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Abstract—A novel multi-dimensional noise-shaping method is
proposed to extend Δ-Σ modulation to the two-dimensional (2-D)
(space, time) case. It uses spatial oversampling to provide another
degree of freedom for ADC designers to shape quantization noise
when temporal oversampling is limited. The method uses lossless
discrete integrators (LDIs) to implement spatial integrators and
is suitable for use in microwave and mm-wave array processing
systems. The resulting 2-D noise shaping reduces the spectral
overlap of a desired array signal with that of quantization noise.
Shaped noise can then be removed from the region of support
(ROS) of the array signal using 2-D filtering, thus improving the
overall signal-to-quantization noise ratio (SQNR) and effective
number of bits (ENOB). Simulation results from an integrated 64-
channel converter in UMC 65nm CMOS prove the functionality
of the approach. Experimental results from a board-level 64-
channel converter are also presented.

I. INTRODUCTION

Digital antenna arrays that perform beamforming are essen-
tial for wireless communications, imaging, and radar. Modern
receivers for N -element arrays independently process input
signals from each antenna element in the aperture. However,
this approach is not optimal because it does not consider
the relationships that must exist between received signals,
additive noise, various forms of interference, and non-linear
distortion across the array [1]. Specifically, Special Relativity
defines a region of causality (i.e., the light cone) outside
which no propagating electromagnetic waves can exist. This
fact has the potential to greatly improve the performance of
array processors. Specifically, spatially-oversampled arrays can
be used to i) compress the light cone of the input signals
(i.e., their region of support (ROS)) such that it occupies a
smaller portion of the 2-D (space, time) frequency domain;
and ii) spectrally shape the noise and distortion stemming from
practical amplifiers, mixers, and data converters, such that they
do not overlap with the compressed light cone (see Fig. 1(a)).
We call this approach “spatio-temporal noise shaping” [2].
It is conceptually similar to Δ-Σ modulation, but extended
to the 2-D spatio-temporal domain. This approach results in
lower thermal noise, higher amplifier and mixer linearity, and
higher data converter resolution (ENOB) than conventional
array design approaches in which noise, distortion, and the
signal of interest overlap in the 2-D frequency domain.

Instead of using N independent complex (I/Q) ADCs for
an N -element array receiver, the proposed multi-port ADC
digitizes the array signal in a single spatiotemporal quantiza-
tion operation that takes into account the finite speed of light
and the resultant light cone. This “array digitization” approach
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Fig. 1. (a) The ROS of electromagnetic waves received by a spatially-
oversampled antenna array (green) consists of a compressed light cone. Spatial
sigma-delta noise-shaping ensures that receiver noise and distortion (red) lies
outside the ROS of the received signals. (b) Continuous frequency domain
representations of a first-order spatial Δ-Σ modulator.

decreases power consumption by enabling the quantization
noise to be shaped in multiple dimensions (e.g., along space
x, y and time t for a rectangular array) to be dominantly
outside the spatio-temporal frequency domain ROS of the array
signal. The shaped noise is later removed from the digitized
outputs by a spatial low-pass filter (such as a phased-array
or true-time-delay beamformer). As a result, the proposed
approach promises significant improvements in the power
efficiency of array ADCs. This is important because ADC
power consumption is the dominant factor for array processing
operations such as dynamic beam-forming since it grows
exponentially with resolution, i.e., as 2b for b bits.

II. Δ-Σ SPACE-TIME NOISE SHAPING

Fig. 1(b) shows the block diagram of a continuous-time
first-order spatial Δ-Σ modulator. Here w(x, ct) denotes the
input signal at spatial location x and time t where c is the
speed of light, while W (sx, sct) denotes the signal in the 2-D
Laplace domain. Similarly y and Y refer to the outputs in the
space-time and transform domains, respectively. Also, n(x, ct)
and N(sx, sct) denote noise in these domains.

