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Abstract—This paper proposes a low-complexity wideband
beamforming subarray for millimeter wave (mmW) 5G wireless
communications. The multi-beam subarray is based on using a
novel delay Vandermonde matrix (DVM) algorithm to efficiently
generate analog true-time-delay (TTD) beams that have no beam
squint. A factorization for the DVM leading to low-complexity
analog realizations is provided and complexity analysis for real
and complex inputs is derived. The DVM is a special case of
the Vandermonde matrix but with complex nodes that lack any
special properties (unlike the discrete Fourier transform (DFT)
matrix). Error bounds for the DVM are established and then
analyzed for numerical stability. Mixed-signal CMOS integrated
circuits designs are proposed for the implementation of DVM
multi-beam algorithms along with low-complexity digital real-
izations to achieve hybrid beamforming for mmW applications.
Analog-digital hybrid mmW multi-beam beamforming circuits
and systems are designed for an example with 8-beams at 28 GHz
and simulated in Cadence for functional verification.

Index Terms—Delay Vandermonde matrix, wideband beam-
forming, low-complexity algorithm, SG multi-beam arrays.

I. INTRODUCTION

Fifth generation (5G) wireless communications are based
on millimeter-wave (mmW) channels, which are dominated
by scattering and reflection from objects that are larger than
the wavelength (e.g., vehicles, people, buildings) and are thus
more directional than the microwave channels used in existing
sub-6 GHz cellular bands [1]. Moreover, mmW channels
have high free-space path loss (which increases as the square
of frequency as predicted by the Friis formula) and also
suffer from additional heavy attenuation due to weather (water
droplets from rain, fog/hail, etc.). Such attenuation can be
compensated by increasing antenna gain; in particular, by
using arrays that form mmW radio frequency (RF) beams.
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The resulting increase in signal-to-noise ratio (SNR) improves
channel capacity and throughput without requiring more trans-
mit power [2]. Beamforming also allows mmW multi-input
multi-output (MIMO) communication systems to further in-
crease link capacity by exploiting the spatial multiplexing
and/or diversity provided by multiple propagation paths (due
to scattering, reflection, and wave-guiding) present in indoor
and urban environments. Thus, the ability to form multiple
sharp mmW beams is essential for taking advantage of typical
mmW channels [3], [4].

Here we propose a low-complexity hybrid (analog-digital)
mmW multi-beam beamforming architecture that does not
suffer from the well-known frequency-dependent beam angle
problem (also known as “squinting”) encountered in phased-
array apertures. As a result, the proposed architecture can be
used for beamforming of wideband 5G signals. The architec-
ture is based on a sparse factorization of the N-beam TTD
beamformer, which takes the form of a DVM. This allows it
to be efficiently realized at mmW using analog circuits; in
particular, CMOS all-pass filters (APFs).

The rest of the paper is organized as follows. Section II
introduces multi-beam beamforming networks and the beam
squint problem. Section III defines the proposed DVM al-
gorithm, while Sections IV and V analyze its arithmetic
complexity, error bounds, and stability. An analog IC design
of the proposed architecture is described in Section VI, while
Sections VII and VIII focus on implementations of the level-1
analog beamformer and level-2 digital beamformer, respec-
tively. Finally, Section IX concludes the paper.

II. MULTI-BEAM BEAMFORMERS
A. FFT Beamforming and the Beam Squint Problem

Performing a spatial fast Fourier transform (FFT) across an
N-element uniform linear array leads to N orthogonal RF
beams at an upper bound of O(N log N') computational com-
plexity. However, FFT-based beams suffer from “beam squint”,
i.e., the beam directions are strongly dependent on the tempo-
ral frequency of operation (see Fig. 1 (a)). This phenomenon
is fundamental; it occurs because the twiddle factors (complex
weights) are narrow-band frequency independent and do not
represent the TTDs required for wideband beamfoming. Such
frequency-independent complex valued weights are simpler to
implement than TTDs (e.g., using phase-shifters) but cause the
look direction to become strongly frequency-dependent.



Figure 1: (a) Frequency response of a 16-point FFT-based
beamformer (bin 4), and (b) its array factors, showing squint;
(c) DVM beam for bin 8, and (d) its squint-free array factors.
In (a) and (b), Q. is the wave speed normalized temporal
(continuous-time) frequency and w, refer to sampled spatial
frequency.

The “26 GHz” (24.25-27.5 GHz) and ‘“28 GHz” (26.5-
29.5 GHz) portions of the mmW spectrum have recently
become available for licensed communications on several
continents [5], and are likely to be the initial targets for
5G deployment. Thus, 5G radios should support real-time
bandwidths of > 1 GHz in order to take full advantage
of mmW spectrum availability. In particular, they should
use wideband (i.e., squint-free) multi-beamformers. However,
wideband TTD beamformers do not have the O(N log N)
complexity typical of FFT-based beamformers. In fact, TTD
N-beam networks are of complexity O(N?). Thus, such
beamformers are not feasible even for moderately large N,
thus entailing the development of FFT-like wideband multi-
beam beamforming algorithms.

B. Hybrid Beamforming Systems

Digital beamforming (DBF) delivers maximum flexibility
including multiple beams [6], high dynamic range, and high
accuracy using digital calibration [7], [8]. However, DBF
requires one RF chain and two analog-to-digital converters
(ADCs) per antenna element (assuming I-Q downconversion),
i.e., P RF chains and 2P ADCs for P antenna elements.
This results in high power consumption because of the large
number of ADCs, which are usually the most power-hungry
blocks in mmW receivers [9]. Moreover, the real-time signal
processing required to generate beams from the digitized data
consumes a large amount of additional power, making large-
scale DBF implementations (e.g., for P = 64 or 128 elements)
impractical at mmW [10].

Hybrid-beamforming [11] addresses this challenge by com-
bining low-dimensional digital beamformers (at baseband)
with analog beamformers (at RF). Such architectures can
achieve performance similar to fully-digital schemes at lower
cost and power. They typically use RF phase-shifters, TTDs,
or lenses for level-1 analog beamforming [12], [11], [13]
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Figure 2: System architecture of the proposed hybrid squint-
free multi-beam network.

and baseband digital processing for level-2 beamforming. We
propose the optimized hybrid beamforming architecture shown
in Fig. 2 for 5G mmW base stations.

Consider a P-element antenna array consisting of L N-
element sub-arrays where P = LN and inter-element spacing
Az is set to ’\gm . Here \,,;,, is the wavelength corresponding
to the maximum operating frequency, i.e., fo + B/2 where fj
is the center frequency and B is the signal bandwidth. Each
antenna output is followed by 1) a low-noise amplifier (LNA)
to minimize system noise figure (NF), and ii) level-1 analog
beamformers (ABFs). The ABFs use a wideband squint-free
multi-beam algorithm realized at RF to generate level-1 beams.
Analog N : M multiplexers then select M < N outputs
from each ABF. These signals are I-Q downconverted and
amplified by LM parallel RF chains, and digitized by 2LM
ADCs. The digitized baseband signals are further processed by
a digital beamformer (DBF) to generate narrow level-2 beams.
Since M < N, the proposed hybrid architecture reduces the
total number of RF chains and ADCs by a factor of M/N
compared to a fully-digital beamformer. This is because the
digital system picks M analog beams from the /N available
from each subarray for subsequent processing. The choice of
how many are needed is proportional to the capacity of the
system. If the application only requires a single channel, then
M can be as small as unity. On the other hand, for maximum
capacity, the system needs to exploit all available beams (for
example, if it’s used in a base station or access point). In
such a situation, one may digitize all N beams, so M = N.
Therefore, the ratio lies between 1 > M /N > 1/N where M
and N are both integers. When a large number of beams is
not required, the number of ADC channels are 2LM < 2LN.

