
Discovering Relational Specifications

Calvin Smith
University of WisconsinśMadison

USA

Gabriel Ferns
University of WisconsinśMadison

USA

Aws Albarghouthi
University of WisconsinśMadison

USA

ABSTRACT

Formal specifications of library functions play a critical role in a
number of program analysis and development tasks. We present
Bach, a technique for discovering likely relational specifications from
data describing inputśoutput behavior of a set of functions com-
prising a library or a program. Relational specifications correlate
different executions of different functions; for instance, commuta-
tivity, transitivity, equivalence of two functions, etc. Bach combines
novel insights from program synthesis and databases to discover a
rich array of specifications. We apply Bach to learn specifications
from data generated for a number of standard libraries. Our experi-
mental evaluation demonstrates Bach’s ability to learn useful and
deep specifications in a small amount of time.

CCS CONCEPTS

· Theory of computation → Logic and verification; Logic and
databases; · Software and its engineering → Dynamic analy-

sis; · Security and privacy→ Logic and verification;

KEYWORDS

Hyperproperties, Datalog, Specification Mining

ACM Reference Format:

Calvin Smith, Gabriel Ferns, and Aws Albarghouthi. 2017. Discovering
Relational Specifications. In Proceedings of 2017 11th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering, Paderborn, Germany, September

4ś8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106279

1 INTRODUCTION

Formal specifications of library functions play a critical role in a
number of settings: In program analysis and verification, specifica-
tions are essential to efficiently and precisely analyzing applications
that use libraries whose code is unavailable or too complex to ana-
lyze. In software engineering, formal specifications can be used to
unambiguously document libraries and apis, as well as aid develop-
ers in program evolution. We address the problem of discovering a
rich class of specifications defining behaviors of a set of functions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106279

Problem setting Imagine we are given a set of functions f1, . . . , fn
along with a dataset D representing a partial picture of the inputś
output behavior of each function fi , perhaps collected through
random testing or instrumentation. We ask the following question:

What can we learn about the set of functions f1, . . . , fn
by simply analyzing the dataset D?

We present a novel and expressive algorithm, called Bach, that is
able to discover likely relational specifications that correlate (i) differ-
ent executions of a single function or (ii) different executions within
collections of functions. In other words, Bach learns hyperproper-
ties [6]Ðthis is in contrast to traditional techniques that discover
properties of single executions (invariants) [8]. For instance, Bach
may learn the following specifications from some inputśoutput
data, where all variables are implicitly universally quantified:

add(x ,y) = z ⇔ add(y,x) = z (1)

gt(x ,y) = t ∧ gt(y, z) = t ⇒ gt(x , z) = t (2)

trim(uppercase(x)) = y ⇔ uppercase(trim(x)) = y (3)

x > 0 ∧ abs(x) = y ⇒ abs(y) = x (4)

Specification 1 is a bi-implication specifying that add is a commuta-
tive function. Specification 2, on the other hand, is an implication

specifying transitivity of gt (greater than). Bach may also discover
specifications that correlate different functions; e.g., Specification 3
specifies that the composition trim ◦ uppercase is equivalent to
uppercase ◦ trim (where trim removes whitespace from a string
and uppercase turns all characters to uppercase). Further, Bach
may discover sophisticated specifications that are refined with ad-
ditional constraints; for instance, Specification 4 specifies that the
function abs (absoulte value) is invertible on positive integers.

Primary challenges There are three primary challenges that arise
in learning relational specifications from a dataset: (i) What does it

mean for a specification to explain (partial) inputśoutput behavior?

(ii) How do we efficiently handle large amounts of inputśoutput data?

(iii) The space of possible relational specifications is vast, so how do

we efficiently traverse the search space?

We now describe how Bach tackles these challenges. Figure 1
provides a high-level overview of Bach.

Consistency verifier The first piece of the puzzle is defining what
it means for a specification to explain a dataset. We view a specifi-
cation as a first-order formula F , and the given dataset as a partial
interpretation D. We formalize what it means for D to be a model of
F . Bach employs a notion of evidence to rank specifications. If there
exists any negative evidenceÐe.g., a counterexample to transitiv-
ity of a functionÐthen the specification is considered inconsistent
with the data and discarded. Otherwise, a specification is consid-
ered more likely to be true depending on a measure of the positive
evidence that is available for it.

The specification consistency verifier checks specifications on a
given dataset. Since we are potentially dealing with thousands of

616

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Calvin Smith, Gabriel Ferns, and Aws Albarghouthi

inputśoutput examples per function, we could easily incur a pro-
hibitive polynomial blowup when evaluating a specification, e.g.,
evaluating f (д(x),h(y)) requires us to evaluate f on the Cartesian
product of the available outputs of д and h in the dataset. To effi-
ciently handle large amounts of examples, we exploit the insight
that we can encode the specification consistency checking problem
as a set of non-recursive, relational Horn clauses (a union of conjunc-

tive queries, which is a subset of sql), allowing us to delegate the
problem to efficient, scalable databases or Datalog solvers.

Induction and abduction engines The second piece of the puzzle
is how to automatically discover specifications. Our first insight is
that we are searching for a specification (a logical formula) that is
comprised of a set of łprogramsž (compositions of functions) and
connections between them. Consider the transitivity formula:

f (x ,y) = t
︸ ︷︷ ︸

p1

∧ f (y, z) = t
︸ ︷︷ ︸

p2

⇒ f (x , z) = t
︸ ︷︷ ︸

p3

Here we have 3 programs, two on the left of the implication (p1,p2)
and one on the right (p3). The programs are connected by sharing
their inputs and outputs through quantified variables.

Following this observation, to discover specifications, we utilize
a specification induction engine that traverses the space of sets of
programs and connections between them. This is analogous to how
an inductive synthesis algorithm searches for a single program
satisfying some propertyÐhere, we search for a set of programs.

If the induction engine discovers a specification S that is too
strong to hold on the given dataset, the guard abduction engine

asks the question: what do we need to know in order to make the

specification hold? Viewed logically, the abduction engine weakens
the specification S by qualifying it with some guard G, resulting
in G ⇒ S . In practice, we exploit the insight that the guard abduc-
tion problem can be reduced to a classification problem by splitting
data into positive and negative sets, those that satisfy the specifica-
tion and those that do not. By alternating between induction and
abduction, Bach is able to learn a rich array of specifications.

Implementation We implemented Bach and applied it to learn
specifications of a range of Python libraries, including a geometry
module and an smt solver’s api. Our results demonstrate Bach’s
ability to discover useful and elegant specifications explaining in-
teractions between functions. While Bach learned a number of
expected specifications, we were pleasantly surprised by some of
the non-obvious specifications it managed to infer (see Section 6).