Analyzing Fig. 1(b) in the 2-D Laplace domain gives

Y (sx, sct) =
W (sx, st)

β + Txsx
+N(sx, sct)

Txsx
β + Txsx

. (1)

Hence the signal is low-pass filtered while the noise is
high-pass filtered, thus reducing the overlap between them.
However, the system described in (1) is unrealizable because
in practice antenna elements have to be placed in a spatially
discrete manner. In particular, the inter-antenna spacing for
uniform linear arrays is Δx = λ/ (2Kx) where λ is the
wavelength of the highest-frequency signal of interest and



Kx ≥ 1 is the spatial oversampling factor relative to a
Nyquist-sampled array with spacing of λ/2. As a result, the
spatial dimension is always discretized such that x = nxΔx,
which results in a z-transform variable zx ∈ C for the spatial
transform domain in place of the Laplace variable sx ∈ C. The
necessary sx → zx transformation cannot use the well-known

bilinear transform operator sx =
1−z−1

x

1+z−1
x

because it results in

a delay-free loop, which makes the algorithm uncomputable.
Fortunately, it can be shown that a modified lossless discrete
integrator (LDI) with the transformation 1

Txsx
= 1

β
1

1−z−1
x

can

overcome delay-free loops, making this a viable candidate for
spatially-discrete realizations. The resulting system is given by

Y (zx, sct) =
1

β
W (zx, sct) + (1− z−1

x )N(zx, sct). (2)

The signal transfer function shows that the input is amplified
by the ADC transfer function A = 1/β. However, the quan-
tization noise gets shaped by the first-order spatial high pass
filter

(
1− z−1

x

)
. Practical N -port ADC array architectures can

thus be realized by using this topology.

III. N -PORT Δ-Σ ADC
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Fig. 2. Structure of the proposed N -port Δ-Σ ADC. Each shaded block
denotes a single spatial integration and amplification module (SIAM).

The transfer function in (2) defines a signal flow graph
that is implemented by using a so-called spatial integration
and amplification module (SIAM). Each SIAM (see Fig. 2)
contains a b-bit quantizer (denoted as ADC), a b-bit DAC, two
summing junctions, and optional analog time delays (denoted
by τ ) that compensate for time delay within the quantizer.
The latter are not used here; if necessary, they can be imple-
mented using all-pass filters. Feed-forward interconnection of
N SIAMs results in a N -input, N -output system, as shown in
Fig. 2. This structure, which achieves 2-D Δ-Σ noise shaping,
forms the basis for the ADCs considered in this paper.
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Fig. 3. 2-D (space,time) noise-shaping function for the N -port ADC.

We first analyze conventional 1-D noise-shaping. Assum-
ing Ku as the oversampling ratio and N -th order noise-
shaping, the quantization noise is high-pass filtered by the

discrete-time transfer function H (z) =
(
1− z−1

)N
where
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Fig. 4. (a) Normalized quantization noise improvement (in bits) due to time-
space over-sampling. (b) Comparison of exact and approximate expressions
for quantization noise when Kt = Kx. In both cases, N = 1.

z = e−jωTs , ω = 2πf , and fs = 1/Ts is the sam-
pling frequency. The corresponding continuous-time function

is H(f) =
(
1− e−j2πfTs

)N
, resulting in a noise variance of

σ2
N =

σ2
Q2

2N

2πTs

∫ π/Ku

0

sin2N (θ/2)dθ. (3)

where σ2
Q is the power spectrum density (PSD) of quantization

noise, and θ ≡ 2πfTs. To get insight into (3), assume large
oversampling, i.e., fTs � 1. Now sin(θ/2) ≈ θ/2, so

σ2
N

σ2
Q

=
fs
2π

∫ π/Ku

0

θ2Ndθ =

(
π

Ku

)2N+1
fs

2π (2N + 1)
. (4)

Eqn. (4) shows that to reduce quantization noise, one
may increase either Ku or N . Specifically, the noise variance

decreases as K
−(2N+1)
u . Now we consider the proposed 2-D

approach. Using similar methods, the noise variance is

σ2
N = σ2

Q

∫ fs/2Kx

0

∫ fs/2Kt

0

|F (fx, ft)|2Ndfxdft, (5)

where Kx and Kt are the spatial and temporal oversampling
ratios, respectively, and F (zx, zt) is the corresponding 2-D
noise shaping function. Analyzing the system in Fig. 2 with a
one-clock-cycle quantizaton time delay results in F (zx, zt) =(
1− zx