C. Squint-Free Multi-Beam Beamformers

Consider a wideband analog TTD N-beam scheme hav-
ing N antennas that form beams at 6;, [ = 1,2,...,N,
from the array broadside. If 6;s are chosen such that



6, = sin! CA—TII, where 7 is the smallest TTD delay

1mplemented in the system and c the wave speed, we
can express the [ beamformer as H;(e/“= Q;,0;,) =

kN_ L o—jk(we+Qe7D) \where j2 = —1 and Q; and w, repre-
sent temporal (continuous time) and spatial frequency vari-
ables, respectively. Further, the N-beam multi-beam beam-
former arising from Hl(e-jwf,Qt,Hl)s, can be expressed as
a product of two matrices, such that y,, = AxDyw,,.
Here, Wi = [wn(1,7Q) wm(2,52%) - - wm(N, Q)]
is the input vector (from N antennas) and y, =
[ (1,79%) Ym(2,72) -+ ym(N,7Q)]T is the output vector
in Fourier domain. Also Dy is the N x N diagonal matrix
having elements by, = e~Jkws and Ay is a Vandermonde
matrix having elements my; = o for @ = e 777 The term
« accounts for the phase rotation associated with the delay 7
at frequency f, where 2, = 2n f.

The transform matrix A is henceforth denoted as the
DVM. Moreover, the multi-beam system denoted by A xyD
provides wideband squint-free beams. Note that the DVM is
a Vandermonde matrix having nodes {a,a?,...,aN} where
a € C. The DFT matrix is also a Vandermonde matrix having
N nodes that are the N*" roots of unity. Although the DVM
is also a complex Vandermonde-structured matrix, unlike
the DFT it has no nice properties like unitarity, periodicity,
symmetry, or circular shift.

The DFT matrix, whose elements are given by wf\,",
n,k = 0,1,..,N — 1, where wy = exp (—j3F) is the
Nth root of unity, is a special case of the DVM. The DFT
matrix follows from DVM by setting f = ﬁ leading to
¥ which is the Nth primitive root of
unity. However, the use of the DFT matrix instead of the DVM
requires replacing the wideband delays e~/ Q” Wlth frequency-
independent complex multiplications e~ 5 This is the root
cause of the frequency-dependent beam shape (i.e., the beam
squint problem) associated with spatial FFT beamformers.
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III. FACTORIZED DVM ALGORITHMS

In general let M € CV*V be a matrix determined by N2
entries. Computation of Mz for the input vector z € CV
costs O(N?) operations, with N? complex multiplications
and complex N (N — 1) additions. Fortunately, the structure
of M, e.g., banded, Toeplitz, Hankel, Bezoutian, Cauchy,
Vandermonde, Quasiseparable, DFT, etc., can be exploited to
reduce the computational cost. The DVM is a Vandermonde
structured matrix with complex entries. Thus, the structure of
the DVM can also be used to state a sparse factorization and
also to derive a “novel” fast and stable DVM algorithm while
reducing the arithmetic complexity leading to lower hardware
complexity in circuit realizations. Moreover, as shown in
Sections VI, VII, and VIII the proposed DVM algorithm leads
to reduce the hardware cost and to solve the longstanding
“beam squint” problem.

From [14], [15], if a Vandermonde matrix V is of the form
V = [:cf]ﬁfk:o where xg, 71, ...,xn € R (real entries), then it
can be factored into the product of 1-banded upper and lower
triangular matrices with division entries by using complete
symmetric functions. Later, [16] established a simple approach

for the factorization of V7 into the product of 1-banded upper
and lower triangular matrices without implementing division
entries. These papers have no information about the complex-
ity, error bounds, and stability of the proposed algorithms.
Nevertheless one can extend the results in [14], [15], [16] to
derive a low complexity algorithm using bidiagonal factoriza-
tions of a Vandermonde matrix. A O(N log N) complexity
algorithm to compute Vandermonde matrices having distinct
prime nodes via interpolation was shown in [17], while [18]
showed that the product of a complex Vandermonde matrix
and a vector can be computed using O(N log N) complex
arithmetic operations by i) using its low rank displacement
structure, and ii) pre-computing the generators. Moreover, [19]
showed that the cost of multiplying a Vandermonde matrix by
a vector is nearly linear in time by approximating the former
with semiseparable matrices, i.e., the subclass of quasisepa-
rable matrices. All these results are established for the real
nodes such that z; € R of the matrix V' except [14] but even
the latter paper has restriction for a generator of the complex
Vandermonde matrix. We propose a fast algorithm that is
based on complex nodes without considering quasiseparability
and displacement equations. Rather, our approach is based on
reducing the O(N?) arithmetic complexity.

In the following, we will provide a sparse factorization for
the DVM Ay over complex nodes o, a?, ..., a".

Proposition III.1. The Delay Vandermonde Matrix Ay =
[Ockl]N’N_1 where N (> 4) is an integer, having

k=1,1=0
{a, a2, aN} € C can be factored into
Ay =LOLE ... pW-HyWN-1...g@y®d (1
where for 1 <m < N — 1
Lm —
i Imefl )
1
1 OéN777L(Oé _ 1)
1 b
L 1 OéNim(Oém _ 1) |
and
Imefl i
1 «
1 a?
ulm —
am
1

Proof. This follows immediately from Theorem 3 of [16]
when real nodes x; are replaced with complex nodes o/*!
and switching ¢ and j. |

Remark III.2. Although the factorization for the DVM can
be stated as in Proposition III.1, we should recall here that the
classical Vandermonde matrix V is extremely ill-conditioned.
In fact, the conditional number of the matrix V grows expo-
nentially with the size [20], [21], [22]. In Section V, we will



study how error bound of the proposed DVM algorithm can
be changed in terms of the choices for nodes.

Following the factorization for the DVM, we state a novel
DVM algorithm to compute A yz as stated next.

