Practical Network-wide Packet Behavior
Identification by AP Classifier

Huazhe Wang, Student Member, IEEE, Chen Qian, Member, IEEE, Ye Yu, Student Member, IEEE,
Hongkun Yang, Student Member, IEEE, and Simon S. Lam, Fellow, IEEE, Fellow, ACM

Abstract—Identifying the network-wide forwarding behaviors
of a packet is essential for many network management appli-
cations, including rule verification, policy enforcement, attack
detection, traffic engineering, and fault localization. Current tools
that can perform packet behavior identification either incur large
time and memory costs or do not support real-time updates. In
this paper we present AP Classifier, a control plane tool for packet
behavior identification. AP Classifier is developed based on the
concept of atomic predicates which can be used to characterize
the forwarding behaviors of packets. Experiments using the data
plane network state of two real networks show that the processing
speed of AP Classifier is faster than existing tools by at least an
order of magnitude. Furthermore, AP Classifier uses very small
memory and is able to support real-time updates.

Index Terms—Network-wide behavior; Packet classification;
Software-defined networking

I. INTRODUCTION

ANAGING packet forwarding in a large network is a

complex problem. Software defined networking (SDN)
simplifies network management by decoupling the control
plane from devices that forward packets, to be referred to as
boxes.! More specifically, control plane applications, including
routing [2], [3], traffic engineering [4], access control [5], mea-
surement [6], and policy enforcement [7] [8], are implemented
as software in a logically centralized controller. The controller
specifies forwarding actions of packets by writing directly into
flow tables in each box in the form of rules, through a standard
API such as OpenFlow [9].

Let a flow be an equivalence class of packets defined on a
subset of fields in the packet header, e.g., the 5-tuple consisting
of source address, destination address, source port, destination
port, and protocol type. All packets of a flow have the same
forwarding behaviors in a network (also referred to as the
flow’s behaviors) when there is no data plane update. Network-
wide packet behavior identification is a control plane function
that discovers the actual forwarding behaviors of the packets
in a flow (or a set of flows) including their forwarding paths,
where they stop or are dropped, and which boxes they traverse,
by analyzing network state in the data plane [10]. Packet

Huazhe Wang, Chen Qian are with the Department of Computer Engineer-
ing, University of California Santa Cruz. {huazhe.wang, cqian12}@ucsc.edu.
Chen Qian is the corresponding author. Ye Yu is with University of Kentucky.
Hongkun Yang is with Google. Simon S. Lam is with The University of
Texas at Austin. A preliminary version was published in Proceedings of ACM
CoNEXT 2015 [1].

'We use “box” to refer to any network device that forwards packets,
including routers, switches, and functional middle boxes such as firewalls,
NATs and intrusion detection systems (IDSes).

behavior identification is necessary for SDN management in
the following situations.

Verification of flow properties. For network flows, the
control plane may specify pre-defined flow behaviors that
satisfy application requirements or network policies, called
flow properties. We highlight several typical flow properties.

o Forwarding correctness: The control plane must ensure
that packets of the flow can be forwarded to the destina-
tion (e.g., a host or an egress router), or dropped if they
are not allowed to reach the destination.

« Policy enforcement: Network policies may require flow
packets to go through various middle boxes. For example,
HTTP traffic should be forwarded through a sequence of
middle boxes: firewall, IDS, and web proxy [7]. Other
types of traffic may be required to traverse different
sequences of middle boxes.

o Quality of service: Some applications require guaranteed
flow quality. For example, a multi-tenant cloud should
provide certain levels of bandwidth or latency for its users
based on service level agreements [11], [12].

« VLAN isolation: A cloud provider guarantees that packets
in a virtual network (VLAN) cannot travel to another
VLAN.

Any data plane update could change the behaviors of a
number of flows. Prior to data plane updates, the controller
needs to verify that the data plane, with the new updates, can
forward the packets correctly and comply with the flow prop-
erties. Such verification requires packet behavior identification
for the flows that will be affected by the new rules.

Attack detection. Data plane attacks to an SDN may
change the correct packet behaviors or send packets with
abnormal behaviors, such as data plane DDoS attacks. An
efficient data plane attack detection method should verify data
plane forwarding behaviors and be aware of the behaviors that
violate network policies. For example, a recent work SPHINX
[13] uses flow graphs to represent network operations and
detect abnormal forwarding behaviors.

Traffic engineering. Centralized traffic engineering [2] [14]
[15] determines the forwarding paths for flows to maximize
network throughput. When the controller is notified about a
new flow, it needs to identify its packet behaviors in the current
data plane and check whether they can meet application re-
quirements such as bandwidth or latency. If not, the controller
needs to modify the data plane to install a desired forward
path for the flow.

Localization of network faults. When the control plane
finds a flow property violation at any time, it should identify

the actual flow behaviors in the network and compare them
with the expected behaviors. In this way the controller can
find the part of the data plane that contains faults, called fault
localization [16].

A practical packet behavior identification method must
satisfy three requirements. First, it provides a high throughput
in responding to packet behavior queries. According to recent
measurement results [17] [18], a large data center network may
see hundreds of thousands of new flows per second. SDNs
should support hundreds of data plane updates per second
[19] and each update may need to query multiple flows to
verify correctness. Hence a desired throughput should exceed
one million packet queries per second (1 Mqps). Second, the
query structure should fit into a small and fast memory such as
cache. Third, the query structure can be updated in real time
under data plane changes to ensure that query results reflect
the current network state.

Unfortunately none of the existing solutions can meet all of
the requirements stated above. A straightforward approach is
to maintain copies of flow tables of all boxes in the controller.
However even for a medium-scale network used in [20], tens
of GBs are required to store all rules [10]. Due to slow search
speed among flow tables and disk I/Os, the query throughput
is very low. Very recently, Inoue ef al. [10] propose to use
a multi-valued decision diagram (MDD) to classify flows to
different sets of network-wide behaviors. However, an MDD
cannot be updated in real time.”

In this work, we propose a network-wide packet behavior
identification method called AP Classifier, where AP stands for
Atomic Predicates, a concept developed in [22]. Each atomic
predicate specifies a set of packets that have the same forward-
ing behavior in the network. The motivation of using atomic
predicates is stated as follows. Existing solutions of packet
behavior identification that uses forwarding table simulation
or BDD-like structures are slow in processing queries and
memory-inefficient because every bit of the packet header is
considered. The concept of atomic predicates [22] provides
a way to compress ACLs and forwarding rules to a small
set of equivalence classes that can be specified efficiently.
We hence develop a novel data structure, called AP Tree,
to classify packets into atomic predicate which allows us to
eliminate the primary cause of inefficiency using BDD-like
structure to analyze packet flow behavior. The packet behavior
can then be easily computed using the atomic predicate.
To further increase the performance, AP Classifier employs
optimized construction algorithms, so that the constructed AP
Tree achieves higher query throughput. To deal with network
dynamics, AP Classifier utilizes a real-time update to maintain
query correctness and an AP Tree reconstruction method that
periodically rebuilds the tree to optimize its performance.

We evaluated the performance of AP Classifier using the
data plane network state, including forwarding tables and
ACLs, from two real networks, namely: Internet2 [23] and

>The paper [10] claims that if a data plane update does not change the
existing packet behaviors, MDD update can be finished in tens of milliseconds.
However from examining update traces of the Route Views Project [21],
it is unlikely that a data plane update does not change the existing packet
behaviors.

a Stanford campus network [20]. Our results show that AP
Classifier, running on a general-purpose desktop computer,
only uses a few MBs memory and supports more than two
millions of queries per second. In addition it can be updated
in real time (< 4 ms for 95% updates in Internet2 and < 1
ms for 95% updates in Stanford).

The balance of this paper is organized as follows. Section
IT presents related work. We discuss the network model
and background knowledge in Section III. We introduce the
framework of AP Classifier in Section IV. The algorithms
to construct an AP Tree are presented in Section V and
the update and reconstruction methods of an AP Tree for
dynamic networks are presented in Section VI. We present
experimental results in Section VII. Finally we conclude this
work in Section VIIL

II. RELATED WORK

Network-wide packet behavior identification is equivalent to
reachability computation for a specific packet. This problem
is related to, but different from, network reachability anal-
ysis which has been studied for over a decade. Xie et al.
[24] present a model for static reachability analysis of data
plane network state. Quarnet [25] represents ACLs as firewall
decision diagrams to compute network reachability. Header
Space Analysis (HSA) [20] is custom-designed method to
check network invariants but not in real time.

