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Abstract

With the growing number of binary black hole (BBH) mergers detected by the Advanced LIGO and Virgo
detectors, it is becoming possible to constrain the properties of the underlying population and better understand the
formation of these systems. Black hole (BH) spin orientations are one of the cleanest discriminators of formation
history, with BHs in dynamically formed binaries in dense stellar environments expected to have spins distributed
isotropically, in contrast to isolated populations where stellar evolution is expected to induce spins preferentially
aligned with the orbital angular momentum. In this work, we propose a simple, model-agnostic approach to
characterizing the spin properties of LIGO/Virgo’s BBH population. Using measurements of the effective spin of
the binaries, we introduce a simple parameter to quantify the fraction of the population that is isotropically
distributed, regardless of the spin magnitude distribution of the population. Once the orientation characteristics of
the population have been determined, we show how measurements of effective spin can be used to directly
constrain the BH spin magnitude distribution. We find that most effective spin measurements are too small to be
informative, with the first four events showing a slight preference for a population with alignment, with an odds
ratio of 1.2. We argue that it will be possible to distinguish symmetric and anti-symmetric populations at high
confidence with tens of additional detections, although mixed populations may take significantly longer to
disentangle. We also derive BH spin magnitude distributions from LIGO’s first four BBHs under the assumption of
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aligned or isotropic populations.
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1. Introduction

The direct detection of gravitational waves (GWs) from
binary black holes (BBHs) has become almost routine, with
three confident events (GW150914, Abbott et al. 2016a;
GWI151226, Abbott et al. 2016b; GWI170104, Abbott
et al. 2017) and one candidate event LVT151012 (Abbott
et al. 2016¢) identified by the Advanced LIGO detectors. The
GW signatures of these binaries encode properties of the binary
(Veitch et al. 2015) and, in particular, can be used to measure
the spin properties of the binary’s black holes (BHs). The
astrophysical processes by which these systems form remain
uncertain; two generic formation channels include the evol-
ution of an isolated pair of stars that were born together (i.e.,
“in the field”; Tutukov & Yungelson 1993; Belczynski
et al. 2016; Mandel & de Mink 2016; Marchant et al. 2016;
Stevenson et al. 2017b) and dynamical interactions in a dense
stellar environment (i.e., globular clusters; Sigurdsson &
Hernquist 1993; Portegies Zwart & McMillan 2000; Rodriguez
et al. 2015, 2016).

Computational models of these formation channels provide
predictions for the rates and distributions of binary masses.
However, these predictions are highly dependent upon assump-
tions about poorly understood processes (e.g., common envelope
evolution). More robust are the predictions for binary spin
properties, particularly the orientation of BH spins with respect
to the orbital angular momentum of the binary. A generic
characteristic of dynamical formation is that the spin orientations
of the component BHs are isotropic with respect to the orbital
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angular momentum (Sigurdsson & Hernquist 1993; Portegies
Zwart & McMillan 2000; Schnittman 2004; Bogdanovi¢ et al.
2007; Rodriguez et al. 2015; Rodriguez et al. 2016; Stone et al.
2017). Isolated binaries, on the other hand, are generally
expected to be preferentially aligned with the orbital angular
momentum (Tutukov & Yungelson 1993; Belczynski et al.
2016; Mandel & de Mink 2016; Marchant et al. 2016; Stevenson
et al. 2017b; Zaldarriaga et al. 2018). This conclusion can be
weakened through the impact of natal kicks (O’Shaughnessy
et al. 2017), but it is difficult for the isolated channel to produce
a significant fraction of binary mergers with large misalignment
S-L <0, where § and L point along the stellar spin and
orbital angular momentum vectors, respectively). In the absence
of firm predictions for the full spin distributions (orientation and
magnitude) from various formation channels, we provide a
model-agnostic approach specially suited for looking for spin
isotropy in the BBH population.

LIGO/Virgo’s spin measurements come with large, but
well-quantified, uncertainties. Thus, it is difficult to utilize
spin to constrain the formation channel of any particular
binary, but with many events the properties of the population
can start to be inferred. In principle, there are two
astrophysically interesting spin quantities for each of the
component BHs: the spin magnitude and its misalignm-
ent angle with the orbital angular momentum. However,
LIGO and Virgo typically provide only one well-constrained
spin quantity: the effective spin, ., which is the mass-
weighted combination of the aligned components of BH spins
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(Abbott et al. 2016d):
1
Xeft = M(mlm + max,), (D

where M = m; + m; is the total mass of the system, and
—1 < x5 < 1 are the projections of the spin vectors of each
component BH along the orbital axis. As pointed out in Farr
et al. (2017), by measuring the effective spin distribution of the
population we can infer misalignment characteristics and,
consequently, formation channels.

