
Constraint-Based Synthesis of Datalog Programs

Aws Albarghouthi1(B), Paraschos Koutris1, Mayur Naik2, and Calvin Smith1

1 University of Wisconsin–Madison, Madison, USA
aws@cs.wisc.edu

2 Unviersity of Pennsylvania, Philadelphia, USA

Abstract. We study the problem of synthesizing recursive Datalog pro-
grams from examples. We propose a constraint-based synthesis approach
that uses an smt solver to efficiently navigate the space of Datalog pro-
grams and their corresponding derivation trees. We demonstrate our
technique’s ability to synthesize a range of graph-manipulating recursive
programs from a small number of examples. In addition, we demonstrate
our technique’s potential for use in automatic construction of program

analyses from example programs and desired analysis output.

1 Introduction

The program synthesis problem—as studied in verification and AI—involves con-
structing an executable program that satisfies a specification. Recently, there has
been a surge of interest in programming by example (pbe), where the specification
is a set of input–output examples that the program should satisfy [2,7,11,14,22].
The primary motivations behind pbe have been to (i) allow end users with no
programming knowledge to automatically construct desired computations by
supplying examples, and (ii) enable automatic construction and repair of pro-
grams from tests, e.g., in test-driven development [23].

In this paper, we present a constraint-based approach to synthesizing Data-
log programs from examples. A Datalog program is comprised of a set of Horn
clauses encoding monotone, recursive constraints between relations. Our pri-
mary motivation in targeting Datalog is to expand the range of synthesizable
programs to the new domains addressed by Datalog. Datalog has been used
in information extraction [28], graph analytics [4,26,32], and in specifying static
program analyses [29,33], amongst others. We believe a pbe approach to Datalog
has the potential to simplify programming in an exciting range of applications.
We demonstrate how our approach can automatically synthesize a popular static
analysis from examples. We envision a future in which developers will be able to
automatically synthesize static analyses by specifying examples of information
they would like to compute from their code. For instance, the synthesizer can
live in the background of an ide and learn what kind of information a developer
likes to extract. Our approach is a concrete step towards realizing these goals.

To synthesize Datalog programs, we exploit a key technical insight: We are
searching for a Datalog program whose least fixpoint—maximal derivation tree—
includes all the positive examples and none of the negative ones. Encoding the

c© Springer International Publishing AG 2017
J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 689–706, 2017.
DOI: 10.1007/978-3-319-66158-2 44

690 A. Albarghouthi et al.

search space of all Datalog programs and their fixpoints in some first-order theory
results in a complex set of constraints. Instead, we construct a set of quantifier-
free constraints that encode (i) all sets of clauses up to a given size and (ii) all
derivations—proof trees—of a fixed size for all those clauses. In other words, we
encode underapproximations of the least fixpoints. We then employ an inductive
synthesis loop (as shown in Fig. 1) to ensure the program is correct and restart
otherwise.

Our choice of a constraint-based synthesis technique is advantageous in
(i) simulating execution of Datalog programs and (ii) steering synthesis towards
desirable programs. First, we exploit the axioms of the McCarthy’s first-order
theory of arrays [18] to encode Datalog proof trees. Second, we define the notion
of clause templates: additional constraints that impose a certain structure on syn-
thesized clauses. Clause templates (i) constrain the search space and (ii) steer
the synthesizer towards programs satisfying certain properties: for example, if
we want programs in the complexity class nc—i.e., efficiently parallelizable—we
can apply a template that ensures that all clauses are linear.

The field of inductive logic programming (ilp) has extensively studied the
problem of inducing logic programs from examples [8,20]. Generally, the empha-
sis there has been on synthesizing classifiers, and therefore more examples are
used and not all examples need be classified correctly. Our emphasis here is on
programming-by-example, where the user provides a small number of examples
and we want to match all of them. Our technical contribution can be viewed as
a novel ilp technique that completely delegates the combinatorial search to an
off-the-shelf smt solver. To the best of our knowledge, this is the first such use
of smt solvers in synthesizing logic programs. We refer to Sect. 7 for a detailed
comparison with related works.

Datalog

()

Datalog program D (solution to constraints)

D does not satisfy examples (blocking constraints)

D solves

synthesis

problem

Synthesis

constraints

Fig. 1. High-level view of inductive synthesis loop.

Contributions. First, we demonstrate that constraint solving can be applied to
the problem of synthesizing recursive Datalog programs. Second, we demonstrate
how to constrain the search using logical encodings of clause templates. Third,
we implement our approach and use it to synthesize a collection of recursive
Datalog programs. In addition to efficiently synthesizing a range of standard
Datalog programs, we demonstrate our approach’s novel ability to synthesize
program analyses from examples.

Constraint-Based Synthesis of Datalog Programs 691

2 Overview and Examples

2.1 Datalog Overview

Datalog is a logic programming language where programs are composed of a set
of Horn clauses over relations. For illustration, let us fix the domain (universe)
to be U = {a, b, c, d, e, . . .}. Suppose that we are given the binary relation E =
{(a, b), (b, c), (c, d), (d, c)}. We can think of relations as (hyper-)graphs, where
nodes are elements of the universe U and (hyper-)edges denote that a tuple is in
the relation. Pictorially, we can view E as representing a graph, where there is
an edge from node x to node y iff (x, y) ∈ E, i.e., E(x, y) is a fact.

To compute the transitive closure of the input relation
E, we can write the Datalog program in Fig. 3(a), where
T is an output relation that will contain the transitive
closure after executing the program. X,Y, and Z are interpreted as universally
quantified variables. For instance, the second clause says: for all values of X,Y

and Z picked from U , if (X,Z) ∈ E and (Z, Y) ∈ T , then (X,Y) must also be
in T .

