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Abstract

In this work, low-field proton (1H) and sodium (23Na) relaxation and diffusion measurements are used to detect and
classify different types of food products. A compact and low-cost system based on a small 0.5 T permanent magnet
has been developed to autonomously authenticate such products. The system uses a simple but efficient double-tuned
matching network suitable for 1H/23Na NMR. Various machine learning algorithms are used to classify food samples based
on T1-T2 and D-T2 data generated by the system, and the accuracy and prediction speed of these algorithms are studied
in detail. The influence of temperature drift upon prediction accuracy is also studied. Experimental results demonstrate
reliable classification of cooking oils, milk, and soy sauces.
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1. Introduction

Quality control of consumables (food items, dietary sup-
plements, and essential medicines) is of increasing impor-
tance in today’s society [1, 2, 3, 4]. In particular, finding
a relatively inexpensive and practical solution for accurate
quality control can help to detect false labeling, adulter-
ation, as well as spoiling of food products. This will allow
consumers to know that they are getting the product they
think they are buying and give them confidence that it is
safe to consume. One of the first steps towards accurate
quality control is the accurate and automated classification
of food products into categories and sub-categories.
One category of food products of interest is cooking oils

because higher cost oils are often cut with cheaper ones to
increase profits [5]. Many experimental methods have been
used to classify and detect adulterated cooking oil products
including near infrared (NIR), mid-infrared (MIR), Raman,
and NMR spectroscopy [6]. High-resolution NMR spectra
have been previously used to successfully evaluate adulter-
ated cooking oils [7]. However, such NMR techniques re-
quire large, complicated, and costly equipment (e.g., super-
conducting magnets) as well as highly trained personnel to
analyze the results. As an alternative, it has been shown
that inexpensive and compact low-field NMR systems can
accurately classify cooking oils using T2 relaxation times [8].
However, the classification process was not automated.
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Soy sauces are another food product prone to adulteration
and mislabeling in order to increase profits for manufactur-
ers. Soy sauce can be produced in two separate methods.
The first method involves fermentation by microorganisms
and is known as fermented soy sauce (FSS), while the sec-
ond uses acids to quickly digest the proteins and carbohy-
drates and is known as blended soy sauce (BSS) [9, 10].
In some cases, manufacturers have intentionally mislabeled
BSS packages as FSS packages in order to improve prof-
its [10]. In other cases, the soy sauce itself is fake and
is produced by mixing brine, monosodium glutamate, and
dark soy sauce [11]. Current methods for evaluating the au-
thenticity of soy sauces include NIR spectroscopy, capillary
electrophoresis, and liquid chromatography [11, 10, 12]. 1H
and 13C NMR have been used to study the compositional
differences between different types of soy sauces [13, 14].
However, we are not of aware of any study using low-field
1H or 23Na to study and classify different types of soy sauces.
Because of this, soy sauce authentication faces the same con-
straints that cooking oils face.

Adulteration and spoiling of milk is another area of large
concern. Currently, retailers use printed expiration dates
on milk products to detect spoiling. However, this method
is largely inaccurate, resulting in unspoiled milk being dis-
carded or spoiled milk being sold [15]. The former results
in a loss of money for retailers and a loss of perfectly good
food product. The latter can potentially lead to food poi-
soning to the consumer. Current methods of detection for
the spoilage of milk are pH testing, electrical tests using
an amperometric sensor, magnetoelastic sensing, gas-sensor
arrays, IR spectroscopy, and protein/fat count detection
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[16, 17, 18, 19, 20, 21]. The use of low-field NMR to de-
tect spoiled milk is a relatively unexplored area.

In this paper, we address the size, cost, and operator con-
straints of NMR for classification of food items by intro-
ducing a dual-tuned, low-field NMR system that has the
potential to autonomously classify different food products
and/or detect spoilage. We test the feasibility of the device
through collecting 1H T1 and T2 relaxation data on various
cooking oils. We also study the T1, T2, and diffusion of soy
sauces with low-field 23Na NMR. Finally, we use T1-T2 maps
to characterize fresh versus spoiled milk. The data collected
is preprocessed and used to train a variety of machine learn-
ing algorithms for automatic classification of each sample.
Finally, we compare the accuracy of each of the models to
each other. Our work extends earlier results on NMR-based
analysis of food products [22] by focusing on i) 2D low-field
1H and 23Na NMR, and ii) modern machine learning and
classification algorithms.

2. System Overview and Theory

A block diagram describing the proposed automated sys-
tem is shown in Figure 1. The system operates as follows.
The user first selects the food product they will be scanning.
Based on the product, the system selects appropriate pulse
sequences, machine learning algorithms, and trained models
from a database. The number of scans is set to obtain suf-
ficient signal-to-noise ratio (SNR) as set by the user. The
acquired data is collected from the scanner and processed
accordingly. To extract the 2D T1-T2 and the D-T2 correla-
tion maps, the inverse 2D Laplace transform is used follow-
ing the procedure detailed in [23]. After the data processing,
key features are extracted in order to classify the sample. In
this paper, we first set a threshold in order to help remove
possible fitting errors. Gaussian functions are fitted to each

Figure 1: A flowchart of the proposed NMR-based method for auto-
mated classification of food products.

Figure 2: Block diagram of the proposed low-field NMR system for
automated classification of food products.

Φ

a

Z

(c,d)

(a) The ideal z-gradient ge-
ometry where φ = 45o.

Φ
a

Z

Y

2a�

2a�

(b) The distorted z-gradient
geometry where φ �= 45o.

Figure 3: Geometry of the gradient coils used in the proposed system.

axis of the map to get information about the T1,T2, and dif-
fusion coefficient D of the sample. Alternatively, log-mean
values can be used to extract similar information in cases
of low SNR. The covariance matrix between the two axes
of the maps can also be extracted to retrieve information
about the shape of the map.
The NMR system consists of a 0.5 T desktop permanent

magnet (SpinCore, Gainesville, FL) for generating the B0

field. We use one of two custom homebuilt probes with y
and z gradients that are capable of holding either 5 mm or
10 mm NMR tubes. The gradients can be used for both 2D
imaging and diffusion measurements but are used for diffu-
sion measurements in this paper. Because the system needs
to be able to collect both 1H and 23Na NMR data, a double-
tuned matching network is needed. A desktop spectrometer
(Kea2, Magritek) is used for RF and gradient pulse con-
trol and data collection but a custom spectrometer board
designed in our lab [24] can be used instead to reduce the
size and cost of the system. Commercial gradient amplifiers
(AE Techron 7224) are used to drive the gradient coils, but
custom miniaturized gradient driver boards have also been
developed to further reduce system size. A block diagram
of the entire system is shown in Figure 2.

