
¹ Camera Method for Monitoring a Mechanochromic Luminescent ² β -Diketone Dye with Rapid Recovery

³ Tristan Butler, Alexander S. Mathew, Michal Sabat, ^{†,‡} and Cassandra L. Fraser^{*,†,ID}

⁴ [†]Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States

⁵ [‡]Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904, United States

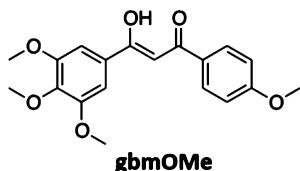
⁷ Supporting Information

ABSTRACT: Mechanochromic luminescent (ML) materials, which show a change in emission due to an applied mechanical stimulus, are useful components in a variety of applications, including organic light-emitting diodes, force sensors, optical memory storage, and next-generation lighting materials. While there are many different ML active derivatives, few show room temperature self-erasing. Thin films of the methoxy substituted β -diketone, gbmOMe, initially exhibited blue (428 nm) emission; however, green (478 nm) emission was observed after smearing. The mechanically generated smeared state recovered so rapidly that characterization of its emission was difficult at room temperature using traditional luminescence techniques. Thus, a new complementary metal oxide semiconductor camera imaging method was developed and used to calculate the decay time of the mechanically generated smeared state (i.e., smeared-state decay; τ_{SM}) for gbmOMe thin films. Additionally, this method was used to evaluate substrate and film thickness effects on ML recovery for glass and weighing paper films. The recovery behavior of gbmOMe was largely substrate-independent for the indicated matrixes; however, thickness effects were observed. Thus, film thickness may be the main factor in determining ML recovery behavior and must be accounted for when comparing the recovery dynamics of different ML materials. Moreover, when heated above the melting point ($T_m = 119$ °C), bulk gbmOMe powders assumed a metastable state that eventually crystallized after a few minutes at room temperature. However, melted thin films remained in an amorphous state indefinitely despite annealing at different temperatures (50–110 °C). The amorphous phase was identified as a supercooled liquid via changing the rate of cooling in differential scanning calorimetry thermograms.

KEYWORDS: mechanochromic luminescence, self-healing, camera RGB image analysis, supercooled liquids

INTRODUCTION

Difluoroboron β -diketonate (BF_2 bdk) materials are noted for their unique optical properties in both solution and the solid state.^{1–3} Many BF_2 bdk derivatives show room temperature phosphorescence (RTP) in poly(lactic acid) (PLA) matrixes and can be used to quantify oxygen in biological systems.^{4–6} Additionally, BF_2 bdk materials exhibit mechanochromic luminescence (ML) with spontaneous recovery⁷ as well as aggregation induced emission⁸ (AIE) and solvatochromism.⁹ These diverse properties coupled with their straightforward synthesis make this family of boron dyes potentially useful for numerous applications such as mechanical sensors, next-generation light sources, display technologies, security inks, and biological probes.^{10–16} Similar to their boronated counterparts, unique solution and solid-state optical properties have also been observed in boron-free β -diketone (bdk) materials.¹⁷


The methoxy-substituted dinaphthoylethane derivative (dnmOMe) showed solvatochromism and AIE in addition to high contrast ML with rapid spontaneous recovery.¹⁸ Furthermore, because β -diketones, including methoxy-substituted derivatives, show large molar absorptivities and photo-stabilities, they have been screened and used as UV absorbing additives in sunscreens.¹⁹

Successful integration of bdk dyes into commercial applications requires a thorough understanding of structure–property relationships and material processing parameters (e.g., temperature, thickness, and substrate). Prior reports describe the effects of alkyl chain length,^{7,20} halide substitution,²¹ arene

Received: February 10, 2017

Accepted: April 17, 2017

size,²² and even BF_2 coordination on the optical and room temperature self-healing properties of ML materials.¹⁸ Substitution of stimuli responsive materials with different donor and acceptor groups is also a common strategy for modulating solid-state ML properties such as emission wavelength, intensity, and spontaneous recovery.^{23–26} For example, alkoxy substitution modulates solution and solid-state optical properties through electronic properties and control of molecular packing.^{27–30} Recently, Sket et al., showed that the ML active, methoxy-substituted BF_2bdk 1-phenyl-3-(3,5-dimethoxyphenyl)-propane-1,3-dione can be crystallized as uniquely emissive polymorphs whose formation is partially governed by the different conformations of the methoxy substituents.³¹ Additionally, selective methoxy-substitution can induce intramolecular charge transfer (ICT) in certain bdk dyes, which has been correlated with the solvatochromic and phosphorescent properties.^{18,32} Literature precedent combined with the abundance and variety of commercially available starting materials makes methoxy substitution a good strategy for tuning the optical and ML properties of bdk materials. Thus, in this study, we employed methoxy substitution to modulate the emission and self-recovery properties of a bdk dye. Though the tetramethoxy-substituted dibenzoylmethane, 3-hydroxy-3-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (gbmOMe) was synthesized and evaluated previously as a sunscreen additive,¹⁹ the stimuli responsive solid-state properties of gbmOMe have yet to be reported.