One can view the execution of a Datalog program as a sequence of deriva-
tions, where in each step we add a new tuple to the output relation, until we
reach a fixpoint. Figure 2 pictorially illustrates the process of deriving the tran-
sitive closure for our example. T starts out as the empty set, denoted T0. By
instantiating variables in the first Horn clause with constants, we can derive the
edge (a, b) and add it to T , resulting in T1. After 9 derivations, we arrive at the
fixpoint, T9, which is the full transitive closure.

Fig. 2. Derivation sequence for transitive closure example.

2.2 Illustrative Examples

Transitive Closure. Assume we have the same input relation E as above—the
graph for which we want to compute the transitive closure. We can now supply
positive and negative examples of what edges should appear in T . For instance,

Ex+ = {(a, b), (b, c), (a, c), (a, d)}, Ex− = {(a, a)}

692 A. Albarghouthi et al.

The synthesis problem is: Find a set of Horn clauses C, defining the relation
T , such that: (i) Ex+ ⊆ T , and (ii) Ex− ∩ T = ∅. In other words, we want all
positive examples to appear in T , but none of the negative ones.

Our synthesis technique employs an inductive synthesis loop, where in each
iteration (i) a set of clauses C are synthesized, and (ii) C are verified to ensure
that they derive all positive examples and none of the negative ones. We illustrate
two iterations below.

(a) T (X, Y) ← E(X, Y).

T (X, Z) ← E(X, Y), T (Y, Z).

(b) T (X, Y) ← E(X, Y).

T (X, Z) ← E(X, Y), E(Y, Z).

(c) T (X, Y) ← E(X, Y).

T (X, Z) ← T (X, Y), T (Y, Z).

Fig. 3. Transitive closure example.

Iteration 1: Synthesis Phase. To
synthesize a set of clauses C, we fix
the maximum number of clauses in C

and the maximum number of atoms in
the body of a clause. Assume we fix the
number of clauses to 2 and the number
of atoms to 2. Then we are looking a
set of two clauses, where each clause is
of the form �(�, �) ← �(�, �),�(�, �).
Intuitively, we would like to replace the
�’s with relation symbols and the �’s
with variables. To do so, the synthesis phase constructs a set of constraints Φcl ,
where every model of Φcl is one possible completion of the above. A näıve way to
proceed here is to simply sample models of Φcl and verify whether the completion
derives all positive examples and none of the negative ones. This guess-and-check
process would take a very long time due to the large number of possible Datalog
programs comprised of two clauses.

Therefore, we need to be able to add a new constraint specifying that the least
fixpoint of the completed Horn clauses should contain all the positive examples
and none of the negative ones. This, however, is a complex constraint, as it
requires encoding the least fixpoint in first-order smt theories. Instead, we create
a weaker constraint, one that encodes every possible derivation of some finite
length d, for every possible completion of the above clauses. That is, instead of
encoding derivations up to fixpoint, we fix a bound d, thus encoding an under-
approximation of the least fixpoint. These simulation constraints Φsim allow us
to look for a completion that has a high chance of solving the synthesis problem.
Specifically, we can now find a model for Φcl ∧Φsim ∧Ex, where Ex is a constraint
that specifies that none of the negative examples are derived in the bounded
derivation, and most of the positive examples are derived—in other words, we
want to maximize the number of derived positive examples. This is because not
all positive examples may be derivable in the bounded derivation. A possible
solution for the above constraints is the set of clauses shown in Fig. 3(b).

Iteration 1: Verification Phase. The verification phase will compute the
fixpoint of these clauses and determine that they do not derive all the positive
examples. As a result, the verification phase produces a blocking constraint Φneg

that avoids all similar sets of clauses.

Constraint-Based Synthesis of Datalog Programs 693

Iteration 2: In the second iteration, the synthesis phase computes a new set of
clauses that satisfy the following constraints: Φcl ∧Φsim ∧Ex∧Φneg . As a result,
it might synthesize the correct set of clauses in Fig. 3(c).

Notice that the second clause is non-linear, meaning that an output relation,
T , appears more than once in its body. Due to the symbolic encoding, it is
simple to impose additional constraints that steer synthesis towards programs
of a specific form: we call these constraints clause templates. For instance, if we
impose a template specifying that all clauses are linear, then we synthesize the
equivalent transitive closure program in Fig. 3(a).

Andersen’s Pointer Analysis. In static program analysis, many analyses
are routinely written as Datalog programs. A given program to be analyzed is
represented as a set of input relations. The Horn clauses then compute the results
of the static analysis from these input relations. Pointer analysis is a popular
target for Datalog, where the output relation is an over-approximation of which
variables point to which other variables.

We can specify a slice of the
desired output of a static analysis,
and have our synthesizer automati-
cally detect and produce the desired
analysis in the form of a Datalog pro-
gram. Indeed, we show that our technique is able to synthesize Andersen’s pointer
analysis [3] from examples (shown above). Specifically, here we specify examples
of tuples that should or should not appear in the relation pt, where pt(a,b) spec-
ifies that variable a points to (the location of) variable b in the program. The
rest of the relations are input relations specifying the program to be analyzed.
For example, addressOf(a, b) indicates that there is a statement in the program
of the form a = &b.

3 Preliminaries

Horn Clauses. A term t is either a variable X,Y, Z, . . ., or a constant a, b, c,
A predicate symbol P is associated with an arity arity(P). An atom is an applica-
tion of a predicate symbol to a vector of variables and constants, e.g., P (X,Y, a)
for a predicate P with arity 3. A ground atom is an application of a predicate
symbol to constants, e.g., P (a1, . . . , an), where {ai}i are constants. A substitu-
tion θ is a mapping from variables to constants. Applying θ to an atom yields
a ground atom. For example, if θ = {X �→ a, Y �→ b}, then H(X,Y)θ is the
ground atom H(a, b). When clear from context, we simplify notation to Hθ.