Most relatedwork Themost closely relatedwork to ours is Claessen
et al.’s [5], which discovers equational specifications through ran-
dom testing. The class of specifications learnable by Bach is richer
in a number of dimensions: In addition to learning equivalences (as
bi-implications) between pairs of programs, Bach is able to (i) learn
implications between pairs of programs; (ii) learn equivalences and
implications over sets of programs, e.g., for properties like transi-
tivity, which correlate executions between more than two copies of
a program; and (iii) abduce guards on specifications. Further, Bach
operates in a black-box setting: we do not assume access to library
code or a random test generator. Instead, we directly operate on
data, making our approach general, perhaps even beyond software
specifications, e.g., hardware components and networks.

in out in out

...

f1 fn Dataset

input–output data

Specification

induction

Guard

abduction

Specification

consistency

verification

}
Learning engine

The specification induction engine
attempts to learn specifications of
the form Ψ ⇐⇒ Φ or Ψ ⇒ Φ,
where Ψ and Φ are conjunctions of
function applications.

guard abduction engine

specification consistency verifier

The specification consistency verifier
checks whether a given specification
is consistent with the given data set—
that is, the data set does not falsify
the specification and that there is some
evidence of it holding.

∀x, y. ϕ ⇐⇒ ψ

∀x, y. ϕ ⇒ ψ

∀x, y. . . .

...

Learned specifications

output stream

The output of Bach is a stream of
specifications learned from the given
data set.

The abduction engine refines speci-
fications produced by induction en-
gine, by augmenting them with ad-
ditional constraints, e.g., Ψ ⇐⇒ Φ

becomes G ⇒ (Ψ ⇐⇒ Φ).

i1 o1...

...

...

...

i1 o1

S

G ⇒ S

Specification Refined

specification

+ve/-ve

evidence

specification induction engine

} The input to Bach is a relational data
set D where each relation describes
a subset of the input–output rela-
tion induced by some function fi.

Figure 1: Main components of the Bach algorithm

In comparison with likely invariant discovery techniques, e.g.,
Daikon [8], our problem is more general and theoretically more
complex. Checking whether an invariant holds on a dataset rep-
resenting program states requires a linear traversal of the set of
observed states, while ensuring that the invariant holds on each
state. In our relational setting, however, we need to simultaneously
consider multiple executions, which is why we delegate specifica-
tion checking to a database engine. For instance, to falsify a loop
invariant, e.g., x > 0, all we need is a single execution where x is
negative; however, to falsify transitivity of a function, we need a
set of 3 executions that together demonstrate that a function is not
transitive. Section 7 makes a detailed comparison with other works.

Summary of contributions To summarize, the primary contri-
butions of this paper are as follows:

ś We formally define the relational specification learning prob-
lem as that of discovering likely specifications with respect to a
dataset of inputśoutput behaviors.

ś We present Bach, an automated tool that learns relational speci-
fications from inputśoutput data of a library of functions. Bach
utilizes a novel inductive and abductive synthesis technique to
learn a rich class of specifications.

617

Discovering Relational Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

ś We show that checking if a specification is consistent with the
given data can be reduced to conjunctive queries, allowing us to
use efficient databases or Datalog solvers to check specifications.

ś We describe our implementation of Bach and present a thorough
experimental evaluation on a range of libraries, demonstrating
Bach’s ability to learn a spectrum of useful specifications.

2 ILLUSTRATIVE EXAMPLES

In this section, we demonstrate the operation of Bach through a
set of simple illustrative examples. Each function discussed has an
associated set of observations in Figure 2.

E1: Properties of Addition

Suppose we have a function add that takes two numbers and returns
their sum, and we have observed the inputśoutput relation of add
in Figure 2, where i1 and i2 are the inputs and r is the return value.

Induction phase The induction engine of Bach searches the space
of specifications and proposes candidate specifications. Suppose
that the induction phase proposes the following candidate:

add(x ,y) = z ⇔ add(y,x) = z

where x ,y, z are implicitly universally quantified variables.

Consistency verification Now, the specification goes to the con-
sistency verifier, which checks if the specification is consistent with
the provided dataset. The consistency verifier asks two questions:

+ve evidence Is there evidence that the specification holds?
-ve evidence Is there evidence that the specification does not hold?

To find positive evidence, the verifier attempts to find three constant
values, a, b, and c , such that add(a,b) = c and add(b,a) = c , as
per the given dataset. The set of all possible values of (a,b, c) is
considered the set of positive evidence. To characterize positive
evidence, we view the set of inputśoutput examples of add as a
ternary relation Radd (x ,y, z), where x and y are the inputs and z is
the corresponding output. Now, every possible tuple (a,b, c) that is
evidence that the candidate specification holds is in the relation

Radd (x ,y, z) ▷◁ Radd (y,x , z)

where ▷◁ is the standard join operation from relational algebra. In
the rest of the paper, we will use the formalism of Horn clauses (in
non-recursive Datalog) to define positive evidence. Specifically, we
will say that the set of positive evidence P is defined as follows:

P (X ,Y ,Z) ← Radd (X ,Y ,Z),Radd (Y ,X ,Z).

If the relation P is empty, then there is no positive evidence. Se-
mantically, the above Horn clause defines P as the smallest relation
such that if (a,b, c) ∈ Radd and (b,a, c) ∈ Radd, then (a,b, c) ∈ P . In
our example, we see that there is at least one tuple in P : (3, 4, 7).

We now try to find negative evidence, i.e., tuples that falsify the
specification. Since the specification is a bi-implication, we need to
find evidence that holds for one side but not the other. Let us try to
find a tuple that satisfies the left hand side but not the right hand
side. We do this as follows:

N (X ,Y ,Z) ← Radd (X ,Y ,Z),Radd (Y ,X ,Z
′),Z , Z ′

If the relation N is not empty, then we know that there exists a
tuple (a,b, c) such that add(a,b) , add(b,a). In our example, the
relation N is empty, and therefore Bach infers the specification
stating that add is a commutative function.

add

i1 i2 r

1 2 3
3 4 7
5 6 11
4 3 7
.
.
.

.

.

.
.
.
.

gt

i1 i2 r

1 2 F
2 1 T
2 3 F
3 2 T
3 1 T
.
.
.

.

.

.
.
.
.

abs

i1 r

1 1
2 2
-10 10
-3 3
.
.
.

.

.

.

concat

i1 i2 r

a b ab

a ϵ a

.

.

.
.
.
.

.

.

.

len

i1 r

a 1
ϵ 0
b 1
ab 1
.
.
.

.

.

.

Figure 2: Example observed function executions.

Intuitively, our goal is to discover specifications with (i) no nega-
tive evidence associated with them (we say they are consistent with
the data), and that (ii) have some positive evidence, which we use
as a proxy to the likelihood of a specification.