Algorithm IIL3. dvm(N, o, z)
Input: N(> 4)-integer, « € C, and z € R"™ or C™
1) Set x = [a,a?,---,aN]T, W =1y, and UM =1y
2) For1<m<N-1,1<I<N,and1 <k<N
a) Calculate L(™) s
Ifl=k
If 1< N—m; LU(1E)
Else; L (1, k) = x(1) — x(n —m)
Ifl=k+1
IfI>N—-m+1; (
Else; (
Else
L™ (1,k) =0
b) Calculate ulm g
Ifl=k
UM, k) =1
Ifl+1=k
If kE>N—-—m+1; U™(,k)=x
Else; U™ (i, k) =0
Else
UM™(1,k) =0
3) Ffori<m<N -1
a) Calculate the product of L("™)’s
£ k) = M1 k) - L1 k)
b) Calculate the product of U("™)’s
ﬂ(erl)(l, k) = ulm (I, k) . gq(m) (1, k)
4) Take L&) . UW)
Output: Anz = W) gy,

)

Remark IIL.4. In general to compute the product of a DVM
with a vector, one has to use N2 complex entries of the DVM
Ay = [akl]fev:’]fj:lo. However, Algorithm II1.3 uses only the
second column of the matrix Ay, i.e. N complex entries as
opposed to N2 complex entries. This significant reduction in
complexity will play a key role in the stability of the algorithm.

IV. ARITHMETIC COMPLEXITY OF THE DVM ALGORITHM

The number of additions and multiplications required to
carry out a computation is called the arithmetic complexity.
In this section, the proposed DVM Algorithm III.3 is used
to establish the arithmetic complexity with real and complex
inputs. Before deriving addition and multiplication counts of
the proposed algorithm, we state the complexity of the direct
computation of DVM by a vector z where z € R" or C". For
analog circuit implementation, the direct computation of A yz
where z € R", costs N(N — 1)?(N + 2) real multiplications
and m real additions. Similarly, when z € C", the

c e . N(N®4+3N—4)
analog circuit implementation costs ———;——— complex
multiplications (counted as multipliers) and N (N —1) complex
additions (counted as adders) to compute A yz. Unlike in a
direct product of a matrix (having complex entries) and a vec-
tor (having real or complex entries), these counts are obtained
by considering «’s with the corresponding multiplicities.

When the direct computation of DVM by a real vector
is considered, the multiplications of two «a’s are counted
with four real multiplications and two real additions and
we continue the process with respect to the multiplici-
ties of «. Thus, constructing entries of the DVM costs
N(N —1)(N? + N — 4) real multiplications. This is calcu-
lated by using four times the sum of N + 2 different arithmetic
series having first terms a; and common differences d;: N —2
terms with {a; = 1,d; = 1}, N — 1 terms with {ay =
1,d2 = 2},{0,3 == 2,d3 == 3}, ,{CLN =N — 1,dN = N},
and N terms with {an41 = 1,dy41 = 1} and {ayi2 =
—2,dn42 = 0}. Once the entries of DVM are calculated,
multiplying the DVM by a real vector costs 2/N(N — 1) real
multiplications. Hence the direct computation of the DVM by
a vector (with real entries) costs a total of N(N —1)%(N +2)
real multiplications. Since we consider o’s with multiplicities
and taking two additions for the multiplications of two «’s into
account, construction of the DVM costs w real
additions. This is calculated by using twice the sum of N + 2
different arithmetic series having first terms a; and common
differences d;: N — 2 terms with {aqy = 1,d; = 1}, N — 1
terms with {as = 1,d» = 2},{as = 2,ds = 3},--- ,{an =

(k=N+m)N 1 dy =N}, and N terms with {ays+1 = 1,dyr1 = 1}

and {ayi2 = —2,dyy2 = 0}. Once these entries are
calculated, to multiply DVM by a real vector costs 2N (N —1)
real additions. Hence the direct computation of the DVM by

2 2
w real additions.

a real vector costs a total of
When the direct computation of DVM by a complex vector
is considered, each « is counted as a multiplier (simply
counting multiplicities of each ). Thus, to construct entries of
the DVM requires W multipliers (calculated by using
the product of two arithmetic series having the first term as
1 and common difference as 1 with terms N and N — 1
respectively). Once these multipliers are added to the circuit,
to compute the DVM by a complex input requires N (N — 1)
multipliers. Hence the direct computation of the DVM by a
. . . N(N*+3N—4)
vector (with complex entries) requires a total of —————
multipliers. There are no adders needed to construct DVM
(as each « is counted as a multiplier, there are no complex
addition entries). Hence the direct computation of the DVM
by a complex vector requires a total of N (NN — 1) adders.

A. Complexity Computation of the Proposed Algorithm

We will obtain the arithmetic complexity of the pro-
posed DVM algorithm to compute Az with arbitrary z €
R™ (having real input) and z € C" (having complex
input). Let us denote the real/complex number of addi-
tions and multiplications required to compute a length N
DVM algorithm by #aR(DVM,N)/#aC(DVM,N) and
#mR(DV M, N)/#mC(DV M, N), respectively. Note that
i) we do not count multiplication by +1, and ii) the complex
counts are in terms of adders and multipliers.

Lemma IV.1. For a given integer N (> 4), the arithmetic com-
plexity (counting the multiplicities for o’s) for computing the
DVM algorithm dvm(N, «, z) using Algorithm II1.3 having



real input (z € R") is given by
#aR(DVM,N)=3N(N —1),
#mR(DVM,N)=4N(N —1). )

Proof. To calculate the vector x in Step 1 of the DVM
Algorithm II1.3 requires N (N — 1) real addition counts and
2N (N — 1) real multiplication counts (counts are computed
based on the multiplication of «’s having four real multi-
plications and two real additions). In Step 2 of the DVM
algorithm, we have computed L(™)’s and U(")’s for each
m =1,2,..., N—1. In this step, there is no real multiplication
count to compute any L™ and U™ (we only access the
computed entries in x) but only real addition counts to com-
pute each L("™) . Real addition complexity in computing each
L™ is 2m. Thus to compute L™’sform=1,2,...,N—1
costs N(IV — 1) real additions. After precomputing the entries
of L(™)’s and U™)’s (as in 1, 2(a), and 2(b) of Algorithm
II1.3), we calculate the products of L(™)’s and UM)’s at
z € R™. Thus, we get

N-1 N—1
#aR(DVM,N) = #aR <Z L(m)) + #aR <Z U(m)> 7

m=1 m=1

N-1 N-1
#mR(DV M, N) = #mR (Z L“”)) + #mR (Z U“’”) .

m=1 m=1

3)

Using the structures of L(") and U™ for z € R™ yields:
#aR (L) =m, #mR (L") = 2m,
#aR (U(m)) =m, #mR (U(m)) =2m.
Substituting (4) into (3) and simplifying by precomputing
real multiplication and addition counts in Steps 1 and 2

of the algorithm yields the number of real additions and
multiplications for real inputs, as shown in (2). O

“)

Lemma IV.2. For a given integer N (> 4), the arithmetic
complexity (counting the multiplicities for o’s) for computing
the DVM algorithm dvm(N, «, z) using Algorithm II1.3 with
complex input (z € C™) is given by

#aC(DVM,N) = 3N(N —1)/2,
#mC(DVM,N) = N(3N —1)/2. )

Proof. To calculate the vector x in Step 1 of the DVM
Algorithm IIL.3, one has to use N+ multipliers but no
adders (we have computed each « as a multiplier with the
corresponding multiplicity). In Step 2 of the DVM algorithm,
L("™)’s and U("™)’s have to be computed for each m =
1,2,...,N — 1. In this step, there is no multiplier required
(we only access the computed entries of x) but we use adders
to construct each L"), To compute each L("™) one has to use
m adders. Thus to compute L(™)s form =1,2,...,N — 1
requires NV=1D adders. After precomputing the entries of
L(™)’s and U(™)’s (as in 1, 2(a), and 2(b) of Algorithm III.3),
we calculate the products of L(")’s and U("™)’s at z € C".
Thus, we get