For real-time applications, NetPlumber [26] makes use of
HSA to detect network invariant violations. Veriflow [27]
stores all data plane rules in a multi-dimensional prefix tree
(trie) and determines the Equivalence Classes (ECs) of packets.
An EC is defined to be a set of packets that have identical
forwarding actions in all boxes. Veriflow then checks network
invariants by analyzing reachability graphs of ECs.

Binary Decision Diagram (BDD) [28] is an efficient struc-
ture that were used to model network properties. ConfigCheck-
er [29] is general verification tool based on symbolic model
checking. It uses a BDD to represent a set of state transitions
(also flowchecker [30] by the same first author). If n header
bits are used for filtering, each BDD of ConfigChecker uses
2n state variables which is less efficient than BDDs used in
our design and [22] (In our design and AP Verifier, each
BDD represents a set of packets and requires the use of n
bit variables only). Anteater [31] uses boolean formulas to
represent policies for packets traveling over edges in a network
graph. McGeer[32] models network verification as Boolean
satisfiability problems. They both use a SAT solver to check
network properties. All of these general-purposes tools are
slow and operate on time scales of seconds to hours [27].

All of the above methods focus on analyzing network-
wide invariants (e.g., reachability, loop-freedom) but were not
designed to identify the reachability of a specific packet. For
example, they can determine whether it is possible to reach
box B from box A but cannot tell whether a given packet
can reach B. AP Verifier [22] can check whether all packets
entering a port in the network pass through a waypoint (e.g.,
a firewall) but cannot tell whether a specific packet traverses
a given waypoint.

£ AE

(a) (b)
5 h,
g/
— by —
5
b2 bz F hz

(©)

Fig. 1: (a) Three predicates. (b) The packet header space and
five atomic predicates. (c) A sample network including the
three predicates.

One possible solution to packet behavior identification prob-
lem is checking the packet against the set of atomic predicates
calculated by AP Verifier linearly [22] which is impractically
slow. Another solution is to obtain all related data plane rules
of the packet by searching the trie created in Veriflow and
then compute the forwarding path based on the rules. However
storing all rules requires non-trivial memory cost (tens of GBs
for the Stanford network) which could cause disk 1I/Os during
query processing. As a result, using the Veriflow trie for packet
behavior identification was shown to be very slow by Inoue et
al. [10] who proposed a tool that can quickly classify a packet
to an EC. Its main drawback is that their MDD structure cannot
correctly represent the current network state because its does
not support real-time updates, especially for SDNs where data
plane updates are frequent [33]. Prefix DAG [34] employs a
data structure similar to MDDs, but it focused on a simple
classification problem with a single header field.

Recently, Network Optimized Datalog is proposed as a
general specification language to model high-level abstraction
of network beliefs and dynamism [35]. A new approach to
derive data plane from network configurations is in [36].

III. MODEL AND BACKGROUND

We model a network as a directed graph of boxes, each
of which has a forwarding table as well as input and output
ports guarded by access control lists (ACLs). Each packet has
a fixed-size header, including all fields that are evaluated by
forwarding tables and ACLs in the network. A flow is then a
sequence of packets that have the same values in the evaluated
header fields.

Following the concepts in [22], forwarding tables and ACLs
are all packet filters. Each ACL can be specified by a predicate.
The set of packets that are allowed by the ACL are evaluated
to true by the predicate. Similarly, by analyzing a forwarding
table, each output port can be specified by a forwarding
predicate. The set of packets that can be forwarded to the
port are evaluated to true by the predicate.> Forwarding tables

3All predicates are represented by binary decision diagrams (BDDs) [28]
in our implementation of AP Classifier.

and ACLs can be converted to predicates using the algorithms
in [22]. A predicate P specifies the set of packets for which
P evaluates to true. Hence if a packet can travel through
a sequence of packet filters, it is evaluated to true by the
conjunction of predicates corresponding to the packet filters.

Given a set of predicates, we can compute a set of aromic
predicates. Due to space limitation, we do not repeat the
formal definition of atomic predicates, which can be found
in [22]. A proved property of the set of atomic predicates
is that they specify the minimum set of equivalence classes
in the set of all packets. The packets that are evaluated to
true by the same atomic predicate have identical behaviors
at all boxes. For a set of predicates P = {pi,p2,...,Pr}
each atomic predicate g; is in the form a; = g1 Ag2 A ... A g,
where g; € {p;,—p;}. (Note that a; in the previous sentence
is an atomic predicate only if it is not false.) Every predicate
is equal to the disjunction of a subset of atomic predicates.
Every packet is evaluated to true by one and only one atomic
predicate.

As an illustration, Fig. 1(a) shows three predicates p; (tri-
angle), p» (square), and p3 (circle), each of which represents
a set of packets that are evaluated to true by a predicate. Each
predicate specifies a set of packets that can pass the corre-
sponding packet filter. Fig. 1(b) shows the three predicates in
the packet header space. All packets in this example can be
classified into five equivalence classes specified by five atomic
predicates, a; to as. Each predicate is equal to the disjunction
of a subset of atomic predicates. For example, p» = a3V as.
Also, ag = —p1 A p2 A p3. All packets evaluated to true by aq
have identical behaviors: they can pass the filters of p, and
p3 but cannot pass pj.

In the network shown in Fig. 1(c), Let p; specify the set of
packets that can be forwarded at box b; to its output port to
host &1, p» specify the set of packets that can be forwarded at
box b; to its output port to box b», and p3 specify the set of
packets that can be forwarded at box b, to its output port to
host h;. A packet specified by as = —p1 A p2 A p3 is forwarded
at by by the path by— > by— > hy. A packet specified by
as = —p1 A—p2 A ps3 is forwarded to Ay if it is at by, but will
be dropped if it is at by. An atomic predicate characterizes
the behaviors of all packets it evaluates to true.

IV. DESIGN FRAMEWORK OF AP CLASSIFIER

AP Classifier is a program designed for a SDN controller.
It computes the network-wide behaviors for an input packet
(or flow). AP Classifier performs two-stage processing for a
packet. First, using the AP Tree, it classifies the packet to the
atomic predicate that evaluates to true for the packet. Second,
AP Classifier determines all forwarding paths for the packet by
using the atomic predicate, network information, and ingress
box of the packet.

A. AP Tree

Using the algorithms presented in [22], the controller first
converts each ACL to a predicate and the forwarding table
of each box to m predicates, where m is the number of
output ports of the box. Let P = {py,p2,...,px} be the set

Fig. 2: AP Tree of predicates in Figure 1(b). (a) Original AP Tree. (b) Pruned AP Tree. (c) Optimized AP Tree.

of predicates of all boxes in the network. The controller
constructs an AP Tree which is a binary tree. The root is
labeled by p;. At level i, the 2! internal nodes are each labeled
by p;. Starting from the root, at each internal node, the input
packet is evaluated by the predicate in the label. If the result
is true, the packet continues to be evaluated in the left sub-
tree. Otherwise it goes to the right sub-tree. An AP Tree with
(k+ 1) levels can be constructed from evaluating each of the k
predicates at each level of internal nodes. A leaf node is then
labeled by g1 Aga A ... Aqk,qi € {pi,—pi}, which specifies the
set of packets reaching the leaf. Fig. 2(a) shows the AP Tree
of the three predicates in Fig. 1(b). Shaded circles indicate
leaf labels that are false. We will show that two sub-trees in
an AP tree do not necessarily have a same predicate order in
Section 5.3.

To classify a packet to an atomic predicate, AP Classifier
simply searches the AP Tree by evaluating the packet until
the leaf labeled by the atomic predicate is found. At each
node, the packet is evaluated by checking the BDD of the
predicate. Since predicates on sibling nodes are disjoint, for
a given packet, the path from the root to the leaf is exclusive
and determinate.

In the worst case, there could be 2¢ atomic predicates and
finding a leaf needs to evaluate all k predicates. However, it
is found that the number of atomic predicates is surprisingly
small for real networks [22]. Hence many leaves specify empty
sets of packets. For example, in Fig. 2(a), pt Ap2 A p3, p1 A
p2A—p3, and p; A—pa A p3 are all false according to the
relationships in Fig. 1(b). Hence no packet can reach any of
these three leaves. We use the following rule to “prune” the
AP Tree: If no packet reaches a sub-tree, i.e., all leaves in the
subtree are labeled by false predicates, the sub-tree is removed
from the AP Tree. If an internal node has only one child, it
is removed from the AP Tree as there is no need to check
the predicate. We define the depth of a leaf to be the number
of predicates evaluated to reach the leaf. After pruning, the
average depth of all leaves in the AP Tree can be reduced
and each node has either 0 or 2 children. Fig. 2(b) shows the
pruned AP Tree has average depth (14+3+3+3+3)/5=2.6.