2.1. Gradient Coil Design

Each gradient coil is constructed using four parallel wires.
The ideal cross-section of the gradient geometry is shown
in Figure 3a, in which each wire is located 90◦ apart from

2



each other along a circle of radius a. In practice, this ideal
geometry may not be realizable due to probe design con-
straints, particularly if the top and bottom halves of the
coil are fabricated on two printed circuit boards (PCBs) for
convenience. Thus, the geometry of the gradients may need
to become slightly distorted in order to satisfy these con-
straints, as shown in Figure 3b. Here the wires are still
positioned symmetrically about the y and z axes, but now
have arbitrary vertical and horizontal separations of 2a1 and
2a2, respectively.
The ideal geometry can be solved analytically [25]. In Ap-

pendix A, we show this derivation and then use it to derive
the field and gradient for the distorted case. Summarizing
the results found in Appendix A, we get gradients of

gy ≡
δBz

δy
=

(
2μ0I

πa2

)
cos(2φ)

gz ≡
δBz

δz
=

(
2μ0I

πa2

)
sin(2φ)

(1)

for the ideal geometry, where I is the current in each wire.
Eqn. (1) shows that gz will reach its maximum value when
φ = π/4. This will also make the y-gradient go to 0, leaving
only a z-gradient. The opposite can be said if all four wires
are rotated by 45◦, i.e. φ = 0. Thus, the y-gradient can be
generated by another set of four wires with φ = 0.
As stated above, the ideal gradient geometry is not al-

ways feasible in practice. The distorted geometry shown in
Figure 3b can be used instead, at the expense of some gradi-
ent strength and linearity across the sample. The gradient
strength of the distorted geometry is shown below:

gy ≡
δBz

δy
≈

(
2μ0I

πa2

)[
6 sin(4φ)

yz

a2
+ ...

]
, (2)

gz ≡
δBz

δz
≈

(
2μ0I

πa2

)[
sin(2φ) + 3 sin(4φ)

(
y2 − z2

)
a2

+ ...

]
.

Analyzing the gradients shown in eqn. (2) near the ori-
gin, we see that the z gradient is maximum at an angle
of φ = π/4, which agrees with the original analysis of
the optimal geometry. However, the distorted geometry
has φ = tan−1 (a2/a1) �= 45◦ resulting in lower z-gradient
strength by a factor of sin(2φ) at the same current. The
gradient will also be less uniform over the sample due to the
introduction of third-order terms into the magnetic field,
which is a consequence of the lower symmetry of the geome-
try. Moreover, the gradients are coupled, i.e., the gz cannot
be maximized while keeping gy = 0, and vice-versa. There-
fore, if a y-gradient is to be added, it should be kept as close
to an ideal geometry as possible. This can be accomplished
by adding i) a third wire to both existing PCBs located at
(±a1,0), i.e., on the y-axis; and ii) two wires at (0,±a1), i.e.,
on the z-axis.

2.2. Double-Tuned Matching Network Design

We would like to design a double-tuned impedance-
matching network to perform 1H/23Na double-resonance ex-
periments with a single RF coil. This would allow us to
interleave 1H and 23Na pulse sequences to reduce overall
measurement time. However, the power efficiency of such
networks is of concern, since it is generally lower than for
single-tuned networks. The efficiency η of any impedance-
matching network is defined as the ratio of power delivered
to the coil Pcoil to the total input power Pin. Both are func-
tions of frequency, so in general we write the efficiency as
η(f) = Pcoil(f)/Pin(f). An ideal matching network is loss-
less, resulting in η = 1. Most of the power lost within practi-
cal matching networks is dissipated within inductors, since
they usually have much lower quality factors than capaci-
tors. We would like to design a network that provides high
efficiency at both the proton and sodium Larmor frequen-
cies. A suitable network for matching to two such widely-
separated frequencies is shown in Figure 4 [26]. Unlike most
doubly-tuned networks, it has a single input/output port
for both frequencies. The circuit is similar to the common
two-capacitor matching network, but contains three extra
components: two inductors (L2 and L3) and one capacitor
(C2). The L2 −C2 branch is referred to as a “trap” circuit.
At the lower matched frequency it is mostly capacitive, re-
sulting in an effective tuning capacitance of C1 + C2. At
the higher frequency it is almost an open circuit, resulting
in a smaller tuning capacitance (approximately C1). The
L3 − C3 branch then matches the impedance of the tuned
coil to the desired real value.

Figure 4: Schematic of the double-tuned tuning and impedance-
matching network used in the experiments.

We chose this probe circuit because it uses very few ad-
ditional passive components while providing fairly high effi-
ciency (low internal power losses) at both matching frequen-
cies. Moreover, the single input/output port allows it to
be used with low-cost single-channel spectrometer consoles.
The 1:N transformer at the output changes the matched in-
put impedance of the rest of the network to Zin = Z0/N

2,
where Z0 = 50 Ω is the standard impedance of the cables,
connectors, and spectrometer. In our case we used N = 2,
resulting in Z0/N

2 = 12.5 Ω. Lowering the impedance re-
duces the required values of inductors L2 and L3, allowing
them to be realized with high-Q air-core inductors of rea-
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sonable size. Maximizing Q in turn minimizes power losses
within the matching network and increases its efficiency.
The circuit shown in Figure 4 is not unique. Several

complementary versions can be created by converting series
branches within the circuit into parallel branches, and vice
versa [26]. It can also be extended to an arbitrary number
of matching frequencies by adding more LC traps. For N
frequencies we would need (N − 1) traps.
Another useful property of the matching network shown

in Figure 4 is that parasitic reactances can be absorbed into
it, resulting in a more robust design. For example, the leak-
age inductance of the transformer acts as an inductor of
value Ll = Ls