−1zt
−1

)
. The continuous-domain version is

F (fx, ft) = 1− exp (−j2πfx/fsx) exp (−j2πft/fst) , (6)

where fsx and fst are the spatial and temporal sampling
frequencies, respectively. This function is shown in Fig. 3.
Defining θ1 = 2πfx/fsx and θ2 = 2πft/fst, (6) becomes

σ2
N

σ2
Q

=
fsxfst2

2N

4π2

∫ π/Kx

0

∫ π/Kt

0

sin2N
(
θ1 + θ2

2

)
dθ1dθ2.

(7)
Eqn. (7) can be solved numerically. Fig. 4(a) shows the
improvement in signal-to- quantization noise ratio (SQNR) due
to oversampling in both domains for N = 1. To get design
insight, we assume large oversampling in both dimensions such
that sin ((θ1 + θ2) /2) ≈ (θ1 + θ2) /2. The result is

σ2
N

σ2
Q

= W

((
1

Kt
+

1

Kx

)2N+2

− 1

Kt
2N+2

− 1

Kx
2N+2

)
,

(8)
where W = fsxfst(π)

2N+2
/
(
4π2 (2N + 1) (2N + 2)

)
.

Fig. 4(b) compares this expression with the exact solution
for the Kt = Kx case, and shows that it is an excellent
approximation for oversampling ratios > 3. The symmetric
nature of (8), which ultimately arises from the symmetric form
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Fig. 5. Block diagram of a SIAM for the integrated 2D noise-shaping ADC.

of F (zx, zt), shows that oversampling in either dimension has
the same effect on SQNR. Moreover, the fact that spatial and
temporal oversampling can be combined to further improve
SQNR shows that the proposed 2-D noise-shaping method
provides another degree of freedom for the ADC designer.

IV. SIMULATION RESULTS

A prototype 64-channel noise-shaping ADC using 1-bit
quantization has been designed in the UMC 65nm CMOS pro-
cess for mm-wave beamforming applications. It uses source-
coupled logic (SCL) in order to optimize the trade-off between
propagation delay, switching speed, and power consumption.
SCL gates are based on switching current in differential pairs,
which results in fully-differential designs with controllable
voltage swing [3]. The schematic of a single channel (i.e.,
SIAM) within the preliminary implementation of a N -port
ADC using 1-bit quantization is shown in Fig. 5. The circuit
implements the signal flow graph shown in Fig. 2. Foundry-
provided macromodels that include layout parasitics were used
for both the transistors and passive components in order to
improve simulation accuracy. The key blocks within each
SIAM include input and output buffers, a signal combiner,
a comparator, and another buffer that acts as a 1-bit DAC. The
signal combiner performs spatial integration by acting as a
soft OR-gate. It was implemented in current-mode as shown in
Fig. 6(a). A feedback loop based on a replica bias circuit (not
shown) ensures that the effective voltage gain of each signal
within the combiner is close to unity, which is necessary for
spatial filtering of the quantization noise. The full-scale voltage
VFS is set by the 1-bit DAC; its maximum value is limited
by the linear range of the signal combiner. The comparator
consists of a linear preamplifier that uses shunt-peaking with
on-chip inductors to increase bandwidth [4] followed by an
SCL latch (see Fig. 6(b)). The preliminary implementation has
not been optimized for power; it consumes 20mW per channel.

We tested the converter by generating broadband plane
wave input signals corresponding to various arrival angles
that were then coherently downconverted to baseband. The
simulations used VFS = 0.21V and oversampling ratios of
Kx = Kt = 4. The resulting SQNR for a full-scale input
with a double-sided bandwidth of 1GHz (which is typical for
a mm-wave communication signal) was 29.0 dB at a clock
frequency of fclk = 4 GHz. This result corresponds to an
effective number of bits (ENOB) of 4.5, which is sufficient for
many mm-wave communication scenarios [5], [6]. It is also in
good agreement with Fig. 4(a), which predicts ENOB = 4.1.
Note that the addition of spatial oversampling improves ENOB
by ∼ 2.0 bits relative to its value for temporal oversampling
alone. The simulated spatial output spectrum of the converter is
shown in Fig. 7 for two different arrival angles. Smaller input
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Fig. 6. Schematic of the (a) signal combiner and (b) comparator.

signals (10% of full-scale) were used here to highlight the
quantization noise, which is clearly spatially high-pass filtered.
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Fig. 7. Simulated spatial output spectra of a 64-port ADC with first-order
noise-shaping for 10% full-scale inputs at two different arrival angles.