An important observation is the following: If predicates are
placed at the levels in a different order, the average depth of
the AP Tree may be different. In Fig. 2(c), the predicates are
placed at three levels in the order of pj, p3,p;. The average
depth of all leaves in the pruned AP Tree is 2.4. An important

contribution of this work is an algorithm to find an order of
predicates that substantially reduces the average depth of an
AP Tree.

For examples, each of the Internet2 and Stanford networks
includes hundreds of thousands of forwarding rules, which can
be converted to 161 (Internet2) or 507 (Stanford) predicates.
Using our AP Tree construction algorithm, the average depth
of the AP Tree is only 10.6 (Internet2) or 16.8 (Stanford). In
an unpruned AP Tree, a packet needs to be evaluated by 161 or
507 predicates. AP Classifier only requires it to be evaluated
by 10.6 or 16.8 predicates, on average, thus improving the
query throughput by more than an order of magnitude. The
detailed algorithm design of AP Tree construction is presented
in Section V.

B. Computing packet behaviors

The second stage of AP Classifier determines the network-
wide behaviors of the queried packet from the network infor-
mation, the ingress box, and the atomic predicate determined
in the first stage.

Since the atomic predicate is in the form g1 Aga A ... A
Gk, qi € {pi,—pi}, for any predicate p;, AP Classifier can easily
check whether the predicate evaluates to true or false for the
packet. Recall that p; represents a packet filter of an ACL or
output port. Hence AP Classifier can determine at any box
whether the packet is dropped and which port it is forwarded
to. Starting from the ingress box, i.e., the box that sees the
packet first in the network, AP Classifier finds the output port
to which the packet is forwarded and then determines the
next-hop box. If the packet is a multicast packet, it may be
forwarded to multiple ports. AP Classifier continues to find
the forwarding ports on the next-visited boxes until the packet
reaches the destination or is dropped. The packet behaviors
are thus obtained.

Fig. 3 shows an example to illustrate how to compute
network-wide forwarding paths for a given packet. Consider
a packet which arrives at the ingress box b; and it is clas-
sified to atomic predicate a4 by searching the AP Tree. The
representation, —py A pa A p3, of a4 shows that the packet is
forwarded to b, because p; is false and p» is true for the
packet. Similarly at b,, the packet is forwarded to &, because
p3 is true for the packet.

We ran experiments to evaluate the speed of the above
approach on a general-purpose desktop computer. We found

W,
"

— b,
p: NS
b2 | D3 < h2
Ay =P NPy AN D
Forwarding path of a packet specified

by a, at ingress box b,

Fig. 3: Computing forwarding path for a packet in ay4

A~

(O8]

Throughput [Mgps]
—_)

o

20 30 40 50
Average depth of leaf nodes

—_
o

(a) Internet2

—
W
T

Throughput [Mqps]
o
W —

0 20 40 60 80
Average depth of leaf nodes
(b) Stanford

100

Fig. 4: Query throughput versus average depth of leaves

that, for the Internet2 and Stanford datasets, the throughput is
greater than 15M and 10M packets per second, respectively.
Note that this throughput is much higher than the throughput
in the first stage. Therefore, the main effort of this work is to
optimize the construction, search, and update of the AP Tree.

V. AP TREE OPTIMIZATION

The most challenging problem in designing AP Classifier is
to construct an AP Tree with minimized average depth, which
can support dynamic updates.

A. Query throughput versus average depth

To reduce the query time and improve the query throughput,
the optimization goal of AP Tree construction is to reduce
the average depth of leaves. We conduct a set of experiments
to justify the correlation of reducing the average depth and
improving the throughput. We use the Internet2 network

containing 161 predicates and the Stanford network containing
507 predicates. In each experiment, we randomly order the k
predicates for placement at levels of the AP Tree. Then we
query the generated tree using sample packets and measure
the query throughput. In Fig. 4, we show the relationship
between query throughput and average depth for 100 random
generated AP Trees for each network. After pruning, the
average depth of the AP Tree of Internet2 varies from 15.9 to
44.2, and the average depth of the AP Tree of Stanford varies
from 39.1 to 92.5. From the two sub-figures in Fig. 4, it is
obvious that an AP Tree with smaller average depth provides
higher query throughput. The star in each figure represents the
performance of the AP Tree constructed by AP Classifier. The
query throughput of AP Classifier is 3.35 Mqgps (Internet2) and
1.82 Mqps (Stanford), substantially higher than any random
construction.

B. Quick-Ordering algorithm

The number of atomic predicates for a network is determi-
nate if there is no update. That is, for a network, its AP Tree
has a fixed number of leaves. A more balanced binary tree
results in smaller average leaf depth. Compare the two AP
Trees in Fig. 2(b) and (c) whose average depths are 2.6 and
2.4, respectively. The one in Fig. 2(c) is more balanced and
hence has less average depth. The reason for the imbalance
in Fig. 2(b) is that p; is placed at a higher level of the tree.
According to properties of atomic predicates, every predicate
is equal to the disjunction of a subset of atomic predicates.
The number varies from one to the number of all atomic
predicates. In this example, p; is a predicate that is equal
to a single atomic predicate. Hence the left child of the node
labeled as p; must be a leaf representing the atomic predicate.
However, the right sub-tree may include more levels, causing
the imbalance.

In fact, an analysis of the two real network data planes
shows that many predicates are equal to a single atomic
predicate. One fast yet effective ordering of predicates is
to place those predicates at lower levels. For example, in
Fig. 2(c), p1 is placed at the lowest level.

Notation. Let R(p) denote the subset of atomic predicates
whose disjunction is p. |R(p)| denotes the cardinality of R(p).

In the Quick-Ordering algorithm, |R(p;)| is counted for each
predicate p;. Then the AP Tree is constructed by placing all
predicates onto the tree in descending order of |R(p;)|.

C. Optimized AP Tree construction

To develop a more sophisticated ordering method, one
important observation is that, for two sub-trees whose roots are
siblings, their predicate orders can be different. In the example
of Fig. 5(a), we now have four predicates p; (triangle), p»
(square), ps3 (circle), and ps (ellipse), which determine six
atomic predicates, a; to ae. If the predicates are added in the
order p2, p3, p1, P4, the pruned AP Tree is shown in Fig. 5(b).
However, for the sub-tree rooted at the right child of the root,
its subtree is more balanced if the predicate order is py, p3, p4,
as shown in Fig. 5(c).

(a)

Fig. 5: Additional example. (a) Five predicates. (b) Pruned AP Tree. (c) Optimized AP Tree.

For a given set of predicates P = {py, pa, ..., pr}, the atomic
predicates A = {aj,az,...,a,} is determined. The number of
leaves of the AP Tree is n, because each leaf corresponds to
an atomic predicate. We define F(Q,S) as the minimal sum
of leaf depths of the subtree (which is a part of the AP Tree)
whose nodes include the set of predicates Q and leaves are the
set of atomic predicates S. In the example of Fig. 5(c), let O =
{pl,p3,p4} and S = {al,az,a5,a6}, F(Q,S) =8. F(Q,S) can
be calculated recursively using the following equations. Let
H(Q,S,p) be the minimal sum of leaf depths if the root of the
sub-tree is p. If SNR(p) # @ and SNR(—p) # @, H(Q,S,p)
is the sum of three components: F(Q —{p},SNR(p)) and
F(Q—{p},SNR(—p)) are recursive computing for the left
and right sub-trees and extra |S| needs to be added because
the depth of every leaf increments by 1. We have

H(Q,S,p) =F(Q—{p},SNR(p))+F(Q—{p},SNR(=p)) +IS|

If SNR(p) = @, the left sub-tree will be pruned. The internal
node with only one child is also removed and the leaf depths
do not increase. Hence,

H(Q,S,p) =F(Q—{p},SOR(-p))
Similarly, if SNR(—p) = @, we have,

H(Q,S,p) =F(Q—{p},SNR(p))

In addition, we have the following recursive equation.

fo if 5] = 1
F(0.5)= { min,,coH(Q,S, pi) otherwise

When |S| = 1, it is easy to see that the sub-tree contains only
one leaf, hence F(Q,S) = 0. Otherwise, the predicate p; € Q
is selected as the root of the sub-tree such that p; minimizes
H (Qa S, p i) :

Using the above formula, it is possible to compute F(P,A).
By recording the selection of p; at each recursion, the opti-
mized AP Tree can also be constructed.

