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Transport of anisotropic particles under waves
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Using a numerical model, we analyse the effects of shape on both the orientation
and transport of anisotropic particles in wavy flows. The particles are idealized
as prolate and oblate spheroids, and we consider the regime of small Stokes and
particle Reynolds numbers. We find that the particles preferentially align into the
shear plane with a mean orientation that is solely a function of their aspect ratio.
This alignment, however, differs from the Jeffery orbits that occur in the residual
shear flow (that is, the Stokes drift velocity field) in the absence of waves. Since the
drag on an anisotropic particle depends on its alignment with the flow, this preferred
orientation determines the effective drag on the particles, which in turn impacts their
net downstream transport. We also find that the rate of alignment of the particles
is not constant and depends strongly on their initial orientation; thus, variations
in initial particle orientation result in dispersion of anisotropic-particle plumes. We
show that this dispersion is a function of the particle’s eccentricity and the ratio
of the settling and wave time scales. Due to this preferential alignment, we find
that a plume of anisotropic particles in waves is on average transported farther but
dispersed less than it would be if the particles were randomly oriented. Our results
demonstrate that accurate prediction of the transport of anisotropic particles in wavy
environments, such as microplastic particles in the ocean, requires the consideration
of these preferential alignment effects.

Key words: multiphase and particle-laden flows, particle/fluid flow, surface gravity waves

1. Introduction
In a vast array of both industrial and natural situations, fluid flows transport small

particulate matter that is not neutrally buoyant. Due to its widespread applications,
then, the question of how such ‘weakly inertial’ particles are transported in both
turbulent (Guha 2008) and laminar (Leal 1980) flows has been a very active topic
of research. The dynamics of such particles is highly complex, because they do not
in general move in the same way as an equivalently sized fluid element would –
they experience different forces, and may even eventually settle out. For spherical
inertial particles, the response time scale of the particles relative to the time scale of
the smallest fluid motions, a ratio known as the Stokes number, dictates the degree
to which particles follow the flow. For nearly inertialess particles (that is, those
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with small Stokes and particle Reynolds numbers), these differences may be small
when evaluating velocities at a single instant; but when predicting long-time particle
transport, there may be an integrated effect that can result in larger discrepancies
even in this limit (Ouellette, O’Malley & Gollub 2008).

When finite-sized particles are additionally not spherical, their dynamics can be
further influenced by orientation-dependent lift and drag forces. Thus, the way that
the shape of particles couples to their rotational and translational dynamics is an
emerging area of interest (Andersson & Soldati 2013; Voth & Soldati 2017). Much
of this research has explored the rotational dynamics of rods and prolate spheroids
in turbulence; for examples, see Shin & Koch (2005), Pumir & Wilkinson (2011),
Parsa et al. (2012), Ni, Ouellette & Voth (2014). A growing body of work, however,
has addressed a broader spectrum of anisotropic-particle shapes, with again focus on
characterizing particle rotational dynamics in isotropic turbulence via models (Klett
1995) and simulations (Byron et al. 2015) and in shear flows (Challabotla, Zhao &
Andersson 2015a). Inertia is often neglected in these simulations, which led Einarsson,
Angilella & Mehlig (2014) to analyse how weak inertia may affect some of these
orientational dynamics findings. This focus on rotation is partly due to the symmetries
of isotropic turbulence, so that long-time transport is not necessarily expected to be
affected by particle orientation, and to the fact that the rotational and translational
degrees of freedom for an anisotropic but non-chiral particle are not expected to be
coupled (Brenner 1964).

In many cases, however, there is the possibility that the flow itself may break
this symmetry and couple particle shape to transport. Our particular motivating case
is that of the fate of microplastic particles in the ocean. Microplastics, a persistent
and growing source of contamination in our oceans (Van Sebille et al. 2015), are
typically defined to be small irregularly shaped plastic particles with length scales
of less than 5 mm. Their most typical forms are elongated and fibrous, flat and
planar fragments (Chubarenko et al. 2016), or nearly spherical pellets (Ryan et al.
2009). Thus, to a good approximation, they can be idealized as particles along
the spheroidal spectrum, from discs to spheres to rods. Such an approximation is
additionally justified given that simplifying complex shapes to spheroids has been
proven as an effective modelling technique by Bretherton (1962). Microplastic mass
densities are close to that of water, but may be either positively or negatively buoyant.
Most efforts to model microplastic transport in the ocean, however, treat the particles
as tracers (Maximenko, Hafner & Niiler 2012), potentially with a superimposed
constant settling velocity (Kukulka et al. 2012), or neglect any effects of their shape
and instead prescribe only bulk properties to the modelled particles (Beron-Vera,
Olascoaga & Lumpkin 2016). Although this latter approach may be more accurate
than treating microplastics as pure flow tracers, neglecting particle shape effects has
been shown to result in errors in predictions of anisotropic-particle transport (Broday
et al. 1997).

Most plastic pollution in the ocean is land sourced, and many delicate ecosystems
reside near shorelines. Thus, understanding the transport of microplastics in the
near-shore environment is a key environmental problem. The transport of scalars
in the near-shore, coastal zone is controlled by phenomena such as wind waves,
turbulence, Langmuir cells, longshore currents, rip currents and tidal currents. These
complex and interacting hydrodynamic phenomena influence transport in these areas.
Here, however, we simplify the problem and examine one simple but ubiquitous
aspect of the near-shore environment: surface gravity waves. While linear wave theory
predicts that fluid elements trace orbits as the wave passes, surface gravity waves
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also generate a mean Lagrangian current or Stokes drift (Stokes 1851). This induced
current has well-studied effects on large-scale transport and mixing processes in the
ocean as it interacts with other forces. For example, the Coriolis–Stokes forcing can
induce opposing flow (Hasselmann 1970), and the Stokes vortex force describes how
wind shear produces Langmuir circulation (Leibovich 1983; McWilliams, Sullivan &
Moeng 1997). When diffusion of particles is also included, a non-zero mean drift
velocity appears even in the case where classical Stokes drift would vanish; this has
been termed stochastic Stokes drift (Jansons & Lythe 1998). Stokes drift has also been
shown to be an important mechanism for modelling the transport of microplastics in
the coastal oceans (Isobe et al. 2014). Less is known, however, about how weakly
inertial, anisotropic particles behave in these wavy flows.