A Horn clause c is of the form: H(X) ← B1(X1) ∧ . . . ∧ Bn(Xn), where
H(X), B1(X1), . . . , Bn(Xn) are atoms. The atom H(X) is called the head of
the clause, denoted head(c); the set of atoms {Bi(Xi)} are the body of the clause,
denoted body(c). As is standard, we replace conjunctions (∧) in the body of with
commas (,). We use C to denote a finite set of Horn clauses {c1, . . . , cn}.

694 A. Albarghouthi et al.

Herbrand Interpretations. We define the semantics of Horn clauses using
Herbrand interpretations. First, assume we have a fixed Herbrand Universe U ,
which is a set of constants that can appear in atoms, e.g., U = {a, b, c, . . .}. A
Herbrand interpretation I of a set of Horn clauses C is a set of ground atoms
with constants drawn from U . For example, an interpretation I of our transitive
closure example (Sect. 2) could be: {T (a, b), E(b, c), T (c, d)}.

Definition 1 (Herbrand models and minimality). A Herbrand interpreta-
tion M for a set of clauses C is a Herbrand model for C iff for every clause
H ← B1, . . . , Bn ∈ C, for all substitutions θ, if {B1θ, . . . , Bnθ} ⊆ I, then Hθ ∈
I. A Herbrand model M is a minimal model for C iff for all M ′ ⊂ M , M ′ is
not a Herbrand model of C.

Datalog Programs. A Datalog program C is a finite set of Horn clauses. The
predicates of the program can be partitioned into two disjoint sets, Rin(C) and
Rout(C): Rin(C) are the predicates that appear only in the bodies of clauses in
C, and are called the input relations. Rout(C) are the predicates that appear at
the heads of clauses in C, and are called the output relations.

Semantics and Derivations. The input of a Datalog program C is a finite set
of facts F , which are ground atoms over the input relations Rin(C). A Herbrand
model M of C with input F is a model of C such that F ⊆ M . The interpretation
of a Datalog program C with input F is its minimal model M . Computing the
minimal model M is done using the clauses in C to derive all possible facts until
the least fixpoint is reached. We denote the minimal model M as C(F).

There always exists a unique minimal model, thus, semantics are well-defined.
Figure 4 encodes the least fixpoint computation of C(F) as two rules that
monotonically populate the model M with more facts. The rule init initial-
izes M to the set of facts F . The rule derive uses clauses in C to derive a new
fact to be added to M . Observe that (i) the set M is monotonically increasing
and (ii) the fixpoint computation eventually terminates, as the derived facts
can only contain constants from the set of facts F , which is finite.

Definition 2 (Derivation sequence). Given a Datalog program C with input

F , a derivation sequence is a sequence of sets of ground atoms: M0

ci1
,θ1

−−−−→

M1

ci2
,θ2

−−−−→ M2

ci3
,θ3

−−−−→ · · ·
cin ,θn

−−−−→ Mn, where M0 = F , and Mj is the set of
ground facts resulting from applying derive to Mj−1 with the clause cij

∈ C

and substitution θj. A maximal derivation sequence is one where derive cannot
be applied to Mn, i.e., Mn = C(F).

Datalog Synthesis Problem. A Datalog synthesis problem S, or synthesis
problem for short, is a tuple (R, F,E), where: (i) R = (Rin , Rout) is a pair of
input and output predicate sets that are disjoint. (ii) F is a finite set of facts—
ground atoms over predicates in Rin ; (iii) E = (E+, E−): E+ is a finite set of
positive examples, which are ground atoms over predicates in Rout . E− is a finite
set of negative examples, which are also ground atoms over predicates in Rout .
We assume that E+ ∩ E− = ∅.

Constraint-Based Synthesis of Datalog Programs 695

init

M ← F

H ← B1, . . . , Bn ∈ C

{B1θ, . . . , Bnθ} ⊆ M Hθ �∈ M
derive

M ← M ∪ {Hθ}

θ is an arbitrary substitution

Fig. 4. Rules for deriving minimal Herbrand model.

Definition 3 (Solution to Datalog synthesis problem). A solution to a
synthesis problem S = (R, F,E) is a Datalog program C with Rin(C) = Rin and
Rout(C) = Rout such that the following two conditions hold: (i) E+ ⊆ C(F),
i.e., all positive examples are in the minimal model of C; and (ii) E−∩C(F) = ∅,
i.e., C does not derive any of the negative examples.

4 Constraint-Based Synthesis Algorithm

We now formally define our synthesis algorithm. Recall that, given a synthesis
problem S = (R, F,E), our goal is to discover a set of clauses C where the least
fixpoint C(F) contains all positive examples and none of the negative ones.

To avoid encoding least fixpoints, we will encode derivations of a fixed size—
i.e., we encode under-approximations of the least fixpoint—and search for a set
of clauses with a bounded derivation that derives most positive examples and
none of the negative ones. In Sects. 4.1 and 4.2, we show how to encode the
space of clauses and bounded derivations. In Sect. 4.3, we present an inductive
synthesis loop that alternates between synthesizing clauses and verifying them
until arriving at a solution.

4.1 Clause Constraints

Preliminaries. We describe here the clause constraints, a set of first-order
constraints that define the space of all possible Datalog programs of a given size.