However, the time complexity of solving this recursion is
as high as O((2) *k!), where k is the cardinality of P. We
need to propose an efficient heuristic algorithm to simplify the
recursion. At a level of recursion, we need to find the predicate
p; that minimizes H(Q,S, p;). Instead of trying all predicates,
we propose an easier way to decide which predicate to select.

(D

(@)

(b)

(d)

Fig. 6: Relationships of two predicates. (a) Neither P; A P; nor
—P; A—=P; is false. (b) P; A Pj is false. (c) ~P; A P; is false. (d)
PiA—Pj is false.

We define a pair-wise relation between two predicates
that implies which one is better to select. If H(Q,S,p;) <
H(Q,S,p;), we say that p; is superior to p; and p; is inferior
to p;, denoted as p; ipj. If H(Q,S,pi) =H(Q,S,pj), we say
pi and p; are in the same order, denoted as p; & Dj-

We compare two predicates in four cases based on their
logical relationships, as shown in Fig. 6. Here, p; and p; refer
to predicates which are equal to union of atomic predicates in
SNR(p;) and SNR(p;) respectively. H(Q,S,p) is calculated
based on the first three equations of section V-C for all four
cases as follows:

1) Packets specified by p; intersect with those of p;
(Fig. 6(a)). If we place p; to the root and p; to the chil-
dren of the root, we get a full sub-tree since R(p;) NR(p;),
R(pi) NR(=p;j), R(=pi) NR(p;) and R(=p;) NR(~p;) are all
non-empty. Hence, we have

H(Q,S,pi) =S|+ F(Q—{p:i},SNR(p:))
+F(Q—{p:},SOR(=p:))
=S|+ F(Q—{pi,p;},SOR(pi) "R(p;))
+F(Q—A{pi.p;};SNR(pi) "R(—p;))
+[SOR(pi)|
+F(Q—{pi;p;},SOR(=pi) NR(p;))
+F(Q—{pi,p;},SNR(=pi) NR(=p;))
+[SOR(=p))|

If we place p; to the root and p; to the children, we can
get H(Q,S,p;) similarly. Since |SNR(p;)|+ |[SOR(—pi)| =
ISOR(pj)|+SNR(=p;)| =S|, H(Q,S, pi) = H(Q,S, pj). We
have p; B Dj-

2) Packets specified by p; disjoint with those of p;
(Fig. 6(b)). p; A\ p; is false. If we place p; to the root and p; to
the children of the root, the sub-tree representing R(p;) \R(p;)
will be pruned. The child representing R(p;) NR(—p;) will re-
place its parent node and leaf depths do not increase. However,
the sub-tree representing R(—p;) NR(p;) and R(—p;) NR(—p;)
are both non-empty, so the total leaf depths increase by
|SNR(—p;)|. Hence

H(Q,S,pi) = |S|+F(Q—{pi,p;},SOR(pi) \R(—p;))
+F(Q—{pi,r;},SNR(—=pi)"R(p;))
+F(Q—A{pi.pj},SOR(=pi) NR(=p)))
+[SOR(—pi)|

Similarly, if we place p; to the root and p; to the children,

H(Q,S,p;) =S|+ F(Q—{pi.p;},SOR(p;) NR(=pi)))
+F(Q—{pi,r;},SOR(=p;) NR(p:))
+F(Q—{pi,p;j},SNR(=p;) NR(—pi))
+[SOR(=p;)|

Despite of the same terms, if [SNR(—p;)| < |[SNR(—p;)|, pi LN
Pj- If |SﬂR(—|pi)| = |SﬂR(—\pj) , Di fé:pj. Otherwise Pj ipi.

3) Packets specified by p; are a subset of those of p;
(Fig. 6(c)). —p; A p; is false. If we place p; to the root
and p; to the children of the root, the sub-tree represent-
ing R(—pi) NR(pj) will be pruned. The child representing
R(—pi)NR(—p;) will replace its parent node and leaf depths
do not increase. The sub-tree representing R(p;) NR(p;) and
R(pi)NR(—p;) are non-empty, so the total leaf depths increase
by |[SNR(p;)|- Hence

H(Q,S,pi) = IS|+F(Q—{pi,p;},SNR(pi) NR(p;))
+F(Q—A{pi,pj},SOR(pi) NR(=p)))
+F(Q—{pi,pj},SOR(=pi) NR(—p;))
+ISOR(p:)|

If we place p; to the root and p; to the children of the root,
the sub-tree representing R(p;) NR(—p;) will be pruned.

H(Q.5.p;) =181+ F(Q ~ {pirps}. S0 R(pj) "R(p1)
+F(Q—{pi,pj},SOR(=pj) NR(pi))
+F(Q—A{pi,pj},SOR(=p;) NR(—pi))
+[SR(p;)

Therefore if |SOR(p;)| < |SOR(=p;)|, pi > p;. I |SOR(p;)| =
ISNR(—pj), pi R p;j- Otherwise p; 5 Di.
4) Packets specified by p; are a subset of those of p;
(Fig. 6(d)). Similar to the above cases, we can get if [SN
S,
R(=pi)| <|SOR(pj)l, pi = pj- I [SOR(=pi)| = [SOR(pj)l,
N . S,
pi ~ pj. Otherwise p; = p;.
We then design the key criterion of predicate selection for
each level of recursion, namely: We select a predicate that is

not inferior to any other predicate. The algorithm is presented
as follows: For each level of recursion, a predicate p; is
maintained, initially being p;. A linear scan is performed from
p2 to py. For a predicate p;, if p; 5 Ps, then py is set to p;.
At the end, p; is selected as the root node of the subtree for
this level of recursion.

To prove the correctness of the above algorithm, we need
to show that p; is indeed not inferior to any other predicate.
A sufficient condition is that the superior/inferior relation is
acyclic, i.e., there are no three predicates p,, pp, p. such that
Pa LN DPbs Db 5 Pe, and p, N Pa- We have proved the acyclic
property by exhaustion. Our proof is not shown herein due to
space limitation.

Time efficiency of AP Tree construction. In the AP Tree
construction algorithm presented above, we avoid the time-
intensive operation of computing the conjunction of two pred-
icates represented as BDDs. Instead, our algorithm computes
the intersection of two sets of integers that are identifiers of
atomic predicates, as suggested in [22]. Intersections of integer
sets can be computed much more quickly than conjunctions
of BDDs. Each predicate is represented as a set of integers, so
the time complexity of determining relationship between two
predicates is O(n), where n is the number of atomic predicates.
For each level of recursion, a linear scan needs O(k'n) time,
where k' is the number of predicates in the current level. The
overall complexity of building an AP Tree depends on the
number of levels as well as the balance of the tree. Here we
only provide the complexity analysis for a balanced AP Tree.
For a balanced AP Tree, there are 2! nodes at level I. For
each node, k' < (k—1). Hence at level [, the time complexity
is at most 2/(k —I)n. Since I <log,n, 2'(k—1)n < kn®. Since
there are [log, n] levels, the overall time complexity is upper-
bounded by O(kn’logn).

D. Optimization for packet distribution

In the proposed algorithms, we assume that, for a packet
query, leaf nodes (atomic predicates) have equal probability
to be visited. Therefore minimizing the average depth of leaf
nodes maximizes the query throughput. However, practical
network flows may not be distributed uniformly with respect
to the set of atomic predicates. For example, if many queried
packets may eventually visit a leaf in a very deep position
and leaves close to the root are rarely visited, the throughput
decreases. To improve the query throughput for uneven packet
distribution, we assign weights to atomic predicates such that
leaf nodes that are visited frequently will be placed relatively
close to the root.

To estimate the packet distribution, AP Classifier maintains
a counter for each leaf node (atomic predicate), which records
the number of visits by queries in a past period of time. The
value of a counter is then converted to the weight of the
corresponding atomic predicate after reduction of a fraction.
When using the optimized algorithm presented in Section V-C,
every occurrence of |R(p;)| is replaced by the sum of weights
of all atomic predicates in R(p;), rather than its cardinality.

