doi: 10.22498/pages.25.1.68

Toby R. Ault
Dept. of Earth and Atmospheric Sciences, Cornell University, USA

Introduction

Researchers studying decadal variability over the
instrumental period are often confronted with two
major obstacles. First, the observational record is short
compared to the timescales of interest, sampling at best
only a few realizations of decadal-scale phenomena
(Meehl et al, 2009). Second, most climate variables
include long-term trends driven by human activity (e.g.,
land use change, aerosol pollution, and of course the
impact of greenhouse gas emissions), which sometimes
mask decadal variability from natural causes. The
climate research community therefore often turns to
both paleoclimate archives of past changes, as well as
multi-century integrations of general circulation models
(GCMs). Both types of data can provide insights into
the amplitudes, patterns, and plausible mechanisms of
internal decadal variability, which could ultimately help
inform and evaluate predictions of near-term climate
evolution. In principle, proxy and GCM data should yield a
consistent view of the climate system on these timescales.
In practice, current paleoclimate data-model comparisons
of decadal variability must contend with at least one
of the challenges delineated below. To address these
concerns, | submit several heuristic recommendations
to help to identify fundamental similarities—and critical
differences—between paleoclimate and climate model
perspectives on decadal variability of the last millennium.

(i) Paleoclimate archives filter climate variability in
ways that are difficult to quantify.

Most paleoclimate archives “redden” climate information
by storing information from one time period to the
next (e.g., Matalas, 1962; Evans et al.,, 2013; Ault 2013;
Dee et al.,, 2015). This reddening, in turn, has the effect
of amplifying decadal fluctuations in proxy records
relative to their climatic drivers. Consequently, the mere
presence of high amplitude decadal variability in a given
paleoclimate time series cannot be taken as evidence
of correspondingly energetic climatic variability (the
details of this effect are considered extensively in Ault et
al., 2013 and also Dee et al., in revision).

In addition to reddening the spectrum of underlying
climate variables, many paleoclimate archives
preferentially record information from certain seasons.
For example, St. George et al. (2010) showed that tree-
ring reconstructions of North American PDSI (Cook et al,,
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2004) exhibit variable seasonal sensitivity to temperature
and precipitation depending on the region. In the US
Southwest, for example, the PDSI is highly sensitive
to winter moisture, while in the Pacific Northwest, it
depends more strongly on summer temperature. These
seasonal dependencies reflect, in part, the dependence
of tree growth on different environmental factors during
the seasonal cycle (St George and Ault, 2014), a finding
consistent with basic dendroclimatological theory
(Fritts, 1976). On interannual timescales, diagnosing
the filtering effects of tree growth on climate input is
relatively straightforward because data are annually
resolved and overlap with the instrumental period.
However, this problem has not been widely studied on
decadal time horizons, and it remains a possibility that
trees grow in response to different climate factors across
timescales (e.g., Franke et al., 2013).

(ii) Forward models of paleoclimate archives might
be biased by spatial and temporal patterns in GCMs.
Given the tendency for proxies to redden and filter
climate information, one might be tempted to simply
run GCM output through “forward models” of various
proxy systems and compare the resulting output with
actual archives. Caution would be recommended for
such an approach because models themselves exhibit
systematic geographic and frequency biases. Consider
a case in which a forward model of tree-ring growth is
run to predict annual ring-width anomalies as a function
of monthly temperature and precipitation (e.g. the
“Vaganov-Shashkin-Lite" model of Tolwinski-Ward et
al,, 2011; VS-Lite). If this model were to be run with raw
output from a GCM with a wet bias (as is common for the
American Southwest), VS-Lite would produce simulations
where tree growth is never limited by the availability
of soil moisture, even during the “driest” year. Similar
considerations apply to other types of proxy systems,
and although standard bias-correction techniques are
available for removing systematic model errors (e.g.
Maurer et al.,, 2007), these tools have not been widely
adopted for paleoclimate model-data comparisons.

