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Abstract—Forwarding information base (FIB) scalability and
its lookup speed are fundamental problems of numerous net-
work technologies that uses location-independent network names.
In this paper we present a new network algorithm, Othello
Hashing, and its application of a FIB design called Concise,
which uses very little memory to support ultra-fast lookups
of network names. Othello Hashing and Concise make use
of minimal perfect hashing and relies on the programmable
network framework to support dynamic updates. Our conceptual
contribution of Concise is to optimize the memory efficiency
and query speed in the data plane and move the relatively
complex construction and update components to the resource-
rich control plane. We implemented Concise on three platforms.
Experimental results show that Concise uses significantly smaller
memory to achieve much faster query speed compared to existing
solutions of network name lookups.

INTRODUCTION

Significant efforts have been devoted to the investigation
and deployment of new network technologies in order to
simplify network management and to accommodate emerg-
ing network applications. Though different proposals of new
network technologies focus on a wide range of issues, one
consensus of most new network designs is the separation of
network identifiers and locators [23], which are combined
in IP addresses in the current Internet. Instead of IP, flat-
name or namespace-neutral architectures have been proposed
to provide persistent network identifers. A flat or location-
independent namespace has no inherent structure and hence
imposes no restrictions to referenced elements [5].

The Salter’s taxonomy of network elements [23] is one of
the early proposals that suggest the separation of network
identifiers and locators. We summarize an (incomplete) list
of reasons of using flat or location-independent names in
proposed network architectures:

o To simplify network management, pure layer-two Ethernet
is suggested to interconnect large-scale enterprise and data
center networks[15], [12], [27], where MAC addresses are
identifiers.

« Software Defined Networking (SDN) uses matching of mul-
tiple fields in packet header space to perform fine-grained
per-flow control. Flow IDs can also be considered names,
though they are not fully flat.

« Flat network identifiers have been suggested by various
works to support host mobility and multi-homing, including
HIP [19], Layered Naming Architecture [5], and Mobility-
First [22].
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o AIP [3] and XIA [20] apply flexible addressing to ensure
trustworthy communication.

o The core network of Long-Term Evolution (LTE) needs to
forward downstream traffic according to the Tunnel End
Point Identifier (TEID) of the flows [32].

The most critical problem caused by location-independent
names is Forwarding Information Base (FIB) explosion. A FIB
is a data structure, typically a table, that is used to determine
the proper forwarding actions for packets, at the data plane of
a forwarding device (e.g, switch or router). Forwarding actions
include sending a packet to a particular outgoing interface and
dropping the packet. Determining proper forwarding actions of
the names in a FIB is called name switching. Unlike IP ad-
dresses, location-independent names are difficult to aggregate
due to the lack of hierarchy and semantics. The increasing
population of network hosts results in huge FIBs and their
continuing fast growth.

On the other hand, the increasing line speed requires the
capability of fast forwarding. To support multiple 10Gb Eth-
ernet links, a FIB may need to perform hundreds of millions of
lookups per second. Existing high-end switch fabrics use fast
memory, such as TCAM or SRAM, to support intensive FIB
query requests. However, as discussed in many studies [30],
[10], [31], fast memory is expensive, power-hungry, and hence
very limited on forwarding devices. Therefore, achieving fast
queries with memory-efficient FIBs is crucial for the new
network architectures that rely on location-independent names.
If FIBs are small and increase very little with network size,
network operators can use relatively inexpensive switches
to build large networks and do not need frequent switch
upgrade when the network grows. Hence, the cost of network
construction and maintenance can be significantly reduced. For
software switches, small FIBs are also important to fit into fast
memory such as cache.

In this paper, we present a new FIB design called Concise.
It has the following properties.

1) Compared to existing FIB designs for name switching,
Concise supports much faster name lookup using signifi-
cantly smaller memory, shown by both theoretical analysis
and empirical studies.

2) Concise can be efficiently updated to reflect network
dynamics. A single CPU core is able to perform millions
of network updates per second. Concise makes the control
plane highly scalable.

3) Concise guarantees to return the correct forwarding ac-
tions for valid names. It is not probabilistic like those using



Construction Query Structure Que
FIB Time Size (bits) Time Note
Concise O(n) < 4nlogw o(1) Exact 2 memory reads per query.
(2,4)-Cuckoo [33] O(n) ~ 1.1n(LHogw) o) Up to 8 memory reads per query.
SetSep [32] O(nlogw) (2+1.5logw)n  O(logw) No method for updates. Not designed as FIB in [32].
BUFFALO [30] O(nt) an O(tw) Probabilistic results. False positive ratio affected by ¢ and «.
TSS [26] O(n(tHogw))  O(n(t+logw)) o(t) Designed for names with ¢ fields. t = O(L).

Table I: Comparison among FIBs. n: # of names. L: length of names. w: # of possible actions. In practice, Concise achieves
7% to 40% memory and >2x speed compared to Cuckoo, though they share the same order of big O time complexity.

Bloom filters [30], [18].

Concise is built on a new network algorithm named Othello
Hashing. Othello applies the theoretical studies on minimal
perfect hashing [17], [6]. Different from the theory studies,
Othello is carefully designed for network applications and sup-
ports network dynamics. Othello Hashing and Concise FIB
support fast query and update (addition/deletion of names).
In the resource-limited switches (data plane), Concise only
includes the query component and is optimized for memory
efficiency and query speed. The construction and update com-
ponents are moved to the resource-rich control plane. Concise
is constructed and updated in the control plane and transmitted
to the data plane via a standard API such as OpenFlow. It is the
first work to implement minimum perfect hashing schemes to
network applications with update functionalities. Concise is
designed for name switching, so it does not support IP prefix
matching.