The mean transport of particles in internal gravity waves was studied by Grinshpun
et al. (2000), who examined Stokes drag on particles that were essentially inertialess.
However, as discussed above, inertial particles feel other forces as well. Previous
studies that modelled the transport of finite-sized spherical particles under surface
gravity waves found that added mass must be included (Eames 2008) as well as other
inertial effects (Santamaria et al. 2013). The properties of the waves themselves can
also lead to different results (Bakhoday-Paskyabi 2015). Even though these models
are very simple, they show that inertial particle transport in waves is both non-trivial
and not well understood.

Here, we bring together these various threads of research and study the effects of
shape and weak inertia on the orientation and transport of particles in wavy flows.
We conducted numerical simulations of anisotropic, inertialess and weakly inertial
spheroids in an analytically specified wave field. We find that the particles adopt
preferential orientations relative to the wave propagation direction that are purely a
function of their aspect ratio; and that this preferential alignment in turn leads to
differences in the downstream transport of the particles. Thus, the interaction of the
flow field and the particle dynamics leads to a coupling between the particle shape and
their net transport. We also find that the rate of approach to this preferred alignment
depends on the initial particle orientation, so that a plume of randomly oriented
anisotropic particles will experience dispersion as it is advected downstream. Our
results demonstrate that particle shape is a key component for predicting transport in
wavy flows and should be included in models of the dispersal of oceanic microplastics.

We begin below in § 2 by describing our model for both the particles and the flow.
In § 3, we present our results, focusing separately on the particle orientation, transport
and dispersion. We also consider the contribution of the wavy oscillation in addition
to the residual Stokes drift velocity field. Finally, in § 4, we summarize our results and
discuss the potential contributions of effects we have not considered in our model.

2. Methodology
2.1. Particle model

We simulated particle trajectories using a point-particle approach to isolate the effects
of particle shape on transport. The modelled particles are spheroids, and are described
by ds, the diameter of the equivalent sphere with the same volume as the spheroid, and
E , the eccentricity. We define E as (λ2

− 1)/(λ2
+ 1), where λ is the aspect ratio and

is given by the ratio a/b, where a is the length along the particle’s axis of symmetry
and b is the length of one of the orthogonal axes, as shown in figure 1. We considered
both oblate (E < 0) and prolate (E > 0) spheroids. Note that E = 0 for a sphere, and
that the limiting cases of E→±1 correspond to rods and discs, respectively.
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FIGURE 1. (Colour online) Characteristics of particles used in the simulations. Both a
prolate and oblate spheroidal particle and their corresponding diameters and symmetry axis
in the coordinate system are shown. The waves lie in the x–z plane and move in the
positive x direction; they are not shown to scale. The particle’s orientation is described
by the unit vector pi, which lies along the particle’s axis of symmetry.

We ran simulations both with and without consideration of particle inertia. As
described below, neglecting inertia allows us to isolate the interaction between the
wave-driven flow and the particle orientation, whereas simulations with inertia allow
the characterization of the effect of the orientation on particle transport.

In the inertialess limit, the particles follow fluid-element trajectories, although their
orientation gives them additional degrees of freedom. Their rotation is governed by
Jeffery’s (1922) equation for a spheroid, given by

ṗi =Ωijpj + E(Sijpj − pipjSjlpl), (2.1)

where Ωij and Sij are the anti-symmetric and symmetric parts of the fluid velocity
gradient tensor and pi is a unit vector pointing along the particle’s axis of symmetry,
as shown in figure 1.

When particle inertia is included, both the orientation and trajectory of the particle
must be considered, since the particles no longer follow the flow. We assumed
one-way coupling between the fluid and the particles, so that there is no back
reaction of the particles on the flow; we also ignored particle–particle interactions
and collisions. We also only considered the low particle Reynolds number regime.
We define the particle Reynolds number Rep to be Rep = |v − u|d/ν, where v is
the particle velocity, u is the fluid velocity at the centre of the particle, d is the
longest length scale of the particle and ν is the kinematic viscosity of the fluid, and
we fix Rep < 1. To compute the particle trajectories, we integrate a modified form
of the Maxey–Riley (1983) equation. This equation was originally derived for the
unsteady motion of spherical particles with Rep� 1; thus, we have modified some of
the terms to account for non-spherical effects. In wavy flows like those we consider
here, added-mass effects were shown to be important for spherical particles (Eames
2008) (for a more general scaling of the Maxey–Riley equation, see Ling, Parmar
& Balachandar (2013)); thus, we keep added mass here. We neglect, however, the
Basset history force since the particles are small, and the Faxén corrections and the
Saffman lift force since they are negligible given our flow parameters.

With these simplifications, the equation of motion for each particle is

dvi

dt
=

1
B

Dui

Dt
−

1
B

Cm
ij

d
dt
(vj − uj)− 18

ν

Bd2
s

K ij(vj − uj)−

(
1−

1
B

)
gδi3, (2.2)
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where the terms on the right-hand side are, in order, the advection, added mass, Stokes
drag and buoyancy forces. Here, Cm

ij is a tensor of added mass coefficients, B= ρp/ρf

is the density ratio between the particle and the fluid, g is the acceleration due to
gravity and K ij is the resistance tensor (Brenner 1964).