(
1− k2

)
in series with the primary winding,

where Ls is the inductance of the primary winding and k
is the coupling coefficient between the windings. However,
its effects are easily removed by changing the value of L3 to
L3 − Ll. In addition, C1 can be reduced to account for the
inter-turn capacitance of the NMR coil.
Loss within each inductor in the matching network was

modeled with a frequency-dependent series resistor of value
Ri = ωLi/Q, where we assumed Q = 70 and 120 at the
sodium and proton Larmor frequencies of 5.8 MHz and
22 MHz, respectively (these values are typical for the Coil-
craft 2222SQ and 2929SQ series of surface-mount air-core
inductors used in our experiments). Loss within the NMR
coil L1 was modeled similarly, but with the series resistance
derived from a polynomial fit to the measured frequency-
dependent series resistance. The efficiency η of the network
can then be analytically calculated for any choice of compo-
nent values. We begin by defining η as

η =
Power loss in NMR coil

Total power loss
=

P1

3∑
i=1

Pi

, (3)

where Pi = |Ii|
2
Ri/2 is the power dissipated in each coil. We

further define TFi ≡ Ii/Iin as the transfer function between
current in the input terminal and the i-th coil. These are
given by

TF1 =
(Zin − Z3)

sL1 +R1
, TF2 =

(Zin − Z3)

sL2 +R2 + 1/ (sC2)
,

and TF3 = 1, (4)

where s ≡ iω is the complex frequency variable. Finally,
η(ω) is given by

η(ω) =
|I1|

2R1

3∑
i=1

|Ii|
2
Ri

=
|TF1|

2R1

3∑
i=1

|TFi|
2
Ri

. (5)

Losses within the transformer have been neglected in this
analysis, but can be easily included if necessary. However,
it is difficult to analytically calculate the correct component

values for this network, because of its complexity. In addi-
tion, network synthesis is usually a many-to-one problem,
meaning that many different combinations of component
values will provide similar or identical performance char-
acteristics. Hence we used numerical optimization to syn-
thesize the network. The cost function that was minimized
during the optimization was a weighted sum of the reflection
coefficient Γ ≡ |Zin − Z0| / |Zin + Z0| and power loss within
the network at both design frequencies:

C =

2∑
i=1

|Γ (fi)|+ α

2∑
i=1

[1− η (fi)] , (6)

where the parameter α can be adjusted to trade-off be-
tween impedance matching and efficiency. Such flexibil-
ity resulted in better solutions than directly maximizing
P1 (power delivered to the RF coil), which is given by

Pin

(
1− |Γ (fi)|

2
)
η (fi) at each matching frequency fi.

Nevertheless, we found the optimization space to be
highly non-convex. As a result, gradient-based optimization
algorithms quickly got stuck in local minima, and repeated
runs with random initial conditions still produced poor re-
sults. We therefore used a stochastic global optimization
algorithm for this problem, namely the genetic algorithm
(GA) available in the MATLAB Global Optimization Tool-
box [27]. Many papers have reported on the application of
GAs in optimizing power amplifiers and other active circuits.
but their use in designing this kind of matching network ap-
pears to be novel.

2.3. Pulse Sequences and 2D Maps

We utilize the following pulse sequences to classify food
products: Carr-Purcell-Meiboom-Gill (CPMG) for T2 mea-
surements, inversion Recovery (IR) with CPMG pulse train
for T1-T2 measurements, and pulsed gradient spin echo
(PGSE) with CPMG pulse train for D-T2 measurements.
All sequences utilize rectangular RF pulses. The IR and
PGSE sequences, which are shown in Figure 5, use CPMG
pulse trains to collect T2 information along with the T1 or D
information provided by the IR or PGSE encoding periods.
These correlation experiments thus allow us to obtain 2D
probability distributions on the T1-T2 and D-T2 planes. We
can then fit curves to these distributions to extract features
for training classification models.
In order to calculate the correlation plots described above,

we use the 2D inverse laplace transform (ILT). The al-
gorithm used to efficiently calculate the ILT utilizes the
singular-value decomposition (SVD) for compression, and
Tikhonov regularization to improve numerical stability for
noisy data [23]. Specifically, we minimize the cost function

CILT = ‖M −K1FK ′

2‖
2
+ α‖F‖

2
, (7)

where the first term represents the error between the data
matrix M and the fit K1FK ′

2, and the second term helps
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Figure 5: (Top) The D-T2 correlation experiment. The gradient is
stepped over multiple experiments to extract the diffusion data and
the decay due to diffusion will be a function of the gradient strength
and the delays δ and Δ (Bottom) The T1-T2 correlation experiment.
The delay τ is stepped over multiple experiments to extract the T1

data.

to smooth the results (Tikhonov regularization). Also K1

and K2 are the measurement kernels, and F is the desired
2-D probability distribution. The value of α determines the
amount of regularization, i.e., smoothing of F . However,
large amounts of regularization bias the fit results. The op-
timal value of α can be chosen by plotting the fitting error
versus α. As α is increased, the overall fitting error will re-
main nearly constant before starting to sharply increase. We
chose the largest α for which the error remains close to its
minimum value. This produces the smoothest possible prob-
ability distribution F that does not significantly worsen the
bias. More formal methods for optimizing α given the data
and the noise variances, such as the Butler-Reeds-Dawson
method [28], can also be used.

2.4. Machine Learning and Classification

Recent advancements in machine learning suggest its im-
portance in interpreting and classifying complex data-sets
for decision- making. In particular, recent work on dis-
crimination and authentication of food items has relied on
state-of-art machine learning algorithms [29, 30, 31]. In this
paper, we use the inverted 2D data sets to extract parame-
ters for classification. It should be noted that classification
can also be performed on the raw data. However, since the
latter are very large (typically ≈ 5× 106 points each), clas-
sifying them would be slow and computationally intensive.
We therefore greatly reduce the sizes of our data sets (typ-
ically, to 15 × 30 matrices) by using SVD. The compressed
data matrices are suitable for fast classification, but provide
little insight into sample properties. We thus prefer to invert
the compressed matrices and then perform classification on

the resulting probability distributions, which provides more
physical insight.

Many analytical chemistry classification studies based on
NMR or other spectroscopic techqniques implement classical
chemometric classification methods such as principal com-
ponent analysis (PCA) or partial least squares discriminant
analysis (PLS-DA) [14]. The aim of PCA is to reduce the
dimensionality of a data set while capturing as much of the
original variance as possible. This works well for express-
ing the data set in terms of a smaller number of linearly
uncorrelated variables (the principal components), but does
not by itself enable automated classification of an unknown
sample. Thus, PCA is mainly useful as a tool for feature
selection, i.e., improving the prediction accuracy of classi-
fication algorithms by reducing the dimensionality of the
problem. However, using PCA as a feature selection tool af-
ter inversion does not work well because the variance of the
inverted data is sensitive to noise and the value of the regu-
larization parameter α. Thus, we do not include PCA-based
feature selection models in our results.