N-1 N—1
#aC(DVM,N) = #aC <Z L“’”) + #aC (z U(m)) 7
mN:jl m;171
#mC(DVM, N) = #mC (Z L<m>> + #mC (Z U“’”) :
m=1 m=1

(6)

Using the structures of L) and U for z € C" yields:

#aC (L(m)) =m, #mC (L(m)) =m,

#aC (U(m)) =m, #mC (U(m)) =m. @)

Substituting (7) into (6) and simplifying by precomputing
multipliers and adders in Steps 1 and 2 of the algorithm yields
the number of adders and multipliers in computing the DVM
algorithm with complex input as shown in (5). O

B. Numerical Results for the Complexity

Here we provide numerical results for the addition and
multiplication complexity of the proposed DVM algorithm
dvm(N, o, z) having real and complex inputs as opposed to a
direct computation (see Direct in Tables I and II). Although the
algorithm is valid for any even N (> 4), for brevity we chose
the number of elements to be 2¥; k = 2,...,5 to summarize
numerical results as given in Tables I and II.

Table I: Additions required by the DVM algorithm

N Real Input Complex Input
Direct | #aR(DVM,N) | Direct | #aC(DVM,N)

4 120 36 12 18

8 2016 168 56 84

16 | 32640 720 240 360

32 | 523776 | 2976 992 1488

As shown in Table I, the addition counts for complex inputs
are not improved by the proposed Algorithm III.3. This is also
evident from the addition complexity of the direct computation
of DVM by a complex vector being N(N — 1) and of the
proposed Algorithm II1.3 being 3N (N — 1) /2. However, there
is significant improvement for real inputs. Also, Table II shows
that both the real and complex multiplication counts of the
algorithm are much lower than the direct computation.

Table II: Multiplications required by the DVM algorithm

N Real Input Complex Input
Direct | #mR(DV M, N) | Direct | #mC(DVM,N)
4 216 48 72 22
8 3920 224 1064 92
16 | 64800 960 16560 376
32 | 1045568 | 3968 262880 | 1520

V. ERROR BOUND AND STABILITY OF THE ALGORITHM
A. Theoretical Analysis

On-chip process, voltage, and temperature (PVT) variations
invariably lead to numerical errors while implementing fast
algorithms using analog circuits and are a major concern at
mmW frequencies. The DVM factorization should be numer-
ically stable enough to obtain acceptable performance with
these variations. Hence we explore the numerical stability of
the algorithm under perturbation of the coefficients.

We will use the perturbation of the product of matrices
(stated in [23]) to compute the error bound of the DVM
algorithm. As in Algorithm III1.3, we have to compute weights
af for k = 1,2,...,N. These weights affect the accuracy of



the DVM algorithm. Thus, we will assume that the computed
weights a” are used, and satisfy for all k = 1,2,...,N

akF = o +ep, el <p (3)

where 1 = cu, p = culogk, and p = cuk where wu is the unit
roundoff and ¢ is a constant based on the method [24].

Let us recall the perturbation of the product of matrices
stated in [[23], lemma 3.7] i.e. if Ay +AA, € RY*N satisfies
|AAL| < i |Ag] for all k, then

IT Ak +24,) - HAk (H (1+ 0) —1) JJE
k=0 k=0 k=0
N
where |0| < u. Moreover, recall H(l + 0 =140y
k=1
where =N and vg +u < Vi1, Ve T+

VeVi < Vitj from [[23] lemma 3.1, 3.3]. If the floating point
number of x € C is represented by fI(x) and similarly for
y € C, then fl(z +y) = (x +y)(1+ ) where |6| < u and
fl(zy) = (zy)(1 + &) where |5 < /272 from [[23], lemma
3.5].

We now prove the error bound on computing the algorithm.

Theorem V.1. Let y = fl(Anz), where N > 4 is an integer,
be computed using Algorithm I11.3, and assume (8) holds, then

2t 0 L ONL@ (V-1
< Ty M

|U(N—1)| e |U(2)||U(1)||z|
where 1 = 1+ 75(1 + p).

L™ and U™ be defined in terms of the com-
N — 1. Then

Proof. Let LL
puted weights a* for m =1,2,.. .,

v = fl ( LT . . LO-HGW-1) .ﬁ(2)ﬁ(1)z)
— (LW + ALW)L® + AL®)... (LD £ ALWV-1)
(ﬂ( D4 AUN-D) ... (TP 4+ AT®)
(UD + ATUD ).

Each L(™ and U(™ has only two nonzero entries per row
and we are using complex arithmetic. Thus AL(’”)‘ <

75‘Lm)‘ ‘AU(’”)‘<74‘U”)‘ for m=1,2,..,N—1.

By considering computed weights i.e. the view of (8), Lm =
L™ + AL, |AL(M)| < M\L ™| and U™ = U™ 4
AU(m ’AU(m ‘ <pu ‘U(m ‘ Thus, overall

y = (L(l) + E(l))(L(Q) + E(Q)) o (L(Nfl) + E(Nfl))
(U(N—l) + E(N—l)) . (U(Q) + ]:3(2))
(U(l) + E(l))z

where [EC™)| < (11445 (1 + )| L™ | and yE<m>\ < (u+
v4(1+ p))[ U™, Let n = 1+ v5(1 + p). Hence we get

ly =31 < [(1+m)* D — ILOLE]- L)
[UV=D] . u@ U |g
2(N —1)n -
< m|L(1)HL(2)| LN
[UN=D|...u@u®||g|
Hence the result. |

If z is a random input in the interval (0,1), p = u =
2.2204e-16 (using machine precision in MATLAB), and the
size of Ay varies from 4 x 4 to 32 x 32, the equa-
tion 9 simplifies to the componentwise theoretical relative

error bound (upper) of order ty - 107'* where ty =
|L(1)||L(2)| e |L(N—1)||U(N—1)| e |U(2)||U(1)|.

B. Numerical Results

We will now state numerical results in connection to the
stability of the proposed Algorithm II.3 using MATLAB
(R2014a version) with machine precision 2.2204e-16. For-
ward error analysis results are presented by taking the exact
solutions as the output of Algorithm III.3 computed with
double precision and the computed value as the output of
Algorithm III.3 with single precision. Although the DVM
algorithm is proposed for any even N (> 4), for practical
implementation purposes (see Remark II.2) and brevity, we
will show numerical results for some matrix sizes from 4 x 4
to 32 x 32.

Node reordering of polynomial Vandermonde matrices us-
ing row permutations can affect the accuracy of algorithms.
More importantly, Leja ordering (see [25], [26]) defined via:

k—1
k
|a] = max H lo* —
1<i<N = k<i<N -
k=23...,N

can greatly improve the performance of similar algorithms.
Therefore, we show numerical results for the relative error of
the proposed algorithm with and without Leja ordering.