We calculate the full, anisotropic added mass tensor in these simulations in order
to fully quantify the effects of shape. In a frame aligned with the body axes of the
particle, the components of the added mass tensor Cm

ij are given in terms of non-
dimensional factors α0, β0 and γ0, (Lamb 1945) defined as

Cm
11
′
=

α0

2− α0
, (2.3a)

Cm
22
′
=

β0

2− β0
, (2.3b)

Cm
33
′
=

γ0

2− γ0
, (2.3c)

where the prime indicates that these components are those in the body-axis frame
where Cm

ij is diagonal and the x′-axis is along the particle’s axis of symmetry. The
dimensionless factors are derived as functions of the ‘eccentricity of the meridian’ in
Lamb (1945), and were later reported for prolate spheroids by Gallily & Cohen (1979)
and for oblate spheroids by Siewert et al. (2014) in terms of aspect ratio. For prolate
spheroids, λ> 1:

α0 =
1

(λ2 − 1)3/2

(
2(λ2
− 1)1/2 + λ ln

(
λ− (λ2

− 1)1/2

λ+ (λ2 − 1)1/2

))
, (2.4a)

β0 = γ0 =
1

2(λ2 − 1)3/2

(
2λ2(λ2

− 1)1/2 + λ ln
(
λ− (λ2

− 1)1/2

λ+ (λ2 − 1)1/2

))
, (2.4b)

and for oblate spheroids, λ< 1:

α0 =
λ

(1− λ2)3/2
(2λ tan−1(λ(1− λ2)−1/2)− λπ+ 2(1− λ2)1/2), (2.5a)

β0 = γ0 =−
λ

2(1− λ2)3/2
(2 tan−1(λ(1− λ2)−1/2)−π+ 2λ(1− λ2)1/2). (2.5b)

The resistance tensor K ij accounts for the variation of the drag on the particle as
it rotates and presents different cross-sections to the flow. Just as with Cm

ij , K ij is
diagonal in the body-axis frame of the particle. To compute it, we use the expressions
for its eigenvalues, or drag correction factors, as derived by Oberbeck (1876) and
reported in Loth (2008); the eigenvalue associated with the axis of symmetry is given
by

fa =



(4/3)λ−1/3(1− λ2)

λ−
(2λ2
− 1) ln(λ+

√
λ2 − 1)

√
λ2 − 1

, if λ> 1

(4/3)λ−1/3(1− λ2)

λ+
(1− 2λ2) cos−1(λ)
√

1− λ2

, if λ< 1

(2.6)
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and the eigenvalues for the other two directions are given by

fb =



(8/3)λ−1/3(λ2
− 1)

λ+
(2λ2
− 3) ln(λ+

√
λ2 − 1)

√
λ2 − 1

, if λ> 1

(8/3)λ−1/3(λ2
− 1)

λ−
(3− 2λ2) cos−1(λ)
√

1− λ2

, if λ< 1.

(2.7)

Both Cm′
ij and K ′ij then need to be rotated from the body-axis frame into the flow’s

frame of reference to evaluate the right-hand side of equation (2.2). For example, K ij=

RpiK ′pqRqj, where Rij is the rotation matrix that rotates from the flow’s reference frame
to the current direction of the orientation vector pi. We note that this formulation
allows for lift forces (that is, forces orthogonal to the particle’s symmetry axis) on
the particle as well as drag.

To characterize how well the particle responds to the flow, the Stokes number St is
typically used. In our case, it is calculated as the ratio of τp, the relaxation time of the
particle, to the wave period T . The relaxation time of a spherical particle in Stokes
flow is given by τ s

p = Bds
2/18ν, but is more difficult to define for an anisotropic

particle since the particle’s resistance varies with its relative orientation to the flow.
We use parameterizations that account for the resistance equally in all directions, as
shown below for both a prolate spheroid (Shapiro & Goldenberg 1993) and an oblate
spheroid (Zhao et al. 2015), as also reported in Voth & Soldati (2017). We note that
both of these parameterizations appropriately return to the spherical limit for λ = 1.
Here, we have rewritten them in terms of the spherical relaxation time to make them
more clear. Based on volume equivalence, the spheroid principle axes have lengths
a= dsλ

2/3, and b= dsλ
−1/3, and so the spheroid relaxation time can be expressed as

that of an equivalent sphere multiplied by a correction factor kτ . Therefore, τp= kττ s
p ,

where

kτ =


λ1/3

(
ln (λ+

√
λ2 − 1)

√
λ2 − 1

)
, if λ> 1

λ−2/3

(
π− 2 tan−1(λ(1− λ2)−1/2)

2
√

1− λ2

)
, if λ< 1.

(2.8)

We plot the value of kτ for all E in figure 2 to demonstrate how the relaxation time
varies with shape. Prolate ellipsoids have very similar relaxation times to a sphere,
except in the very high-aspect-ratio rod limit where their relaxation time goes to zero
since the expressions in (2.8) are based on the minor axis length scale b, which
vanishes in the rod limit. In the disc limit, b becomes very large, which is why
the disc relaxation time rapidly increases. This plot indicates that there should be
a noticeable difference in how discs, ellipsoids and spheres respond to the flow. As
shown below, however, our results do not always show such a sensitivity; thus, we
caution that St is not necessarily the best parameter for evaluating shape effects.