PLS-DA works well for high-dimensional data sets such
as a full NMR spectrum but does not work as well in a
low-dimensional space [32]. In our case, we reduce the di-
mensionality of our data by extracting specific T1, T2, or
diffusion coefficient values from their distributions, making
PLS-DA a poor choice. Because of this, we choose to avoid
some of the more classical chemometric methods and move
towards other methods used commonly for classification. In
particular, we utilize the MATLAB Classification Learner
application to test a variety of modern machine learning al-
gorithms on the acquired data. We then use cross-validation
(as opposed to other methods such as bootstrapping) to
test the accuracy of each algorithm. This is because stud-
ies have shown that cross validation generally outperforms
bootstrapping for the same amount of computation [33].

In particular, we focus on four different categories of ma-
chine learning algorithms readily available in the Classifi-
cation Learner application. These categories are decision
trees, discriminants, support vector machines (SVM), and
k-nearest neighbors (kNN). A brief description of these al-
gorithms is given below; a more detailed description can be
found in [34].

Decision trees classify data based on specific feature val-
ues. They work by building a large tree of nodes that
separate the data by comparing the specific features to a
previously-built model. As a data set moves though more
nodes, it will eventually become classifiable based on the
path the data point follows through the decision tree. De-
cision trees are often used because they are easily compre-
hensible.

Discriminant analysis methods work in a similar fashion
to PCA, since both attempt to reduce data dimensional-
ity. However, while PCA reduces dimensionality by select-
ing components that best explain the observed variance in
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Figure 6: The measurement setup. A home-made 3D-printed probe
holder is inserted in the 0.5 T permanent magnet. Gradient circuits
are mounted on each side of the holder. The figure shows an example
of the probe holder for the 5 mm tube. The setup is placed in an
incubator to reduce the influence of temperature drifts.

the data, discriminant methods reduce dimensionality by
selecting data labels that maximize the separation between
known classes in the training set.

SVMs try to separate the data by drawing a hyperplane
between the labeled training set categories. When drawing
the line, the algorithm tries to maximize the distance or
margin between the different categories. When testing a
new data point, the algorithm checks to see what side of
the hyperplane the point is on. Based on this information,
it can classify a data set. For linearly separable data, the
hyperplane can be found relatively easily and data can be
classified. In other instances, the data may not be linearly
separable, but separable in a different higher dimensional
space. In this instance, a kernel function can be used to map
the data into a higher dimensional space, which can then be
used for classification. In general, SVM is a binary classifier,
which means that it can only classify data into two classes.
However, multiple SVM models can be combined together
to handle any number of classes.

kNNs work under the assumption that data classified un-
der the same label will have features that lie near each other
when plotted. Thus, the algorithm compares a labeled train-
ing data set to a test data set that is to be classified by look-
ing for the k nearest neighbors to the test data set, where
k is an integer. It then classifies the data set by finding
the most frequently used label among the nearest neighbors.
kNN has been shown to work well in many instances, but a
major drawback is its relatively high computational cost.

3. Results

The overall experimental setup is shown in Fig. 6. The
following sections describe the hardware and experimental
results in more detail.

3.1. Gradient Coils

The gradient coils were implemented on four separate two-
layer PCBs with thick (2 ounce) copper traces to reduce
resistance and a thickness of 0.8 mm. Parallel wires were
placed on both sides of the PCB to increase the gradient
strength. The same PCBs were used with two probes: one
for 10 mm NMR tubes and another for 5 mm tubes. The
boards were mounted on custom-designed 3D-printed probe
holders made of ABS (Acrylonitrile Butadiene Styrene) plas-
tic, which is strong enough to hold the gradients, RF coil,
and sample. Figure 6 shows one of the assembled probe
holders. The 10 mm gradient geometry is more suitable for
imaging as opposed to diffusion measurements due to its
smaller maximum gradient strength, but is acceptable for
samples with relatively long relaxation times.
In the 10 mm system, the z-gradient PCBs are separated

by 15 mm in the z-direction, while traces on the PCBs are
separated by 12 mm along the y-direction. Because the
PCBs have finite thickness, the wires along the z-direction
have different a1 values depending on whether they are on
the top or bottom of the board. Thus, we calculate the fields
separately from each layer and then use superposition. The
resulting values are listed in Table 1. The y-gradients follow
the ideal geometry in this configuration allowing us to use
eqn. (1). The resulting values are listed in Table 2.
We choose to use the y-gradient and the 5 mm probe for

the experiments as they provide the strongest and most uni-
form gradient. The gradient strength was calibrated using
PGSE sequences on a known sample (water). The result was
1.84 T/m at 30 A, which is 10% larger than the expected
value. This discrepancy is probably due to assembly toler-
ances, i.e., the PCBs being slightly closer than expected.
We compare the linearity of our distorted geometry for

the 5 mm probe with an ideal geometry to make sure that
the probe is suitable for both diffusion measurements and
imaging. Figure 7 shows the computed fields and gradients
for both geometries versus distance. The ideal geometry has
a somewhat larger and more uniform gradient, as expected.
However, both have acceptable performance across the sam-
ple, i.e., for |z| < 2.5 mm.

3.2. Double-Tuned Matching Network

Repeated GA runs turned up a number of very good so-
lutions, which are shown in Figure 8. The plot on the top
shows that the power efficiencies at the two frequencies are
inversely correlated, such that their average ηav remains ap-
proximately constant. This behavior is an intrinsic property
of this matching network topology [26]. The optimization
procedure outlined above can be easily generalized to other
matching problems. For example, we have successfully used
it to generate matching networks for 1H/13C operation with
the same NMR coil [35].
We chose solution 15 for implementation because it has

high power efficiency and also a relatively small value of L3,
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Probe size a1in a2in a1out
a2out

Radiusin Radiusout φin φout Calculated gz

10 mm 6 mm 7.5 mm 6 mm 8.3 mm 9.6 mm 10.1 mm 38.7◦ 35.3◦ 15.7 mT/m/A
5 mm 6 mm 5 mm 6 mm 5.8 mm 7.8 mm 8.3 mm 50.2◦ 46.0◦ 24.3 mT/m/A

Table 1: The z-gradient geometry parameters and their corresponding calculated gradient strengths.