Concise is a portable solution, and it can be used in
either software or hardware switches. We have implemented
Concise in three different computing environments: memory
mode, CLICK Modular Router [16], and Intel Data Plane
Development Kit [13]. The experiments conducted on an
ordinary commodity desktop computer show that Concise
uses only few MBs of memory to support hundreds of millions
lookups per second, when there are millions of names.

The rest of this paper is organized as follows. Sec. II
presents related work. We introduce the overview of Concise
in Sec. III. We present the Othello data structure in Sec. IV
and the system design in Sec. V. We present the system
implementation and experimental results in Sec. VI. Sec. VII
discusses a few related issues. Finally, we conclude this work
in Sec. VIII.

RELATED WORK

Location-independent network names. Separating net-
work location from identity has been proposed and kept re-
peating for over two decades. Numerous network architectures
suggest this concept. As discussed in Sec. I, a number of new
network architectures adopts location-independent names. A
location-independent name can be a MAC address, a tuple
consisting of several packet header fields, a file name, a TEID
[32], etc. To route packets for flat names, ROFL [9] and Disco
[25] propose to use compact routing to achieve scalability and
low routing stretch. Concise is a forwarding structure and
does not deal with routing.

FIB scalability. We name some techniques used for FIBs
and compare them in Table L.

Hashing is a typical approach to reduce the memory cost
of FIBs for name-based switching. CuckooSwitch [33] use
carefully revised Cuckoo hash tables [21] to reach desir-
able performance on specific high-end hardware platforms.
ScaleBricks [32] also makes use of a memory-efficient data
structure SetSep to partition a FIB to different nodes in a
cluster, it does not store the names as well. We provide a
comprehensive comparison of Cuckoo hashing, and Concise
in Sec. VII-B. The use of Bloom filters has been proposed in
some designs such as BUFFALO [30], [18]. However, they
may forward packets incorrectly due to the false positives
in Bloom filters, causing forwarding loops and bandwidth
waste. For IP lookups, SAIL [29] and Portire [4] demonstrate
desirable throughput for IPv4 FIB queries. These solutions
are usually based on hierarchical tree structures, and their
performance are challenged by FIBs with large number of
flat names. The Tuple Space Search algorithm (TSS) [26] is
widely used for name matching with multiple files, such as
in OpenVswitch and PIECES [24]. It is not designed for flat-
name switching. Other solutions uses hardware to accelerate
name switching. For example, Wang et al. [28] uses GPU to
accelerate name lookup in Named Data Networks.

Minimal perfect hashing. The data structure used in this
work, Othello, is inspired by the studies on minimal perfect
hashing. In particular, MWHC [17] is able to generate order-
preserving minimal perfect hash functions using a random
graph. MWHC is also presented as Bloomier Filter in [7].
The differences between Othello and these studies include:
(1) Both MWHC and Bloomier Filter are designed for static
scenarios and they do not support frequent updates like Othello
does. (2) Othello uses a bipartite graph instead of a general
graph. This design allows much simpler concurrency control
mechanism. (3) Othello is optimized for real network condi-
tions. It performs different functionalities on the control plane
and the data plane. Othello aims to support fast flat name
switching, while MWHC is for finding minimum perfect hash
functions [17] and Bloomier Filter is designed for approximate
evaluation queries [7].

DESIGN OVERVIEW

Consider a network of n hosts identified by unique names.
The hosts are connected by SDN-enabled switches. A logi-
cally central controller is responsible of deciding the routing
paths of packets. Each switch includes a FIB. The controller
communicates with each switch to install and update the FIB.

Each packet header includes the name of the destination
host, denoted as k. Upon receiving a packet, the switch decides
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Figure 1: Network Overview of Concise

the forwarding action of the packet, such as forward to a port
or drop. We assume the controller knows the set .S of all names
in the network. In addition, Concise only accepts queries of
valid names, i.e., k € S. We assume that firewalls or similar
network functions are installed at ingress switches to filter
packets whose destination names do not exist. More discussion

about eliminating invalid names is presented in Sec. VII-A.
Concise makes use of a data structure Othello. Othello

exists in both the switches (data plane) and the controller

(control plane). It has two different structures in the data plane

and control plane:

o Othello query structure implemented in a switch is the
FIB. It only performs name queries. The memory efficiency
and query speed is optimized and the update component is
removed.

o Othello control structure implemented in the controller
maintains the FIB as well as other information used for FIB
construction and updates, such as the routing information
base (RIB).

Upon network dynamics, the control structure computes the

updated FIBs of the affected switches. The modification is

then sent from the controller to each switch.

Separating the query and control structures is a perfect
match to the programmable networks such as SDN. We
call this new data structure design as a Polymorphic Data
Structure (PDS). PDS is the key reason that we can use
minimal perfect hashing in programable networks. PDS differs
from the current SDN model. SDN separates the RIB and FIB
to the control and data plane respectively. We further move
part of the FIB to the control plane to minimize the data plane
resource cost.

OTHELLO HASHING

In this section, we describe the Othello data structure.
Inspired by the MWHC minimal perfect hashing algorithm
[17], we design Othello specially for maintaining the FIB.
The Bloomier filter [7] can be considered as a special case of
the static version of Othello.

The basic function of a FIB is to classify all names into
multiple sets, each of which represents a forwarding action.
Let S be the set of all names. n = |S|. An Othello classifies
n names into two disjoint sets X and Y: X UY = S and
X NY = @. Othello can be extended to classify names into
d (d > 2) disjoint sets, serving as a FIB with d actions.

