk) + (f − fk)γ′(fk) +
1

2
(f − fk)2γ′′(f̃k)
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for some f̃k ∈ Nk. It follows that

sup
u
|γ(f)− γ(fk)− (f − fk)γ′(fk)|

=
1

2
(f − fk)2 sup

u
|γ′′(f̃k)|

=
1

2
(f − fk)2 sup

u
|u∗ξ′′(f̃k)|

≤1

2
(f − fk)2‖ξ′′(f)‖2,∞.

Plugging in Bernstein’s inequality (A.9), we have

sup
u
|γ(f)− γ(fk)− (f − fk)γ′(fk)| ≤ M2

2
(f − fk)2‖ξ(f)‖2,∞.

Note that the left hand side of the above inequality is equal to

sup
u
|〈ξ(f)− ξ(fk)− (f − fk)ξ′(fk),u〉|

=‖ξ(f)− ξ(fk)− (f − fk)ξ′(fk)‖2.

Denoting r(f) = ξ(f)− ξ(fk)− (f − fk)ξ′(fk), we have

‖r(f)‖2 ≤
M2

2
(f − fk)2‖ξ(f)‖2,∞.

Finally, we can obtain∣∣∣∣∫
Nk

ξ∗(f)ν(f)df

∣∣∣∣
≤‖ξ(fk)‖2

∥∥∥∥∫
Nk

ν(f)df

∥∥∥∥
2

+ ‖ξ′(fk)‖2
∥∥∥∥∫

Nk

(f − fk)ν(f)df

∥∥∥∥
2

+

∫
Nk

‖r(f)‖2‖ν(f)‖2df

≤‖ξ(f)‖2,∞
(∥∥∥∥∫

Nk

ν(f)df

∥∥∥∥
2

+M

∥∥∥∥∫
Nk

(f − fk)ν(f)df

∥∥∥∥
2

+
M2

2

∫
Nk

(f − fk)2‖νn(f)‖df
)
.

(A.10)

We have plugged in ξ(f) = ξ(fk) + (f − fk)ξ′(fk) + r(f) and used the triangle inequality to get the first
inequality. Substituting (A.7) and (A.10) into (5.7), we can obtain (5.10).

A.3.2 Proof of Lemma 5.5

Let Q(f) = Q∗a(f) be the dual polynomial as in [10]. Then, we have

|〈ξ(f),Q(f)〉| ≤
∫ 1

0

|Q∗(f)ξ(f)|df ≤
∫ 1

0

‖Q(f)‖2‖ξ(f)‖2df ≤ ‖ξ(f)‖2,∞‖Q(f)‖1, (A.11)

where ‖Q(f)‖1 ,
∫ 1

0
‖Q(f)‖2df . The first and second inequalities follow from the triangle inequality and

the Cauchy-Schwarz inequality, respectively. In this work, we use the dual polynomial Q(f) constructed in
[10] of the form

Q(f) =
∑
fk∈F

αkK(f − fk) +
∑
fk∈F

βkK′(f − fk),
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where K(f) is the squared Fejér kernel. All the αk and βk are N ×1 vectors. Define ‖X‖2,∞ = maxj ‖Xj‖2,
with Xj being the jth column of X. Denote α = [α1,α2, · · · ,αK ] and β = [β1,β2, · · · ,βK ]. It is shown in
[10] that

‖α‖2,∞ ≤ Cα, ‖β‖2,∞ ≤
Cβ
M

for some numerical constants Cα and Cβ . Then, we have

‖Q(f)‖1 ,
∫ 1

0

‖Q(f)‖2df

≤
∫ 1

0

∑
fk∈F

‖αk‖2|K(f − fk)|df +

∫ 1

0

∑
fk∈F

‖βk‖2|K′(f − fk)|df

≤ KCα
∫ 1

0

|K(f)|df +
CβK

M

∫ 1

0

|K′(f)|df

≤ CK

M
.

(A.12)

For the last inequality, we have used the results
∫ 1

0
|K(f)|df ≤ C

M and
∫ 1

0
|K′(f)|df ≤ C, which can be found

in Appendix C of [18].
Now, we can bound I0 as

I0 =
K∑
k=1

∥∥∥∥∫
Nk

ν(f)df

∥∥∥∥
2

=
K∑
k=1

∫
Nk

ν∗(f)df

∫
Nk
ν(f̂)df̂∥∥∥∫Nk
ν(f̂)df̂

∥∥∥
2

=
K∑
k=1

∫
Nk

ν∗(f)

∫
Nk
ν(f̂)df̂∥∥∥∫Nk
ν(f̂)df̂

∥∥∥
2

df

=
K∑
k=1

∫
Nk

ν∗(f)Q(f)df +
K∑
k=1

∫
Nk

ν∗(f)

 ∫
Nk
ν(f̂)df̂∥∥∥∫Nk
ν(f̂)df̂

∥∥∥
2

−Q(f)

 df
≤
∣∣∣∣∫ 1

0

ν∗(f)Q(f)df

∣∣∣∣+

∣∣∣∣∫
F

ν∗(f)Q(f)df

∣∣∣∣+

K∑
k=1

∫
Nk

∣∣∣∣∣∣ν∗(f)

 ∫
Nk
ν(f̂)df̂∥∥∥∫Nk
ν(f̂)df̂

∥∥∥
2

−Q(f)

∣∣∣∣∣∣ df
≤
∣∣∣∣∫ 1

0

ν∗(f)Q(f)df

∣∣∣∣+

∫
F

‖ν(f)‖2df + C ′aI2.