For the slightly inertial particles we consider, with small St and Rep, we calculate
the rotation using Euler’s equation of rigid body motion in the frame of reference of
the particle, given by

I ′ij
dω′j
dt
+ εijkω

′

jI
′

klω
′

l =M′i, (2.9)
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0

1
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10

0 0.5 1.0–1.0 –0.5

FIGURE 2. Particle Stokesian relaxation time correction kτ versus eccentricity for both
oblate and prolate spheroids. The dotted lines intersect at the spherical case, the point
(0, 1).

where ωi is the rate of angular rotation of the particle, related to the orientation by
ṗi= εijkωjpk, εijk is the Levi-Civita symbol, I ij is the particle’s moment of inertia tensor
and Mi, the torques on the particle as derived by Jeffery (1922), are

Mi =



32πµ(Ω23 −ω1)

(3(β0 + γ0))

16πµ((b2
− a2)S13 + (b2

+ a2)(Ω13 −ω2))

(3(b2γ 2
0 + a2α2

0))

16πµ((a2
− b2)S12 + (b2

+ a2)(Ω12 −ω3))

(3(b2β2
0 + a2α2

0))


. (2.10)

Here, µ is the dynamic viscosity of the fluid. We neglect rotational added mass; it
vanishes identically for a sphere and is still relatively small in the context of our
parameter regime. If included, it would effectively increase the particle’s moment of
inertia in the non-spherical case, but would not affect our results qualitatively.

2.2. Flow
We describe the flow analytically using linear wave theory. This theory applies to
waves with low wave steepness, requiring kA 6 0.33, where A is the wave amplitude
and k is the wavenumber, related to the wavelength L by k = 2π/L. Wavy flow
described by linear wave theory is irrotational, so the first term of equation (2.1)
vanishes in our flow, as do all the Ωij terms in equation (2.10). We primarily consider
the case of waves over an infinite depth h to remove any depth dependence. We note
that we also tested finite-depth waves and found similar results. In the deep-water
limit, where kh� 1 and the flow is restricted to two dimensions, the velocity field is
described in x–y–z space by

u(x, z, t)=ωAekz(cos (kx−ωt)êx + sin (kx−ωt)êz), (2.11)

where ω is the wave frequency and êi is a unit vector in the i direction. The
wavenumber and frequency are related through the deep-water dispersion relation
ω =
√

gk and the wave period T = 2π/ω. In this velocity field, the mean Eulerian
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flow is zero everywhere; however, the Lagrangian mean flow produces a residual
horizontal transport in the direction of the waves, known as Stokes drift. The Stokes
drift velocity for deep-water waves is only a function of depth, and is given by

us(z)=ωkA2e2kzêx. (2.12)

As our wavy flows are irrotational, there is no vorticity with which the particles can
align. However, previous work in isotropic turbulence and shear flows has found that
low Stokes number anisotropic particles will tend to align into the shear plane for
both oblate (Challabotla et al. 2015a) and prolate particles (Mortensen et al. 2008).
In the creeping shear flow with inertialess spheroids described by Jeffery (1922), the
particles undergo any number of closed periodic orbits that are dependent on initial
condition.

In our simulations, we do not assume anything about the particles’ initial
orientations, as microplastics do not necessarily enter the ocean from a localized
point source. Instead, to keep our results general and fully explore the interplay of
shape and orientation, we vary the initial orientation, sampling uniformly on the unit
sphere. This is done both to capture some of the variability that would occur in
real physical flows where the initial orientation may be unconstrained, and to isolate
the effects solely due to particle orientation and wave interactions. We describe
the orientation in spherical coordinates in the wave reference frame, labelling the
azimuthal angle θ and the polar angle φ. In order to generate a distribution of
random points uniformly distributed on the unit sphere, we first define X and Y as
uniform random variables with values between 0 and 1 and then set θ = 2πX and
φ = sin−1(2Y − 1). Due to symmetry, we need only to sample the initial orientations
of pi in the ranges 0 6 φ <π and 0 6 θ <π/2.

The particles are initialized with the fluid velocity plus their corresponding settling
velocity. The initial settling velocity wp(t= 0) is given by

wp(t= 0)=
gd2

s (B− 1)
18νK 33|(t=0)

, (2.13)

and is found by evaluating the steady-state velocity of the particle settling in quiescent
fluid with u= 0, leaving only the drag term and the gravity term in (2.2).

We move through our parameter space by manipulating the dimensionless
parameters kA, B, E and St. For the analysis presented here, we use a set of
380 different combinations of these values, including a range of both positive and
negative eccentricities. The Stokes number was varied between zero and unity. The
ratio of the Stokes drift velocity to the particle settling velocity was varied as well;
this was done by manipulating the density ratio B, the particle size ds and the wave
amplitude A.

3. Results
3.1. Orientation

In the limit of vanishing particle inertia, we find that the particles rotate to a time-
averaged alignment that is independent of the flow and only a function of their shape.
This behaviour contrasts with the infinite number of Jeffery orbits that exist in a shear
flow that are solely dependent on initial condition. No matter the particle’s initial
orientation in our wavy simulations, the particle will eventually reach its preferred
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–0.2
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0.1
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0 1 2 3 4 5 6 7 8 9–1

FIGURE 3. (Colour online) Spatial trajectory and orientation of an inertialess prolate
particle over 18 wave periods, with E = 0.5, and kA = 0.2. The black line represents
the trajectory, and the marker lines are drawn, not to scale, along the particle’s axis of
symmetry, and are coloured by angle for emphasis. The particle has a net motion from
left to right, with ∗ marking the starting position at t= 0.

alignment, although the time to reach this final alignment does depend on its initial
condition. Due to the wavy nature of the flow, however, the particle will oscillate
about its preferred alignment with the wave orbital period. This is shown in figure 3,
where a non-inertial prolate spheroid with E = 0.5 is initially oriented away from its
preferred alignment in a wave field with kA= 0.2. As it translates, it rotates toward its
preferred alignment; but this prolonged rotation is superimposed on a faster, back-and-
forth oscillation coinciding with the wave orbital motion. By the end of the time span
shown in figure 3, the particle has not yet reached its preferred alignment position; but
once it does, it will continue to oscillate about it with all passing waves.