For example, suppose AP Classifier is choosing the root
of a subtree by comparing two predicates p; and p; whose

relationship is as shown in Figure 6(c). If the atomic
in set R(p;) have been queried by many packets,
to place p; before p; in order to get smaller dep
leaf nodes labeled by the atomic predicates in R(f
weights help to get H(Q,S,p;) < H(Q,S,pi) anc
superior to p;.

E. Dealing with packet header changes.

Today’s networks rely on a wide range of m
(e.g., firewalls, intrusion detection and preventio
and proxies) which achieve performance and securi
Some middleboxes may modify packet headers of
traffic. When middleboxes modify packet header
warding behaviors of these packets on downstream |
be determined by the new header fields. For exan
a Network Address Translation (NAT) middlebox
an external address to an internal one, AP Classifi
aware of such translation and compute the remain
behaviors using the internal address.

We consider three types of packet header changes by
middleboxes, namely 1) deterministic based on packet headers,
2) deterministic based on packet payload, and 3) probabilistic.

For Type 1 changes, a change is completely determined by
the header of an incoming packet. In AP Classifier, we model
these middlebox operations as a flow table. Each packet that
enters a middlebox passes through a flow table. A flow table
contains entries consisting of three components: match fields,
instructions, and a new atomic predicate. Match Fields are
used to select packets that match the predicates in the fields.
Instructions specify new packet headers if a match occurs. The
atomic predicate fields store atomic predicates calculated for
new packet headers.

For Type 1 changes, given the packet header before a
change, the atomic predicate after the change can be easily
determined based on the flow table. Therefore when AP
Classifier finds that a packet passes a middlebox, at the
behavior computing stage (second stage of AP Classifier), it
checks the flow table whether the packet header has been
modified based on the middlebox policies. If the packet has
a new header, AP Classifier will read a new atomic predicate
and compute forwarding behaviors for the new header based
on the new atomic predicate. Such process may repeat multiple
times until the packet is dropped or the forwarding path ends
at the packet’s destination.

To see how this works, we use an extensional version of the
example from IV-B in Fig. 7. The topology in the figure is a
part of the whole network. Packets passing box b are firstly
processed by the flow table at middlebox MB; and then by b;’s
forwarding table. The flow table of MB; contains three entries
that modify packet headers and one default entry. Consider
a packet enters box b; and matches the third entry of the
flow table at MBj. Its corresponding packet header fields are
changed to 172.16.146.2 and its atomic predicate is changed
to aq. The yellow line, in Fig. 7, shows that the packet is
forwarded to box b, and then host /; after header modification.

For Type 2 changes, the packet header after a change can
be determined only after the packet payload is known. Hence

The flow table at MB,

Match fields
10.10.50.0/24
10.10.60.0/24

Instructions
172.16.178.230
172.16.158.49

New atomic predicates
a; =p; AP, APz
az = P AP, Ap3

10.10.70.0/24 | 172.16.146.2 a, =P AP, A D3
Others None Unchanged
§
MB, Sl

Tip—

| bl

P>

b, D3 >3 h;

Forwarding path of a packet matched
by the third entry of MB, at b,

Fig. 7: Computing forwarding path with header modifications

it is not possible to pre-compute a flow table that stores the
atomic predicate after packet header changes. AP Classifier
needs to search the AP Tree again using the new header to
find a new atomic predicate. This process may repeat multiple
times. Probabilistic changes (Type 3) can be treated similarly.
However, AP Classifier may output multiple possible network-
wide behaviors for a given packet.

VI. AP TREE UPDATE AND RECONSTRUCTION

An important requirement of practical packet behavior i-
dentification is to support dynamic network changes, including
link and rule changes, both of which require addition and dele-
tion of predicates. We design fast AP Tree update methods for
adding a predicate and deleting a predicate while maintaining
tree correctness. However, after a large number of updates, an
AP Tree will experience performance degradation. Hence we
also design an AP Tree reconstruction method that periodically
rebuilds the tree to optimize its performance while performing
packet query processing at the same time. In this section, we
assume that each atomic predicate is equally weighted.

A. Real-time update of an AP Tree

The SDN data plane of a network is frequently updated by
rule installation and deletion. When a rule is inserted into or
removed from a forwarding table or an ACL, it may change
one or more predicates. The set of atomic predicates may
change as well. We use the method presented in [37] to convert
a rule insertion or deletion to predicate change. If there is no
predicate change after a rule update, AP Classifier does not
need to update the AP Tree. Otherwise, AP Classifier performs
the methods presented below to remove the old predicate and
add the updated predicate in the AP Tree. These methods
are also used after addition/deletion of a network link which
requires addition/deletion of predicates.

AP tree Fast AP Tree
D querying H update ‘:'reconstruction
Query 123 4 56 78
process Ll L] —
Transmit [Transmit
Reconstructi 23) new tree 78) new tree
on process;>| | ” | ” ’—'

Fig. 8: Real-time update and query processing

Add a predicate. When a new predicate p is added, for each
leaf node representing an atomic predicate a in the current AP
Tree, AP Classifier computes a A p and a A —p. If none of them
is false, two children are added to the leaf node, representing
a/p and a A —p respectively. If one and only one of the two
conjunctions is false, the label of the leaf node is replaced
by the other conjunction. If both conjunctions are false, AP
Classifier does nothing to this leaf node.

Delete a predicate. To delete an existing predicate p from
the AP Tree, AP Classifier does not remove all internal
nodes labeled by p. This is because after the removal of
a node, merging the two sub-trees rooted at its children is
very difficult. Instead, we still keep p in the AP Tree, but
mark it as “deleted” in the list of all predicates. A query
packet is still processed by the AP Tree to find its leaf node
representing its atomic predicate. It is still evaluated by the
deleted predicates to determine which sub-tree to visit next.
However, in the second stage of AP Classifier, i.e., computing
packet behaviors, AP Classifier just ignores all predicates that
have been deleted.

B. Parallel reconstruction of an AP Tree

Although, the AP Tree updates in AP Classifier are fast
and maintain correctness of packet behavior identification, the
AP Tree is no longer optimized and the query throughput
will degrade over time. Hence AP Classifier also reconstructs
the AP Tree to optimize it from time to time. To enable
query processing at the same time as tree reconstruction, AP
Classifier runs two processes in parallel, called the query
process and reconstruction process, executing on two different
cores. The start of a reconstruction is triggered by an event,
e.g., query throughput is lower than a threshold or the number
of updates on the current AP Tree is higher than a threshold.
During reconstruction, the query process still maintains the old
AP Tree by performing updates, and responds to queries. After
the reconstruction process has built a new tree, the new tree
needs to be updated for data plane changes that have occurred
during the reconstruction period, if any. The updated new tree
is then transmitted to the query process to replace the old tree.

Fig. 8 shows an example of the parallel reconstruction of
an AP Tree. The query process performs AP Tree search to
respond to queries as well as updates when data plane changes
happen. In this example, the first reconstruction starts shortly
after the change that requires update 1, which is included
in the construction of a new tree. However, when the new
tree is finished, two changes that require updates 2 and 3

TABLE I: Statistics of the two real networks

Stanford Internet2
Forwarding | ACL | Forwarding
No. of rules 757770 | 1584 | 126017
No. of predicates 507 71 161
No. of atomic predicates 494 21 216

have occurred during the reconstruction period. The new tree
does not reflect these two updates. Thus the reconstruction
process also applies these two updates to the new tree. Then
the updated new tree is sent to the query process to replace
the old AP Tree. Similarly the second reconstruction begins
after changes that require updates 4, 5, and 6. The new tree
constructed needs to be updated for changes (that require
updates 7 and 8) which occur during the reconstruction period,
before it can be sent to the query process. Note that if there is
no data plane change during a reconstruction period, the new
AP Tree is optimized.

If network dynamics change weights of atomic predicates,
current AP Tree constructed using previous configurations
should be rearranged to provide the best performance. It is hard
to adjust AP Tree in the real time update process which should
be finished very quickly. However, rearranging AP Tree needs
to compare relationships of several predicates which may cost
beyond the time scale of milliseconds. To regain the optimized
performance of AP Tree, AP Classifier reconstructs AP Tree
with the new weights of atomic predicates periodically.