Where Farr et al. (2017) focused on assessing the plausibility
of specific model populations through X ;s measurements, we
generalize this approach to make model-agnostic statements
about the misalignment characteristics of the population. Our
approach is based on the basic principle that any isotropic
population, regardless of the population’s spin magnitude
distribution, must have a symmetric X, distribution. Thus, we
can use a hierarchical analysis (Hogg et al. 2010; Mandel 2010)
of LIGO/Virgo’s detected events to compare the relative rates
of binaries with x4 < 0 and x4 > 0 to assess whether or not
the detected population has spins that are isotropically
distributed. If p is the fraction of systems with x ¢ > 0, then
if we consider the possibility of a population that is
isotropically distributed, preferentially aligned, or a mixture
thereof, the isotropic (or symmetric) fraction is ~2(1 — p) and
the aligned fraction is ~2p — 1. A single definitive measure-
ment of x.; < 0 would imply that p < 1; to date, no such
measurement exists. Section 2 presents our hierarchical
analysis framework, our proposed models for the x4
distribution, and a prescription for determining the underlying
BH spin magnitude distribution once the orientation distribu-
tion has been characterized. Section 3 presents the results from
applying these techniques to LIGO’s first four BBH candidates.

2. Methods
2.1. Simulated Populations

To test the sensitivity of the techniques outlined in this Letter
we consider several fiducial distributions. Our approach is
similar to Farr et al. (2017). We will simulate isotropic and
aligned populations with four different component spin
magnitude distributions: a “high-spin” distribution with
p(a) = 2a, a “low-spin” distribution with p(a) = 2(1 — a),
a “very-low-spin” population with a ~ |[N(0, 0.1)|, and a
“very-very-low-spin” population with a ~ |N(0, 0.01)|, where
N(mean, standarddeviation) represents a normal distribution.
For the purposes of simulating aligned populations we assume
exact alignment of component spins and the orbital angular
momentum, but the techniques described here are general and
can be applied to populations with preferential (but not exact)
alignment. In particular, unless the processes that misalign an
isolated (field) population can produce anti-aligned spin vectors
(L - § < 0) the population will still have g > 0. Posterior
constraints on X, for each event are simulated to be Gaussian
with widths assigned randomly from LIGO’s first four BBH
constraints (Abbott et al. 2016¢, 2017).

2.2. Hierarchical Population Inference

Ultimately, we would like to calculate p(\|{d'}), the
posterior density function for the parameters A describing our
population given the data measured around each event {d'}.
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Since the effective spin cannot be determined precisely from
any given observation, we want to marginalize over it, leading
to the following expression for the posterior density function
for population parameters \:

obs

PO o [H Il dxetfp(d'|xetf>p<xeﬁ|»]p<x) @)

i=1

where p(d| Xiff) is the likelihood of measuring data d’ given

Xegrs p(Xeffl)\) is the probability of observing Y’ o given
population parameters A, and p(})) is the prior probability of
observing population parameters A. In principle, there is an
additional factor that accounts for selection effects. Systems
with . > 0 accumulate more inspiral cycles than x . < 0
systems (Blanchet et al. 1995; Reisswig et al. 2009), making
them more likely to be detected. However, this effect only
becomes appreciable for large ranges in . g; for GW151226-
like binaries (m; ~ 7.5M,, my =~ 15M;) the sensitive
Volume x Time, or VT, for systems with Y. = 0.5 is
~30% larger than for average systems, and ~70% larger than
that of x. = —0.5 systems. We ignore this effect for the
purposes of this work, though it should be accounted for as
constraints improve, especially if the range of measured X g
values increases.

Given N; samples { ngf} from the marginal posteriors for
event i generated using a prior p(.¢) We can avoid reanalysis
of the data by reweighing the individual event posteriors given
a particular population model, leading to a more practical form
of the posterior for model parameters

pota o | 1T L3zl | 3)
i=1 ]Vlj 1 p( eff)

We will make use of this hierarchical posterior density function
throughout this work using various population models.