Throughout this section we shall assume a fixed Datalog synthesis problem
S = (R, F,E), where Rin = {R1, . . . , Rn} and Rout = {Rn+1, . . . , Rm}. With-
out loss of generality, we shall assume that all predicates are of arity 2. In Sect. 6,
we describe how we implement the algorithm for arbitrary arities. Our goal is to
synthesize a solution C. We shall fix the maximum number of clauses, nc > 0, to
appear in C and a maximum number of body atoms per clause, nb > 0. We will
construct the clause constraints such that they capture every set of nc clauses
C = {c1, . . . , cnc

}, where for each ci ∈ C, |body(ci)| = nb.

Variables and Constraints. For each clause ci, for i ∈ [1, nc], we will introduce
the following integer variables:

hi, bi,1, . . . , bi,nb
(Vpreds)

vhi,1, vhi,2, vbi,1, vbi,2, . . . , vbi,2nb−1, vbi,2nb
(Vargs)

696 A. Albarghouthi et al.

The variables hi denote the predicate symbol in the head of the clause ci; sim-
ilarly, bi,j denote the j’th predicate symbol in the body of ci. Specifically, the
value of the variable will be the index of the predicate symbol to appear at that
location. For instance, if h2 = 5, then the head of clause c2 will be R5 ∈ Rout .
The variables Vargs denote the arguments (variables) in the atoms of the clauses.
For instance, vhi,1 and vhi,2 denote the arguments to the head of clause ci.

Since heads of clauses can only be output predicates, and body predicates
can be any predicate in Rin ∪ Rout , we formulate the following constraints:

ϕh
cl �

∧

i∈[1,nc]

n + 1 ≤ hi ≤ m ϕb
cl �

∧

i∈[1,nc]

∧

j∈[1,nb]

1 ≤ bi,j ≤ m

We do not impose any constraints on Vargs; we will simply use their values to
partition arguments into equivalence classes. For instance, if vhi,1 = vhi,2, the
head of ci will be an atom of the form R(X,X), for some predicate R ∈ Rout ;
otherwise, if vhi,1
= vhi,2, it would be of the form R(X,Y). Finally, the clause

constraints are defined as follows: Φcl � ϕh
cl ∧ ϕb

cl

Denotation and Properties. A model m of Φcl , denoted m |= Φcl , maps
every variable in Vpreds ∪ Vargs to an integer. We now show how to transform
a model m into a set of clauses C. We start by defining the function �.�m as
follows:

�hi�m = Rm(hi) �bi�m = Rm(bi) �vhi�m = vmap(vhi) �vbi�m = vmap(vbi)

where m(x) is the value of variable x in model m. Let us partition Vargs into
equivalence classes, defined by m(.)—i.e., x, y ∈ Vargs are equivalent iff m(x) =
m(y). We shall now assign to each equivalence class a unique argument from
the set {X,Y, Z, . . .}. The function vmap maps each variable in Vargs to the
argument assigned to its equivalence class. Using �.�m, the head of clause ci is
�hi�(�vhi,1�, �vhi,2�), and the j’th body atom of ci is �bi,j�(�vbi,2j−1�, �vbi,2j�).
We abuse notation and use �m� to represent the set of clauses C denoted by m.

Example 1. The above constraints and their solution are best demonstrated
through a simple example. Suppose that Rin = {R1} and Rout = {R2}, and sup-
pose that nc = 1 and nb = 2. Φcl will then be ϕh

cl ∧ ϕb
cl , where ϕh

cl � 2 ≤ h1 ≤ 2
and ϕb

cl � 1 ≤ b1,1 ≤ 2 ∧ 1 ≤ b2,2 ≤ 2. Suppose we solve Φcl and get the model
m |= Φcl :

m =

[

h1 �→ 2 b1,1 �→ 1 b1,2 �→ 2 vh1,1 �→ 1
vh1,2 �→ 3 vb1,1 �→ 1 vb1,2 �→ 2 vb1,3 �→ 2 vb1,4 �→ 3

]

The denotation �m� is the clause R2(X,Z) ← R1(X,Y), R2(Y,Z). Observe that
the first argument of the head and the first argument of the first body atom are
the same; this is because m(vh1,1) = m(vb1,1). Observe also that the predicate
symbol in the head is R2 and the first symbol in the body is R1; this is because
m(h1) = 2 and m(b1,1) = 1.

Constraint-Based Synthesis of Datalog Programs 697

Theorem 1. Let C be the set of all Datalog programs with nc clauses, nb atoms
per clause, and no constants in atoms. Let L be the set of models of Φcl . Then,
for each C ∈ C, there exists a model m ∈ L such that �m� is equivalent to C.

4.2 Simulation Constraints

Arrays and Monotonic Derivations. The goal of the simulation constraints
is to encode all derivation sequences of the set of clauses represented by the
clause constraints, Φcl . Due to the complexity of encoding all maximal derivation
sequences (least fixpoints), we place a bound d on the number of derivations.1

That is, the simulation constraints will encode all derivations with exactly d

steps. It is critical to recall that a derivation, as we define it in this paper,
always produces a new fact. Contrast this with the standard database-theoretic
definition, where we can derive the same fact multiple times.

Recall that, given a Datalog program C with input F , a derivation sequence

of length d is M0

ci1
,θ1

−−−−→ M1

ci2
,θ2

−−−−→ M2

ci3
,θ3

−−−−→ · · ·
cid

,θd

−−−−→ Md. Thus, we will
create a set of constraints Φsim that encode all possible derivations of length d

from all possible sets of clauses C defined by Φcl .
A key observation in our technique is that Mi grows monotonically, that is,

∀i ∈ [0, d− 1].Mi � Mi+1. We exploit this property of Datalog to encode the set
of true facts after every derivation using McCarthy’s theory of arrays [18]. An
array arr : X → Y is a map from some domain X to another domain Y . The i’th
element of an array is denoted arr [i]. We shall therefore use arrays to represent
input and output relations. Specifically, the arrays will be of the type U2 → B,
that is, from pairs of elements of the universe to a Boolean value indicating
whether the pair is in the relation. The axiom of the theory of arrays that allows
us to model derivations is read-over-write. Specifically, read-over-write allows us
to model adding one element to the relation, without explicitly having to state
the frame condition—that all other array elements remain unchanged.