E2: Transitivity of Comparison

Consider gt, the function implementing the greater-than operation
for integers with data in Figure 2. The specification induction phase
will propose the following specification:

(gt(x ,y) = w ∧ gt(y, z) = w) ⇒ gt(x , z) = w

Note that this is an implication; Bach is able to infer both implica-
tions and bi-implications, as we shall describe in detail in Section 4.
The consistency verifier will be able to find positive evidence and
no negative evidence for this specification, thus declaring it a possi-
ble specification for gt. Specifically, it will solve the following two
Horn clauses on the given dataset, and discover that the set P is
non-empty, while N is empty.

P (. . .) ← Rgt (X ,Y ,W),Rgt (Y ,Z ,W),Rgt (X ,Z ,W)

N (. . .) ← Rgt (X ,Y ,W),Rgt (Y ,Z ,W),Rgt (X ,Z ,W
′),W ′ ,W

E3: Identity of Absolute Value

Consider the function abs (absolute value) with data in Figure 2.

Induction phase Suppose that the induction phase proposes the
following candidate specification:

abs(x) = x

which can be viewed as the implication true ⇒ abs(x) = x

Consistency verification The consistency verifier will solve the
following set of Horn clauses to discover positive and negative
evidence, and store them in two relations P (X) and N (X):

P (X) ← Rabs (X ,X)

N (X) ← Rabs (X ,X
′),X , X ′

In this example, both relations will not be empty. Specifically, P =
{1, 2, . . .} and N = {−10,−3, . . .}.

Guard abduction The guard abduction phase attempts to weaken
the specification by finding a formula G such that

G ⇒ abs(x) = x

618

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Calvin Smith, Gabriel Ferns, and Aws Albarghouthi

has no negative evidence, and has all (or most) of the positive
evidence. In other words, we can view the guard abduction phase
as solving a classification problem, that of finding a classifierÐa
formulaGÐthat labels elements of the set P with true and elements
of the set N with false.

To find such a G, we assume we are given a set of predicates
and functions with which we can construct G. For instance, if we
are learning specifications of an api that operates over integers,
we might instantiate our algorithm with standard operations over
integers, e.g., >, <,+,−. In this example, the abduction phase might
return the formula x ⩾ 0, resulting in the correct specification

x ⩾ 0⇒ abs(x) = x

There are many ways to approach such a classification task, e.g.,
using decision-tree learning. In practice, we employ a simple al-
gorithm for learning a conjunction of predicates that separates
positive and negative evidence.

E4: String Operations

Let us now consider an example with multiple functions. Suppose
we are given a dataset (provided in Figure 2) describing the inputś
output relations of concat, which concatenates two strings, and
len, which returns the length of a string. Here, ϵ is the empty string.

Suppose that the induction phase proposes the specification

len(concat(x ,y)) = z ⇔ len(x) = z

Obviously, this is not true. However, using the positive and negative
evidence, the guard abduction phase will discover that the specifi-
cation holds when y = ϵ , resulting in the following specification:

y = ϵ ⇒ (len(concat(x ,y)) = z ⇔ len(x) = z)

Additionally, Bach will infer other properties of concat and len,
e.g., that the order of concatenation does not change the length of
the resulting string.

len(concat(x ,y)) = z ⇔ len(concat(y,x)) = z

We have illustrated the operation of Bach through a series of
simple examples. In Sections 3-5, we formalize Bach. In Section 6,
we thoroughly evaluate Bach on a range of Python libraries.

3 SPECIFICATIONS AND EVIDENCE

We now formalize the core definitions needed for our algorithm.

Formulas We assume formulas are over an interpreted theory,
wherewe have a finite set of uninterpreted functions Σ = { f1, . . . , fn },
where each fi has arity ar(fi). A formula F is of the form

∀V .G ⇒ (Ψ ⇔ Φ) or ∀V .G ⇒ (Ψ ⇒ Φ)

where (i) V is a set of variables. (ii) G, the guard, is a formula
over an interpreted set of predicate and function symbols. (iii) Ψ
(analogously, Φ) is defined as

∧

i ψi , where each ψi is an atom of
the form t = o, where o is a variable in V and t is a nested function
application over the functions Σ and variablesV . We assume that F
has no free variables. For simplicity, and w.l.o.g., we assume that all
variables and functions are over the same domainD (e.g., integers).

Example 3.1. Consider the following formula with Σ = { f ,д}:

∀x ,y. x > 0
︸︷︷︸

G

⇒
*..
,
f (д(x)) = y
︸ ︷︷ ︸

Ψ

⇔ д(f (x)) = y
︸ ︷︷ ︸

Φ

+//
-

Observe that G is a subformula using an interpreted predicate
over integers, and each of Ψ and Φ are composed of a single atom
containing nested uninterpreted function applications. ■

Interpretations and models An interpretation I gives a definition
to each function f ∈ Σ; i.e., for each f and i ∈ Dar(f) , I assigns
a value o ∈ D such that f (i) = o. For each f ∈ Σ, we use If to
denote the definition of f in I :

If = {i 7→ o | f (i) = o}

We will consider the interpretation I as I =
⋃

f ∈Σ If , a union of
sets indexable by functions in Σ.

Given a formula F , an interpretation I is a model of F , denoted
I |= F , if I satisfies F , using the standard definition of first-order
satisfiability.

Datasets Intuitively, a dataset D in our setting is a partial interpre-
tation, that is, an interpretation that defines each function f ∈ Σ

on a finite subset of the domain Dar(f) . Given a dataset D and
interpretation I , we say I is a completion of D, denoted D ⊆ I , if for
all f ∈ Σ, Df ⊆ If .

Consistency Our goal is to define what it means for a formula F
to explain a dataset D. We thus define a notion of consistency. A
formula F is inconsistent with D, denoted D ̸ |=c F , if

∀I ⊇ D. I ̸ |= F

Otherwise, we say that D is consistent with F , or D |=c F .
In other words, if no matter how we complete a dataset it re-

sults in an interpretation that falsifies F , then we say that F is
inconsistent with D. Otherwise, we say it is consistent.

Positive and negative evidence Note that while a formula F can
be consistent with D, this could happen vacuously. The simplest
case is the empty dataset, which is consistent with any satisfiable
formula F . Our goal is not only to find a consistent formula, but
one that explains the data well. We therefore define the notions of
positive and negative evidence. First, we define D-restricted assign-
ments.