2.3. Two-bin X, Model

Since we do not have concrete predictions for the expected
distribution of spin parameters for various formation channels,
we want a simple yet general approach to characterize the binary
population that does not depend on unknown properties, such as
the spin magnitude distribution. Binaries that form dynamically,
regardless of their spin magnitude distribution, are expected to
have a g distribution that is symmetric about 0. A simple way
to measure this is to use a two-bin, one-parameter model to
describe the g distribution:

L—p =1 <X <O
P(Xegt) = o

, 4
ngeffgl @

where p can be interpreted as the fraction of systems with
Xerr > 0. Under this model, purely isotropic populations have
p = 1/2, aligned populations have p = 1, and purely anti-
aligned populations (x4 < 0) have p = 0. In this work, we
simulate populations with perfect alignment (p=1), and
while natal kicks are expected to introduce some misalignment
in the isolated population, systems with x4 < O are expected
to be rare since this requires torquing the black hole all the way
over to retrograde spin. Thus, p is expected to be very close to 1
for isolated populations (O’Shaughnessy et al. 2017).
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Figure 1. Evolution of the odds ratio in favor of an isotropic distribution
(where Oy, > 1 indicates an isotropic distribution is preferred over aligned) for
simulated populations using the two-bin model, applied to aligned populations
(top) and isotropic populations (bottom). Dashed lines indicate an infinite odds
ratio, occurring when a definitive . < 0 measurement is made. If the
population’s spin magnitudes are very low (a < 0.01), the two-bin model
breaks down and can wrongly conclude that a population is isotropically
distributed. This limitation is addressed with the three-bin model introduced in
the next section.

If one believes that the BBHs detected by LIGO and Virgo
have to either come from a perfectly isotropic population or
a perfectly aligned population, then the odds ratio in favor
of isotropy (assuming equal prior odds) goes as Ojo =
plp=1/2)/p(p =1). If we consider the possibility of a
mixed population of binaries, then the posterior density
function for p provides a direct measure of the mixing fraction,
With fienes = 20 — 1 (Stevenson et al. 2017a; Talbot &
Thrane 2017; Vitale et al. 2017).

To test the effectiveness of the two-bin model, we simulate
up to 250 events from isotropic and aligned spin populations
with observational uncertainties drawn randomly from LIGO’s
first four BBHs for the various spin magnitude distributions
outlined in Section 2.1. To summarize the performance of this
model, Figure 1 shows how the odds ratio Oj, in favor of an
isotropic population estimated using the two-bin model evolves
as an increasing number of events are detected from each
population. For isotropic populations the odds ratio behaves as
expected, increasing steadily with the number of detections.
For aligned populations with very-very-low-spin, however, the
odds ratio in fact favors the wrong conclusion (i.e., the pink
curve in the top panel of Figure 1 goes up, not down). Figure 2
shows the posterior constraints on p for the very-very-low-spin
aligned and isotropic populations, where for the aligned
population the simulated value (p = 1) is incorrectly excluded
with high confidence. This shortcoming, due to the mismatch
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Figure 2. Posterior distributions for the population parameter p, the fraction of
systems with . > 0, after 250 simulated events from the isotropic and
aligned, very-very-low-spin (a ~ |N(0, 0.01)|) populations. If the detected
population has such low spins, the two-bin model fails (see Section 2.3),
motivating the use of the three-bin model (see Section 2.4).

between the population model and the simulated population, is
addressed in the following subsection.

For populations with small spins, we have w < gpps < 1,
where w is the characteristic width of the population about
Xerr = 0 (0.01 for the very-very-low-spin population) and oyps
is the typical observational uncertainty of x. (~0.1 for the
events used in this work). In this case, the log posterior for p
becomes (cf. Equation (2))

logp(pl{d'}) = const

+>02 (A» - l)(2,) - 1) - (A» — 1)2
- o2 )
1 3
x 2p — 1)? + O(Ai - 5) :|, (5)
where
o Jidx o

i = 1 -
I dx pix)

is the fraction of the likelihood that supports X > 0. Thus,

(6)

log p(pl{d'}) ~ const
FON(uRp — 1) — a*2p— DD, (D)

where

uE<A—1> ®)

(T

The posterior in Equation (7) peaks at

and

o2

w+ 202
402

For the aligned, very-very-low-spin population considered in
this work, 1 ~ 0.022 and o ~ 0.29, leading to p ~ 0.57, as

p= (10)
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Figure 3. Marginal posterior distributions for the fraction of informative
systems « and the fraction of informative systems with x. > 0, p, after 250
events for the aligned, very-very-low-spin population. In contrast to Figure 2,
almost all systems are uninformative and leave p only marginally constrained.

observed in Figure 2, and explaining why the correct (aligned)
model is not preferred even as the number of measurements
increases in Figure 1. Any population where x,, is typically
much smaller than the observational uncertainty will be subject
to the same effect in the two-bin model, motivating our
introduction of a three-bin model in the next subsection.