We decompose the definition of simulation constraints into (i) constraints
encoding the initial state of all relations, (ii) constraints encoding a single appli-
cation of derive, and (iii) constraints encoding derivation sequences.

Encoding the Initial State. For each Ri ∈ Rin , we create an array variable

ini : U2 → B (Vinrels)

The universe U is set to be all constants appearing in facts F and examples E.2

For each output relation Ri ∈ Rout , we create a set of arrays:

out i,0, . . . , out i,d (Voutrels)

1 Encoding maximal derivations requires unrollings up to the size of the Herbrand
base, along with universal quantification.

2 For Datalog without constants, we can assume w.l.o.g. that the constants in the
examples E are a subset of the constants in F .

698 A. Albarghouthi et al.

where out i,j will represent what facts have been derived over Ri after the first j

applications of derive. The input and output arrays are constrained as follows:

ϕRin

init �
∧

Ri∈Rin

∧

d∈U2

ini[d] ⇐⇒ Ri(d) ∈ F ϕRout

init �
∧

Ri∈Rout

∧

d∈U2

¬out i,0[d]

Encoding a Single Derivation. We now show how to encode a single step
of the derivation sequence (the i’th derivation): Mi−1 −−→ Mi. We define the
formula derivei,j to encode the effect of applying clause j in the i’th derivation.

To formally define derivei,j , we need to first introduce a set of variables
representing the substitution θi that is used in the i’th derivation. Specifically,
we introduce the following variables of type U , for i ∈ [1, d]:

shi,1, shi,2, sbi,1, sbi,2, . . . , sbi,2nb−1, sbi,2nb
(Vsubs)

where (shi,1, shi,2) denote the substitutions to the arguments in the head of the
clause used in the i’th derivation, and (sbi,2j−1, sbi,2j) denote the substitutions
to the arguments in the j’th body atom of the clause used in the i’th derivation.
We constrain these variables such that they adhere to the arguments of the clause
used in the i’th derivation. For example, if a body atom is R(X,X), then we
want to ensure that any substitution is of the form R(a, a), for a ∈ U . Therefore,
we introduce the constraint latchesi,j , which indicates that, if any two arguments
in atoms of clause j are the same variable, then they should always get the same
substitution at position i in the derivation:

latchesi,j �
∧

vxj,k,vxj,l∈Vargs

vxj,k = vxj,l ⇒ σ(vxj,k) = σ(vxj,l)

where the notation vxj,k denotes any variable vhj,k or vbj,k in Vargs, and the
function σ is defined such that σ(vhj,k) = shi,k and σ(vbj,k) = sbi,k; that is, σ

encodes the correspondence between the argument variables of the j’th clause
and the substitution variables in the i’th derivation.

Now, derivei,j is a conjunction of two constraints: (i) deriveb
i,j , which specifies

that all ground atoms in the body of clause j should be true in Mi−1, and
(ii) deriveh

i,j , which specifies the new fact derived by applying the clause j at
point i of the derivation. (We ensure that no fact is derived more than once.)

derive
b
i,j �

∧

k∈[1,n]

∧

l∈[1,nb]

bj,l = k ⇒ ink[(sbi,2l−1, sbi,2l)]

∧

∧

k∈[n+1,m]

∧

l∈[1,nb]

bj,l = k ⇒ outk,i−1[(sbi,2l−1, sbi,2l)]

derive
h
i,j �

∧

k∈[n+1,m]

hj = k ⇒ (¬outk,i−1[(shi,1, shi,2)] ∧ outk,i[(shi,1, shi,2) �→ true])

Encoding All Derivation Sequences. Now that we have defined how to
encode a single step of the derivation, we can present the encoding of a derivation
sequence of a fixed length d. First, we introduce the following integer variables:

Constraint-Based Synthesis of Datalog Programs 699

s1, . . . , sd (Vderivcls)

where si encodes which clause is applied in the i’th point in the derivation
sequence. Since Φcl fixes the number of clauses to nc, we require the condition
ϕc

sim �
∧

i∈[1,d] 1 ≤ si ≤ nc.
We now encode the effect of an application of derive. The following con-

straint specifies, for every value si could take (from 1 to nc), the effect on the
output arrays in the i’th step of the derivation sequence.

ϕder
sim �

∧

i∈[1,d]

∧

j∈[1,nc]

si = j ⇒ derivei,j ∧ latchesi,j

Finally, the simulation constraints are defined as follows:

Φsim � ϕRin

init ∧ ϕRout

init ∧ ϕc
sim ∧ ϕder

sim

Correctness. The following theorem states correctness of simulation constraints
by showing that, for a fixed set of clauses C, the models of Φsim have a one-to-
one correspondence with the derivations of C of length d. Intuitively, the facts
true in the output relation after d steps of a derivation are encoded in the input
arrays ini and final output arrays out i,d. Given a model m |= Φsim , we define
final(m) to denote the set of all facts at the end of the derivation defined by m:
final(m) = {Rk(a) | a ∈ U2,m(outk,d(a)) = true ∨ m(ink(a)) = true}.