VII. EXPERIMENTAL EVALUATION

We have implemented and evaluated AP Classifier on a
general purpose desktop computer with quadcore@3.2G and
16GB memory. Our implementation and evaluation include all
functional components for packet behavior identification from
scratch, including computing atomic predicates, classifying
packets using the AP Tree, and computing packet behaviors.
(In comparison, prior work on this problem only implements
and evaluates a single function, namely: classifying packets
to equivalence classes [10].) For our experimental evaluation,
we use forwarding tables and ACLs from two real networks:
Internet2 [23] and Stanford network [20]. As shown in Table I,
Internet2 includes 126,017 forwarding rules and the Stanford
network includes 757,170 forwarding rules and 1,584 ACL
rules. The predicates and atomic predicates are computed using
the method in [22]. We compare AP Classifier with possible
solutions by utilizing two state-of-art tools, namely Header
Space Analysis (HSA) [20] and AP Verifier [22]. We do not
compare AP Classifier with MDD [10] because it relies on
a special method for MDD construction and the source code
is not publicly available. Furthermore, its method does not
support dynamic updates.

A. Depths of leaf nodes

In this set of experiments, we show the depths of leaf
nodes in an AP Tree, which can demonstrate effectiveness
of the proposed tree construction algorithms. We evaluate and
compare three methods, Best from Random, Quick-Ordering,

-

3
\

[1Best from Random
[] Quick—Ordering
[I OAPT

w

S
o
®

o
o

=

=)
o
)

(=)

e

—6—OAPT
—+— Quick—Ordering
—»%— Best from Random

-

o

o
®

o
o

<
~

o
o

—+— Quick—Ordering
—»%— Best from Random

Cumulative distribution
o
S

Average depth of leaves
n
o

I

Internet2

0o 10

o

Stanford

Fig. 9: Average depth of leaves

[JRandom
+ I Quick-Ordering
I OAPT

Time cost [s]
(=)
[N}

Stanford

Internet2

Fig. 11: Overall construction time cost of AP Classifier

and Optimized AP Tree construction (OAPT), for both Inter-
net2 and Stanford networks. The Best from Random method
generates a random order of predicates for placement on levels
of an AP tree and performs pruning. It constructs 100 AP trees
and chooses the tree with the minimal average depth of leaf
nodes. Quick-Ordering is presented in Section V-B and OAPT
is presented in Section V-C.

Fig. 9 shows the average depth of of leaf nodes in an AP
tree. For Internet2, the average depth of Best from Random is
16.0, worse than those of Quick-Ordering (13.0) and OAPT
(10.6). OAPT reduces the average depth by 34% compared to
Best from Random and 19% compared to Quick-Ordering. For
the Stanford network, Best from Random also has the high-
est average depth (39.0), followed by Quick-Ordering (24.2)
and OAPT (16.9). OAPT shows significant improvement: It
reduces the average depth by 57% compared to Best from
Random and by 30% compared to Quick-Ordering.

Fig. 10 shows the cumulative distribution of depths of
leaf nodes in an AP Tree. For Internet2, the leaf depths of
Quick-Ordering are clearly smaller than Best from Random.
However for the Stanford network such improvement is not
very significant. OAPT has clearly smaller depths for all
percentiles compared to the other two methods. For Internet2
80% of the leaf nodes in the OAPT tree have a depth less than
11 and for Stanford this number is 21. The maximum depths
are 24 and 46 for Internet2 and Stanford, respectively.

B. Memory Usage

After construction, AP Classifier only stores one copy of
all predicates and atomic predicates as BDDs and also, for
each predicate, a set of integer identifiers of atomic predicates.
In the AP Tree a node only stores a pointer to the labeled
predicate or atomic predicate. Since pointers use very little

20 30 40
Depth of a leaf node

(a) Internet2

Cumulative distribution

(=]
(=}

20 40 60 80 100
Depth of a leaf node

(b) Stanford

Fig. 10: Cumulative distribution of the depths of leaf nodes in AP Trees

memory, the memory costs of different methods are very close.
Hence we only show the memory cost of AP Classifier using
OAPT. In our implementation, we use JDD library [38] to
construct BDDs and their logical operations. Each node in a
BDD has a fixed size. The memory consumption of a BDD
is determined by the number of nodes in the BDD. It is
interesting to observe that more rules in a network do not
always mean more BDD nodes. When there exist much more
similarities among rules of a network, a BDD of the network
is more likely to be simple with a smaller number of nodes.
The memory cost for the network is prone to be lower.

The total memory cost of AP Classifier for Internet2 is 4.79
MB and that for Stanford is 2.15 MB. Although Internet2
has fewer predicates than Stanford, it requires more memory
because BDDs of the Internet2 predicates are more complex
than those of Stanford. Unlike the results of [10] that only
show memory cost of the search structure, our memory costs
account for all components for packet behavior identification,
including the network topology, predicates, atomic predicates,
and AP Tree. We found that AP Classifier uses very small
memory and can be stored in cache.

C. AP Tree construction time

Fig. 11 shows times to construct AP Trees using the three
methods for the two networks. Note that the time cost is the
overall construction time that includes the times for computing
atomic predicates as well as for AP Tree construction. The
Random method costs the least time but it is only for one
random construction. To find the best AP Tree from a large
number of random constructions takes substantially longer
time. Quick-Ordering and OAPT have similar time costs,
201.36 ms and 204.39 ms, for Internet2. For the Stanford
network, OAPT requires 342.77 ms for Stanford, a little longer
compared to Quick-Ordering (293.36 ms).

D. Query throughput for static networks

In this set of experiments, we measure the throughput
of AP Classifier to process packet queries, in number of
queries per second (gps). Packet headers used for queries in
the experiments are generated randomly with respect to the
atomic predicates. The throughput results for static networks
are shown in Fig. 12. For Internet2, AP Classifier using OAPT
can achieve 3.4 Mgps, higher than Best from Random by
102% and Quick-Ordering by 52%. For Stanford network,
AP Classifier using OAPT can achieve 1.8 Mqgps, higher than

+

4 g g
—_ [Hassel-C g 08 = 08
2 [AP Verifier 3 0. 5 0.
53l [— Forw:rdineg Simulation 1 = 2
= [Best from Random Z 06 2 06
= I Quick-Ordering LS o
22 I OAPT J o)
£ 204 I 204 o
oh S —©—Initial size=40 = —©—Initial size=100
5 1 asselc Hassel-C , g 0.2 ——Initial size=80 E 0.2 —+—Initial size=250
£ | ooos 0.0047 e ——Initial size=120 £ ——Initial size=400

lm 4 “ © ek
0 il o s g
Internet2 Stanford 0 2 4 6 8 0 0.5 1 L5

Time cost of updates [ms]

(a) Internet2

Fig. 12: Query throughput for static
networks

Best from Random by 46% and Quick-Ordering by 34%. For
both networks, the throughput of AP Classifier is much higher
than 1 Mqps, which is enough to satisfy most application
requirements in SDN.

For static networks, we can use the open-source tool Hassel-
C [39] that implements HSA [20] to perform packet behavior
identification for a specific packet. By providing the input
port and a specific query packet, Hassel-C computes the
reachability tree of the query packet. (For a unicast packet, the
reachability tree is a forward path to the packet’s destination.)
The query throughputs of using Hassel-C to perform packet
behavior identification are 6 Kqps and 4.7 Kqps for Internet2
and Stanford, respectively, which are about 1000 times slower
than the query throughputs of AP Classifier. They are also
plotted in Fig. 12 but they are very small and barely visible.
We also compare AP Classifier with AP Verifier [22]. We
first use AP Verifier to compute all atomic predicates, and
perform a linear search of all atomic predicates for the query
packet until the packet matches an atomic predicate. Results
in Fig. 12 show that AP Verifier is also much slower, though
its throughput is improved a lot compared to Hassel-C.

In addition we use a method of Forwarding Simulation,
i.e., determining the forwarding behavior of the packet at a
box, then checking the forwarding behavior on the next-hop
box, until the packet stops. At each box, a packet is checked
using the predicates at the box linearly until a match occurs.
In our experiments using Forwarding Simulation, the average
number of predicates checked is 96.8 and 232 for Internet2
and Stanford, respectively. The corresponding throughput is
0.2 Mgps and 0.16 Mgps as shown in Fig. 12. In contrast,
only 10.6 and 16.8 predicates are needed to be checked on
average using AP Classifier.