For all cases, even with out-of-plane initial orientations, the preferred alignment
position of pi is in the flow plane (x–z). We quantified this preferred alignment by
measuring the steady-state T-averaged angle φ from the z-axis to the particle’s x′-axis,
where the polar angle φ = cos−1(p3/‖p‖) and ‖p‖ = 1 in this case. As shown in
figure 4, our results collapse for all flow cases and are solely a function of shape;
indeed, we find that

tan φ = λ. (3.1)

In the rod limit, the particle prefers to be horizontal, with its axis of symmetry
pointed in the wave direction. In the disc limit, the particle’s axis of symmetry is
vertical. Both of these configurations minimize the particle cross-sectional area in the
direction of mean flow. Thus, the preferred orientation may be a result of the particle
minimizing its energy dissipation, akin to what Jeffery (1922) concluded from his orbit
derivation. This finding could also be relevant to the preferred alignment found in
wall turbulence by Challabotla, Zhao & Andersson (2015b), who found that rods align
parallel to the wall and discs with their axis of symmetry normal to the wall.

No matter the initial condition, non-spherical particles in the inertialess limit will
eventually align to their preferred orientation, as shown in figure 5. Unlike in the
Jeffery orbit case, however, we find that the particles do not flip until the limits of
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0 0.5 1.0–1.0 –0.5

FIGURE 4. Polar angle φ for inertialess spheroids in wavy flow as a function of E ,
showing the preferred alignment. The line shows (3.1), and the points are measured data
from our simulations.

3010 20 40 50 60 70 80 90 1000

3010 20 40 50 60 70 80 90 1000

(a)

(b)

FIGURE 5. (Colour online) Wave-period-averaged orientation angles, for (a) polar angle
φ, and (b) azimuthal angle θ , of particles started at different initial orientations in deep
(solid) and shallow (dotted) water waves as a function of time normalized by wave period.
All particles have E = 0.6 and are inertialess. The colours correspond to different initial
orientations. Oblate particles show similar results.

E ≈±1 are approached. We also find this mean alignment to be identical in all flows
described by linear wave theory, including in the shallow-water limit also seen in
figure 5. The mechanism that rotates the particle is solely due to the flow’s shear.
In linear waves, there is no mean shear. Instantaneously, however, deep-water waves
do have shear in both the horizontal and vertical velocity components (that is, dux/dz
and duz/dx), and shallow-water waves have non-zero duz/dx. Furthermore, if one were
to integrate the shear along the path of the particle to calculate a shear associated
with the mean transport, it would only be non-zero for the deep-water case, and only
in the dux/dz component. Thus, we conclude that the unsteady shearing must be the
feature of the flow that directs the particles to their alignment position, which is only
a function of shape. We discuss this unsteadiness effect further below in § 3.4.

We still observe this alignment when inertia is introduced to the simulation;
however, inertia slows down the rate at which the particles approach their final stable
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orientation. As discussed further below, for example, negatively buoyant particles
may settle below the wave field before they have had time to reach their preferred
alignment. This can affect how to predict transport and dispersion of particle plumes.

3.2. Mean transport
In general, the rotational and translational degrees of freedom of symmetric particles
like our spheroids are uncoupled (Brenner 1964); only particles without three
symmetry planes will show coupling. However, in our case the flow itself provides
the requisite symmetry breaking, and so the distinct preferred alignment of differently
shaped particles becomes necessary information for predicting their mean transport.
Thus, as compared with simple models of particle transport that simply superimpose
a constant settling velocity on the fluid velocities, our model captures more of the
complexity of particle transport by calculating both anisotropic added mass and drag
forces.

The mean transport of non-neutrally buoyant, weakly inertial spherical particles
under deep-water surface gravity waves was considered previously by Eames (2008).
He defined the net transport, or the total horizontal distance travelled by a particle,
as either the distance to where a negatively buoyant particle released at the surface
settles below the wave field or a positively buoyant particle released below the
wave field reaches the surface. We denote this horizontal displacement by X∞. It is
expected to be proportional to the wavelength multiplied by the ratio between the
surface Stokes drift velocity u0

s and the particle settling velocity wp (Eames 2008).
For deep-water waves this prediction is expressed as

X∞
L
=

1
4π

u0
s

|wp|
. (3.2)

This theory was derived for spherical particles, and in that case, the particles
settling below waves do indeed asymptote to a measurable X∞ value. However, as
non-spherical particles descend and settle below the wave field, they can still continue
to travel horizontally due to lift forces arising from their anisotropic drag, just like
an anisotropic particle sedimenting in quiescent flow. Therefore, the value of X∞ is
sensitive to the depth chosen. Here, we define X∞ for negatively buoyant particles
in deep-water waves to be the total horizontal distance travelled from the time when
the particles are released to the time when they have reached a depth at which the
Stokes drift velocity has decayed to 1 % of its surface value. This occurs at a depth
of z∞ = −0.37L. Spherical particles have moved to within a fraction of a per cent
of their asymptotic horizontal limit by the time they reach this depth. For positively
buoyant particles, we take a similar approach: the particles are released at z∞, and
X∞ is defined to be the point at which they reach the surface.