We compare the relative forward error e, with and without
Leja ordering, of Algorithm III.3 defined by

e=lly=9ly/ Iyl

where y = Apnz is the exact solution computed using
Algorithm III.3 with double precision and y is the computed
solution of Algorithm III.3 with single precision. Tables III,
1V, and V show numerical results for the forward error of the
proposed Algorithm III.3 with « such that |o| < 1, |a] = 1,
and |a| > 1 respectively, and random real and complex
inputs z; and zg respectively, without and with Leja ordering
of the nodes {a,a?,...,aN} of the DVM, say EDVMA
and EDVMA-Leja respectively. We have assumed uniformly
distributed random input z in the interval (0,1) for each NV,
say z1, and uniformly distributed random real and imaginary
parts of the input z in the interval (0,1) for each NV, say za.
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Figure 4: (a) Simpliﬁed schematic of the proposed quadrature VCO (output buffers are not shown), (b) simplified schematic
of the proposed single-balanced mixer.

Table III: Relative forward error in calculating the DVM  Table V: Relative forward error in calculating the DVM
algorithm with a = 2 + 5 such that la <1

algorithm with a = 1+ % such that |o| > 1

N | EDVMA EDVMA-Leja | EDVMA EDVMA-Leja N | EDVMA EDVMA-Leja | EDVMA EDVMA-Leja
with z1 with z1 with zo with zo with z3 with z1 with z2 with zg

4 2.3592¢-08 | 1.7509¢-08 2.4889¢-08 | 2.9024¢-08 4 2.1082e-08 | 2.3318e-08 2.4548e-08 | 3.1017e-08

] 2.4755¢-08 | 2.2365¢-08 2.9003¢-08 | 1.9791e-08 8 3.2268e-08 | 3.2268e-08 2.4237e-08 | 2.1985e-08

16 | 2.4848¢-08 | 2.8113¢-08 2.8770e-08 | 2.2507¢-08 16 | 2.2324e-08 | 2.5521e-08 9.9889¢-09 | 2.1048¢-08

32 | 2.4054e-08 | 2.1726e-08 2.7280e-08 | 2.6668¢-08 32 | 1.0413¢-08 | 2.7010e-08 2.2268¢-08 | 4.1812e-08

Table IV: Relative forward error in calculating the DVM

. . Al
algorithm with o = ol

* such that |a| =1

V2
N | EDVMA EDVMA-Leja | EDVMA EDVMA-Leja
with zq with zq with zo with zo
4 3.0071e-08 | 2.0753e-08 1.7276e-08 | 2.5564e-08
8 2.9827¢-08 | 3.0176e-08 3.2228e-08 | 1.6343e-08
16 | 2.5757e-08 | 2.8992e-08 3.3992¢-08 | 2.9307e-08
32 | 2.7735e-08 | 2.3493e-08 3.6240e-08 | 2.2134e-08

For any a € C such that || = 1, one can show that the
forward error of the proposed algorithm with Leja ordering
preserves the stability of the system even with the large
N = 256 having an error of order 1078, This is because
all nodes of DVM lies on the unit circle and hence the DVM
is perfectly conditioned (see e.g. [23]). For some a € C such
that |a| < 1, the forward error of the proposed algorithm
with and without Leja ordering will have the same numerical
values, i.e., of order 10~8. This is because we have taken the
computed values y with single precision. For some o € C such
that || > 1, the system becomes unstable even for N < 64

without Leja ordering of nodes. This is because the conditional
number of the DVM grows exponentially (see e.g. [23], [20],
[21], [22]). Finally, even for N = 64 Leja ordering of nodes
{a, a2, a™} of the DVM leads to uniform error order
1078 e.g. when a = 3 + 7 EDVMA-Leja with 71 is
2.3501e-08 and with z5 is 1.988e-08, when o = —= + 7
EDVMA-Leja with z4 1s 1.0636e-08 and with zs is 3 2138e-
08, and when v = 1+ % ;- EDVMA-Leja with z; is 2.7525e-08
and with zo is 2.4679e-08. On the other hand when N = 64,
for the same « e.g. « 1+ ﬁ, the forward error of the
proposed algorithm without Leja ordering overflows. Hence
for |a] > 1, Leja ordering of nodes produces better forward
error and provides good forward stability even for some ill-
conditioned DVM matrices.

VI. CIRCUIT DESIGN FOR MULTI-BEAM REALIZATION

A block diagram of the overall receiver architecture is
shown in Figs. 3 (a) and (b). This section focuses on the
LNAs and RF chains; the design of ABF block is discussed
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in Section VII. Each RF chain consists of i) a quadrature
frequency downconverter realized using two mixers and a
quadrature local oscillator (LO), and ii) intermediate frequency
(IF) amplifiers and low-pass filters. The outputs of the IF
amplifiers are fed into parallel ADCs for digitization. Inde-
pendent RF chains are used to process the M parallel outputs
of the analog multiplexer. However, the LOs of these M
receiver channels should be synchronized in order to obtain
coherent outputs for digital beamforming. Thus, we need to
control LO duty cycle, skew, and jitter (both random and
deterministic) across the array in the presence of variable
routing length (um to mm) in the power divider network. In
particular, the LO distribution network often dominates out-
of-band phase noise (i.e., at large offset frequencies), making
its design critical for broadband systems [27]. There are three
main design approaches: 1) distributing a single LO generated
by a central phase-locked loop (PLL); ii) injection-locking
individual LOs in each channel to that of a central PLL,
resulting in a distributed PLL; and iii) distributing a low-
frequency reference signal to local PLLs at each channel.
Each approach results in a different trade-off between the
power consumed by LO generation and distribution [28].
The local PLL option provides good performance, flexibility,
and scalability at the cost of the highest power and area
consumption. Thus, the central and distributed PLL options are
more suitable for smaller arrays. Of these two, the central PLL
is favored for broadband systems, for which injection locking
becomes less power-efficient. Further discussion and detailed
design of the LO distribution network for this particular system
is deferred to future papers.

All circuits were designed in the UMC 65 nm RF-CMOS
process, which has 8 metal layers (including a “ultra-thick”
3.25 pm top layer for inductors) and both lateral- and vertical-
field metal-insulator-metal (MIM) capacitors.

A. Low-Noise Amplifier (LNA)

A simplified schematic of the proposed LNA is shown in
Fig. 3 (c). It consists of four stages. The first stage uses a
common-gate (CG) topology to provide broadband impedance
matching, followed by a resonant load (L3-C3) to define
a band-pass frequency response. The feedback transformer
L1,-L1s provides passive voltage gain between the gate and
source terminals of the input transistor M, thus reducing the
noise figure (NF) and power consumption [29], [30], [31]. In

addition, L1, acts as a high-impedance element (RF choke) at
the source of M. This stage also uses an additional inductor
Lo that acts as a “peaking” element [32] and reduces the
impact of M;’s gate-drain capacitance C'yq on bandwidth and
NF. The second and third stages are cascoded common-source
stages with resonant loads. They provide voltage gain and
additional band-pass filtering. The final stage is a resistively-
loaded source-follower that acts as a unity-gain buffer. It
provides a low output impedance suitable for driving later
signal-processing stages.