Theorem 2. Let m |= Φcl . Let T be the set of all unique derivation sequences
of �m� of length d. Let L be the set of all models m′ |= Φsim , where m′ agrees
with m on valuations of Vpreds,Vargs. There is a bijection f : L → T s.t., for all
m ∈ L and t ∈ T , if f(m) = t then final(m) = Md (final set of facts in t).

4.3 Inductive Synthesis Loop

We now present our inductive synthesis loop (Fig. 5), given a synthesis problem
S = (R, F,E). We fix the maximum number of clauses nc, the maximum num-
ber of body atoms nb, and we assume that the simulation is of length d ≤ |E+|
(otherwise, the simulation constraint may be unsat). synth begins by con-
structing the clause and simulation constraints, Φcl and Φsim . It then employs
a synthesize–verify loop.

Synthesis Phase. In line 6, synth finds a model m for the constraints, which
denotes a set of clauses C = �m�. This can be performed using an off-the-shelf
smt solver. We impose two additional constraints. First, ψ− ensures that no
negative examples in E− are derived in the d steps of the derivation sequence.
Second, ψ+

soft is a soft constraint that attempts to maximize the number of pos-
itive examples derived in the d steps of the derivation sequence. This is because
not all positive examples may be derivable in d derivations.

Verification Phase. In line 8, synth verifies whether C results in a solution
to the synthesis problem. Specifically, it computes the fixpoint C(F) and checks

700 A. Albarghouthi et al.

whether all positive examples are in the fixpoint and none of the negative ones.
If so, a solution is found and synth terminates. The verification step can be
performed using an off-the-shelf Datalog solver.

Blocking Constraints. If verification fails, we create a set of constraints,
block(m), that removes sets of Horn clauses equivalent to �m�. Specifically, we
first characterize a set of models whose denotation is equivalent to m:

∧

i∈[1,nc]

⎛

⎝

∧

v∈Vi
preds

v = m(v) ∧
∧

v,v′∈Vi
args

,m(v)=m(v′)

v = v′

⎞

⎠

where Vi
args

and Vi
preds

denote the respective subsets of Vargs and Vpreds of the
i’th clause. Therefore, the above constraint specifies all models whose denotation
is syntactically equivalent to �m�, modulo variable renaming. block(m) is the
negation of the above constraint. Note that characterizing all models whose
denotation is equivalent to �m� is an undecidable problem [1].

The following theorem states soundness and completeness of synth, relative
to a fixed nc and nb. Note that, in point 2, if synth terminates with no solution,
then this means that we have proven non-existence of a solution with ≤ nc clauses
and ≤ nb atoms. Point 2 is true because all programs that are smaller than nc

and nb can be written as a program with exactly nc clauses and nb body atoms—
simply by duplicating clauses and body atoms.

Theorem 3 (Soundness and completeness). (1) If synth(S) returns a
Datalog program D, then D is a solution to S. (2) If synth(S) terminates with
no solution, then no solution exists with ≤ nc clauses and ≤ nb atoms per body
of each clause. (3) synth(S) terminates in finitely many steps.

1: function synth(Synthesis problem S)
2: Construct Φcl and Φsim for S

3: Φneg ← true

4: ψ− ←
∧

Ri(d)∈E− ¬outi,d[d]

5: ψ
+
soft

← maximize |{Ri(d) ∈ E+ | outi,d[d] = true}|

6: while ∃m |= Φcl ∧ Φsim ∧ Φneg ∧ ψ− ∧ ψ
+
soft

do

7: C ← m

8: if E+ ⊆ C(F) and E− ∩ C(F) = ∅ then

9: return C

10: Φneg ← Φneg ∧ block(m)

11: return no solution exists for S

Fig. 5. Inductive synthesis loop.

5 Encoding Templates

We now present clause templates: additional constraints that exploit the use of
the symbolic encoding to impose a certain structure on the synthesized clauses.

Constraint-Based Synthesis of Datalog Programs 701

Non-recursive Clauses. The most natural clause template is the one that
ensures that at least one of the clauses is a base case—with no output relation
in the body. To define this template, we designate one of the clauses (say the
first) to be the base case. Recall that the predicate symbols appearing in the
body of the first clause are b1,1, . . . , b1,nb

, where each b variable holds a value
from 1 to m indicating the index of the predicate symbol. Since all indices of
input relations are in [1, n], all we need to impose is the following constraint:
basecase �

∧

i∈[1,nb]
b1,i ≤ n. If we specify that every clause is non-recursive,

then we syntactically restrict the solution to be in the class of Unions of Con-
junctive Queries (ucqs), a fundamental query class [1], since it captures the
class of positive sql queries.

Linear Clauses. A clause is linear when there is at most one occurrence of
an output predicate in its body. Linear Datalog programs—a strict subset of
Datalog—are in the complexity class nc (Nick’s class): the set of problems solv-
able in polylogarithmic time with a polynomial number of processors. Informally,
a problem in nc is inherently parallel. In addition to their theoretical niceties,
linear Datalog programs have also proven useful in distributed processing [27].
In order to synthesize linear programs, we impose the following constraint:

linear �
∧

i∈[1,nc]

¬
∨

j,k∈[1,nb],j �=k

bi,j ≥ n + 1 ∧ bi,k ≥ n + 1

The above constraint states that for every clause i, no two predicate symbols in
the body, bi,j and bi,k, refer to output relations.