Probe size Radiusin Radiusout φin φout Calculated gy

10 mm 7.5 mm 8.3 mm 0◦ 0◦ 26.0 mT/m/A
5 mm 5 mm 5.8 mm 0◦ 0◦ 55.7 mT/m/A

Table 2: The y-gradient geometry parameters and their corresponding calculated gradient strengths.

(a) (b)

Figure 7: A comparison of the magnetic field and the magnetic field
gradient generated by the ideal gradient geometry and the distorted
geometry. (a) Magnetic field profiles, and (b) gradient profiles.

allowing it to be implemented with two air-core inductors
(Coilcraft 2222SQ or 2929SQ) in series. The matching net-
work was implemented on a two-layer PCB. The bottom
layer was generally used as a ground plane. However, the
lack of a high-μ core means that the air-core inductors L2

and L3 have significant fringe fields. These can cause extra
losses by generating eddy currents on nearby metal surfaces.
We therefore removed the ground plane near these induc-
tors. A high-performance surface-mount RF transformer
(Coilcraft PWB-4-AL, 3 dB bandwidth 0.15 - 500 MHz)
was used to match the output to 50 Ω. The capacitors
were implemented using fixed surface-mount high-Q mica
components (Cornell Dubilier) in parallel with mechanically-
tunable variable components (Sprague-Goodman, 1 - 20 pF).
The power handling capability of the matching network is
determined either by the maximum safe operating voltage of
the tunable capacitors (100 V), or by the maximum current
within the transformer that does not saturate its ferromag-
netic core (∼250 mA); this limit is usually reached first.

Figure 9 shows the measured reflection coefficient |Γ| of
the assembled coil and double-tuned matching network be-
fore final trimming. Good matching is evident at frequen-
cies around 22.03 MHz and 5.83 MHz, which are very close
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Figure 8: Some of the best solutions found by the GA-based matching
network optimization algorithm. Synthesized element values are shown
on the left, and power efficiency at both matching frequencies on the
right. The average power efficiency over both frequencies is also shown.

to the desired values for this magnet. Since a significant
fraction of the input power is dissipated within the induc-
tors L2 and L3, efficiency cannot be directly estimated from
Γ. Instead we have to compare the B1 amplitude produced
by the double-tuned network for both 1H and 23Na with
that produced by the single-tuned 1H and 23Na networks
for the same input power levels. The simulation predicts
74% and 64% power efficiency at 22.03 MHz and 5.83 MHz
respectively, while the measurement shows 53% and 50% at
these two frequencies. The observed reduction in efficiency
is probably due to additional loss mechanisms that were ig-
nored in the simulations, such as i) finite capacitor Q, and
ii) core and winding losses within the transformer.

3.3. Sample Preparation

All food products tested in the following sections were
purchased at a local grocery store. Samples for training and
testing were drawn from the product bottles with a syringe
and injected into NMR tubes prior to data collection. The
products were homogeneous and our tests were intended as
a feasibility study, so data was collected and analyzed from
a single sample of each product.
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Γ

Figure 9: Measured reflection coefficient of the double-tuned probe
before final trimming. Minima in the reflection coefficient occur at
22.05 MHz (-9.5 dB) and 5.84 MHz (-12.8 dB). These frequencies
are already very close to the desired values of 22.03 MHz for 1H and
5.83 MHz for 23Na.

3.4. Cooking Oil Experiments

We tested the feasibility of classifying common cooking
oils (olive, canola, vegetable, and corn oil) using the pro-
posed setup. For this purpose 100 1H T1-T2 correlation maps
were collected for each sample. Table 3 shows the experi-
mental parameters used for this experiment. Averaging is
not needed as SNR ≈ 2000/scan for these experiments. Typ-
ical maps collected for each sample are shown in Figure 10.
The T1-T2 distribution is spread along the diagonal (T1 = T2

line) in a relatively similar fashion for all the samples. Thus,
the qualitative T1-T2 distributions of the samples are similar.
However, we show that enough information can be extracted
from each distribution for accurate classification.
We fit both the T1 and T2 axes to bi-Gaussian functions

and extract the two peak locations for each oil as classifica-
tion features. The covariance matrix between the T1 and and
T2 fits can also be used for classification. We plot four differ-
ent combinations of the classification features in Figure 11,
where a and b reference the first and second components
of the Gaussian fit, respectively. All the plots in Figure 11
show clear separation between the samples, suggesting that
accurate classification is possible.
The MATLAB Classification Learner app was used to

train and test several machine learning algorithms using the
features selected above. We used 50-fold cross validation
to protect against over-fitting. A summary of the results
obtained from all the algorithms is shown in Figure 12 for
models trained on three different sets of features. Note that
we show the results from all 20 algorithms that were tested
to emphasize that a wide range of algorithms work well and
provide similar prediction accuracies. Only the cosine kNN
is significantly worse than the others: it’s distance metric
(cosine distance) appears to be unsuitable for our data sets.
Thus, for later experiments, we only show classification re-
sults from a subset of the algorithms for simplicity; a sum-
mary of the results from all 20 algorithms can be found in
Appendix B.

(a) (b)

(c) (d)

Figure 10: T1-T2 correlation maps collected on (a) olive oil, (b) canola
oil, (c) corn oil, and (d) vegetable oil. It is hard to see any qualitative
differences between the maps. Each map has SNR ≈ 2000 with no
averaging applied during the data collection.

All models perform well, with most of the classification
accuracies being > 99%. The feature set that includes all
the features, including the covariance, performs the worst.
This is because covariance values have much more variabil-
ity between experiments than mean values, which decreases
classification accuracy. When the covariance parameters are
removed, the performance of most algorithms improves, with
some achieving 100% accuracy. The fact that the best re-
sults are obtained with only T1a and T2b as features suggests
that in general the minimal number of extracted parameters
should be retained for classification.
Other important performance metrics of the classification

algorithms include training time and prediction speed, which
should both be as low as possible. Figures 13 and 14 show
these parameters for models trained on the T1a-T2b feature
set. The medium tree algorithm is the most efficient algo-
rithm for classifying the cooking oil samples.

3.5. Milk Experiments

We collected T1-T2 correlation maps for a milk sample
that was not refrigerated over two days to detect spoiling.
The pulse sequence parameters for the milk experiments can
be seen in Table 4. Each data set has an SNR of approxi-
mately 70 with no averaging. This is lower than for the oil
experiment due to smaller sample volume (5 mm tube in-
stead of 10 mm tube). Figure 15 compares data collected on
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Probe τmin τmax τ steps π/2 pulse π pulse Pulse length techo Echoes Averages

10 mm 1 ms 11000 ms 15 1 W 3.98 W 23 μs 400 μs 2000 1

Table 3: Pulse sequence parameters for the cooking oil experiments.