Definition 3.2 (D-restricted assignment). Given quantifier-free
formula ϕ with variables V , a D-restricted assignment σD is a map
from each v ∈ V to a constant that appears in the dataset D. Addi-
tionally, for every term f (i) ∈ σD (ϕ), i 7→ o ∈ Df , for some o ∈ D,
where σD (ϕ) is ϕ with all variables replaced by their assignment in
σD . ■

Example 3.3. Let Df = {1 7→ 2}. σD = {x 7→ 1} is a D-restricted
assignment to f (x) = x . This is because σD (f (x) = x) is f (1) = 1,
and 1 is in the domain of Df . On the other hand, σ ′

D
= {x 7→ 2} is

not a valid assignment, because f is not defined on 2 in Df .
In case of nested terms, e.g., f (д(x)), a D-restricted assignment

needs to set x to a value c in the domain of Dд such that Dд (c) is
in the domain of f . ■

Definition 3.4 (Positive evidence). Given D and F , where F is
of the form ∀V .G ⇒ (Ψ ⇔ Φ) or ∀V .G ⇒ (Ψ ⇒ Φ), we define
positive evidence as:

pos(D,F) = {σD | ∀I ⊇ D. I |= σD (G ∧ Ψ ∧ Φ)}

Informally, positive evidence is the set of instantiations of variables
V that non-vacuously satisfy the body of F , i.e., G ∧ Ψ ∧ Φ. ■

619

Discovering Relational Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Definition 3.5 (Negative evidence). We define negative evidence
as the set of D-restricted assignments such that

neg(D,F) = {σD | ∀I ⊇ D. I |= σD (G ∧ ¬(Ψ ⇔ Φ))}

or with σD (G ∧ ¬(Ψ ⇒ Φ)) in the case F is an implication. Infor-
mally, we can view negative evidence as the set of witnesses to the
fact that F is inconsistent with D. ■

Example 3.6. Consider formulaF ≜ ∀x ,y. f (x) = y ⇔ д(x) = y

and dataset D, where Df = {1 7→ 1} and Dд = {2 7→ 3}. Here, there
is no negative evidence. However, there is no positive evidence
eitherÐi.e., there is no witness to the fact that f and д are equiva-
lent. If we update Dд to {2 7→ 3, 1 7→ 1}, then pos(D,F) will be the
singleton set with the assignment that sets x to 1 and y to 1. Alter-
natively, if we update Dд to {2 7→ 3, 1 7→ 2}, then negative evidence
will be the set of two assignments {{x 7→ 1,y 7→ 1}, {x 7→ 1,y 7→ 2}}.

■

The following lemma captures the fact that existence of negative
evidence implies that the formula is inconsistent with the dataset.

Lemma 3.7. neg(D,F) , ∅ =⇒ D ̸ |=c F

The proof follows immediately from the definitions of consis-
tency and negative evidence. We will see the utility of this lemma
in our problem specification.

Specification learning problem Given a dataset D, F is a likely
specification if pos(D,F) , 0 and neg(D,F) = 0. In other words, D
supports the specification F , and by the above lemma, we cannot
show that D ̸ |=c F .

An optimal specification F ⋆ is a likely specification that maxi-
mizes some function h of D and F . Formally,

F ⋆
= arg max
F st neg(D,F)=∅

h(D,F)

An immediate choice for h is given by h(D,F) = |pos(D,F) |. In-
tuitively, this uses the amount of positive evidence as a proxy for
how well F explains D. Of course, h can also be adjusted to bias
our search further if necessary, e.g., to formulas of smaller size.

4 SPECIFICATION LEARNING ALGORITHM

We are now ready to formalize Bach. The algorithm is shown in
Figure 3 as a set of non-deterministic rules: if the premise above
the horizontal line is true, then the instruction below the line is
executed. At a high-level, the operation of Bach is simple: it (i) iter-
atively constructs specifications and (ii) checks whether they are
consistent with the data.

The state maintained by Bach consists of two sets: (i) J , a set of
conjunctions of atoms, which are used to construct specifications;
e.g., given Ψ,Φ ∈ J , we can construct ∀V .Ψ ⇔ Φ. (ii) S, a set of
discovered likely specifications. Both sets grow monotonically.

Search We assume there is a fixed signature Σ, dataset D, and set
of variables V . Recall that an atom is of the form f (t1, . . . , tn) = v ,
where each ti is a function application or a variable. The rules add,
expv , and expf construct new atoms and conjoin them to formulas
in the set J . The symbol is used to denote a wildcard, a hole that
can be filled to complete an atom. A conjunction Φ ∈ J is complete

if it contains no wildcards (denoted cmp in Figure 3).

Induction and abduction The rules ind⇔ and abd⇔ form the
core of the algorithm. They apply when a specification is learned,

which they add to the set of likely specifications S. The analogous
rules ind⇒ and abd⇒ learn specifications with implications (not
shown in the figure due to similarity).

Let us walk through ind⇔. It picks two conjunctions of complete
atoms, Ψ and Φ, from the set J . It then constructs a formula F =
∀V .Ψ ⇔ Φ. If F has positive but no negative evidence, then it is
added to the set of specifications S. For now, we use pos and neg

declaratively; in Section 5, we present an algorithm that constructs
the sets of evidences.

The rule abd⇔ applies when (i) F has non-empty sets of neg-
ative and positive evidence, and (ii) the two sets can be separated.
We assume we have an oracle classify that returns a formula G
that separates the positive and negative evidence. Formally, classify
returns a formula G without uninterpreted functions and with free
variables in V , such that:

(1) ∀σ ∈ neg(D,F). σ (G) is unsatisfiable.
(2) ∃X ⊆ pos(D,F).X , ∅ ∧ ∀σ ∈ X . σ (G) is satisfiable.

In other words, G eliminates all negative evidence (point 1), and
maintains some of the positive evidence (point 2). Observe that we
do not need G to maintain all positive evidenceÐwe only need a
non-empty set, and that gives us a likely specification.

Soundness We view the soundness of Bach as only adding likely
specifications to the set S. This is maintained by construction
through (i) the rules ind⇔ and abd⇔, (ii) and the definition of
classify, which ensures that all negative evidence is excised and
some positive evidence is preserved.

Rule-application schedule Our presentation of the algorithm as
a set of rules allows us to dictate the search order by varying the
scheduling of rule application. For instance, if we are interested in
learning relations between pairs of programs, we can restrict appli-
cations of the rule add to formulas Φ that are true. This ensures that
there is only a single conjunct on either side of the (bi-)implication.

We must also decide when to apply ind⇔ and abd⇔. In practice,
we apply abd⇔ right after a failed application of an induction
rule. Specifically, if a failed application of ind⇔ results in positive
evidence and negative evidence, then we apply abd⇔ with the hope
that we can find a guard that eliminates the negative evidence.

5 CONSISTENCY VERIFICATION

We now describe our technique for verifying consistency of a for-
mula F with respect to a dataset D.

5.1 Background and Overview

The principal idea underlying our technique is that positive and
negative evidence of a formula F and dataset D can be character-
ized using a union of conjunctive queries (ucq) [1]. A conjunctive

query (cq) is a first-order logic query that can model a subset of
database queries written in sqlÐspecifically, a conjunctive query
corresponds to a non-recursive Horn clause. Therefore, a ucq corre-
sponds to a non-recursive Datalog programÐa set of Horn clausesÐ
whose evaluation results in the positive and negative evidence. Our
formulation of consistency verification as database query evalu-
ation allows us to leverage efficient, highly engineered database
engines and Datalog solvers.