Connected Clauses. It is most often the case that arguments in the head of a
clause also appear in its body. For instance, the clause H(X,Y) ← B(Z,W) will
end up deriving every possible tuple in U2 (assuming B is not empty), which
is unlikely a program of interest. To avoid programs that are able to derive all
possible tuples, we can impose the following constraint:

conn �
∧

i∈[1,nc]

⎛

⎝

∨

j∈[1,2nb]

vhi,1 = vbi,j ∧
∨

k∈[1,2nb]

vhi,2 = vbi,k

⎞

⎠

6 Implementation and Evaluation

We have implemented the presented synthesis technique in a new tool called
Zaatar. Zaatar utilizes the open-source Z3 smt solver [19] for satisfiability check-
ing and evaluating Datalog programs (using Z3’s fixpoint engine [13]).

Our implementation takes as input a synthesis problem where relations can
be of arbitrary arities. The encoding in Sect. 4 assumes that all relations are
binary. We extend the encoding to assume that all relations have the same arity,
the maximum arity amongst all relations in R. For example, if the maximum
arity is 4, we describe a binary relation R(X,Y) by disregarding the variables
in Vargs that represent the third and fourth arguments.

702 A. Albarghouthi et al.

Benchmarks. We collected a set of Datalog programs comprised of recursive
and non-recursive programs. The benchmarks are fully listed in Table 1. The
non-recursive benchmark programs include (i) path extraction programs (path3
and path4, which extract all paths of length 3 or 4 from a graph); (ii) cycle
and triangle extraction from a graph (cycle and triangle); and (iii) path
extraction with alternating edge colors (redblue and redblueUnd). Our recur-
sive benchmarks include standard Datalog programs, like transitive closure of a
graph (TC and TCUnd) and same generation (samegen), which extracts all indi-
viduals of the same generation from a family tree. In addition to the standard
graph-manipulating Datalog programs, we also synthesized (i) least inductive
invariant generation (leastInvariant), which, given a finite-state program and
its least inductive invariant, returns the initiation and consecution rules defin-
ing an inductive invariant [5]; and (ii) pointer analysis programs (andersenFull
and andersenSimple).

Experimental Results. The experimental results are shown in Table 1. For
each synthesis problem, we instantiated it with a small number of facts F in
the input relations (3–8 facts per benchmark). Then, we supplied a small and
sufficient number of positive and negative examples that describe the problem.

Table 1. Experimental results. Mac OS X 10.11; 4 GHz Intel Core i7; 16GB RAM.

Constraint-Based Synthesis of Datalog Programs 703

The number of positive/negative examples required per benchmark are shown in
Table 1 (see columns |E+| and |E−|). For all benchmarks, we fixed the derivation
bound d to be the number of positive examples |E+|. The only templates we
used were basecase (to force a base case in recursive programs) and conn (see
Sect. 5). (Without the conn template imposed, most recursive benchmarks do
not terminate within a reasonable amount of time: they keep synthesizing trivial
programs with head arguments disjoint from body arguments, and therefore keep
iterating through the synthesis loop.)

Our results indicate that our approach can synthesize non-trivial programs
within a small amount of time. For most benchmarks, Zaatar synthesizes the cor-
rect solution within 0–5 s. The longest running benchmark—Andersen’s analysis,
andersenFull—requires around 2 min. Furthermore, the correct solution is usu-
ally discovered within the first iteration of synth (see column #Iters. in Table 1).
This result indicates that, using our approach, a small number of examples is
sufficient to describe a non-trivial graph-based computation.

For most benchmarks, a very small number of negative examples is required—
often none. We notice that the numbers of required negative examples increases
with the size of the desired program (as defined by nc and nb) and the arities
of relations. For example, in the triangle benchmark, there are many non-
recursive programs correlating triples of vertices; we thus needed to supply 8
negative examples to ensure that the program is indeed only extracting triples
that form triangles. Other benchmarks that require multiple negative examples
are pathsOdd and pathsMod3, which have 3 and 4 atoms in the bodies of their
clauses.

Discussion. Our results demonstrate the merit of our approach at synthesizing
a range of different Datalog programs in a small amount of time and with a
small number of examples. It is important, however, to state the limitations.
First, our search process imposes an upper bound on the number of clauses and
atoms that can appear in programs. Second, as the size of the desired program
increases, the number of examples required increases (and, therefore, the size of
the derivation bound d), thus stressing the smt solver.

7 Related Work and Discussion

Synthesis of Recursive Programs. We are not the first to synthesize recur-
sive functions. Recent synthesis works from the community have focused on func-
tional programs—for example, [2,10,15,16,22,24,24,31]. Our work synthesizes
recursive graph-/relation-manipulating programs. While we can encode relations
in a functional programming language, the synthesis task becomes tedious. Dat-
alog is a more natural fit for relation manipulation.

Inductive Logic Programming. Our synthesis target is closest in nature to
the rich field of inductive logic programming (ilp) [8,20]. Generally speaking,
a primary focus of ilp research has been on inducing theories, e.g., a program
explaining a biological process. The formulation, however, is very similar to

704 A. Albarghouthi et al.

our setting, with the addition of background knowledge encoded as clauses. The
search technique in ilp is often a bottom-up or top-down search for a theory. In
the bottom-up setting, the synthesizer begins with no clauses, and incrementally
grows the set of clauses (by climbing up a subsumption lattice of clauses) using
the provided positive and negative examples; the top-down setting proceeds in
the opposite direction. Our search strategy is rather different: we consider all
examples at once and present a novel encoding that delegates the process to
an smt solver. Naturally, our approach directly benefits from future advances
in smt techniques. Additionally, ilp techniques often require a large number of
examples. In our approach, our goal is to utilize only a small number of examples.