Depicted in figure 6 are the trajectories of both negatively (a) and positively
buoyant (b) particles of different shapes with equal and opposite equivalent-sphere
settling velocities; in other words, the settling velocity of the negatively buoyant
particle in quiescent flow is equal and opposite to that of the rising velocity of
its corresponding positively buoyant particle. We set this condition by fixing the
particle size and shape and setting the particle density such that the settling velocities
defined by (2.13) have the same magnitude but opposite sign. We present example
trajectories in both cases of a sphere and a corresponding equivalently sized ellipsoid
that is started in two different orientations; this demonstrates both the effects of
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 0

 –0.5

 –1.0

 –1.5

 –2.0

 –2.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

 0

 –0.5

 –1.0

 –1.5

 –2.0

 –2.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(a)

(b)

FIGURE 6. (Colour online) Trajectories of weakly inertial particles settling in deep-water
waves. Wave-period-averaged trajectories of identical ellipsoidal particles with E = 0.5 are
marked with solid lines, those of an equivalent sphere with dotted lines and z∞ is marked
with dashed lines. Negatively buoyant particles (B=0.99) in (a) were started at the surface
and positively buoyant particles (B = 1.01) in (b) were started at z∞ and stopped at the
surface. All particles simulated have the same absolute equivalent-sphere settling velocity
ws

p. The waves have kA= 0.15. The ellipsoidal particles were started with different initial
orientations in the x–z plane, as shown in figure 7; with φ = π/2, 0. The time to X∞
is (a) 146, 144 (b) 149, 138 wave periods for the ellipsoids, respectively, and it is 141
wave periods for spheres in both (a) and (b). While time to X∞ varies across shape and
orientation, the positively buoyant particles follow almost identical paths, whereas much
more variation is seen in the negatively buoyant case. The results are similar for oblate
particles.

shape and initial orientation. The spherical particles reach the same X∞ value at the
same time whether they are positively or negatively buoyant. This symmetry breaks,
however, when the particles are anisotropic. This effect is entirely due to the vertical
asymmetry in the flow; specifically, the vertical variation of the shear in the flow. The
shear modulates each particle’s rate of rotation and thus determines the differential
resistance. Therefore the particles rotate much faster when started near the surface
than when released far below it, as shown in figure 7, because the shear decreases
exponentially with depth. This difference in particle rotation rate means that particles
that begin high in the water column and sink adopt a different set of orientations,
with respect to space and time, from those that begin lower in the water column
and rise. This in turn means that the net drag on the rising and sinking particles is
different, regardless of their initial orientations. These differences in drag lead to the
asymmetry in transport we observe for anisotropic rising and falling particles. For
particles on the surface itself, additional physical phenomena such as capillarity or
other surface-tension effects or wave breaking may become important and contribute
to the long-term transport. Since positively buoyant particles will eventually reach the
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0.5

0

1.0

1.5

20 40 60 80 100 120 140 160

FIGURE 7. (Colour online) Wave-period-averaged polar angle φ of non-spherical particles
in figure 6 over time. Solid lines indicate negatively buoyant and settling particles and
dotted lines indicate positively buoyant and rising particles. Time is normalized by wave
period. The particles have equal and opposite settling velocities.

surface even when released below it (unlike negatively buoyant particles), we therefore
restrict the rest of our analysis to negatively buoyant particles only. However, we
note that our results hold qualitatively for positively buoyant particles as well.

The initial orientation of a particle also affects its transport. In these non-stochastic
simulations, all spherical particles will follow the same path. This is not true, however,
for anisotropic particles, as shown clearly in figure 6: particles of the same (non-
spherical) shape but started in different orientations follow different trajectories. To
obtain a mean value of X∞, we ran 1024 trials with initial orientations uniformly
distributed on the unit sphere and averaged the results. Because of the axisymmetry of
the particle, we only sample the ranges 06φ <π and 06 θ <π/2. Probability density
functions (p.d.f.s) of the results are plotted in figure 8. In figure 8(a), the particle
is much closer in shape to a sphere than in figure 8(b). Thus, there is significantly
less variation in the trajectories, and the total width of the plume is much smaller.
Significant skewness can be seen in the p.d.f.s as well, as will be explained later in
this section. We note that out-of-plane motion is also captured in our simulations;
however, it is orders of magnitude smaller than the horizontal motion, and so we
neglect it in this analysis.

In addition to adding a finite width to the distribution of trajectories, we also find
that non-spherical shape requires a re-evaluation of the prediction of X∞ from (3.2).
Although non-spherical particles do still follow the general trend of travelling further
with increased Stokes drift velocity and shorter distances with increased absolute
settling velocity, choosing how to define the settling velocity for a non-spherical
particle is non-trivial. A priori, we can derive a settling velocity ws

p based on the
equivalent sphere in a quiescent fluid, a settling velocity based on the mean resistance
tensor K ij defined as wp, or a settling velocity based on the vertical resistance at the
preferred alignment w∗p. These three settling velocities are given by

ws
p =

gd2
s (B− 1)
18ν

, (3.3a)

wp =
ws

p

K ′
, (3.3b)

w∗p =
ws

p

K ∗33
. (3.3c)
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FIGURE 8. (Colour online) The p.d.f.s of particle trajectories with varied initial orientation.
The histogram density goes from dark (fewest trajectories) to light (most). Both plots have
identical kA, ds and B; panel (a), however, shows particles with E = 0.2, and panel (b)
shows particles with E = 0.9.
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FIGURE 9. (Colour online) Tests of predicted horizontal transport for different
settling velocity models. The relationship between X∞/L and us/4πwp is plotted
using compensated plots, where the former is normalized by the latter and plotted against
it. The terms used for wp are (a) ws

p, (b) wp and (c) w∗p. The colour bar represents
the absolute value of eccentricity, where triangles are oblate and circles are prolate.
The square symbols are from simulations with spheres. These data are from trials with
kA= 0.15.

Here, K ∗ is the resistance tensor in the basis aligned with the mean particle alignment
and K ′ is the arithmetic mean of the eigenvalues of K ij or equivalently the mean of
the trace of K ′.