Definitions
An Othello is a seven-tuple (mg, mp, ha, hp, a, b, G), de-
fined as follows.

k | ha(K) | hp(K) |T(k)
k| 1 0 1
k| 1 2 | o
k| 1 3 |o
k| 4 2 1
k| 6 5 1

Figure 2: Example of Othello of n = 5 names with m, = m, = 8.
Left: Bipartite graph GG and bitmaps a and b. Right: five names
ko, ks, ks € X and k1, k2 € Y'; the hash values and 7(k) values.

e Integers m, and my, describing the size of Othello.

e A pair of uniform random hash functions (h,,hs),
mapping names to integer values {0,1,--- ,m,—1} and
{0,1,--- ,mp—1}, respectively.

e Bitmaps a and b. The lengths are m,, and m,, respectively.

e A bipartite graph G. During Othello construction and
update, G is used to determine the values in a and b.

Fig.2 shows an Othello example. We require that m, =
O(n), my = O(n), and m,m;, > n>. We provide two options
to determine the values m, and my. 1) m, is the smallest
power of 2 such that m, > 1.33n and mp = mg,. 2) m, is
the smallest power of 2 such that m, > 1.33n and m;, is the
smallest power of 2 such that m; > n. A user may choose
either option. The difference is that for Option 1 we establish
a rigorous proof of constant update time and for Option 2 we
establish the proof with a constraint of n. However Option 2
provides slightly better empirical results.

Othello supports the query operation. For a name k, it
computes 7(k) € {0,1}. If k € X, 7(k) = 0. If kK € Y,
7(k) =1.1f k ¢ S, 7(k) returns O or 1 arbitrarily. The values
of a and b is determined during Othello construction, so that
7(k) can be computed by:

7(k) = alha(k)] ® b[hy(F)]

Here, & is the exclusive or (XOR) operation. In other words,
if k € X, alh,(k)]=blhp(k)]; if & €Y, alhq (k)] #blhs(k)].

Othello Operations

Othello is maintained via the following operations.
e construct(X,Y): Construct an Othello for two name
sets X and Y.
e addX(k) and addY(k): add a new name k into the set
XorY.
e alter(k): For a name k € X UY, move k from set X
to Y or from Y to X. After this operation, the query
result 7(k) is changed.
e delete(k): For a name k € X UY, remove k from set
XorY.
Construction
The construct operation takes the input of two sets
of names X and Y. The output is an Othello O =
<ma, myp, ha, hb, a, b7 G>

Here, G is used to determine the hash function pair and the
values of @ and b. G = (U,V, E). |U| = mg, |V| = m. A
vertex u; € Uor v; € V corresponds to bit a[i] or b[j]. Each
edge in E represents a name. There is a edge (u;,v;) € E if




and only if there is a name k € S such that h,(k) = i and
hy(k) = j.

For each vertex that is associated with at least one edge, the
corresponding bit is set to be 0 or 1. A vertex associated with
bit 0 is colored in white and a vertex associated with bit 1 is
colored in black. For vertices associated with no edges, we do
not care about the value of the corresponding bit because it
does not affect any 7(k) value for k£ € S. In order to assign
correct values of a and b, Othello requires G to be acyclic.

The construction algorithm consists of two phases.

Phase I: Deciding hash function pair.

In this phase, Othello finds a hash function pair (h,, hp).
We assume there are many candidate hash functions and will
discuss the implementation in Sec. V-B. In each round, two
hash functions are chosen randomly and G is accordingly
generated. We use Depth-First-Search (DFS) on G to test
whether it includes a cycle, which takes O(n) time. The order
in which the edges are visited during the DFS, i.e, the DFS
order of the edges, is recorded to prepare for the second phase.
Note that, if two or more names generate edges with the same
two endpoints, we also consider there is a cycle. If G is cyclic,
the algorithm will select another pair of hash functions until
an acyclic G is found.

Phase II: Computing bitmaps.

In this phase, we assign values for the two bitmaps a and b.
First, the values in a and b are marked as undefined. Then, we
execute the followings for each e = (u;,v;) in the DFS order
of the edges: Let k be the name that generates e. If none of
a[i] and b[j] has been assigned, let afi] + 0 and b[j] < 7(k).
If there is only one of a[i] and b[j] has been assigned, we can
always assign an appropriate value to the other one, such that
ali] ® b[j] = 7(k). As G is acyclic, following the DFS order,
we will never see an edge such that both a[i] and b[j] have
values.

Using the techniques described in [8], we get the following
conclusion. Given a set of names S = X UY, n = |S| and
assuming that h,, h; are randomly selected from a family of
fully random hash functions. h, : S — {0,1,--- ,mg — 1},

hy : S — {0,1,--- ;mp — 1}, then, the generated bipartite
graph G will be acyclic with probability +/1 — ¢, where
c= WZW <1

Hence, the expected number of rounds to find an acyclic
G in Phase I is \/1172 < 1.51 when ¢ < 0.75. The time

complexity is O(n) in each round. The second phase takes
O(n) time to visit n edges and assign values of a and b.
Hence, the total expected time of construct is O(n).

Name addition

To add a name k to X or Y, the graph G and two bitmaps
should be changed in order to maintain the correct result (k).

The algorithm first computes the edge e = (u,v) to be
added to G for k, u = up,, (), ¥ = Vp,(z). Note that G can be
decomposed into connected components. e must fall in one of
the following cases.

Case I: v and v belong to the same connected component
cc. Adding e to G will introduce a cycle. In this case, we
have to re-select a hash function pair (h,, hp) until a valid

hash function pair is found for the new name set SU{k}. The
construct algorithm is used to perform this process.