620

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Calvin Smith, Gabriel Ferns, and Aws Albarghouthi

init

J ← {true } S ← ∅

f ∈ Σ Φ ∈ J Φ′ = Φ ∧ f (1 . . . ar(f)) =

add

J ← J ⊕ Φ′

Φ ∈ J ∈ Φ v ∈ V
expv

J ← J ⊕ Φ[7→ v]

Φ ∈ J ∈ Φ f ∈ Σ
expf

J ← J ⊕ Φ[7→ f (1, . . . , ar(f))]

Ψ, Φ ∈ cmp(J) F = ∀V . Ψ ⇔ Φ

pos(D, F) , ∅ neg(D, F) = ∅
ind⇔

S ← S ⊕ F

Ψ, Φ ∈ cmp(J) F = ∀V . Ψ ⇔ Φ

P = pos(D, F) , ∅ N = neg(D, F) , ∅ G = classify(P, N)
abd⇔

S ← S ⊕ ∀V .G ⇒ (Ψ ⇔ Φ)

Notes: (i) S ⊕ x is short for S ∪ {x }, (ii) { 1 . . . ar(f), } in add and expf are fresh, and (iii) in expf is assumed to be an argument to a function

Figure 3: Bach’s main algorithm (the rule init is only applied at initialization)

We provide a brief description of Datalog and refer the reader
to Abiteboul et al.’s textbook for a formal presentation of Datalog
semantics [1]. A Horn clause is of the form:

H (X 0) ← B1 (X 1), . . . ,Bn (Xn).

where H ,B1, . . . ,Bn are relation symbols; each X i is a vector of
variables of size equal to the arity of the corresponding relation; the
atomH (X 0) is the head of the clause; and the set of atoms {Bi (X i)}i
is the body of the clause. A Datalog program C is a set of Horn
clauses. Semantically, a solution of a Datalog program is the least
interpretation of the relations that satisfies all the clauses. For our
purposes, we will enrich our language with inequalities of the form
X , Y , whereX andY are variables, which can appear in the bodies
of clauses. We will use underscores, e.g., R (X , _), to denote that the
second argument of R is unbound, i.e., can take any value.

5.2 Detailed Description

Figure 4 describes the algorithm used to construct a set of Horn
clauses encoding the positive/negative evidence of F with respect
to D. We assume F is of the form ∀x .Ψ ⇔ Φ, where Ψ =

∧

i ψi ,
Φ =
∧

j ϕ j , eachψi (andϕ j) is an atom of the form f (t1, . . . , tn) = x ,
and x is the vector of universally quantified variables.

We assume that inputśoutput data of each n-ary function f is
stored in a (n + 1)-ary relation Rf . The Horn-clause construction
decomposes into three steps:

(1) Ψ is encoded in a relation AH (Xa) (and Φ in BH (Xb)) by
flattening the atoms;

(2) positive evidence is encoded in the relation P (X) by collect-
ing variable assignments satisfying Ψ and Φ; and

(3) negative evidence is encoded in the relation N (X) by satis-
fying Ψ (Φ) while negating Φ (Ψ).

Procedure Encode aggregates all generated Horn clauses into a
single Datalog program C. Note that we expect the formula F to
be a bi-implication. If F is of the form ∀x .Ψ ⇒ Φ, we construct
negative evidence by only considering data satisfying Ψ and ¬Φ.

Given a vector of variables x appearing in a formula F , we
will construct a vector of Datalog variables X indexed by x ∈

x (i.e., x ∈ x implies Xx ∈ X). We use H (X) ← S , where S is
the set of terms {Ri (X i)}

n
i=1, to denote the Horn clause H (X) ←

R1 (X 1),R2 (X 2), . . . ,Rn (Xn). In addition, we use ⊕ for adding a
single element to a set. For example, x ⊕

{

y, z
}

=

{

x ,y, z
}

.

Encoding specifications Let us walk through the construction of
Horn clauses encoding Ψ and Φ. We focus on Ψ, as the encoding for
Φ is symmetric. By assumption, the conjunction Ψ consists of atoms
{tai = x

a
i }, where t

a
i is a term of the form f (t1, . . . , tn); we extract

those atoms using the atoms subroutine. In the first for-loop of
Encode, we iterate over every atom and encode it as a Horn clause.
The atom tai = xai is encoded in the relation Ai (Xa

i ,X
a
i), where

X
a
i represents the inputs to the term tai and Xa

i represents the
output (in this case, the value of the formula variable xai). Because
each atom can have nested function applications, this procedure is
recursive, and so we make use of the subroutine Flatten. Finally,
we encode Ψ as the conjunction of each atom, which translates into

the Horn clause AH (Xa) ←
{
Ai (X

a
i ,X

a
i)

}n
i=1

.

Example 5.1. We now demonstrate Horn clause construction on
a simple example. Consider the following formula:

∀x ,y. f (д(x)) = y ⇔ h(x) = y

which states that f ◦ д is equivalent to h. Encoding the atom
f (д(x)) = y requires three recursive calls to Flatten (once for
x , д(x), and f (д(x))). Working from the inside out, we see Flat-

ten(x) converts the term x to the pair ∅,Xx . The call to Flat-

ten(д(x)) uses this pair to construct the pair
{
Rд (Xx ,O)

}
, O . Fi-

nally, Flatten(f (д(x))) expands on this value to return the pair{
Rf (O,O

′),Rд (Xx ,O)
}
,O ′. The first for-loop in Encode uses these

results to tie the formula variabley to the output of the term f (д(x))

by constructing the clause:

A1 (Xx ,Xy) ← O ′ = Xy ,Rf (O,O
′),Rд (Xx ,O).

The right-hand side of⇔ is encoded similarly. ■

Positive evidence Positive evidence consists exactly of those vari-
able assignments that non-trivially satisfy both Ψ and Φ. As Ψ and
Φ are already fully encoded in the relations AH (Xa) and BH (Xb),
this requirement is immediately encodable as the Horn clause
P (X) ← AH (Xa),BH (Xb).