2.4. Three-bin x,; Model

The two-bin approach outlined in Section 2.3 is a simple
approach to answering the question of isotropy. However,
systems with x.4 ~ O will fall on the boundary between the
two bins and are therefore uninformative about p (the fraction
of the population with x ; > 0). When the typical width of the
population is smaller than the observational uncertainty, the
two-bin model breaks down, as explained in Section 2.3. To be
more robust to the case of low-y systems, we introduce a
third bin to the model described in Section 2.3. This additional
bin is narrow and centered on ). = 0, leaving us with a two-
parameter model:

A
2a0(1 = p)/2 = A) =1 < X < ey
A A
PXegp) = (1 — )/A —? < Xegr < ?, an
A
2ap/(2 = A) > < Xepr S 1

where A is the width of the central bin, « is the fraction of
“informative” systems that lie outside of the central (low-).¢)
bin, and p is the fraction of those systems with x4 > 0. This
third, narrow bin accounts for systems with X too small to be
informative. By marginalizing over the number of informative
systems, we obtain a marginal posterior distribution function
p(p) that can be interpreted in the same way as the two-bin
model. We have experimented with several choices for the
central bin width A. Since our results do not depend sensitively
on this choice, we have used A = 0.05 throughout this work;
this width is smaller than, but comparable to, the typical
observational uncertainty for existing LIGO/Virgo events.
Figure 3 shows the results from applying the three-bin model
to the same very-very-low-spin aligned population that failed
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Figure 4. Evolution of the odds ratio in favor of an isotropic population over an
aligned population for the various simulated populations using the three-bin
model, applied to aligned populations (top) and isotropic populations (bottom).
Dashed lines indicate an infinite odds ratio, occurring when a definitive
Xeir < 0 measurement is made. Unlike the two-bin model presented in
Figure 1, this model is robust against very-very-low-spin populations.

with the two-bin model (see Figure 1). The marginal posterior
distribution for « (the fraction of systems lying outside of the
low-x.; bin) shows a vanishing number of events to be
informative, while the marginal posterior distribution for p (the
fraction of informative systems with x. > 0) remains
unconstrained. Figure 4 shows how the odds ratio in favor of
an isotropic distribution, calculated from the marginal posterior
distribution of p, performs on isotropic and aligned popula-
tions. While this approach proves to be robust against
populations with very low spin magnitudes, it requires more
events to be constrained to the same precision as the two-bin
model. We find that tens of events will likely be necessary to
characterize the underlying population at high confidence, with
the precise number depending on the fraction of the population
with effective spins indistinguishable from zero. However, for
populations predominately composed of systems with very low
spins, where the statistical uncertainty of each spin measure-
ment is much greater than the spin distribution of the
population, distinguishing between population models may
not be possible even with hundreds of events.

2.5. Constraining Component Spins

In general, it is difficult to infer the spin magnitude
distribution for the component BHs from the measured distri-
bution of ., since the relation between the two distributions
depends on mass ratios and spin alignments. However, using
our simple method to identify the alignments of the population
can dramatically reduce the complexity of this task. If the
population has been determined to be either completely
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Figure 5. Mean and 90% credible bounds on the spin magnitude distribution of
the low-spin isotropic population after 250 detections, under the assumption
that the population is isotropic.

isotropic or aligned, we can then use .y measurements to
constrain the underlying BH spin magnitude distribution. We
will use a three-bin model for the spin magnitude distribution

A/3 0<a<1/3
pla) =14,/3 1/3<a<?2/3, (12)
(I — (A +4)/3 2/3<ax1

where A, and A, are the heights of the low (0 < a < 1/3) and
moderate (1/3 < a < 2/3) spin bins, respectively. We choose
three bins here because it seems to be meaningfully constrained
with the current data. As we detect more BBHs, we will be able
to constrain higher-resolution models. With this model in hand,
assuming either an isotropic or aligned distribution of
orientations leads to a unique prediction for the distribution
of x4 that can be used in place of the two- and three-bin
models described above. As an example, Figure 5 shows the
posterior constraints on the spin magnitude distribution after
detecting 250 events from a low-spin isotropic population.

3. Results from LIGO’s First Four BBHs

We now make inferences about the spin distributions of the
BBH population being detected by LIGO/Virgo. In lieu of true
posterior samples from the LIGO/Virgo analyses, which are
not publicly available, we approximate the posterior estimates
of x. for the four likely GW events detected so far
(GW150914, GWI151226, GW170104, and LVT151012)
following a similar prescription to that in Farr et al. (2017).
We approximate the posterior as a Gaussian whose central 90%
credible interval matches the stated interval for each event
(Abbott et al. 2016c, 2017).