Case II: v and v are in two different connected components.
Combining the two connected components and the new edge,
we have a single connected component that is still acyclic. As
discussed in Sec. IV-B1, it is simple to find a valid coloring
plan for an acyclic connected component. Hence, the values
of a and b can also be set properly. In fact, at least one of
the two connected components can keep the existing colors.

Complexity Analysis.

We show the time complexity of add is O(1). From
the results in Theorem 3.3(i) in [14], we get the following
conclusions.

« In an Othello bipartite graph G = (U, V, E), randomly select
anode w € UUV. Let cc(w) be the connected component
containing w. When ¢ = ——t— < 0.75, Eflcc(w)]] < 4
with high probability as n — oo.

« In the procedure of adding one name into an Othello with n
existing names, the execution falls in Case I with probability
at most 12 when n — oc.

Assuming h,, hy are randomly selected from a family of
fully random hash functions, an insertion into an Othello
with n existing names will take constant amortized expected
time when m, = my, or when m, = 2my and n < 0.65my,.

add fall in Case I only in a very rare circumstance. In this
case, the construct algorithm is executed in O(n) time. In
Case 1II, the values correspond to vertices in one component
is updated in O(FE][|cc|]) time. Hence, the expected time
complexity is 2 - O(n) + O(E[|cc|]) = O(1).

Othello size growth. After adding a name into Othello,
n = |S| grows and may violate m, > 1.33n and m; > n.
However, Othello works correctly as long as G is acyclic,
even when m, < 1.33n or m; < n. Hence, Othello does
not deal with the requirement on m, and m; explicitly for
additions. Although the FEf[|cc|] value may grow as more
names are added to Othello, it is always smaller than 10 in
our experiments. The expected time to add a name to Othello
is still O(1) in practice.

When adding a new name falling in Case I, the values of
mg and my will be updated by construct, which guarantees
mg > 1.33n and my > n.

Set change for a name

Operation alter(k) means to move k from X to Y (or
from Y to X). The bitmaps a and b should be modified so
that 7(k) is changed from 0 to 1 (or from 1 to 0). The graph
G does not change during alter(k). We only need to change
the coloring plan of the connected component including the
edge e = (Up, (k) Un, (k))- One approach is to “flip” the colors
of all vertices at one side of e, i.e., to change O to 1, and to
change 1 to 0. The amortized time cost is O(1).

Name deletion

delete(k) can be done by simply removing the edge
(Wh, (k) Vn,(k)) in the graph G. The bitmaps a and b are not
modified because the values of 7(k) after deleting k& do not
matter any more. The time complexity is O(1).



Query structure and control structure

Each Othello is a seven-tuple (mg,,my, hy, hy,a,b,G).
Note that for a query on Othello, only the first six element is
necessary for computing the 7 value. The information stored
in G is not needed for the query operation. Hence, we let the
switches only maintain the six-tuple (mg, ms, hq, hp, a,b) in
its local memory, namely the Query structure. Storing this
six-tuple takes 2m + O(1) bits memory space. The time cost
for each query of Othello is equal to the sum of the cost of
computing two hash values, twice memory accesses for the
two bitmaps, and one XOR arithmetic operation.

In comparison, the network controller maintains the seven-
tuple, namely the Control Structure. The controller is respon-
sible for maintaining the FIB of the switches in the network.
The switches executes query on the query structures.

Summary of Othello Properties

An Othello is decomposed to a query structure running in
the data plane and a control structure in the control plane. The
query structure uses < 4n bits for n names. Every query
takes a small constant time including computing two hashes
and two memory accesses. The control structure uses O(n)
bits. The expect time complexity is O(n) for construction and
O(1) for name addition, deletion, and set change. Note that
the distribution of names in X and Y has no impact to the
space and time cost of Othello, because G only depends on
S and (hg, hp). In Sec. V-A, we demonstrate the extension of
Othello. It classifies names to d > 2 disjoint sets, while still
requires small memory and constant query time.

SYSTEM DESIGN OF CONCISE

We present how to build Concise using the Othello data
structure as follows. The design also includes the implemen-
tation details of FIB update and concurrency control, which is
skipped due to page limit.

Extension of Othello for Name Switching

The extension of Othello to support classification for more
than two sets is called a Parallel Othello Group (POG). An -
POG is able to classify names into 2! disjoint sets. It serves as a
FIB with 2! forwarding actions. Let Zg,Zy,--- ,Z5_4 be the
2! disjoint sets of names. Let S = ZgUZ;U---UZy_. Fora
name k € S, query of the I-POG returns an [-bit integer 7(k),
indicating the index of the set that contains k, i.e., k € Zr().

The idea of POG is as follows. Consider [ Othellos
04,03,,...,0;. Each O; classifies keys in set X; and Y;
(1 <1i <), where X; and Y; satisfies:

X; = U Z; Y= U Z;.
(7 mod 2%)<2t 1 (j mod 2%)>2% 1

Let 7;(k) be the query result of O; for name k. Consider the
I-bit integer ((m(k)m_1(k)---71(k))2. Note that ;(k) =0
if and only if k € X;. Meanwhile, Zx) C X; if and only
if (7(k) mod 2') < 2'~!, this indicates that the i-th least
significant bit of 7(k) is 0. Hence, the z-th least significant bit
of 7(k) equals to 7;(k). ie,

7(k) = (((k)m—1(k) - - - 71(K))2

Foreachi (1 < <), X;UY; = S. ie., the [ Othellos
share the same S. Recall that the edges in G is determined by
only S = X UY and (hg, hp), and (hg, hp) is decided during
construct by S. The [ Othellos may share the same (h,, hy)
and same edges in G. However, the bitmaps in different
Othellos are different.