(iii) Climate teleconnections are not necessarily
stable through time. There are inherent biases in the
structure of GCM teleconnections linking remote climate
variations (e.g., in the Pacific basin) to the locations
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where there are paleoclimate records (e.g., the American
Southwest). For example, Coats et al. (2013) found that El
Nifio/Southern Oscillation teleconnections in GCMs: (a)
are not well simulated by some models in the American
Southwest, and (b) are not always stable in all models
from one century to the next. These considerations extent
to decadal timescales and observations data; Newman et
al,, (2016) argued that the spatial pattern of the Pacific
Decadal Oscillation (PDO) during the 20th Century might
not be representative of decadal variability in that basin
over the last millennium, and hence the teleconnections
driven by this climate mode may have been different
in the past. Consequently, both GCMs and proxies may
be susceptible to aliasing by changes in the large-scale
structure of processes that generate decadal variability.

Suggestions to improve our understanding of decadal

variability in proxies and models.

The list of considerations above implies at least four

key principles should be followed when attempting to

characterize decadal variability in a given system or
region using paleoclimate data and climate model output.

These include:

1. Comparisons are likely to be most meaningful if
reconstructed phenomena are compared with
model phenomena (e.g., Fig. 1), as opposed to local
or regional variations. Reconstructions of large-
scale climate modes tend to rely on networks of
paleoclimate archives, often from different proxy
types (e.g., Emile-Geay et al., 2013). Accordingly, such
networks can minimize the effects of proxy filtering
as well as differences in spatial scales between model
grids and individual sites. Moreover, if teleconnection
patterns change through time, a large-scale network
of sites will be better suited to “see” the same
phenomena even if its spatial imprint varies.

2. Decadal variability inferred from both paleoclimate
and GCM sources should be evaluated against an
appropriately defined null hypothesis. In a simple,
univariate setting, such a null hypothesis is usually
the spectrum generated by an AR(1) processes. For
more complicated systems, or for multivariate cases,
a more sophisticated method for generating the null
distribution might be needed.

3. Methodologies for comparing decadal variability
in proxies and climate models should employ time
series analysis and spectral techniques alike. While
the former can help isolate the role of external
forcings if the temporal evolution of those forcings
is known, the latter can identify timescales at which
models and proxies exhibit fundamentally different
amplitudes of variability.

4. Finally, researchers should consider using forward
models of paleoclimate archives to characterize
the imprint of proxy systems on the continuum of
variability encoded in existing records (e.g., Dee et
al,, 2015; Dee et al., in revision). Such analyses will
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help isolate climate, as opposed to non-climate,
sources of decadal variability.

An example of how a few of these principles can be
applied is shown in Fig. 1 (adapted from Ault et al., 2013).
Here NINO3.4 spectra from reconstructions (Emile-Geay
et al., 2013) and last millennium model output (Otto-
Bliesner et al., 2016) are compared against the null
distribution of ENSO variations with no changes to the
external boundary conditions (as in Ault et al.,, 2013).
Here a linear inverse model (LIM) has been used to
generate the null distribution (see Ault et al., 2013 and
Newman etal., 2011 for details). At the longest resolvable
timescales (centuries), the null hypothesis can be rejected
for the reconstructions, but not for the model runs. At
higher (interannual) frequencies, the reconstructions
are well within the null distribution, whereas the model
oscillations are not (because this version of the model
produces ENSO fluctuations that are too high amplitude
in comparison to observations).

While the null hypothesis can be rejected for the
centennial timescales in the reconstruction, and the
interannual ones in the model, it cannot be rejected for
the amplitudes of multidecadal (50-100 year) variations
in either data type. This approach could help identify the
timescales that require the greatest attention by both
paleoclimate and climate modeling research communities
to understand the processes responsible for generating
low-frequency variability.
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Figure 1: Power spectra of NINO3.4 time series derived
from a LIM (black lines with gray shading), multi-proxy
paleoclimate reconstructions (green; Emile-Geay et al,
2013), and the CESM Last Millennium Ensemble inner
quartile range (IQR) (red; Otto-Bliesner et al., 2016). The
vertical dashed line marks the middle of the 2-7 year
peak typically associated with ENSO in observations
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