E. Dynamic Networks

In this set of experiments, we first construct the AP Tree
using a number of predicates and then keep adding new pred-
icates. We measure the time cost to add each new predicate
and update the AP Tree. Fig. 13 (a) shows the cumulative
distribution of time cost for adding a predicate in the Internet2
network. The initial number of predicates is set to 40, 80, and
120 for three different experiments. From the figure we find
that about 80% of the predicate additions are finished in 2
ms. It may take 5-6 ms in worst cases. We do not observe
obvious differences when the initial numbers of predicates are

Time cost of updates [ms]

(b) Stanford

Fig. 13: Cumulative distributions of time cost for adding a predicate.

different. Fig. 13 (b) shows the results of similar experiments
for Stanford. The initial number of predicates is set to 100,
250, and 400 for three different experiments. Over 90% of the
predicate additions are finished in 1 ms. Deleting a predicate
does not require extra computation, hence there is no result
for deletions.

Query throughput for dynamic networks. We also eval-
uate the throughput of AP Classifier in practical environments
where additions and deletions of rules and predicates happen
over time. At the beginning of each experiment, a number of
predicates are chosen randomly from the set of predicates of a
network to construct the initial AP Tree. Starting from time 0,
the arrivals of change events requiring the addition or deletion
of predicates are modeled by a Poisson process. Each update
operation can be adding a new predicate or deleting an existing
predicate. In all experiments, equal numbers of additions and
deletions are inserted to the event queue. A reconstruction
is triggered every 0.4 s. During every reconstruction, AP
Classifier answers queries and performs updates as explained
in Section VI-B. We compare AP Classifier with two possible
methods, APLinear and PScan, APLinear utilizes AP Verifier
[22] to compute atomic predicates and performs a linear search
for the query packet until the packet matches an atomic
predicate. Note that BDDs of atomic predicates are more
complex than those of predicates. Hence APLinear is not
efficient. PScan performs a scan on all predicates using the
query packet and decides whether the packet is filtered by
the predicate. Both methods can be used to identify packet
behaviors.

Fig. 14 shows the throughputs of AP Classifier, APLinear,
and PScan in dynamic networks. The x-axis is time and the
y-axis is throughput measured in Mqgps. We conduct two
sets of experiments whose update rates are 100 updates/s
and 200 updates/s. From all subfigures in Fig. 14, we find
that AP Classifier is faster than the other two methods by
an order of magnitude. Note that starting from time O, the
throughput of AP Classifier slowly decreases as an increasing
number of updates make the AP Tree less optimized. The first
reconstruction starts at time 0.4 s and finishes at about 0.6 s
in Fig. 14(a) and (c), and 0.7s in Fig. 14(b) and (d). When a
reconstruction finishes, the throughput immediately goes back
to a high value (4 Mgps in (a) and (c), and 2 Mqgps in (b) and
(d)). Furthermore, the throughput does not degrade in the long-
term view. Comparing results of the two different update rates,

Z3 ‘ ‘
5
s —— AP Classifier
g 6 —+— APLinear
& —>—PScan
)
24 .._,WM
=
=
Q k 4
g’
S | A T
0
A 0 0.4 0.8 1.2 1.6
Time [s]
(a) Internet2, 100 updates/s
8 : : :
—— AP Classifier
6F —4}— APLinear
—>—PScan

(3]

;

Runtime throughput [Mqps]
Runtime throughput [Mqps]

o
(=]

0.4 0.8 1.2 1.6
Time [s]

(c) Internet2, 200 updates/s

~

—— AP Classifier
—4}— APLinear
—>—PScan

w

[\

—

Runtime throughput [Mqps]

Time [s]

(b) Stanford, 100 updates/s

~

—— AP Classifier
—4— APLinear
—>—PScan

W

[\

—

o
5

1.2 1.6

(=)

.
j=h
= g
o
oo 45

Time [s]

(d) Stanford, 200 updates/s

Fig. 14: Query throughput for dynamic networks. The number of updates per second is 100 in (a) (b) and 200 in (c) (d)

we find that the average throughput of AP Classifier does not
drop much even after the update rate is doubled. Hence AP
Classifier is fast and robust for practical dynamic networks.

F. Impact of packet distribution

To evaluate the performance of AP Classifier under various
packet distributions, we generate new sets of test traces which
are unevenly distributed with respect to the atomic predicates.
The number of packets corresponding to the atomic predi-
cates are chosen by sampling from a Pareto distribution. The
probability density function for the Pareto distribution can be
expressed as:

X2 Xy
X < Xpm

2)

Where x,, is the minimum possible value of X, and « is
a positive parameter, which is known as the tail index. In
our experiments, we chose x,, = 1, & = 1. About half of
atomic predicates have 1,000 packets, but some have more
than 20,000 packets.

We generated 10 sets of traces for each network. If we
still use the AP Trees constructed without the consideration of
packet distributions (distribution-unaware), the average depth
of all queries is 10.65 for Internet2 and 16.2 for Stanford
network. Then we construct new distribution-aware AP Trees
using the method described in Section V-D. The average depth
of all queries is reduced to 8.09 (Internet2) and 11.3 (Stan-
ford). The corresponding values of throughput are shown in
Fig. 15. We can see that, if AP Classifier measures the packet
distribution and assigns different weights to atomic predicates,
the throughputs in all cases have notable improvements com-
pared to the distribution-unaware method. The average query

throughput increases from 4.2 Mqps to 5.2 Mqps for Internet2
and from 2.4 Mqps to 3.2 Mqps for Stanford.

G. Dealing with packet header changes

In this set of experiments, we evaluate the throughput of
computing packet behaviors when there exist middleboxes
modifying packet headers. We use the topologies of Internet2
and Stanford networks. In each experiment, one to three
of switches are chosen as boxes connecting to middleboxes
that may change packet headers. Due to lack of available
middlebox policy data, we create ten entries for each flow
tables of middleboxes. Match fields of flow tables are produced
by dividing the packet header space into ten disjointed sets.
We obtain match fields by grouping all atomic predicates into
ten predicates. So every incoming packet can match an entry.
When incoming packets match these entries, AP Classifier
computes the remaining forwarding behaviors of packets using
new atomic predicates. However for some packets, the new
packet headers cannot be determined in advance. AP Classifier
needs to search the AP Tree for the second time to find an
atomic predicate for the new header. The process of computing
packet behaviors ends until the packet is dropped or reaches
the destination.

We measure the throughput of packet behavior computation
under these circumstances. Packets used in the experiments
are generated randomly with respect to atomic predicates.

Table. II illustrates throughput of computing packet behav-
iors for Internet2 and Stanford datasets in different scenarios.
We define the deterministic ratio as the portion of middlebox
rules that can determine the atomic predicates of packets
after packet header changes. When the deterministic ratio is
0.9, the throughput does not downgrade much as number of
middleboxes increases since most packets have new atomic

o]

—>— AP Classifier, distribution-aware
—6— AP Classifier, distribution-unaware

=)}

Throughput [Mgps]
~

1 2 3 4 5 6 7 8 9 10
Trace

(a) Internet2

W

—— AP Classifier, distribution-aware
—O— AP Classifier, distribution-unaware

S

Throughput [Mqps]
w
L . VQ

NS}

—

o

2 3 4 5 6 7 8 9 10
Trace

(b) Stanford

—_

Fig. 15: Query throughput of AP Classifier for different packet distributions

TABLE II: Throughput with packet header changes

Throughput(Mpps)
No. of middleboxes | One | Two | Three
Internet2 13 10.2 9.8
Stanford 10 8.6 7.4
(a) Deterministic ratio = 0.9.
Throughput(Mpps)
No. of middleboxes | One | Two | Three
Internet2 11.2 9.8 8.5
Stanford 8.9 7.9 7
(b) Deterministic ratio = 0.5.
Throughput(Mpps)
No. of middleboxes | One | Two | Three
Internet2 8.7 6.9 3.2
Stanford 7.1 4.9 2.1

(c) Deterministic ratio = 0.

predicates stored in the flow tables, as shown in Table. II (a).
Compared with Table. II (a), the corresponding throughput
values in Table. II (b) and (c) are lower since more packets
passing through a middlebox require searching the AP Tree for
a second time. In the worst case, the throughput of computing
packet behaviors is still 3.2 M and 2.1 M packets per second
respectively, which is much higher than using other methods.