Parallelized execution with bit slicing. Each operation of
an [-POG is essentially operations on [ Othellos. Using the bit
slicing technique, these operations can be executed in parallel.
The bit slicing technique is widely used to group executions
in parallel [2]. An [-POG query structure includes [, m, kg, hp
and two vectors A and B. Each of A and B contains m [-bit
integers. Consider all the i-th bits of the elements in A. These
bits can be viewed as a slice of the array A. The i-th slice of
A is used to represent bitmap a;. The slices of B is defined
similarly. Using this technique, 7(k) can be computed using
one arithmetic operation by:

7(k) = Alha(k)] ® Blhs(F)]

When [ is not larger than the word size of the platform, each
[-POG query only requires two memory accesses for fetching
Alz] and B[j]. The arithmetic operation includes computing
the hash functions and the XOR.

All Othello operations can be decomposed into two steps:
(1) modifications on G, (2) operations on some bits in a and
b. In an [-POG, the [ Othellos share the same G and the first
step is only executed once for all | Othellos. Hence the bit
slicing technique also applies to all other operations of POG.
Therefore, the expected time cost of each name addition,
deletion, or set change operation is only O(1), instead of O(1).
The time complexity of POG construction is still O(n).

Selection of Hash functions

The hash function pair is critical for system efficiency.
Ideally, h, and h; should be chosen from a family of fully
random and uniform hash functions. Similar to the implemen-
tation of CuckooSwitch [33], we apply a function H (k, seed)
to generate the hashes in our implementation. Here, H is
a particular hashing method and seed is a 32-bit integer.
We let ho(k) = H(k,seed,) and hy(k) = H(k,seedp).
Thus, (hg, hs) is uniquely determined by a pair of integers
(seed,, seedy).

The proper hashing method H() is platform-dependent.
Concise uses the CRC32c function for stronger and faster
hash results, which is then effectively mapped to a ¢-bit
integer value where m, = 2¢ or m; = 2*. Evaluation shows
that CRC32c demonstrates desirable performance in practice.

IMPLEMENTATION AND EVALUATION

We implement Concise on three platforms and conduct
extensive experiments to evaluate its performance.

Implementation Platforms

1. Memory-mode. We implement the POG query and
control structures, running on different cores of a desktop
computer. In addition, we use a discrete-event simulator to



simulate other data plane functions such as queuing. The
memory-mode experiments are used to compare the perfor-
mance of the algorithms and data structures. They demonstrate
the maximum lookup speed that Concise is able to achieve
on a computing device by eliminating the I/O overhead.

2. Click Modular Router[16] is an architecture for building
configurable routers. We implement an Concise prototype on
Click. It is able to serve as switch that forwards data packets.

3. Intel Data Plane Development Kit (DPDK) [13] is
widely used in fast data plane designs. We use a virtualized
environment to squeeze both the traffic generator and the
forwarding engine on a same physical machine. This prototype
is able to serve as a real switch that forwards data packets.

Methodology

We compare Concise with three approaches for name
switching: (1) Cuckoo hashing[21] (used in Cuckoo-
Switch [33] and ScaleBricks [32]), (2) BUFFALO [30], and
(3) Orthogonal Bloom filters. CuckooSwitch [21] is optimized
for a specific platform with 16 cores and 40 MB cache.
ScaleBricks [32] is designed for a high performance server
cluster. We are not able to repeat their experiments on com-
modity desktop computers. Instead, we compare Concise with
(2,4)-Cuckoo hashing, which is their FIB, by reusing the
code from the public repository of CuckooSwitch. BUFFALO
does not always return correct forwarding actions. The false
positive rate is set to at most 0.01%. We also implement a
new technique called Orthogonal Bloom filters (OBFs) for
comparison. It uses a Bloom filter to replace an Othello for
classification of two sets X and Y: all names in X hit the
Bloom filter. The false positive rate is also set to at most
0.01%. The other design of OBFs is similar to Concise.

We do not include SetSep [11] in this section although
it shares some similarity to Othello. The SetSep work [32]
includes no update method and was not proposed for FIBs.
There is no explicit update algorithm for SetSep in every work
it has been used [11][32]. Hence, SetSep cannot be directly
used for FIBs and it is not suitable to implement SetSep and
compare it with other FIB designs. Actually our experiments
using a static version of SetSep show that Concise is faster
than SetSep in name lookups.

Performance metrics

Data plane performance metrics are used to characterize
the performance of the Concise query structure in switches.

Memory cost: the size of memory to store a FIB.

MCQ: the maximum number of Cache lines transmitted per
Query. During each memory access, a cacheline (usually 256
bits data in many architectures) is transmitted from memory
to the CPU. It is used to characterize the time cost of a query.

Query throughput: the number of queries that a FIB is able
to process per second.

Query throughput under update: the query throughput mea-
sured when the FIB is being updated. It reflects the effective-
ness of the concurrency control mechanism.

Processing delay: the processing delay of the query struc-
ture for a packet. It reflects the ability of the data plane to

process burst traffic. Such metric is measured using an event-
based simulator on real traffic trace.

Control plane performance metrics characterize the
performance of the Concise control structure in the controller.

Construction time: the time to construct a FIB. Note that,
for some networks in which G is shared among all switch FIBs
such as Ethernet, not every FIB requires the entire construction
time. Once G is determined, it can be reused for all switches.

Update throughput: the number of updates can be processed
by the control structure per second. Here, an update may be
adding a name, deleting a name, or changing the forwarding
action of a name.