Lumped equivalent parameters (at 28 GHz) of the main
passive components used within the LNA are summarized in
Fig. 3 (c). Note that the transformer L, has a self-resonance
frequency (SRF) slightly below 28 GHz, resulting in a large
impedance over the operating frequency range but a capacitive
lumped equivalent model. In order to provide design insight,
the figure shows low-frequency (2 GHz) parameters for L.

B. Quadrature Voltage-Controlled Oscillator (VCO)

A simplified schematic of the proposed quadrature VCO
is shown in Fig. 4 (a). It consists of two differential LC
oscillators that are coupled together via additional differ-
ential pairs. The bias voltages Vpi, Vs, and V¢ control
the tail currents of the main and coupling differential pairs,
respectively. Part of the load capacitance is realized using
MOS varactors (Cs), thus allowing the output frequency
to be adjusted via the DC control voltage V.,;. In addi-
tion, RC polyphase networks (R3-C'3) are used as phase
shifters in the coupling paths. It is known that such a 90°
phase shift i) desensitizes the oscillator’s output phases to
component mismatches, and ii) minimizes phase noise [33].
The transfer function of the chosen network is given by
H(s) = (1—-5sR3C3)/[1+ sR3(Cs+ Cp)] where C7, is the
load capacitance seen by the network and is dominated by the
gate-source capacitance Cy, and the gate-drain capacitance
Cyq of the coupling transistors. In our case C3 ~ (7,
resulting in a phase shift of ~ 72° and gain of ~ 0.8
when wR3 (C3 + C) = 1. This is close enough to the ideal
behavior (90° phase shift and unity gain) to be of benefit. In
addition, R3 should be large enough to ensure that the lossy
RC phase shifter does not significantly load the LC tank, since
this will worsen phase noise. Lumped equivalent parameters
(at 28 GHz) of the main passive components used within
the VCO are summarized in Fig. 4 (a). Each VCO output
is buffered using the same resistively-loaded source-follower
used in the LNA, with Ry, = 122 Q) (not shown in Fig. 4 (a)).

C. Mixer and IF Amplifiers

A simplified schematic of the proposed downconverting
mixer is shown in Fig. 4 (b). It uses a single-balanced topology
in which the RF signal is capacitively fed into the source
terminal of a differential pair switched by the LO [34]. This
isolates the bias current of the input transconductor from that
of the LO pair, allowing their ratio I7/Ip to be reduced. As a
result, (i) the LO pair switches more abruptly, which reduces
NF and increases conversion gain; and (ii) LO feedthrough to
the IF port also decreases.
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differential voltage gain of the IF amplifier.

The value of L; is chosen to resonate with parasitic capaci-
tance at the drain of the input transistor at the nominal RF fre-
quency. As a result, most of the RF current flows through C.,
as desired. In addition, the values of R, and C, are selected to
optimize the trade-off between low-frequency conversion gain
(x Rp) and IF bandwidth (B;r = 1/ (2rR.C1)). We target
Brr > 850 MHz to enable the system to cover the entire
U.S. “28 GHz” licensed band (27.5-28.35 GHz) as defined
by the Federal Communications Commission. The lumped
equivalent parameters (at 28 GHz) for the passive components
used within the mixer are summarized in Fig. 4 (b).

The differential IF signals generated by the mixers are fur-
ther amplified and low-pass filtered. Each IF amplifier uses a
simple resistively-loaded differential pair topology. Cascoding
reduces capacitive loading on previous stages and improves
input-output isolation. The tail current source is programmed
via a current DAC to set the desired voltage gain.

D. Simulation Results

The circuits described in the previous section were simu-
lated using the Cadence SpectreRF simulator. All components
were modeled using foundry-supplied parametric RF macro-
models that include layout parasitics.

1) LNA: The nominal bias currents for the LNA were set
to Ip1 = 2.4 mA, Iy = 2.8 mA, and Ig3 = 7.1 mA,
resulting in a total power consumption of 18.1 mW from a
1.2 V power supply. Note that the output buffer (biased at Ip3)
consumes a significant fraction of the total power. Fig. 5(a)

shows the simulated input reflection coefficient, gain, and NF
of the LNA as a function of frequency. The CG topology
provides a broadband input impedance match (|S11]| < —10 dB
at frequencies greater than 19 GHz). The amplifier also has a
peak small-signal gain of 26.2 dB and a -3 dB bandwidth of
2.6 GHz centered around 28 GHz, which is sufficient for 5G
applications. Finally, we simulate a NF of 6.5 dB at 28 GHz.

Fig. 5(b) shows the simulated gain compression curve of the
LNA. The estimated input-referred 1 dB compression point is
Piap = —29.6 dBm. In future work, we will reduce NF for the
same power consumption by modifying the first stage to use 1)
improved feedback transformer design, and ii) thermal noise
cancellation [35], [36], [37]. We will also focus on various
linearization methods to increase Pi4p.

2) VCO: The nominal bias currents for the VCO were set
using Vg1, Vpa, and Vo to 3 mA, 1.5 mA, and 750 pA,
respectively, resulting in a total power consumption of 7.2 mW.
These values of Vp; and Vs minimize amplitude mismatch
between the I and () paths. In addition, each LO buffer was
biased at 3.5 mA to ensure low output impedance, resulting in
a total power consumption of 16.9 mW. Note that the buffers
consume significantly more power than the VCO core.

Fig. 6(a) shows typical simulated time-domain VCO output
waveforms after the LO buffers. The control voltage V.,
was adjusted to obtain oscillations near 28 GHz. Nearly ideal
quadrature oscillations were observed, with low amplitude and
phase imbalance between the I and @ paths (=~ 0.3 dB and
3.3°, respectively). The simulated tuning curve of the VCO
versus V., is shown in Fig. 6(b). The output frequency can
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Figure 7: Signals at various points in the receiver for a VCO
control voltage of V,,; = 1.5 V and input RF amplitude of
500 wpV. The RE, LO, and IF frequencies were 28.0 GHz,
28.12 GHz, and 120 MHz, respectively.

be adjusted by +£2.5%, i.e., a 1.4 GHz span around 28 GHz.

The phase noise of the VCO is shown in Fig. 6 (c). The
simulated power spectrum is oc 1/f3 at offset frequencies <
35.9 kHz, and oc 1/ f2 for larger offset frequencies. Thus, the
so-called “1/f3 corner frequency” is ~35.9 kHz. The phase
noise in the oc 1/f? region reaches -90.6 dBc/Hz at an offset
of 1 MHz.

3) Mixer: The nominal bias currents for the mixer were set
to I =500 pA and Ip = 6.5 mA, which satisfies I+ < Ig.
Fig. 6(d) shows the resulting RF-IF conversion gain for RF
and LO frequencies around 28 GHz as a function of LO drive
level. LO amplitudes of 200-300 mV maximize the conversion
gain, which has a peak value of 7.7 dB. Fig. 6(e) shows the
simulated NF of the mixer as a function of IF frequency for
several LO drive levels. The NF increases at low IF frequencies
(< 10 MHz) because of 1/f noise within the mixer, which
increases as the frequency decreases. In addition, it decreases
as the LO drive level increases before saturating at 12.0 dB
for levels > 200 mV. This behavior is in agreement with the
conversion gain results (see Fig. 6(d)).