Probe τmin τmax τ steps π/2 pulse π pulse Pulse length techo Echoes Averages

5 mm 100 ms 700 ms 20 1.58 W 6.38 W 38 μs 400 μs 2000 1

Table 4: Pulse sequence parameters for the milk experiments.

(a) (b)

(c) (d)

Figure 11: Comparison of different features extracted for classification.
The blue, orange, yellow, and purple circles correspond to olive, canola,
corn, and vegetable oil, respectively. The y-axes of (a) and (b) show
the first and second components of T1, respectively; the x-axes of both
plots show the first component of T2. The y-axes of (c) and (d) are
the same as for (a) and (b), but the x-axis now shows the second
component of T2.

fresh milk at 9 AM on the first day with data collected on
the same sample at 9 AM on the third day. The plot shows
that the distribution spreads along the T1 dimension as the
milk spoils, while its peak value remains almost constant.
Thus, a fraction of the protons develop a larger T1/T2 ratio
as the milk spoils, suggesting that their motion is slowing
down. This is probably caused by coagulation of the milk
proteins, which is in agreement with visual inspection of the
sample.

In order to extract information about changes in the T1

distribution, we treat it as a bi-Gaussian function and ob-
serve changes in the peak values versus time. The T2 distri-
bution does not change significantly over time, and is well-
fitted by a Gaussian. The fitted values reveal a significant

Figure 12: Prediction accuracy of all classification algorithms on the
cooking oil samples. Results are shown for models trained on three
different combinations of classification features.

shift in the first T1 component between the first two data
sets and the rest, as seen in Figure 16. Thus, this change is
likely to be correlated with spoilage; the dashed lines clearly
separate the fresh (left) and spoiled (right) samples as deter-
mined by visual inspection. There is also some uncorrelated
variation of T2 and the second T1 component, which may be
due to small shifts in sample temperature.

For classification, we use only the T1a parameter for train-
ing the model as the other parameters do not seem to be
correlated with spoilage. We manually label the first two
data sets as fresh and the rest as spoiled, and then train
the same models used in the oil experiments. The accuracy
of a subset of the models was evaluated using cross vali-
dation. Figures 18, 17, and 19 summarize the prediction
accuracy, training time, and prediction speed, respectively.
We show a full summary of the results in Appendix B. As
expected, the algorithms shown have a prediction accuracy
of 100%. The simple tree algorithm is the most efficient in
this case with 100% accuracy, 2400 obs/s prediction speed,
and 0.27 sec training time.
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Figure 13: Training time of all classification algorithms tested on the
cooking oil samples. Results are shown for models trained on the T1a-
T2b feature set.

Figure 14: Prediction speed in obs/s of each algorithm tested on the
cooking oil samples. Results are shown for models trained on the T1a-
T2b feature set.

3.6. Sodium Experiments

We investigated the feasibility of improving classification
accuracy by measuring both the proton and sodium T1-T2

maps of several soy sauce samples (regular, less sodium,
ponzu, and teriyaki). In each case, 20 23Na and 5 1H data
sets of data were collected. The ambient temperature was
maintained at 30 ◦C (303 K) to ensure valid comparisons
between the data sets.
We initially focus on the sodium data set. As in the pre-

vious experiments, we extracted five features from the data
for classification. However, we apply a different approach
to find the values of these features. The correlation maps
are highly localized, so T1 and T2 can be considered to be
generated by a single component. Therefore we can fit the
maps using two-dimensional non-singular normal distribu-
tions. In addition, we can predict the mean values of T1

and T2 by independently estimating their one-dimensional

(a) (b)

Figure 15: A comparison of the T1-T2 maps collected on the same milk
sample at (a) 9 AM on the first day and (b) 9 AM on the third day.
The T1 distribution spreads as the milk spoils. Each data set has an
SNR of approximately 70 with no averaging.

(a) (b)

Figure 16: Classification features extracted from the milk sample; the
dashed lines separate spoiled milk (left) and fresh milk (right). (a)
The first T1 component versus the second T1 component. (b) The T2

component versus the second T1 component.

distributions to improve model accuracy.
The collected data is summarized in Figure 20 and a table

of the pulse sequence parameters can be found in Tables 5
and 6. The samples tends to form tight clusters and there
is distinct separation between each of them; ponzu sauce is
particularly distinct. Two of the extracted parameters, the
mean values of T1 and T2, are shown in Table 7.
Classification using the selected features was carried out

as in the earlier experiments, and 50-fold cross validation
was again used to estimate prediction accuracy. The train-
ing time, prediction accuracy, and prediction speed of vari-
ous algorithms trained on three different sets of features are
compared in Figures 21, 22, and 23. A full summary of the
results is shown in Appendix B. The plots show that almost
all the information is contained in the mean T1 and T2 val-
ues, as for the earlier samples. This is probably because the
covariance parameters are highly dependent on the amount
of regularization and are thus not sample-specific. Thus, for
some algorithms, accuracy goes up significantly if only the
mean T1 and T2 are used as features. Overall, the simple
tree is the most efficient algorithm for this data set.
The basic setup of the sodium D-T2 experiment is as same

as for the T1-T2 experiment. The diffusion encoding param-
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Probe τmin τmax τ steps techo π/2 pulse π pulse Pulse length Echoes Averages

5 mm 1 ms 1000 ms 20 300 μs 3.16 W 12.59 W 35 μs 150 128

Table 5: Pulse sequence parameters for the T1-T2 sodium experiments.

Probe δ Δ Gradient steps techo π/2 pulse π pulse Pulse length Echoes Averages

5 mm 7000 μs 9000 μs 20 300 μs 6.31 W 25.12 W 17 μs 250 1024

Table 6: Pulse sequence parameters for the Diffusion-T2 sodium experiments.