Synthesis of recursive clauses has not received as much attention in ilp.
Flener and Yilmaz [9] provide a survey of ilp in the recursive setting. A recent
line of work by Muggleton et al. presents a meta-interpretive learning (mil) tech-
nique for synthesizing recursive clauses for various domains [6,17,21]. Compared
to our technique, mil requires meta-rules (similar to our clause templates) that
can constrain the search towards recursive clauses. Meta-rules, however, are very
specific: they (i) fix all the variables in the rule, (ii) exactly specify which rela-
tions in the rule are recursive, and (iii) fix the size of a rule. Thus, the only
parameters of the search are the relations to appear in the body and the head
of a clause. Our templates can encode meta-rules and are strictly more gen-
eral than meta-rules. In practice, we do not restrict the variables at all (we only
use conn to eliminate ill-formed rules). Further, mil tools like Metagol require a
total ordering on the Herbrand base, which might not exist for certain examples,
e.g., transitive closure and Andersen, where graphs are cyclic. Nonetheless, mil

also addresses predicate invention, the problem of introducing new predicates.
This is an interesting and difficult problem that relates to synthesizing auxiliary
procedures in the more general program synthesis setting.

Constraint-Based Synthesis. Our technique is inspired by symbolic synthesis
techniques [12,14,25,30].Techniques like [12] encode all loop-free programs of
up to a certain size, along with the examples, as a formula to be solved by an smt

solver. We encode the search for Horn clauses along with bounded derivations of
the clauses as a first-order formula. Since efficient symbolic encodings can only
express loop/recursion-free executions, we use bounded derivations to induce
recursive programs symbolically, without having to encode the least fixpoint.

Acknowledgements. This work is supported by NSF awards 1566015, 1652140, and
a Google Faculty Research Award.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934–950. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 67

http://dx.doi.org/10.1007/978-3-642-39799-8_67

Constraint-Based Synthesis of Datalog Programs 705

3. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. Ph.D. thesis, University of Cophenhagen (1994)

4. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E.,
Veldhuizen, T.L., Washburn, G.: Design and implementation of the logicblox sys-
tem. In: Proceedings of 2015 ACM SIGMOD International Conference on Man-
agement of Data, pp. 1371–1382. ACM (2015)

5. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Proce-
dures with Applications to Verification. Springer Science and Business Media,
Heidelberg (2007). doi:10.1007/978-3-540-74113-8

6. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involv-
ing composable objects. In: Proceedings of 24th International Joint Conference
Artificial Intelligence (IJCAI 2015), pp. 3423–3429 (2015)

7. Cropper, A., Tamaddoni-Nezhad, A., Muggleton, S.H.: Meta-interpretive learning
of data transformation programs. In: Proceedings of 24th International Conference
on Inductive Logic Programming (2015)

8. De Raedt, L.: Logical and Relational Learning. Springer Science and Business
Media, Heidelberg (2008)

9. Flener, P., Yilmaz, S.: Inductive synthesis of recursive logic programs: achievements
and prospects. JLP 41, 141–195 (1999)

10. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. In: POPL. ACM (2016)

11. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. CACM 55, 97–105 (2012)

12. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI (2011)

13. Hoder, K., Bjørner, N., De Moura, L.: µZ–an efficient engine for fixed points with
constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 457–462. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 36

14. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE (2010)

15. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: an expla-
nation based generalization approach. JMLR 7, 429–454 (2006)

16. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.
In: OOPSLA (2013)

17. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B., Muggleton, S.: Bias reformulation
for one-shot function induction. In: ECAI, pp. 525–530 (2014)

18. McCarthy, J.: Towards a mathematical science of computation. In: Colburn, T.R.,
Fetzer, J.H., Rankin, T.L. (eds.) Program Verification. SCS, vol. 14, pp. 35–56.
Springer, Dordrecht (1993)

19. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

20. Muggleton, S.: Inductive logic programming. N. Gener. Comput. 8, 295–318 (1991)
21. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive

learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)
22. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: PLDI

(2015)
23. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. In:

PLDI (2014)

http://dx.doi.org/10.1007/978-3-540-74113-8
http://dx.doi.org/10.1007/978-3-642-22110-1_36
http://dx.doi.org/10.1007/978-3-540-78800-3_24

706 A. Albarghouthi et al.

24. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: Proceedings of 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 522–538. ACM (2016)

25. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
doi:10.1007/978-3-319-21668-3 12

26. Seo, J., Guo, S., Lam, M.S.: Socialite: datalog extensions for efficient social net-
work analysis. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 278–289. IEEE (2013)

27. Shaw, M., Koutris, P., Howe, B., Suciu, D.: Optimizing large-scale semi-näıve
datalog evaluation in hadoop. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0
2012. LNCS, vol. 7494, pp. 165–176. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32925-8 17

28. Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative information
extraction using datalog with embedded extraction predicates. In: Proceedings of
33rd international conference on Very large data bases, pp. 1033–1044. VLDB
Endowment (2007)

29. Smaragdakis, Y., Balatsouras, G., et al.: Pointer analysis. Found. Trends Program.
Lang. 2, 1–69 (2015)

30. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS (2006)

31. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23702-7 23

32. Wang, J., Balazinska, M., Halperin, D.: Asynchronous and fault-tolerant recursive
datalog evaluation in shared-nothing engines. Proc. VLDB Endow. 8, 1542–1553
(2015)

33. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI, pp. 131–144. ACM (2004)

http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://dx.doi.org/10.1007/978-3-642-23702-7_23

	Constraint-Based Synthesis of Datalog Programs
	1 Introduction
	2 Overview and Examples
	2.1 Datalog Overview
	2.2 Illustrative Examples

	3 Preliminaries
	4 Constraint-Based Synthesis Algorithm
	4.1 Clause Constraints
	4.2 Simulation Constraints
	4.3 Inductive Synthesis Loop

	5 Encoding Templates
	6 Implementation and Evaluation
	7 Related Work and Discussion
	References