4) IF amplifier: The IF amplifier’s tail current and load
were set to 1 mA and 960 ), respectively. Fig. 6(f) shows the
resulting small-signal voltage gain, which has a low-frequency
value of 14.1 dB and a -3 dB bandwidth of 1.15 GHz. The
latter satisfies our IF bandwidth requirement of 850 MHz.

5) Overall receiver: The entire receiver (including the
LNA, but without the ABF and multiplexer) consumes
81.5 mA froma 1.2 V supply. Fig. 7 shows simulated signals at
various points in the receiver chain for an input RF amplitude
of 500 1V, which corresponds to a power level of -56.0 dBm
for 50 ) loads. The VCO control voltage V,,; was set to
1.5 V, resulting in LO and IF frequencies of 28.12 GHz and
120 MHz, respectively. The plot shows (from top to bottom)
the RF input, LNA output, /- and @Q-branch outputs of the
quadrature downconverter (VCO, LO buffers, and two mixers),
and I- and @)-branch outputs of the IF amplifier. In addition
to providing voltage gain, the IF amplifier also acts as a low-

pass filter that removes LO feedthrough and upconverted RF
signals from its outputs. The phase imbalance between the
two IF outputs is ~ 3°, which is in agreement with VCO
simulation results (see Fig. 6(a)). The overall voltage gain of
the receiver is 50.2 dB, of which 29.3 dBm is contributed
by the LNA, 7.0 dB by the downconverter, and 13.9 dB by
the IF amplifier. These results are in excellent agreement with
simulations of the individual components.
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Figure 8: (a) APF schematic; its (b) gain and (c) phase profile.

VII. LEVEL-1 ANALOG MULTI-BEAM BEAMFORMER

The linear phase shift e=77 associated with Ay (or
its factorization) can be efficiently approximated on-chip
by CMOS APFs [38], [39]. Thus, Ay can be approx-
imately realized by using them as building blocks. APFs
approximate the time delay 7 using the fact that e /7 ~

(% , M € Z" and w is the frequency variable in

general. Typically, M = 3 is sufficient [38].

It v(s) = (1270
APF approximation of the delay 7, then the beamforming
matrix from sparse factorization of A can be approximated
by the APF network matrix ¥y = Ay. Here, (I,k)-th
element of Wy takes the form ¥'*(jw) as the corresponding
element in Ay is e /(") where I,k € {0,1,...,N —1}.
Here we use an APF implemented using 45 nm CMOS
technology to realize W . A direct approach to implementing
W would require cascading of [ - k such APFs for realizing
each (I, k)-th node. Subsequently, we analyze and compare
example realizations of level-1 beamforming networks for
N =4 and 8 using the proposed DVM factorization.

is the transfer function of an

A. 28-GHz Current-Mode CMOS All-Pass Filter

Our current-mode CMOS APF is a single-transistor circuit
(see Fig. 8) [40]. Ignoring parasitic poles and zeros due to Cs
and Cyq and assuming g, > gqs, the transfer function is

Lsgm
Vout R2(ngm - 1) 1- SR —1
H — — . 19m 10
)= Rlt Rz 1tsLeg, 0

where ¢, is the transconductance of My, Lg is a source
degeneration inductor, R; is a feedback resistor between gate
and drain of M, and R5 is a load resistor to convert current to
voltage. For (10) to represent an APF, the left-plane pole and
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right-side zero should have the same frequencies. This can be
achieved by setting R;¢g,, — 1 = 1, resulting in

Vout R2 1 - SLsgm

= — . . 11
Vin Ri+ Ry 1+ sLsgm (1)
The pole and zero frequencies are w,; = —w, = — (L gm)_l,
the phase response is ¢(w) = —2tan™! (w/|wp1,-|) and the
2
2 . _Yple

group delay tg = 5 where w is the angular

Wpl,z w(plyz “+w

frequency and wy1 . denotes the pole or the zero frquuency.
At low frequencies t; ~ 2/wp1 ., and the term wzw(“i)wz
captures the high-frequency ¢, dispersion associated(@’izt)h all
first-order APFs. Once the parasitic parameters of M, which
mainly include Cyq and Cys, are considered, high frequency
poles will be generated. Small-signal analysis confirms a
dominant parasitic pole at wpy = — (Rngd)fl. To reduce
the effect of w2 on the APF, R; is kept small and large g, is
used to ensure wy; = —w,. Large g,, is achieved by providing
a large overdrive voltage to M, while keeping M s size fixed,

which increases wy,» while keeping Cyq constant.

B. 4-Beam and 8-Beam Networks
The DVM for the 4-beam case (A,) is given by

1 3
A4=[}g 1 (12)
1o

Following the proposition III.1, A4 can be factorized as A, =
LOLAOLBUGURUWD where,

la 0 0 ! (0 B i 0
2 a(x—
U® = [8 0o (S%:| L®) = lo 1 a@®-1) 0 ] )
000 1 0 0 L a(a®-1)
10 0 0 100 0
01 0 0
L? = |01a%a-1) o and LW = [8 07 0 ]
00 1 a?(a®-1) 001 a’(a—1)

Here « represents the phase delay e~7*7. An implementation
of the factorized stages of Ay is shown in Fig. 9. Here, 9(s)
where i € {2,3,4} can be realized by cascading ¢- M identical
APFs. The meeting of two arrow heads indicates addition
unless otherwise specified. The number of APFs required in

the branch originating from x[3] have been optimized to reduce
hardware complexity. The unique look-directions s of this
beamformer where 1 < k < N, are a function of both APF
group delay t; and antenna spacing Axz. For a given ¢4 and
Az, the look-directions of the beams are

1¢-k-tg

0, =sin=" ——
Az

1<k <N. (13)
The signal flow graph (SFG) in Fig. 9 uses only 24 APF
blocks. A similar 4-beam network using a direct TTD phased
array would involve 60 such blocks. Thus the proposed ap-
proach achieves a 60% reduction in hardware complexity.

To simulate the SFG shown in Fig. 9, we assume a 2 GHz
signal bandwidth around a fy; = 28 GHz carrier and an
antenna spacing Az = \,;,/2 to eliminate grating lobes.
The APG group delay required for the beams to be within ¢°
from array broadside is ¢4 = M“C’“iNl{‘ﬁ} The required delay
was first estimated using this relationship taking ¢ = 50°,
which leads to t; ~ 3.2 ps for N = 4, resulting in four
beams directed at 11.1°, 22.6°, 35.2°, and 50.2°. Next the
APF design in Section VII-A was tuned in Cadence to obtain
the desired group delay over the 26-30 GHz range. Average
group delay was calculated as 3.202 ps using the Cadence
simulated data. The simulated APF frequency response was
exported to MATLAB to simulate beam responses for the SFG
in Fig. 9. For comparison, beams were also generated using
ideal delays, i.e., e 7« where t4 is the desired group delay.
The two sets of beams are in good agreement, but are not
shown due to space constraints.