Figure 6 shows the marginal posterior density functions from
a three-bin analysis of LIGO’s first four likely BBH detections.
We find that the information for distinguishing between
symmetric and anti-symmetric spin distributions is dominated
by GW151226; the rest of the events are consistent with the
low-x.¢ central bin. Roughly speaking, in the symmetric case a
nonzero . measurement would have a 50%-50% change of
being aligned (x.; > 0) or anti-aligned (x. < 0). In the
aligned case, all of these systems would have x4 > 0. Thus,
finding GW151226 with x4 > 0, and no definitive systems
with x4 < 0, weakly favors aligned versus anti-aligned, if
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Figure 6. Marginal posterior distributions for the fraction of informative
systems « and the fraction of informative systems with x.¢; > 0, p, for the first
four likely GW events detected by LIGO, indicating an odds ratio of

Oui = 1.2, i.e., marginal support for an aligned population.
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Figure 7. Mean and 90% credible bounds on the spin magnitude distribution
inferred from LIGO’s first four likely BBH detections, assuming the population
is isotropically distributed.

those are the only two possibilities. Assuming that the current
results are “representative,” roughly speaking we expect every
sample of ~4 events to contain one with |x | = O at high
confidence. It will rapidly become evident whether these are
evenly distributed between positive and negative . values, or
whether they are preferentially positive. A single confident
measurement of y.; < 0 will invalidate the asymmetric
population assumption (i.e., will imply p = 1).

If we now assume a particular formation scenario for LIGO/
Virgo’s BBHs, we can infer the BH spin magnitude distribution
following the approach in Section 2.5. Figure 7 shows the
posterior constraints on the spin magnitude distribution
assuming LIGO’s first four BBHs were dynamically formed.
Figure 8 shows the posterior constraints on the spin magnitude
distribution assuming LIGO’s first four BBHs are aligned, the
currently preferred scenario. If the population is indeed aligned,
then even with just the four candidate BBH mergers detected to
date we can already say that there are likely more low-spin
systems (a < 1/3) than moderate (1/3 <a<2/3) or high
(@2 2/3) spin systems.

A maximal spin (@ = 1) aligned model is strongly
disfavored, with an odds ratio compared to our three-bin
model of ~107%, while under an isotropic assumption the
maximal spin model is disfavored by a modest odds ratio of
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Figure 8. Mean and 90% credible bounds on the spin magnitude distribution
inferred from LIGO’s first four likely BBH detections, assuming the population
is aligned.

0.33; the striking difference between the aligned and isotropic
assumptions reflects the difficulty in distinguishing different
spin magnitude models under the isotropic assumption (Farr
et al. 2017). Our approach considers only Y. and neglects
information about the precessing component of the spins, x,,. In
the case of maximal spins, however, the typically large
precessing components of the spins are likely to be measurable,
and thus the odds ratio against a maximal, isotropic spin
population from the full GW data set is probably larger than the
3:1 value quoted above.

4. Conclusions

We have described a simple, model-agnostic approach for
distinguishing dynamically formed and isolated populations
from spin measurements (x.;) of LIGO/Virgo’s events. Our
model asks whether the x4 distribution is symmetric
(suggesting a dynamical formation channel), or whether there
is evidence for asymmetry (i.e., a preference for aligned versus
anti-aligned systems, suggesting isolated formation). We
introduce a mixing fraction, p, where p = 0.5 is isotropic,
p =1 1is 100% aligned, and a value in between represents a
mixed population. Furthermore, we show that once the
alignment of the population has been characterized, the spin
magnitude distribution can be directly inferred from the x4
distribution.

With the first four likely BBH systems observed by LIGO,
we find that an aligned formation scenario (i.e., isolated or field
formation) is slightly preferred over an isotropic scenario (i.e.,
dynamical), with an odds ratio in favor of alignment of 1.2.
Similarly to Farr et al. (2017), but with a more general model,
we find that if all of LIGO’s first four BBHs are assumed to
come from this aligned population, then most BH spins must be
low (a < 1/3).
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Figure 4 shows that ~10 additional detections will be
sufficient to distinguish between a pure aligned or isotropic
population, unless the intrinsic spin magnitude distribution is
very low (and GW151226 turns out to be an outlier in spin).
LIGO and Virgo are on the cusp of providing important
constraints on the formation mechanisms of its BBHs.
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