We tested all of these velocities by inserting them into (3.2). As shown in figure 9,
it is clear that the corrected settling velocities are better at predicting transport, with
the w∗p formulation in figure 9(c) having an R2 value of 0.997. If there were no
preferred alignment for the particles, if they were randomly oriented in space at all
times, then the mean particle transport averaged over all initial orientations would
follow the prediction using wp. But this assumption results in an under-prediction of
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FIGURE 10. (Colour online) Mean horizontal transport X∞ of a negatively buoyant
non-spherical particle normalized by the transport of its equivalent sphere, shown as ◦,
plotted against eccentricity. The isotropic mean resistance tensor eigenvalue K ′ is plotted
as ×, and the preferred alignment vertical resistance K ∗33 is denoted by ∗. The colour bar
represents wave steepness kA.

transport, as shown in figure 10. This can also be seen in figure 8, where the highest
density of trajectories in the p.d.f. is skewed farther downstream than the centre of
the plume; thus, the preferential alignment is responsible for this skewness. Shape
is also important, and this variation with eccentricity is also shown in figure 10.
The preferred alignment resistance, K ∗33, corresponds with the trends in normalized
transport with eccentricity better than the isotropic resistance value K ′. Therefore, the
random orientation prediction using wp both underperforms the w∗p prediction and
underestimates the transport. The preferred alignment must enhance vertical drag on
the particle, thus minimizing average settling velocities and allowing the particle to
be transported farther before it settles below the wave field. There is also a trend
with wave steepness, in that anisotropic particles in less steep waves travel farther
than in steeper waves. Furthermore, we note that the mean horizontal transport of a
spheroid can be almost 1.5 times greater than the transport of an equivalent spherical
particle. Thus, as argued above, the effects of both shape and alignment must be
included when predicting transport.

3.3. Dispersion
As we have shown, varying only the initial orientation of the particles can have a
measurable impact on total transport. By running simulations across a range of initial
orientations while keeping all other physical particle and flow parameters constant,
we can characterize the evolution of a plume of released particles. First, let us note
that neither anisotropic-particle shape nor inertia alone can cause dispersion in our
simulations; both are needed. Without the former, there will be no difference between
the trajectories of particles released with different initial orientations; and without the
latter, the particles reduce to fluid tracers, in terms of their transport.

We uniformly sampled the space of unique three-dimensional initial orientations
(disregarding those where symmetry of the particle or of the flow dictates identical
results) for 1024 different values of pi(t = 0). We find that horizontal dispersion,
defined as σX∞, the standard deviation of X∞, increases with greater absolute particle
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FIGURE 11. (Colour online) Horizontal dispersion of negatively buoyant particle plumes,
plotted as the standard deviation of normalized X∞ against a ratio of time scales. The
symbol 4 is for oblate, and • for prolate. Colour bar values indicate absolute eccentricity.
The figure is broken into three regimes. Data come from trials with varied kA and St.

eccentricity. Also, while inertia is necessary for dispersion to occur, it can also
suppress dispersion. As particles become too heavy, they may settle out of the wave
field before they have the chance to disperse. This settling is controlled by the
general settling time scale τs = L/wp. The transport of the particles is determined by
the magnitude of the Stokes drift velocity us (2.12), from which we can define a
wave transport time scale τw= L/u0

s using its value at the surface and the wavelength.
A settling time scale τ ∗s = L/w∗p based on the preferred alignment can also be
defined. Thus, us/w∗s can be rewritten as τ ∗s /τw, which allows us to express the
physics controlling the phenomena as a ratio of two competing time scales. This
normalization collapses the data for σX∞ into three distinct regimes, which we label
as I, II and III in figure 11. We refer to these regimes as the settling, dispersive and
aligned regimes, respectively.

In the settling regime, τw>τ
∗

s . Here, the particles settle out of the wave field before
they have a chance to be transported horizontally. They do not remain in the water
column long enough for significant dispersion to take place, so whatever dispersion
they do feel is due to various initial-condition-dependent lift forces on the particle as
they sediment.

Once τw and τ ∗s are of the same order, the dispersion data deviate from the flat
distributions seen in the settling regime and enters the dispersive regime. Here, the
σx∞ values of the oblate particle plumes increase monotonically with τ ∗s /τw. This
occurs because the particles are transported through the wave field for a longer
distance before they settle out. If solely examining the oblate particle results, one
would conclude that the larger τ ∗s /τw ratios within this regime are indicative of
more dispersion. However, for some of the prolate particles, the relationship is
more complicated. For high-eccentricity prolate particles (E > 0.2), dispersion in
fact decreases at the onset of the dispersive regime. This is due to the fact that the
particles are starting to align. The rate at which the particles align is not constant,
as seen in figure 7; and in fact, the rate at which they align decreases over time.
Therefore, the particles first quickly align to similar orientations, resulting in similar
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forcing on the particle and suppressing the dispersion. This bulk alignment rate is
very different for oblate and prolate particles due to their different moments of inertia.
Prolate particles are all almost aligned as they move through the dispersive regime,
although some variability in their orientations still remains; thus, the dispersion is
not removed but rather only slowed and is able to grow again at larger τ ∗s /τw values.
Oblate particles, on the other hand, have a much broader distribution of orientations,
and their dispersion is stronger.

Finally, in the aligned regime, the particles have been in the waves long enough that
they have all reached their preferred alignment. At this point, the dispersion ceases to
grow, since the mechanism that drives it has been removed.

Our results demonstrate that the more anisotropic the particle, the more dispersion
will be observed. But we also find that oblate ellipsoids disperse much more than
their prolate counterparts. And, in general, more dispersion occurs when the transport
is strong compared to the particle settling, or equivalently when the wave transport
time scale is much shorter than the settling time scale. Furthermore, while there
is a mechanism for dispersion in these simulations, we have demonstrated that the
particles do not disperse without bound – in other words, if one were to predict that
the anisotropic particles do not align and instead persist in random orientations, one
would over-predict particle dispersion.