The SFG of the factorized stages for Ag is shown in Fig.
10 (same conventions used as in Fig. 9). This network only
requires 224 APF blocks, whereas a direct 8-beam network
would require 1008 blocks. As for the N = 4 case, t4 of
the APF was selected such that all 8-beams are within 50°
from array broadside; this required t; ~ 1.6 ps. The tuned
APF circuit as simulated in Cadence had an average group
delay of 1.606 ps which ideally should generate beams at
5.5°, 11.1°,16.7°, 22.6°, 28.7°, 35.2°, 42.2°, and 50.2°.
The simulated gain and phase values of the APF tuned to
tq = 1.60 ps are shown in Fig. 8 (b) and (c) respectively. The
same procedure as described for N = 4 was followed. Fig. 11
shows the simulated results for beams 2, 4, 6, and 8 in two
cases: Figs. 11 (a) and (b) show 2-D frequency magnitudes
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Figure 10: Signal flow

and array factors (AFs) using ideal delays, while Figs. 11 (c)
and (d) show similar plots using simulated APF data. The
two sets of simulated beams are in good agreement where
the maximum beam deviation was < 0.8° with respect to the
direction corresponding to the use of ideal delay. Note that
while the algorithm provides /N beams, the direct sum beam
(look-direction to array broadside) only requires summing
circuits. Also, beams pointing to —6;s can use an identical
network with reversed antenna inputs.

Flgure 12: Monte-Carlo simulations for each beam of the N =
4 network (50 runs). The red curve represents the beam pattern
for the nominal value of APF gain (unity).

C. Analysis of Variations in Beams due to Circuit Imperfec-
tions

Depending on the technology, all APF blocks that are used
to construct the beamforming network will not be identical
due to PVT variations; in practice, gain mismatches of up to
10% are expected between them. A probabilistic approach was
taken to analyze the impact of such mismatch on the final beam

graph (SFG) for the proposed low-complexity 8-beam wideband beamformer.

outputs. The gain variation of the APF blocks was assumed
to be distributed uniformly between unity and the maximum
error margin. Monte-Carlo simulations were conducted using
these randomly-distributed gains to see how the beam shapes
were affected. Fig. 12 shows that the simulated beam patterns
of the 4-beam network are relatively robust to the assumed
amount of mismatch.

VIII. LEVEL-2 DIGITAL BEAMFORMING STAGE

The goal of the level-2 DBF is to generate narrow beams
that maximize the link budget. The NV : M analog multiplexers
after the ABF dynamically select the level-1 beam(s) fed into
the DBF. Since each output beam from the L sub-array ABFs
creates a spatially undersampled input to the DBF, its array
factor will contain grating lobes. The latter are removed by the
ABF array factors, thus allowing the hybrid system to generate
sharp output beams. In addition, the proposed DBF uses TTDs
in order to maintain squint-free beams. Different digital filter
structures, including finite impulse response (FIR) fractional
delay approximation filters and their infinite impulse response
(ITR) counterparts, can be used. For example, wideband Thiran
APFs can be used to approximate the required TTD [41].

Thiran filters are a special class of low-complexity IIR filters
that have similar numerator and denominator coefficients, but
in reverse order. They are the recursive counterpart of the FIR
Lagrange interpolation method, which provides maximally flat
group delay at zero frequency [42]. Thiran fractional delay
filters thus realize APFs with maximally flat group delay com-
pared to other fractional delay implementation methods [43].
A significant gain in hardware complexity can be achieved
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Figure 11: (i-a) 2-D magnitude frequency domain plots of H;(e/“=,€);) for | = 2,4,6, and 8 generated by the proposed
8-beam wideband beamformer assuming ideal time delays, and (i-b) the corresponding AFs. (i-c) and (i-d): Same as (i-a) and
(i-b) but using simulated APF data. 2-D magnitudes (ii-a) 2-D magnitude frequency domain plot of the digital filter transfer
function tuned to 05 = 28.7°; (ii-b) AF of the DBF in (ii-a) for different IF frequencies; (ii-c) AF of the 5" beam of the ABF;

(ii-d) composite AF obtained by combing the ABF and DBF.

without compromising accuracy by replacing FIR fractional
delays with Thiran APFs [41]. Their transfer function is

ZEEBQ (1/2ct)

H (th) = Q (th) P

(14)

where Q (z¢t) = Zle @iz, and 2. = e~ 79t is the temporal
z domain variable, and [ is the filter order. Thiran APF
coefficients can be expressed in closed form as

o (1) (f)fl D—f+mn

155w o0

gLy

which approximates the delay D, where [ is the filter

order and (6) = % are binomial coefficients. Also

2 2!

ag = 1, and stability requires D > 5 — 1 [43], [42]. The 2-
D z domain transfer function of the Thiran beamformer is
Hy (24, 20t) = kNIO_I Hk (2et) z;(N”_k)zc_ti" where N, is
the number of spatial channels, 25 1s the spatial z domain
variable and HX (z.) is the Thiran filter transfer function at
the k™ element, which realizes the required fractional delay 7,
(i.e., the actual delay in the system is (5 — 1) Ts + 75, where
T, is the sampling period of the digital system).

DBF Simulation: We assume a 32-element (P = 32) system
with four 8-element ABFs (N = 8, L = 4). The effective
DBF element spacing is N x Az, and its 2-D magnitude
frequency response using a 3™ order Thiran filter (connected
to the 5" ABF beam, which points at 5 = 28.7°) is shown
in Fig. 11 (ii-a). Fig. 11 (ii-b) shows the DBF array factor for
different IF frequencies. Fig. 11 (ii-c) shows the array factor



of the 5" beam generated by the level-1 sub-array ABF, while
Fig. 11 (ii-d) shows the resultant hybrid array factor, i.e., the
combination of level-1 and level-2 beamformers.

IX. CONCLUSION

We propose a low-complexity DVM algorithm having
sparse factors. Arithmetic complexities of the proposed al-
gorithm show that it is much more efficient than the direct
computation of DVM-vector multiplication. Theoretical error
bounds on computing the algorithm are established, and nu-
merical results of the forward relative error are used to analyze
its stability for higher-dimensional DVMs. Proposed algo-
rithm is used to realize a squint-free wideband mmW multi-
beam beamforming architecture using mixed-signal CMOS
integrated circuits. Extensive simulation results verify the
operation of the hybrid architecture. The proposed architecture
is useful for emerging 5G wireless communication systems
requiring a variable number of sharp steerable mmW beams.
The beam sharpness is achieved in a power- and circuit-
optimal way using the hybrid combination of both mmW-
analog as well as digital beamforming via sub-arrays. The
analog sub-arrays support from 1 to N fixed TTD wideband
mmW beams, depending on required capacity, which makes
the architecture flexible for use in both mobiles and base
stations.

The proposed hybrid beamformer contains several analog
circuit components that are subject to on-chip PVT variations.
The resulting delay and gain shifts in each receiver cause errors
in the spatial orientation of the beams. Calibration methods
to compensate for such shifts include variable-gain amplifiers
for gain, tunable APFs for delay, and reference input signals
for training the algorithm. Development of such methods and
associated circuitry are beyond the scope of this work.
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