Evaluation environment and settings

LFSR name generator In the experiments, a series of query
packets with different names were generated and fetched by
the FIB. One straightforward approach is to feed the FIB
with publicly available traffic trace. However, the time for
transmitting the data from the physical memory to the cache is
too large compared to the FIB query time. Hence, to conduct
more accurate measurement, we use a linear feedback shift
register (LFSR) to generate the names. One LFSR generates
about 200M names per second on our platform. In addition,
we provide event-based simulation using real traffic data to
study the processing delay on Concise.

In fact, LFSR gives no favor to Concise because the names
are generated in a round-robin scenario, which provides the
minimum cache hit ratio. LFSR traffic is actually the worst
traffic for Concise. On the contrary, in denial-of-service attack
traffic, the queries concentrate on one or few names, and they
always hit the cache. Hence, the query throughput of Concise
in DoS attack traffic may be higher than the value measured
with LFSR traffic. We believe the result measured in LFSR
traffic reflects the true performance of Concise.

Evaluation Settings In the following section, unless speci-
fied otherwise, we evaluate the performance of Concise with
4 parallel query threads. The number of action is set to 256
(I = 8). We conduct all experiments on a commodity desktop
computer equipped with one Core i7-4770 CPU (4 physical
cores @ 3.4 GHz, 8 MB L3 Cache shared by 8 logical cores)
and 16 GB memory (Dual channel DDR3 1600MHz).

Data plane memory efficiency and MCQ

Table II shows the size of memory of different types of
FIBs. For the Cuckoo hash table, we use the (2,4) setting.
For BUFFALO, we assume the names are evenly distributed
among the actions, which gives an advantage to it. We use
the setting k,,q,, = 8. These settings are all as described or
recommended in the original papers [33], [32], [30].

The memory space used by Concise is significantly smaller
than that of Cuckoo, BUFFALO, and OBFs. It is only deter-
mined by the number of names n and the number of actions,
and is independent of the name lengths. Table II also shows the
maximum number of cachelines transmitted per query (MCQ)
of these FIBs. A smaller MCQ indicates fewer data transferred
from the memory to the CPU, which results in better query
throughput. Concise always requires exactly two memory



FIB Example Concise Cuckoo BUFFALO OBFs
Name Type # Names # Actions || Mem MCQ Mem  MCQ Mem  MCQ Mem  MCQ
MAC (48 bits) 7x10° 16 M 2 5.62M 2 2.64M 8 7.36M 15
MAC (48 bits) 5x10° 256 16M 2 40.15M 2 27.70M 8 112.06M 16
MAC (48 bits) 3x107 256 96M 2 321.23M 2 166.23M 8 672.34M 16
IPv4 (32 bits) 1x10° 16 1.5M 2 4.27TM 2 3.7TM 8 10.52M 15
IPv6 (128 bits) 2x10° 256 4M 2 34.13M 6 11.08M 8 44.82M 16
OpenFlow (356b)  3x10° 256 M 2 14.46M 6 1.6TM 8 6.72M 16
OpenFlow (356b) 1.4x10° 65536 &M 2 67.46M 6 1821IM 1024 | 66.60M 17
File name (varied) 359194 16 512K 2 19.32M 10 1.35M 8 5.47T™M 15

Table II: Memory and query cost comparison of four FIBs and SetSep. MCQ: maximum number of cachelines transmitted per query.

accesses per query. The other FIBs may have larger MCQ
depending on the name length and number of actions.

Memory-mode evaluation

Data-plane performance

Query throughput versus number of names. Fig. 3 shows
the query throughput of Concise, Cuckoo, BUFFALO, and
OBFs. The names are MAC addresses (48-bit). When n is
smaller than 2 million, the throughput of Concise is very
high ( > 400M queries per second (Mgps)). It is because
the memory required by Concise is smaller than the cache
size (8M for our machine). When n > 2M, the throughput
decreases but still around 100 Mqgps. This indicates that if
other resources (e.g., I/O and buffer) are not the bottleneck,
Concise reaches 100Mqps. The query performance decreases
as the size of the query structure exceeds the CPU cache size.
We observe similar results when running the evaluation on
other machines with different CPUs. Cuckoo has the highest
throughput among the remaining three FIBs but its is only
about only 20% to 50% of Concise. The results of Cuckoo are
consistent with those presented by the original CuckooSwitch
paper’. Note that the measured time overhead includes that of
query generation.?

Cost of detecting invalid names We also measure the cost
of two approaches to detect invalid names. 3 shows that using
a 8-bit checksum (marked as Concise+Chk in the figure) has
a minor impact on the query performance. We provide some
more analysis on the approaches in Sec. VII-A.

Query throughput versus name length and number of
CPU cores. Fig. 4 shows the query throughput using different
lengths of names. Each FIB contains 256K names. The As
the length grows, the throughput of all types of Concise
and Cuckoo FIBs decreases. Note that the memory size of
Concise is independent of the name length. Hence, the
throughput decrease of Concise is due to the increase of hash-
ing time. One interesting observation is that, when the length
is a multiple of 64 bits, the query throughput of Concise
is slightly raised. This is mainly because the experiments
are conducted on a 64-bit CPU. The query throughput grows
approximiately in proportional to the number of used threads,

'The paper [33] showed a throughput 4.2x as high as our Cuckoo results on
a high-end machine with two Xeon E5-2680 CPUs (16 cores and 40MB L3
cache). It is approximately 4x as powerful as the one used in our experiments.

2In the evaluation of 1M names, each query of Concise takes about 4.5
ns while generating a query takes 4.1 ns.
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Figure 3: Query throughput versus number of names.

as long as the number of threads does not exceed the number
of physical CPU cores of the platform.