Our preliminary results correspond to a Walden figure-
of-merit [7] of 0.87pJ/bit. In addition, simulations indicate
typical digital rise and fall times of ≈40ps. As a result, fclk
can be as high as 10GHz, which corresponds to a temporal
oversampling ratio of Kt = 10. As a result, ENOB should
be further improved by 1.1 bits, corresponding to an FOM
of 0.41pJ/bit, which is competitive with the state-of-the-art in
this sampling frequency range. Further FOM improvements are
likely through circuit optimization. Larger spatial oversampling
ratios are obviously also helpful, but in practice Kx is limited
by the physical sizes of the antennas and their mutual coupling.

V. EXPERIMENTAL RESULTS

We also have designed and tested a low-speed (fs <
40MHz) discrete board-level converter based on 1-bit quan-
tization. A simplified schematic of the circuit, which uses
off-the-shelf components, is shown in Fig. 9. High-speed
operational amplifiers (op-amps) are used to realize the signal
combiner and all-pass filter (for canceling the ∼7ns comparator
propagation delay), while the 1-bit DAC is realized using an
analog multiplexer. The top of Fig. 10 shows the entire 64-
channel converter, which uses four identical boards, while the
bottom shows one board containing 16 identical channels. The
entire system draws 1.59A and 1.02A from +7V and -6V
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power supplies, respectively. The core circuits run on ±5V
supplies generated by on-board linear voltage regulators.
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Fig. 10. Photograph of the 64-channel noise-shaping ADC realized using 4
boards. Each board contains 16 identical channels.

During the experiments we used a broadband input signal
with the bandwidth of 500 kHz that was buffered and then
applied to the inputs of all the channels. This input was chosen
to simulate a typical wireless communications scenario. It
corresponds to an amplitude- and phase-modulated plane wave
at perpendicular incidence to the array (arrival angle =0◦) after
amplification and downconversion to baseband by conventional
heterodyne receivers connected to each antenna. Fig. 8(a)
shows the measured noise-shaped 2-D output spectrum of
the ADC when the sampling frequency fs is 11.4 MHz
(temporal oversampling ratio Kt = 11.4) and the input signal
amplitude is 0.19Vrms (∼1Vpp). Only one peak at zero spatial
frequency is obtained since the input signal has 0◦ arrival
angle. We assume that the antennas are spaced to obtain a
spatial oversampling ratio Kx = 4. The resulting normalized
signal bandwidth is ±0.5/Kx = ±0.125. It is evident that

the noise is shaped out of this spectral region, as expected.
Fig. 8(b) shows the measured 3-D output spectrum from the
same measurement conditions as Fig. 8(a). This figure proves
that the measured 2-D noise shaping function is in excellent
agreement with the theory (shown in Fig. 3).

Fig. 8(c) shows the simulated and measured ENOB of
the converter versus input amplitude. ENOB increases linearly
with amplitude until approximately 0.73Vrms (∼4Vpp) before
starting to decrease. This is because input signals > 0.73Vrms

contain excursions that exceed the linear range of the op-amps.
The resulting maximum ENOB is 6.6, which is in excellent
agreement with the simulations. It is also in good agreement
with the theoretical prediction of 5.3 (shown in Fig. 4(a)).

VI. CONCLUSION

This paper has proposed a new method for shaping the
quantization noise of multi-channel Δ-Σ ADCs in 2-D (both
time and space). By employing antenna arrays and taking
advantage of oversampling the input signal in both dimensions,
we have shown that the resolution of the ADC can be sig-
nificantly improved. Mathematical analysis, simulations, and
experimental results prove the functionality of the proposed
method. Future work will focus on higher-order noise-shaping.
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