We have used the triangle inequality and the Cauchy-Schwarz inequality in the last two inequalities. We

also use the fact that ‖Q(f)‖2 ≤ 1 and set bk =

∫
Nk
ν(f̂)df̂∥∥∥∫Nk
ν(f̂)df̂

∥∥∥
2

, then use the boundary condition presented in

(A.5) to get the last inequality. Note that the first term can be upper bounded with∣∣∣∣∫ 1

0

ν∗(f)Q(f)df

∣∣∣∣ =

∣∣∣∣∫ 1

0

ν∗(f)Q∗a(f)df

∣∣∣∣ =

∣∣∣∣∫ 1

0

〈a(f)ν∗(f),Q〉df
∣∣∣∣

=

∣∣∣∣〈∫ 1

0

a(f)ν∗(f)df,Q

〉∣∣∣∣ = |〈E,Q〉| = |〈ξ(f),Q(f)〉|

≤CKλ
M

,
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where the last equality follows from Parseval’s theorem and the last inequality is a direct result from in-
equalities (A.11) and (A.12). As a consequence, we have that

I0 ≤ C0

(
Kλ

M
+ I2 +

∫
F

‖ν(f)‖2df
)

holds for some numerical constant C0. Similarly, we can bound I1 in such a way.

A.3.3 Proof of Lemma 5.6

Denote PF (ν) as the projection of the difference measure ν(f) on the support set F = {f1, f2, . . . , fK}. Set
Q(f) as the dual polynomial in Theorem A.1. To avoid confusion with the traditional definition of total
variation (TV) norm, we use ‖ · ‖2,TV in this work to denote an extension of traditional TV norm. Then, we
have

‖PF (ν)‖2,TV =

∫ 1

0

PF (ν∗)Q(f)df =

∫
F
ν∗(f)Q(f)df

≤
∣∣∣∣∫ 1

0

ν∗(f)Q(f)df

∣∣∣∣+

∣∣∣∣∫
Fc

ν∗(f)Q(f)df

∣∣∣∣
≤ CKλ

M
+
∑
fk∈F

∣∣∣∣∣
∫
Nk/{fk}

ν∗(f)Q(f)df

∣∣∣∣∣+

∣∣∣∣∫
F

ν∗(f)Q(f)df

∣∣∣∣ ,
where Fc is the complement set of F on [0, 1). Using (A.6) and (A.4), the integration over the far region F
can be bounded by ∣∣∣∣∫

F

ν∗(f)Q(f)df

∣∣∣∣ ≤ (1− Cb)
∫
F

‖ν(f)‖2df,

and the integration over Nk/{fk} can be bounded by∣∣∣∣∣
∫
Nk/{fk}

ν∗(f)Q(f)df

∣∣∣∣∣ ≤
∫
Nk/{fk}

‖ν(f)‖2‖Q(f)‖2df

≤
∫
Nk/{fk}

(
1− 1

2
M2Ca(f − fk)2

)
‖ν(f)‖2df

≤
∫
Nk/{fk}

‖ν(f)‖2df − CaIk2 .

Therefore, we can get

‖PF (ν)‖2,TV ≤
CKλ

M
+
∑
fk∈F

∫
Nk/{fk}

‖ν(f)‖2df − CaI2 + (1− Cb)
∫
F

‖ν(f)‖2df

=
CKλ

M
+ ‖PFc(ν)‖2,TV − CaI2 − Cb

∫
F

‖ν(f)‖2df,

which implies

‖PFc(ν)‖2,TV − ‖PF (ν)‖2,TV ≥ CaI2 + Cb

∫
F

‖ν(f)‖2df −
CKλ

M
. (A.13)

Since X̂ is the solution of the MMV atomic norm denoising problem (3.15), we have

1

2
‖Y − X̂‖2F + λ‖X̂‖A ≤

1

2
‖Y −X?‖2F + λ‖X?‖A.
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As a consequence, we obtain

λ‖X̂‖A ≤ λ‖X?‖A + 〈W, X̂−X?〉

by elementary calculations. It follows that

‖µ̂‖2,TV ≤ ‖µ‖2,TV +
|〈W,E〉|

λ
.

Then, similar to Lemma 5.4, we have

|〈W,E〉| =
∣∣∣∣〈W,

∫ 1

0

a(f)ν∗(f)df

〉∣∣∣∣ =

∣∣∣∣∫ 1

0

〈W,a(f)ν∗(f)〉 df
∣∣∣∣

=

∣∣∣∣∫ 1

0

a∗(f)Wν(f)df

∣∣∣∣
≤ ‖W∗a(f)‖2,∞

(
CKλ

M
+ I0 + I1 + I2

)
≤ Cλ

η

(
Kλ

M
+ I2 +

∫
F

‖ν(f)‖2df
)
.

Here, the last inequality follows from ‖W∗a(f)‖2,∞ = ‖W‖∗A ≤ λ
η and Lemma 5.5. As a consequence, we

have

‖µ‖2,TV + Cη−1

(
Kλ

M
+ I2 +

∫
F

‖ν(f)‖2df
)
≥ ‖µ̂‖2,TV

≥ ‖µ+ ν‖2,TV ≥ ‖µ‖2,TV − ‖PF (ν)‖2,TV + ‖PFc(ν)‖2,TV ,

which implies

‖PFc(ν)‖2,TV − ‖PF (ν)‖2,TV ≤ Cη−1

(
Kλ

M
+ I2 +

∫
F

‖ν(f)‖2df
)
. (A.14)

Combining (A.13) and (A.14), we get

(Ca − Cη−1)I2 + (Cb − Cη−1)

∫
F

‖ν(f)‖2df ≤ (1 + η−1)
CKλ

M
. (A.15)

Thus, Lemma 5.6 is proved under the assumption that η is large enough with respect to the constants
appearing in (A.15).
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