Query throughput during updates. Fig.5 shows the
throughput of Concise during updates, including name addi-
tions, deletions, and action changes. There is only very small
decrease of query throughput even when the update frequency
is as high as hundreds of thousands of names updated per
second. We mark the one-o (68%) confidence interval of
the throughput when there is no concurrent query in Fig. 5.
Evaluation result shows that the throughput of Concise still
remains in its normal range during updates. For Concise with
4M names the throughput downgrade is negligible.

Processing delay. We conduct event-based simulations of
packet processing on the data plane to study the process delay.
We simulate a single-thread processor with two-level cache
mechanism. The packets are processed in a first-come, first-
served fashion. Each packet consists of the header and payload.
The packets are put in a queue upon reception and wait to be
processed by the prosessor. We measure the processing delay
for real traffic data from the CAIDA Anonymized Internet
Traces of December 2013 [1]. The average packet rate is
about 210K packets per second. In Fig. 6, Concise has smaller
processing delay than Cuckoo before the 90th percentile, but
they have similar tails. To study the processing delay under
larger traffic volumes, we replay the trace 100x as fast as the
original. Shown as the thin curves, the processing delay of
Concise is clearly smaller than that of Cuckoo before the
60th percentile. After that, the two curves are similar, except
that Cuckoo has a longer tail. Overall, the processing delay of
Concise is very small (< 1us) even under high data volumes.
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Control plane performance

Construction time. Fig. 7 shows the average time to con-
struct the query and control structures for one switch with
various number of names. The construction time of Concise
grows approximately linear to the number of addresses. Al-
though the time of Concise is larger than that of Cuckoo
and BUFFALQO, it is still very small. For 4M names, it takes
only 1 second to construct the FIB. Note that the graph G
can be reused for all other switches in the network. Hence,
network-wide FIB construction only takes a few seconds.

Update speed. The update speed of indicates the ability to
react to network dynamics. All types of network dynamics, in-
cluding host and link changes, are reflected as name additions,
deletions, and action changes in the FIBs. Fig.8 shows the
update speed of Concise in the number of updates processed
per second. We vary the number of names before update and
measure the time used to insert a number of new names. Each
run of the experiment is shown as a point in the figure. In
most cases, it reaches at least 1M updates per second, which
is sufficient for very large networks.

On POG reconstruction. In some rare cases, adding a
new name may require reconstruction of the POG when it
introduces a new cycle in to the bipartite graph. This may take
non-negligible time (0.2 seconds when there are 1M names).
Theoretical results show this happens with probability less
than 17—5’ This value is even smaller in practice (about 1.3
parts per million when there are 1M names). Note that, POG
reconstruction may happen only when there is a new name
added to the network. Modifying a forwarding action of a
existing name (or removing a name) never results in POG
reconstruction. The line in Fig. 8 shows the average update
speed (including the time overhead for reconstruction). POG
reconstruction only imposes minor impact on the update speed.

Network-wide shared bipartite graph. For some networks
that require every switch to store all destination names such
as Ethernet, the name set S is identical for all switches in the
network. Hence, all switches in the network may share the
same G and (hg, hy). Constructing and updating the FIBs in
all switches only require computing G' once. e.g., the phase
I of the construct procedure (Sec. IV-B1) is only executed
once for FIBs of all switches in the network. Note that for a
single switch, the time used for phase I is about half of the
total of construct. This property reduces the construction
time overhead for FIBs of multiple switches.

Communication overhead. We compute the entropy of

100K 200K 300K 400K 500K 600K 700K 800K 900K

Update frequency (updates/sec)

%01 001 0.1 1 10 100
Processing delay (us)

name Figure 5: Concise query throughput under Figure 6: CDF of the processing delay of

Concise and Cuckoo

the information included in update messages in Table III. The
update message length grows logarithmically with respect to
either the number of names n or the number of actions. The
communication overhead of Concise is smaller than that of
most OpenFlow operations.

n=3x10%, 2% actions n=1.4x10°, 2'¢ actions

75.2
65.6

107.2
88.8

Name addition
Action change

Table III: Entropy of one update message in bits

Prototype Implementation and Evaluation

Implementation on Click

We implement a Concise prototype on Click. It receives
packets from one inbound port and forwards each packet to
one of its several outbound ports. Upon receiving a packet, it
queries the POG using the address field of the packet, i.e., the
name, and decides the outbound port of the packet. In addition,
we implement the (2,4)-Cuckoo hash table, OBFs, as well
as the binary search mechanism on Click. Fig.9 shows the
forwarding throughput. The Click modules in each evaluation
includes one traffic generator generating packets with valid 64-
bit names, one switch that executes queries on the FIB, and
packet counters connected to the egress ports of the switch.
The experiments are conducted on one CPU core.

Results show that Concise always has the highest through-
put. When n < 2M, Concise is smaller than the cache size
and the query throughput is about 2x as fast as Cuckoo and 4x
as fast as OBFs. When n > 2M, the throughput of Concise is
still the highest. Meanwhile, Concise uses much less memory,
about 10% to 20% of that of Cuckoo, OBFs, and Binary.

Implementation with DPDK

We also build a Concise prototype on the hardware En-
vironment Abstraction Layer (EAL) provided by DPDK. It
maintains a POG query structure. The query structure is
initialized during boot up and can be updated upon network
dynamics. The prototype reads packets from the inbound ports,
executes queries on the query structure, and then forwards each
packet to the corresponding outbound port.