Figure 17: Prediction accuracy on a subset of classification algorithms
tested on the milk sample. Results are shown for models trained on
only the T1a feature.

eters in the pulse sequence (Δ and δ) are modified according
to the tested sample to optimize the SNR. We observe that
all the samples tend to converge into tight clusters, as shown
in Figure 24a. The mean T2 values of the samples match
those obtained from T1-T2 experiments. The mean diffu-
sion constant D is somewhat more widely scattered, mainly
because of limited SNR due to hardware constraints (e.g.,
sample volume, maximum available gradient strength). The
problem can be resolved in several ways such as controlling
the ambient temperate, using post processing techniques to
compensate for temperature shifts, and improving SNR per
scan to accelerate the experiments. Nevertheless, D is still
able to assist in distinguishing between the different sauce
samples, and is thus marked as an important feature for
classification.

The proton T1-T2 map for the same soy sauce samples is

Figure 18: Training time on a subset of classification algorithms tested
on the milk sample. Results are shown for models trained on only the
T1a feature.

shown in Figure 24b. The plot shows that 1H T1 and T2

change even more dramatically between the different sam-
ples than for 23Na. This may be because of the absence
of quadrupolar relaxation for protons. Another possibility
is that the protons are bound to molecular aggregates that
span a large range of sizes (and thus rotational correlation
times) between the samples, while the sodium is predomi-
nantly in solution (in ionized form) for all samples. However,
the overall trend in sample properties remains the same: reg-
ular soy sauce has the lowest T1 and T2 values, while ponzu
sauce has the highest values. Moreover, in both cases ponzu
is widely separated from the other samples. We conclude
that 1H T1 and T2 can also provide useful classification fea-
tures for this data set.

Total sodium content was also estimated via a one-point
calibration with a reference brine solution. The estimated
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Figure 19: Prediction speed on a subset of classification algorithms
tested on the milk sample. Results are shown for models trained on
only the T1a feature.

Figure 20: 23Na T1-T2 correlation maps collected from four different
kinds of soy sauce. SNR ≈ 35 for each set of experiments after 128
scans.

values (per teaspoon) for less sodium soy sauce, regular soy
sauce, ponzu sauce, and teriyaki sauce are 196, 305, 158, and
204 mg, respectively. These values are in excellent agree-
ment with those on the product labels, which are 192, 307,
177, and 203 mg, respectively.

In conclusion, we can clearly classify the various sauce
samples using sodium and proton NMR measurements: they
can be effectively classified using either sodium T1 and T2,
sodium D, or proton T1 and T2. Combinations of these
features can also be measured to improve classification ac-
curacy if needed, at the cost of longer data collection and

Soy Sauce T1(ms) T2(ms)

Regular 11.91 11.20
Less Sodium 14.56 13.57
Teriyaki 12.62 12.07
Ponzu 26.31 24.96

Table 7: Mean 23Na T1 and T2 values of the soy sauce samples ex-
tracted from the T1-T2 correlation maps.

Figure 21: Training time on a subset of classification algorithms tested
on the soy sauce samples. Results are shown for models trained on
only the T1T2 feature.

model training times. The experiments thus demonstrate
the possibilities of authenticating unknown sauce samples
and characterizing their freshness.

3.7. Temperature-controlled experiments

Now we consider temperature effects upon the experi-
ments. If there is no temperature control mechanism, the
field will drift with time as the room temperature changes.
The high temperature coefficient (about -1.1%/◦C) of the
NdFeB permanent magnet will then result in significant
changes in the Larmor frequency over time. For example,
the proton frequency decreases by 24 kHz/◦C. Such drifts
must be taken into account while running long experiments.
We used regular soy sauce as an example to demonstrate

the effects of temperature upon our measurement results. In
order to exclude the influence of poorly-controlled room tem-
perature fluctuations, both sample and magnet were placed
inside a Peltier-controlled incubator (see Figure 6). The
sample and magnet temperature was then varied from 22◦C
to 34◦C (295 K to 307 K) in 2◦C steps, and T1-T2 correla-
tion plots were generated at each step. The collected data
is summarized in Figure 25. The data shows that both T1
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Figure 22: Prediction accuracy on a subset of classification algorithms
tested on the soy sauce samples. Results are shown for models trained
on only the T1T2 feature.

and T2 are strongly dependent on temperature. Moreover,
they increase linearly with temperature within this limited
range. Thus, we expect temperature drifts to have a strong
influence on our classification results.
Indeed, the accuracy of predicting an unknown sample

drops significantly if the temperature-dependent data set is
fed into the trained model generated during the T1-T2 exper-
iment, as summarized in Figure 26 (a complete set of results
from all 20 classification methods is shown in Appendix B).
Taking the linear SVM classification method as an example,
the accuracy drops from 100.0% to 71.4%. Notice that the
mean values of T1 and T2 for regular soy sauce are the lowest
among four samples. This simplifies the classification diffi-
culty and improves the result because the data is unlikely
to be mixed up with data from other samples. In other
words, the classification results would have been even worse
if temperature-dependent data from the other samples had
been fed into the same trained model. Thus, we have to take
sample temperature into account during classification, and
the best results will be obtained if the temperature is kept
constant.

4. Summary and conclusions

We have explored the potential of classifying different
kinds of food products using a double-tuned, low-field NMR
system. The system can reliably distinguish the tested sam-
ples, including cooking oils, milk, and soy sauces. The de-
sign of the custom gradient coil used by the system has been
analyzed in detail. The system uses an easy-to-use and ef-
ficient double-tuned impedance matching network for easily
interleaving proton and sodium NMR experiments. The nu-
merical optimization of this network was presented in detail;

Figure 23: Prediction speed on a subset of classification algorithms
tested on the soy sauce samples. Results are shown for models trained
on only the T1T2 feature.

the results demonstrate that the RF coil can be effectively
double-tuned with an acceptable amount of power loss.