3.4. Effects of waviness
So far, our discussion has focused primarily on the properties of the Stokes drift rather
than on the waves themselves. But the effect of the waves is not unimportant for the
mean transport and dispersion of the particles. Here, we define the ‘waviness’ as the
unsteady oscillating component of the flow. We isolate the effects of the waviness
on transport by repeating the simulations using only the residual Stokes drift velocity
field. This leads to a steady shear flow that decays exponentially with depth, described
by (2.12). Note that this flow is no longer irrotational.

In a steady creeping shear flow, the particles undergo the expected Jeffery orbits.
This is clearly seen when the particles from figure 5 were evolved in the deep-water
residual Stokes drift velocity field alone. We show the corresponding orientation as
a function of time in figure 12. Each particle undergoes a three-dimensional periodic
orbit. The period is the same in all cases, as it is solely a function of the shear rate
and aspect ratio. However, the type of orbit is dependent on initial orientation. The
period of the orbits, as derived by Jeffery (1922), is 2π(λ+ 1/λ)/γ̇ where γ̇ is the
shear rate.

When negatively buoyant particles are evolved in this type of flow, we can measure
the new X∞ and σx∞ values and compare to the corresponding wavy cases. We find
that there is a measurable difference in both dispersion and mean transport of the
particles. This makes sense, as we have already confirmed that orientational drag is
important for transport; therefore, variations in particle orientation should affect the
mean transport. In the presence of waves, the particle plumes tend to disperse more,
but there is less mean transport. Particles in the Settling regime have identical plume
dispersion with or without the wavy flow, but particles in the dispersive and aligned
regime all have more dispersion in waves, with σx∞ in some cases more than an order
of magnitude higher. However, there is no clear trend indicating what controls this
deviation. The mean transport is up to 30 % higher in the residual flow case. These
results indicate that there remains much to be learned about the detailed effects of
waves on particle transport.
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FIGURE 12. (Colour online) Orientation of identical prolate spheroids as a function of
time in the same residual wave field with various initial orientations. The various colours
represent corresponding orientation angles, for (a) polar angle φ and (b) azimuthal angle
θ for particles started with different initial orientations in a deep-water residual Stokes
drift velocity field as a function of time normalized by wave period. All particles have
E = 0.6 and are inertialess. All oblate and prolate particles undergo similar orbits.

4. Discussion and conclusions
To summarize our results, we conducted simulations of particle transport under

linear surface gravity waves, extending previous work on this problem by incorporating
the effects of particle anisotropy. We found that both prolate and oblate spheroids
show preferred orientations, even without particle inertia. This alignment persists
when the particles have weak inertia and must be considered when computing the
particle’s mean settling velocity and transport. We also demonstrated that particle
anisotropy causes the dispersion of particle plumes released with different initial
orientations. Moreover, this dispersion cannot grow indefinitely as the particles will
all eventually align if in the water column long enough. The unsteady shearing in
waves both qualitatively and quantitatively affects how the particles are oriented and
transported. Finally, our results suggest that the non-dimensional parameter that best
describes the transport of weakly inertial anisotropic particles in wavy flows is not St
or Rep but rather the velocity ratio us/w∗p. This ratio captures the relative importance
of the wave steepness kA, which corresponds to the amount of shear in the flow, and
St, which captures the drag as the particle settles out of the wave field, as well as
the preferred particle orientation.

Even though our simulations have revealed many features of the dynamics of
spheroidal particles in wavy flows, there are many aspects that we have certainly
not fully captured and that warrant further study. For example, we have assumed
drag laws and torques that are only exact in the Stokes flow regime, where Rep� 1.
The drag coefficients vary as Rep increases above unity, and as Rep grows past
approximately 22, the laminar wakes of the particles may detach, and the drag should
be re-parameterized (Zastawny et al. 2012). Nevertheless, although the specifics of
the drag coefficients will change in this intermediate Rep regime, the anisotropy of the
drag forces, as well as the variation for different eccentricities, will remain (Ouchene
et al. 2016); and, as we have shown, the underlying physical mechanism for the
effects we have observed is this anisotropic drag coupled with the dynamics of the
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flow field. The torques on the particle will be dependent on a rotational Reynolds
number based on the particle’s length scale and angular velocity. Although the details
of how Reynolds-number-dependent torques will affect our results are not clear at
this time, the relationship between angle of attack and eccentricity will remain at
increased Reynolds number (Ouchene et al. 2016). Thus, although we would expect
our results to change quantitatively with a different assumed drag law and torque
parameterization, the same qualitative effects seen should still hold with increased
particle inertia.

We have also shown that the specific nature of the flow field matters in determining
the particle transport, since we find qualitatively different results when considering
full wavy flows or only the residual shear component. We have not, however, studied
the effects of turbulence, which may affect the preferred particle orientation we have
observed. For example, there exists a limit when the effects of turbulence outweigh
those of the waves, where the particles react as if they were subjected to turbulence
alone. However, weaker turbulence will likely introduce a stochastic component to the
particle motion while not necessarily destroying the preferential orientation. We leave
these questions for more detailed numerical simulations or laboratory experiments.

Finally, while we have primarily considered negatively buoyant particles here, the
same ideas apply to positively buoyant particles. However, since the shear rotating
the particles is much weaker at depth in wavy flows, the quantitative results may be
somewhat different. Furthermore, once the particles reach the surface, other forces may
become important, affecting the long-term transport of positively buoyant particles in
additional ways. We anticipate that this will be a fruitful area of study.
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