Negative evidence Let us now describe the construction of the
Horn clauses encoding negative evidence. Intuitively, negative evi-
dence occurs when we satisfy the left side Ψ but falsify the right
side Φ. In other words, we want to falsify at least one of the atoms
ϕ1, . . . ,ϕm . We thus constructm clauses, each one encoding assign-
ments that falsify one of the ϕ j ’s. For instance, assignments that

621

Discovering Relational Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

def Flatten(t : term):

case t is x , where x ∈ x :
return ∅, Xx

case t is f (t1, . . . , tn):

for i ∈ 1, . . . , n:
Ri , Oi ← Flatten(ti)

O = fresh variable

R = Rf (O1, . . . , On, O) ⊕
⋃n
i=1 Ri

return R , O

def Encode(Ψ ⇔ Φ : spec):

C = ∅{
tai = x

a
i

}n
i=1
= atoms(Ψ){

tbj = x
b
j

}m
j=1
= atoms(Φ)

encode Ψ

for i ∈ 1, . . . , n:
Rai , O

a
i = Flatten(tai)

X
a
i = vars(Rai)

C = C ⊕ Ai (X
a
i , Xxai

) ← Rai ⊕ (Oa
i = Xxai

)

C = C ⊕ AH (Xa) ←
{
Ai (X

a
i , X

a
i)

}n
i=1

encode Φ

for j ∈ 1, . . . ,m:

...omitted...

C = C ⊕ BH (Xb) ←
{
Bj (X

b
j , X

b
j)

}m
j=1

encode positive evidence

C = C ⊕ P (X) ← AH (Xa), BH (Xb)

encode left negative evidence

for j ∈ 1, . . . ,m:

O = fresh variable

bad =
{
Bj (X

b
j , O), (O , Xb

j)
}

C = C ⊕ N (X) ← {AH (Xa) } ∪ bad ∪
{
Bi (X

b
i , _)

}
i,j

encode right negative evidence

for i ∈ 1, . . . , n:
...omitted...

return C

Figure 4: Encoding formulas as Horn clauses. Omitted for-loops are

symmetric (by exchangingA and B) to those immediately preceding.

We use = for assignment and← for Datalog implication.

falsify ϕ1 are encoded by the clause:

N (X) ← AH (Xa),B1 (X
b
1 ,O),O , Xb

1 ,B2 (X
b
2 , _), . . . ,Bm (Xb

m , _)

The fresh variableO is used to encode the fact that B1 should output
a value that is not equal to Xb

1 , thus falsifying the right-hand side
of the bi-implication. Recall that B1 encodes a term of the form
f (. . .) = x . Effectively, the above clause states that f (. . .) , x .

Example 5.2. Recall Example 5.1. Negative evidence, as con-
structed by Encode, is written as follows:

N (Xx ,Xy) ← AH (Xx ,Xy),B1 (Xx ,O),O , Xy

N (Xx ,Xy) ← BH (Xx ,Xy),A1 (Xx ,O),O , Xy

The first clause encodes the requirement that f (д(x)) = y is satis-
fied, but h(x) = y is not; the second clause encodes the opposite
fact. ■

Correctness Once we have constructed the Horn clauses, we eval-
uate them on the given dataset to construct the relations P and N .
The following theorem states correctness of the construction:

Theorem 5.3. Given a dataset D and specification F of the form

∀x .Ψ ⇔ Φ or ∀x .Ψ ⇒ Φ, let N (X) and P (X) be the relations

computed using the Horn clauses C from Figure 4. Then, P (X) =

pos(D,F) and N (X) = neg(D,F).

Complexity It is important to note that the decision problem of
solving a conjunctive query is np-complete (combined complexity).
If the size of the query is fixed and the only variable is the size
of the data, the problem is in ptime (data complexity) [1]. This is
why database engines are efficient: queries are typically small, but
data is large. These classic results shed light on the difficulty of the
problem of finding positive/negative evidence: One could easily
reduce conjunctive query solving to finding positive evidence in
our setting, thus our consistency verification problem is np-hard.

6 IMPLEMENTATION AND EVALUATION

In this section, we (i) describe our implementation of Bach, (ii) present
an exploratory study in which we apply Bach to a number of li-
braries, and (iii) present an empirical evaluation to investigate the
performance and precision characteristics of Bach.

6.1 Implementation

Bach is implemented in OCaml. It takes as input (i) a signature of
simply typed functions, (ii) inputśoutput data for each function,
and (iii) a set of predicates to compute the guards. Bach uses the
Soufflé Datalog engine [14] to compute positive/negative evidence.

Ordering the search The search rules add, expv , and expf are
scheduled to implement a frontier search with respect to the size of
specifications. That is, we visit specifications in order from smallest
to largest. The search rules are augmented with types, ensuring
that only well-typed specifications are explored.

Pruning the search Top-down enumerative synthesis tools typi-
cally have exponential branching of the search space, and Bach is
no exception. To combat this explosion of the search space, Bach
employs a series of search-space pruning techniques: First, Bach
uses a representation of specifications that guarantees that each
explored specification is unique with respect to conjunct reordering
(by commutativity of conjunction) and variable renaming. Second,
whenever Bach proves a specification F = Ψ ⇔ Φ correct, it
records one of Ψ and Φ (the larger with respect to number and size
of atoms, if it is obvious). During the search, Bach will never apply
the search rules to generate the recorded term.

Specification preference Bach combines induction and abduc-
tion rule application as follows: Given two sets of conjunctions,
Ψ,Φ ∈ J , it first attempts to learn the bi-implication Ψ ⇔ Φ, using
the ind⇔ rule. If ind⇔ fails to apply due to existence of negative
evidence, then Bach examines the negative evidence to determine
if it is only one-sided. If so, then Bach learns an implication Ψ ⇒ Φ,
using the rule ind⇒. If no implication can be learned, Bach resorts
to abduction. Specifically, it solves a number of abduction problems
to learn guards that make the following specifications likely ones:

G1 ⇒ (Φ⇔ Ψ), G2 ⇒ (Φ⇒ Ψ), G3 ⇒ (Ψ ⇒ Φ)

622

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Calvin Smith, Gabriel Ferns, and Aws Albarghouthi

Table 1: List of benchmarks; number of functions is in parentheses.

Benchmark Description

list (7) standard list operations, including hd, tl, cons, etc.
matrix (7) matrix operations from Python’s sympy library.

trig (4) trig. functions (sin, cos, etc.) in Python’s math module.
z3 (5) api to Python’s z3 library, including sat and valid.

geometry (5) manipulations of shapes from Python’s sympy library.
sets (10) functions from Python’s set module.
dict (5) functions from Python’s dict (dictionary) module.

fp199 (4) arithmetic on F199 , the finite field of order 199.
strings (9) string operations from Python’s string module.

Bach then picks the specification with the highest positive evidence.

Abduction Guard abduction is done by a simple classification
algorithm that finds a small conjunction of the provided predicates.
Each predicate is instantiated with every combination of variables.
For instance, if the predicate a > b is provided, and F contains the
variables x and y, abduction will use x > y and y > x . Bach learns
a conjunction that separates the positive and negative evidence of
F while retaining as much positive evidence as possible.

6.2 Exploratory Evaluation

Setup In order to test the efficacy of Bach, we targeted a set of 9
Python libraries (Table 1). Each benchmark consists of (i) a finite
signature, (ii) a set of predicates, and (iii) a dataset of 1000 randomly
sampled executions for each function. These random samples are
generated by uniformly sampling function inputs from a subdomain
of the relevant type and then evaluating the function.