The system was used to measure T1-T2 and D-T2 corre-
lation data for both 1H and 23Na. Important features were
extracted from these data sets and used to train a variety
of classification models. Many of the trained models were
shown to have a classification accuracy of as high as 100%
for different food products. We also showed that sample
temperature has a major effect on classification accuracy,
which highlights the importance of temperature control for
obtaining reliable results. In sum, the results strongly sup-
port the capability of 1H and 23Na 2D low-field NMR to be
used in quality assessment of food products. The technique
is promising for developing robust prediction models and
databases of authentic products. In addition, integration of
NMR with other analytical measurement techniques such as
NIR spectroscopy are of interest for future work.
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Appendix A. Derivation of Eqn. (2)

We start by writing down the Biot-Savart law for a single
wire:

	B(	r) =
μ0I

4π

∫
d	s× 	r

r3
, (A.1)
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Figure 24: (a) Soy sauce 23Na D-T2 map. The blue, orange, yellow,
and purple circles correspond to regular soy, less sodium soy, teriyaki,
and ponzu sauce, respectively. The mean values of T2 matches results
from the T1-T2 map; the diffusion constants of different samples differ
significantly from each other. SNR ≈ 15 for each set of experiments
after 1024 scans. (b) Soy sauce 1H T1-T2 map. Different samples are
easily distinguished in this case as well. SNR ≈ 125 for each set of
experiments after 8 scans.
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Figure 25: Temperature shift experiment for the regular soy sauce
sample. Five sets of data were collected at each temperature. Over
this limited range, both T1 and T2 increase linearly with temperature.

where d	s is the differential vector along the wire, 	r is the
radius vector from the wire to the point at which the field
is calculated, and I is the current. If the wire of interest
crosses the y-z plane at the point (c,d) and we assume the
magnetic field produced by the wire is much smaller than the
static field along the z-direction, then only the z-component
of 	B(	r) is of interest. We can find this quantity by integrat-
ing (A.1) along the x-axis:

Bz(y, z) =
μ0I

2π

(c− y)

(c− y)2 + (d− z)2

=
μ0I

2π
�

[
1

aeiφ − ξ

]
, (A.2)

where the complex variables aeiφ ≡ (c+ id) and ξ ≡ (y+ iz)
are defined for convenience. In a small region around the
origin (near the RF coil), |ξ| � a. Because of this fact, we

Figure 26: Comparison of prediction accuracy for the regular soy sauce
sample using i) the original T1-T2 map data (measured at constant
temperature), and ii) the temperature-dependent data. Prediction ac-
curacy drops significantly in the latter case.

can expand the denominator as a power series:

Bz(ξ) =
μ0I

2πa
�

[
e−iφ

1− ξ

a
e−iφ

]

≈
μ0I

2πa
�

[
∞∑
n=0

ξ

a

n

e−i(n+1)φ

]
. (A.3)

To calculate the total field, we add up the contribution from
each wire using the superposition principle. The four wires
are located at φ, φ+ π

2 , φ+π, and φ+ 3π
2 . This results in the

terms corresponding to n = [1,5,9,...] adding together and
all other terms canceling, giving us a total field described by

Bz(ξ) ≈
2μ0I

πa
�

[
e−2iφ

(
ξ

a

)
+ e−6iφ

(
ξ

a

)5

+e−10iφ

(
ξ

a

)9

+ ...

]
. (A.4)

At the RF coil near the origin, the first term will dominate,
resulting in a magnetic field of

Bz(y, z) ≈
2μ0I

πa2
[cos(2φ)y + sin(2φ)z]. (A.5)

Taking the derivative of (A.5), we get the y and z gradi-
ents shown below:

gy ≡
δBz

δy
=

(
2μ0I

πa2

)
cos(2φ)

gz ≡
δBz

δz
=

(
2μ0I

πa2

)
sin(2φ).

(A.6)
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We can solve for the magnetic field of the distorted case
using the same techniques that were used for the ideal ge-
ometry due to the fact that the wires still lie on the cir-
cumference of a circle. However, the wires now have ar-
bitrary vertical and horizontal separations of 2a1 and 2a2.
Thus, the coordinates of the wires on the (y,z) plane are
(a1,a2),(a1,−a2),(−a1,a2), and (−a1,−a2). These coordi-
nates lie on a circle of radius a =

√
a21 + a22 and each coor-

dinate has an azimuthal angle of φ,−φ, φ + π, and− φ+ π,
respectively, where φ ≡ tan−1 (a2/a1).

Applying the same techniques, we start by solving for the
field near the origin:

Bz (ξ) ≈
μ0I

πa
�

[(
e−2iφ − e2iφ

)( ξ

a

)

+
(
e−4iφ − e4iφ

)( ξ

a

)3

+
(
e−6iφ − e6iφ

)( ξ

a

)5

+ ...

]

=
μ0I

πa
�

[
−2i sin(2φ)

(
ξ

a

)
− 2i sin(4φ)

(
ξ

a

)3

−2i sin(6φ)

(
ξ

a

)5

+ ...

]

=
2μ0I

πa2

[
sin(2φ)z + sin(4φ)

(
3y2z − z3

)
a2

+ ...

]
.

(A.7)

From eqn. (A.7), it can be seen that fewer terms cancel in
the power series expansion. Specifically, in the distorted ge-
ometry, every other term will survive while in the ideal one,
only every fourth term survives. This is because the dis-
torted geometry has less symmetry than the ideal geometry.

We can now take the partial derivatives of eqn. (A.7) to
get the following expression for the gradients:

gy ≡
δBz

δy
≈

(
2μ0I

πa2

)[
6 sin(4φ)

yz

a2
+ ...

]
, (A.8)

gz ≡
δBz

δz
≈

(
2μ0I

πa2

)[
sin(2φ) + 3 sin(4φ)

(
y2 − z2

)
a2

+ ...

]
.

Appendix B. Complete Summary of Classification
Data

For completeness, this appendix summarizes classification
results obtained for various samples using all 20 available al-
gorithms. Figs. B.27, B.28 and B.29 respectively summarize
prediction accuracy, training time, and prediction speed for
the milk sample.

Figure B.27: Prediction accuracy of all classification algorithms tested
on the milk sample. Results are shown for models trained on only the
T1a feature.

Figure B.28: Training time of all classification algorithms tested on the
milk sample. Results are shown for models trained on only the T1a

feature.
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Figure B.29: Prediction speed of all classification algorithms tested on
the milk sample. Results are shown for models trained on only the T1a

feature.

Figs. B.30, B.31 and B.32 respectively summarize predic-
tion accuracy, training time, and prediction speed for the
soy sauce samples.

Figure B.30: Prediction accuracy of all classification algorithms tested
on the soy sauce samples. Results are shown for models trained on
three combinations of features.

Figure B.31: Training time of all classification algorithms tested on
the soy sauce samples. Results are shown for models trained on three
combinations of features.

Figure B.32: Prediction speed of all classification algorithms tested on
the soy sauce samples. Results are shown for models trained on three
combinations of features.

Fig. B.33 summarizes prediction accuracy for the regu-
lar soy sauce sample using the original and temperature-
dependent data sets.
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Figure B.33: Comparison of prediction accuracy for the regular soy
sauce sample using i) the original T1-T2 map data (measured at con-
stant temperature), and ii) the temperature-dependent data.
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