We implement both the traffic generator and FIB appli-
cation on a same commodity computer using virtualization
techniques. As shown in Fig. 10, we create a guest virtual
machine (VM) on the host machine using KVM and Qemu
to install Concise. The VM is equipped with four virtio-
based virtual network interface cards. Linux TAP kernel virtual
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devices are attached to the virtio devices on the host side. The
programs running on the host machine communicate with the
guest VM via the Linux TAPs. On the host machine, we use
a traffic generator program to send raw Ethernet packets to
Concise running on the VM. The host machine receives the
forwarded packets from Concise and counts the number of
packets using default counters provided by the Linux system.

We measure the throughput of Concise with different
numbers of names. The barchart in Fig. 11 shows that Concise
is able to generate, forward, and receive more than 1M packets
per second, for both 64-Byte and 1500-Byte packets. The
forward throughput is at least 12 Gbps for 1500-Byte Ethernet
packets. The throughput of Cuckoo is only 60% to 80%
compared to Concise. The forwarding throughput has no
significant changes when the number of names grows or packet
length changes. This indicates the impact of Concise to the
overall performance is so small that it is negligible compared
to the other overheads. The bottleneck of this evaluation is
on other parts of processing, e.g., data transmission between
the host machine and guest VM. We expect a much higher
throughput on physical NICs.

DI1sSCcUSSION
Deal with Alien Names

An alien name is a name that is not S during Concise con-
struction. Querying an alien name may result in an arbitrary
forwarding action. Compared to the forwarding table miss of
Ethernet, which let the packets flood to all interfaces, Concise
causes no flooding. Operators may choose one or some of the
following mechanisms to detect the alien names.

o At an ingress switch, every incoming packet should be
checked by a filter or firewall to validate that its destination
does exist in the network. This filter can be implemented as
a network function running on the border of the network,
and can be integrated with the firewall.
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H of names before update
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Figure 8: Update speed. Line: avg. spd. Figure 9: Forwarding throughput compari-
including POG reconstruction.

son on Click

A
oo aF MCQ=4
0,00,
®0060°000BF MCQ=6
°®o08F MCQ=8
Cuckoo-Full
@ No false posifive
0 2 4 6 8
Additional Memory Space (MB)

o,
%0900,
o,

False Positive Rate
=

107°F Cuckoo-Checksum
MCQ=2

Figure 11: Performance of the Concise Figure 12: Approaches of detecting invalid

names

o Maintain a Bloom filter at each of the switches. Packets
with valid names pass this filter and is then processed by
Concise FIB.

o In addition to the [-bit query results, also maintain the
checksums for each name in the Concise FIBs. Adding
checksums will increase the memory size of Concise.
For r-bit checksums, the overall memory cost of a query
structure is 2(I 4+ r)m + O(1). Note that as long as [ + r
does not exceed the word length of the computing platform,
the time overhead of all operations remain unchanged.

Assuming there are in total 1M names. Fig 12 compares the
memory and computational overhead of the above approaches.
The false positive rate can be controlled as low as 10~° with
< 2MB memory overhead using the filter of Cuckoo with
checksums. The performance of using Bloom filters may vary
depending on the parameters. We also recommend to utilize
the time-to-live (TTL) value of to prevent the packet being
forwarded in the network forever.

The unique property of returning an arbitrary value for an
alien name may also be useful for Concise as a network load
balancer: for a server-visiting flow that is new to the network,
Concise can forward it to one of the servers with adjustable
weights.

Concise versus Cuckoo and SetSep

Concise is essentially a classifier for names, and each class
represents a forwarding action. Concise does not store the
names. Cuckoo stores all names and actions in a key-value
store. SetSep has some properties similar to Concise. Both
of them store no names and return meaningless results for
unknown names. In ScaleBricks [32], SetSep is only used as
a separator to distribute the FIB to different computers, rather
than the FIB. Meanwhile, the update scheme for SetSep is
not explicitly explained [11], [32], and there is no discussion
about handling dynamic FIB size growth.



In addition to the memory size results in Table 1, we show
some comparison results of SetSep as follow. The construction
speed of SetSep is slower than that of Concise and Cuckoo
by more than an order of magnitude: 10 seconds for one single
FIB of 1M names in our experiments. We also measure the
update speed of SetSep without adding new names, which
turns to be less than 10K/s (< 1 % of Concise). The query
speed of SetSep is higher than that of Cuckoo. SetSep needs
to compute 1 4 [ hash values and read 2 + 2[ values for each
query. We implement a static SetSep with 1.4M names and
l = 8, using 2.19MB memory. Its query throughput is 211
Mgps using 4 threads. As comparison, Concise with same
settings uses 4M memory and reaches 470 Mqps.

In addition, we summarize the reasons of the performance
gain of Concise as follows. (1) Othello does not maintain a
copy of the names in the query structure. The memory size of
the query structure is much smaller than the other solutions.
Concise demonstrates higher cache-hit rate, which leads to
better performance on cache-based systems. (2) The query
procedure does not contain any branches (e.g, if statements).
This helps the CPU to predict and execute the instructions
in the query procedure. (3) The efficient concurrency control
mechanism further improves the query speed of Concise.

CONCLUSION

Concise is a portable FIB design for name switching,
which is developed based on a new algorithm Othello Hashing.
Concise minimizes the memory cost of FIBs and moves the
construction and update functionalities to the SDN controller.
We implement Concise using three platforms. According
to our analysis and evaluation, Concise uses the smallest
memory to achieve the fastest query speed among existing
FIB solutions for name lookups. As a fundamental network
algorithm, we expect that Othello Hashing will be used in
a large number of network systems and applications where
existing tools such as Bloom Filters and Cuckoo Hashing may
not be suitable.
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