We are interested in examining a variety of specifications. To
cover as much of the search space as possible, we run many inde-
pendent executions of Bach in parallel. Each execution is configured
to search over a different subset of functions from the signature,
or at a different initial depth. This gives a mix of large and small
likely specifications with a variety of combinations of functions.

After letting each execution run for a short amount of time (1-2
minutes), all the resultant likely specifications are collected and
presented together. A partial list of specifications found is provided
in Figure 5. The output of Bach contains many specifications that
are possibly of interest, a few of which are discussed below.

z3 specifications z3 is a high-performance smt solver with apis

for many programming languages. The z3 benchmark contains
functions from a subset of Python’s z3 api. Bach finds the expected
specifications relating and, or, and neg through DeMorgan’s laws,
distributivity, etc. However, the benchmark also contains valid
and sat, which check for the validity or satisfiability of a formula.
Consequently, Bach discovers the specification

p = true ⇒ (valid(x) = p ⇒ sat(x) = p),

which states that valid formulas are always satisfiable (but not
the opposite). Bach also finds interactions between valid and the
logical connectives. For example,

valid(x) = p ∧ valid(y) = p ⇒ valid(and(x ,y)) = p,

which encodes the fact that validity is preserved by and.

strings specifications The strings benchmark contains the typ-
ical set of functions for manipulating strings. Bach finds likely
specifications which encode idempotence properties, such as

lstrip(x) = y ⇒ lstrip(y) = y,

Learned specifications for list

sorting a list preserves length
length(x) = a ⇔ length(sort(x)) = a

hd is the destructor of cons
cons(a, y) = x ⇒ hd(x) = a

rev is an involution
true ⇔ rev(rev(x)) = x

Learned specifications for matrix

identity matrix is upper triangular
identity(x) ∧ p = true ⇒ (upper(x) = p ⇔ true)

transpose preserves symmetric-ness
symmetric(x) = p ⇔ symmetric(transpose(x)) = p

transpose is an involution
transpose(transpose(x)) = x

Learned specifications for trig

sin is the inverse of arcsin
arcsin(z) = x ⇒ sin(x) = z

sin has period 2π
∃k .x = 2πk + y ⇒ (sin(x) = z ⇔ sin(y) = z)

sin and cos are shifted by π /2
x = y − π /2⇒ (sin(x) = z ⇔ cos(y) = z)

Learned specifications for strings

a string is a prefix of itself
p = true ⇒ prefix(x, x) = p

stripping whitespace is idempotent
lstrip(x) = y ⇒ lstrip(y) = y

palindromes are preserved by reverse

concat(y, reverse(y)) = x ⇒ reverse(x) = x

Learned specifications for z3

validity implies satisfiability
p = true ⇒ (valid(x) = p ⇒ sat(x) = p)

and is commutative
and(x, y) = z ⇔ and(y, x) = z

and preserves validity
valid(x) = p ∧ valid(y) = p ⇒ valid(and(x, y)) = p

Learned specifications for sets

the empty set contains nothing
p = false ⇒ (clear(x) = y ⇒ contains(y, a) = p)

the empty set is contained in every set
p = true ⇒ (clear(x) = y ⇒ subset(y, z) = p)

the subset relation is inclusive
p = true ⇒ subset(x, x) = p

Learned specifications for geometry

if enclosed shape contains point, then encloser also contains it
b = true ⇒ (encl(x, y) = b∧encl_pt(y, p) = b ⇒ encl_pt(x, p) = b)

rotating a shape by a multiple of 2π results in same shape
∃k .x = 2πk ⇒ rotate(y, x) = y

Figure 5: A sample of learned specifications on our benchmark suite.

Formulas ∃k .x = 2πk+y, ∃k .x = 2πk, x = y−π /2, and p = true, false

are guards.

623

Discovering Relational Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 2: Average correctness results (T1 is the type I error, T2 is the type II error, and Size is the number of specifications produced)

10 observations 50 observations 100 observations 500 observations

Benchmark T1 T2 Size T1 T2 Size T1 T2 Size T1 T2 Size
ff199 1.8 17.6 4.2 5.6 13.2 12.4 6.4 10.2 16.2 6.4 6.2 20.2
trig 2 19.2 10.8 2 0.8 29.2 0 0 28 0 0 28
dict 5.2 0.2 20 1.4 0 16.4 1 0 16 1 0 16
geometry 18 12 25 9 3.8 24.2 4 1 22 1 0 20
lists 40 17.6 52.4 4.8 0.4 34.4 1.4 0 31.4 0.4 0 30.4
matrices 18.2 11.2 25 15.4 3.2 30.2 7.8 0.6 25.2 5.2 0 19.4
sets 52.8 53.4 79.4 6.2 3.8 82.4 0.4 0 80.4 0 0 80
strings 159.6 234 215.6 85.6 50.8 324.8 22.2 1.6 310.6 0.2 0 290.2

where lstrip(x) removes all whitespace on the left of x , as well as
useful facts like

p = true ⇒ (prefix(x ,x) = p),

which states that string prefix is a reflexive relation. Amusingly,

Bach also learns that we can construct palindromes by concatenating

a string and its reverse:

concat(y, reverse(y)) = x ⇒ reverse(x) = x .

trig specifications The trig benchmark contains trigonometric
functions (from Python’s math module), which have a rich set of
semantics. Bach has no problem finding many of these properties
as likely specifications. These include the fact that trigonometric
functions are periodic,

∃k .x = 2πk + y ⇒ (sin(x) = z ⇔ sin(y) = z),

where ∃k .x = 2πk + y is provided as a predicate on x and y. Bach
also discovers that sin and arcsin are almost inverses of each
other:

arcsin(z) = x ⇒ sin(x) = z.

Note the implication. This is because arcsin is sometimes unde-
fined, and so sin and arcsin are only inverses on the range of
arcsin ([−π/2,π/2]).

geometry specifications The geometry benchmark contains func-
tions from sympy’s [23] (a popular Python library) geometrymodule,
which supplies operations over 2D shapes on a plane. Bach learns
the following specification:

b = true ⇒

(encl(x ,y) = b ∧ encl_pt(y,p) = b ⇒ encl_pt(x ,p) = b)

which states that if (i) 2D shape x encloses shape y, and (ii) point
p is in shape y, then p is in shape x .

Another insightful property that Bach detects is that rotating a
shape by a multiple of 2π results in the shape itself:

∃k .x = 2πk ⇒ rotate(y,x) = y

Finding interesting specifications In order to extract the previ-
ous specifications (and those in Figure 5), we rank the output of Bach
in decreasing order by a function h(D,F) = ⟨|F |−1, pos(D,F)⟩,

where comparison is done lexicographically and | · | is computed
by counting ast nodes. Optimal specifications, in this context, are
those that are small yet have large amounts of positive evidence.