VIII. CONCLUSION

We propose AP Classifier for network-wide packet behavior
identification that can be utilized by many important network
management applications. We design algorithms to construct
the AP Tree for a network, which can be used to quickly
classify a packet to an atomic predicate. Each atomic predicate
represents the network-wide forwarding behaviors of a set
of packets. Experimental results using the datasets of two
real networks show that the proposed AP Tree construction
algorithm can optimize the average depth of leaf nodes. AP
Classifier can process millions of packet queries per second.
The speed is faster than existing tools by at least an order of
magnitude. Furthermore, it uses only a few MBs memory. It
can be updated in real time and is robust under dynamic data
plane changes.

ACKNOWLEDGEMENT

Huazhe Wang, Chen Qian, and Ye Yu were supported
by NSF grants CNS-1701681 and CNS-1717948. Hongkun

Yang and Simon S. Lam were supported by NSF grant
CNS-1214239. We thank the anonymous reviewers for their
comments.

REFERENCES

[1] H. Wang, C. Qian, Y. Yu, H. Yang, and S. S. Lam, “Practical Network-
wide Packet Behavior Identification by AP Classifier,” in Proc. of ACM
CoNEXT, 2015.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in Proc.
of USENIX NSDI, 2010.

[3] Q. Chen, C. Qian, and S. Zhong, “Privacy-preserving cross-domain
routing optimization-a cryptographic approach,” in Proc. of IEEE ICNP,
2015.

[4] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in Proc. of IEEE INFOCOM, 2013.

[51 A.Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dynamic
access control for enterprise networks,” in Proc. of ACM WREN, 2009.

[6] Y. Yu, C. Qian, and X. Li, “Distributed collaborative monitoring in
software defined networks,” in Proc. of ACM HotSDN, 2014.

[71 Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using SDN,” in Proc. of ACM
SIGCOMM, 2013.

[8] X.Liand C. Qian, “An NFV Orchestration Framework for Interference-
free Policy Enforcement,” in Proceedings of IEEE ICDCS, 2016.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in

campus networks,” ACM SIGCOMM Computer Communication Review,

vol. 38, no. 2, pp. 69-74, 2008.

T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi, “Rethink-

ing packet classification for global network view of software-defined

networking,” in Proc. of IEEE ICNP, 2014.

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards

predictable datacenter networks.” in Proc. of ACM SIGCOMM, 2011.

X. Li and C. Qian, “Traffic and failure aware vm placement for multi-

tenant cloud computing,” in Proc. of IEEE IWQoS, 2015.

M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting

security attacks in software-defined networks.” in NDSS, 2015.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained

traffic engineering for data centers,” in Proc. of ACM CoNEXT, 2011.

H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic

engineering with forward fault correction,” in Proc. of ACM SIGCOMM,

2014.

H. Zeng, P. Kazemiany, G. Varghese, and N. McKeown, “Automatic test

packet generation,” in Proc. of ACM CoNEXT, 2012.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The

nature of data center traffic: measurements & analysis,” in Proc. of ACM

IMC, 2009.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. of ACM IMC, 2010.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with

a globally-deployed software defined wan,” Proc. of ACM SIGCOMM,

2013.

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:

Static checking for networks,” in Proc. of USENIX NSDI, 2012.

“University of oregon route views project, accessed on Jun. 2015” http:

/Iwww.routeviews.org.

[10]

(11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27])

(28]

[29]

(30]

(31]

[32]

(33]

[34]

(35]

[36]

(371

[38]

(391

H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” in Proc. of IEEE ICNP, 2013, extended version
in IEEE/ACM Transactions on Networking.

“The internet2 observatory data collections, accessed on Oct. 2013.”
http://www.internet2.edu/observatory/archive/data-collections.html.

G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “On static reachability analysis of IP networks,” in Proc.
of IEEE INFOCOM, 2005.

A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” in Proc. of IEEE ICDCS, 2010.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proc. of USENIX NSDI, 2013.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. of USENIX
NSDI, 2013.

R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677-691,
1986.

E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: Towards end-to-end verification of network
reachability and security,” in Proc. of IEEE ICNP, 2009.

E. Al-Shaer and S. Al-Haj, “Flowchecker: Configuration analysis and
verification of federated openflow infrastructures,” in Proc. of ACM
SafeConfig, 2010.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with Anteater,” in Proc. of ACM
SIGCOMM, 2011.

R. McGeer, “Verification of switching network properties using satisfi-
ability,” in Proc. of IEEE ICC, 2012.

M. Kuzniar, P. Peresini, and D. Kostic, “What you need to know about
SDN flow tables,” in Proc. of PAM, 2015.

G. Rétvari, J. Tapolcai, A. Korosi, A. Majdén, and Z. Heszberger, “Com-
pressing ip forwarding tables: towards entropy bounds and beyond,”
in Proc. of ACM SIGCOMM, 2013, extended version in IEEE/ACM
Transactions on Networking.

N. P. Lopes, N. Bjgrner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proc. of USENIX NSDI,
2015.

A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” in Proc. of USENIX NSDI, 2015.

H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” The Univ. of Texas at Austin, Dept. of
Computer Science, Tech. Rep. TR-13-15, Aug. 2013.

A. Vahidi, “Jdd, a pure java bdd and z-bdd library,” http://javaddlib.
sourceforge.net/jdd/index.html, 2004.

“Hassel-C,” http://bitbucket.org/peymank/hassel-public/.

Huazhe Wang (M’15) is a third year Ph.D. student
at Department of Computer Engineering, University
of California Santa Cruz. He received the B.Sc
degree from Bejing Jiaotong University in 2011, the
M.Sc degree from Beijing University of Posts and
Telecommunications in 2014. His research interests
includes software defined networking and network
security. He is a student member of IEEE and ACM.

Chen Qian (M’08) is an Assistant Professor at the
Department of Computer Engineering, University of
California Santa Cruz. He received the B.Sc. degree
from Nanjing University in 2006, the M.Phil. degree
from the Hong Kong University of Science and
Technology in 2008, and the Ph.D. degree from
the University of Texas at Austin in 2013, all in
Computer Science. His research interests include
computer networking, network security, and Internet
of Things. He has published more than 50 research
papers in highly competitive conferences and jour-

nals. He is a member of IEEE and ACM.

Ye Yu (M’13) is a Ph.D. student at the Department
of Computer Science, University of Kentucky. He
received the B.Sc. degree from Beihang University.
His research interests including data center networks
and software defined networking.

Hongkun Yang (M’12) received the Ph.D. degree
in the Department of Computer Science, University
of Texas at Austin in 2015, where he is a recipient
of the MCD Fellowship. He received the B.S.E.
degree with Distinction and the M.S.E. degree from
Tsinghua University in 2007 and 2010, respectively.
His research interests include computer networks,
protocol verification, network security, and formal
methods. He has published research papers in a
number of conferences and journals including IEEE
ICNP, IEEE INFOCOM, IEEE Transactions on Mo-
bile Computing. He is a student member of IEEE.

Simon S. Lam (F’85) received the B.S.E.E. degree
with Distinction from Washington State University,
Pullman, in 1969, and the M.S. and Ph.D. degrees in
engineering from the University of California, Los
Angeles, in 1970 and 1974, respectively. From 1971
to 1974, he was a Postgraduate Research Engineer
with the ARPA Network Measurement Center at
UCLA, where he worked on satellite and radio
packet switching networks. From 1974 to 1977, he
was a Research Staff Member with the IBM T. J.
Watson Research Center, Yorktown Heights, NY.
Since 1977, he has been on the faculty of the University of Texas at Austin,
where he is Professor and Regents Chair in computer science, and served as
Department Chair from 1992 to 1994.

He served as Editor-in-Chief of IEEE/ACM Transactions on Network-
ing from 1995 to 1999. He served on the editorial boards of IEEE/ACM
Transactions on Networking, IEEE Transactions on Software Engineering,
IEEE Transactions on Communications, Proceedings of the IEEE, Computer
Networks, and Performance Evaluation. He co-founded the ACM SIGCOMM
conference in 1983 and the IEEE International Conference on Network
Protocols in 1993.

Professor Lam is a Member of the National Academy of Engineering and a
Fellow of ACM. He received the 2004 ACM SIGCOMM Award for lifetime
contribution to the field of communication networks, the 2004 ACM Software
System Award for inventing secure sockets and prototyping the first secure
sockets layer (named Secure Network Programming), the 2004 W. Wallace
McDowell Award from the IEEE Computer Society, as well as the 1975
Leonard G. Abraham Prize and the 2001 William R. Bennett Prize from the
IEEE Communications Society.