While this ranking function worked to produce a variety of
interesting specifications, it also obscured a few that we expected
to see ranked more highly; associativity of matrix multiplication
did not show up until late in the list. Finding improved ranking
functions for various domains and tasks is an area of future research.

6.3 Empirical Evaluation

Wenow investigate (i) the scalability of Bach and (ii) the significance
of Bach’s learned specifications.

Scalability The Horn clauses for negative evidence can, in some
cases, result in a polynomial increase in the size of the relations.
To evaluate the impact of this behavior, we measure the number of
checked specifications per second (i.e., calls to Datalog solver).

Search performance is dependent more on the structure of the
formula and the amount of data than any inherent semantic mean-
ing of the library functions. As such, we test scalability on a rep-
resentative benchmark, in this case ff199. For k = 10, 50, 100, 500,
and 1000, we sample k observations for each function to construct
the dataset Dk . We run Bach for 5 minutes on Dk , and report the
number of checked specifications at every point in time. The results
are presented in Figure 6(a).

The results are as anticipated: with more data, Bach checks less
specifications in the same amount of time. The best-performing
benchmark, k = 10, checks ≈9x more specifications than the worst-
performing benchmark, k = 1000. Of note are the plateaus in the
k > 10 results, which indicate Soufflé getting slowed down with
queries with large output. These plateaus suggest that too much
data can overwhelm the external Datalog solver to the point of
losing performance. In the future, we would like to experiment
with approximate queries, where we sample a subset of the data
with the goal of falsifying a query, before trying the full dataset.

Error analysis To evaluate correctness of Bach, we need to deter-
mine how often Bach is wrong. We proceed by fixing a notion of
ground truth and computing type I/II error. Type I error is Bach pre-
senting an incorrect specification (false positive), while type II error
is Bach failing to present a correct specification (false negative).

Accurately determining ground truth for the domains Bach op-
erates on requires enumerating all possible hypotheses and asking
a human expert or an automated verifier to label them as true or
false. This is an infeasible: (i) there are infinitely many possible
hypotheses, as our formulas are not size-bounded, and (ii) even if
we bound the size of formulas, there are exponentially many specifi-
cations to consider. Using an automated verifier is a possibility, but
state-of-the-art checking of relational specifications is limited to
simple programs and properties [22]. In our setting, we are dealing
with non-trivial, dynamic Python code.

To evaluate error rates, we conducted an experiment where
we approximate ground truth by running Bach on a largeÐ1000
observed executions per functionÐdataset per benchmark, and en-
sured Bach checked every formula up to size 7 (measured by ast

leaves). We chose 1000 observations to generate ground truth be-
cause (i) we observed that the number of discovered specifications

624

Discovering Relational Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases:

the logical level. Addison-Wesley Longman Publishing Co., Inc.
[2] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. 2007. Mining API patterns

as partial orders from source code: from usage scenarios to specifications. In
Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, 25ś34.

[3] Rajeev Alur, Pavol Černỳ, Parthasarathy Madhusudan, and Wonhong Nam. 2005.
Synthesis of interface specifications for Java classes. ACM SIGPLAN Notices 40, 1
(2005), 98ś109.

[4] Glenn Ammons, Rastislav Bodík, and James R Larus. 2002. Mining specifications.
ACM Sigplan Notices 37, 1 (2002), 4ś16.

[5] Koen Claessen, Nicholas Smallbone, and John Hughes. 2010. QuickSpec: Guessing
formal specifications using testing. In International Conference on Tests and Proofs.
Springer, 6ś21.

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. JCS 6 (2010).
[7] William W Cohen. 1994. Recovering software specifications with inductive logic

programming. In AAAI, Vol. 94. 1ś4.
[8] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,

Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of Computer Programming 69, 1 (2007),
35ś45.

[9] Mark Gabel and Zhendong Su. 2008. Symbolic mining of temporal specifications.
In Proceedings of the 30th international conference on Software engineering. ACM,
51ś60.

[10] Timon Gehr, Dimitar Dimitrov, and Martin Vechev. 2015. Learning commuta-
tivity specifications. In International Conference on Computer Aided Verification.
Springer, 307ś323.

[11] Johannes Henkel, Christoph Reichenbach, and Amer Diwan. 2007. Discover-
ing documentation for Java container classes. IEEE Transactions on Software
Engineering 33, 8 (2007), 526ś543.

[12] Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2005. Permissive
interfaces. In ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 31ś40.

[13] Guofei Jiang, Haifeng Chen, Cristian Ungureanu, and Kenji Yoshihira. 2007. Mul-
tiresolution abnormal trace detection using varied-length n-grams and automata.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 37, 1 (2007), 86ś97.

[14] Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé: On Synthesis of
ProgramAnalyzers. In Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. 422ś430.

[15] Claire Le Goues and Westley Weimer. 2009. Specification mining with few false
positives. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 292ś306.

[16] Stephen Muggleton. 1995. Inverse entailment and Progol. New generation com-
puting 13, 3-4 (1995), 245ś286.

[17] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach,
Katsumi Inoue, and Ashwin Srinivasan. 2012. ILP turns 20 - Biography and
future challenges. ML 86, 1 (2012), 3ś23. DOI:http://dx.doi.org/10.1007/
s10994-011-5259-2

[18] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven precondi-
tion inference with learned features. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 42ś56.

[19] J. Ross Quinlan. 1990. Learning logical definitions from relations. Machine
learning 5, 3 (1990), 239ś266.

[20] Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivančić, and Aarti Gupta.
2008. Dynamic inference of likely data preconditions over predicates by tree
learning. In Proceedings of the 2008 international symposium on Software testing
and analysis. ACM, 295ś306.

[21] Sriram Sankaranarayanan, Franjo Ivanci, and Aarti Gupta. 2008. Mining library
specifications using inductive logic programming. In 2008 ACM/IEEE 30th Inter-
national Conference on Software Engineering. IEEE, 131ś140.

[22] Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare logic for verifying k-safety
properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 57ś69.

[23] Sympy. 2017. Python library for symbolic mathematics. http://www.sympy.org/
en/index.html. (2017).

[24] Andrzej Wasylkowski and Andreas Zeller. 2011. Mining temporal specifications
from object usage. Automated Software Engineering 18, 3-4 (2011), 263ś292.

[25] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das.
2006. Perracotta: mining temporal API rules from imperfect traces. In Proceedings
of the 28th international conference on Software engineering. ACM, 282ś291.

626

	Abstract
	1 Introduction
	2 Illustrative Examples
	3 Specifications and Evidence
	4 Specification Learning Algorithm
	5 Consistency Verification
	5.1 Background and Overview
	5.2 Detailed Description

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Exploratory Evaluation
	6.3 Empirical Evaluation

	7 Related Work
	8 Conclusion
	References