Material processing parameters such as temperature, dye–substrate interactions, film thickness, and repeated smearing also influence ML properties. The thermal properties of luminophores are important both for fabrication and because the mechanically triggered changes in optical properties are often the result of temperature-dependent crystalline-to-amorphous phase transitions.^{21,33} For example, amorphous melt quenched thiophene and furan substituted BF_2bdk derivatives showed red-shifted emission compared to their emission in the crystalline state.³⁴ Thus, it is possible to access the amorphous phase of these materials via thermal or mechanical stimulation. Similar optical properties were observed for a triphenyl amine (TPA)-based material reported by Mizuguchi et al., which showed rapid ML recovery of a green-yellow emissive state that was produced via melting and cooling to room temperature in addition to smearing.³⁵ The identity of this emissive melted state was determined to be a supercooled liquid with red-shifted emission resulting from a twisted intramolecular charge transfer (TICT) state. Additionally, Kim et al. observed a high contrast change in emission for an alkylated diketopyrrolopyrrole due to shear-triggered crystallization of a thermally stable supercooled liquid state.³⁶ The phase transition was attributed to a small Gibbs free energy difference between the crystalline and the supercooled liquid state. Such changes in emission were even activated by small forces associated with live cell attachment. This example demonstrates an application for thermally stable amorphous solids, namely, as cell force sensors. Yet, despite their potential for optical and optoelectronic uses^{37,38} and for improving the

solubility of various active pharmaceutical ingredients and excipients,³⁹ supercooled liquids are relatively rare.¹⁰⁹

Compared to temperature, relatively little is known about how film thickness, dye–substrate interactions, and repeated smearing affect ML recovery properties. This may be due in part to the relative scarcity of RT self-healing systems. Furthermore, certain fast recovering ML dyes such as diketones are incompatible with standard room temperature fluorimetry, given they recover faster (seconds to minutes) than the time required to record a spectrum. On the other hand, slow self-erasing ML systems are inconvenient to monitor given intensity changes little over long time periods, and subtle substrate and film thickness effects could be imperceptible. Additionally, standard characterization often averages emission intensity over relatively large sample regions and does not account for localized differences in ML recovery. Alternatively, techniques that excite locally do not provide good spatial resolution of ML recovery processes. To address some of these challenges and obtain 2D spatiotemporal information on ML recovery as a function of substrate, thickness, and smearing, we developed a video camera method to monitor the intensity decay of individual pixels over time. Previously, we employed this camera imaging technology to track photostability, oxygen-dependent lifetime,⁴⁰ and intensity⁶ of BF_2bdkPLA phosphorescent materials. This method not only allows for investigation of recovery dynamics of gbmOMe thin films averaged as a whole but also provides a spatially resolved means of evaluating localized recovery effects associated with the smearing process. Structural and stimuli responsive properties of gbmOMe were also investigated using powder and single crystal X-ray diffraction, differential scanning calorimetry (DSC), and through excitation and emission spectra recorded at room temperature and 77 K.

EXPERIMENTAL DETAILS

Materials. Solvents THF and CH_2Cl_2 were dried over molecular sieves activated at 300 °C as previously described.⁴¹ Reactions were monitored using silica TLC plates. Compounds purchased from Sigma-Aldrich were reagent grade and used without further purification. The β -diketone 3-hydroxy-3-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (gbmOMe) was synthesized as previously described.²

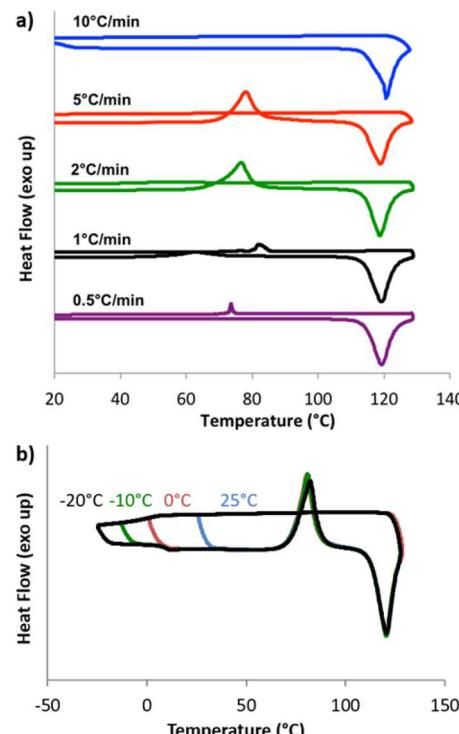
Methods. ^1H NMR (600 MHz) spectra were recorded in dilute CDCl_3 using a Varian VRMS/600. Spectra were referenced to the signals for residual protio- CDCl_3 at 7.26 ppm and coupling constants were recorded in Hz. UV–vis spectra were collected on a Hewlett-Packard 8452A diode-array spectrophotometer. Steady-state fluorescence emission and excitation spectra were obtained on a Horiba Fluorolog-3 Model FL3-22 spectrofluorometer (double-grating excitation and double-grating emission monochromator). Time-correlated single-photon counting (TCSPC) fluorescence lifetime measurements were performed with a NanoLED-370 ($\lambda_{\text{ex}} = 369$ nm) excitation source and a DataStation Hub as the SPC controller. Lifetime data were analyzed with DataStation v2.4 software from Horiba Jobin Yvon. Solid-state quantum yield measurements were acquired using a F-3029 Quanta-Φ Integrating Sphere purchased from Horiba Scientific and analyzed using FluorEssence software. Fluorescence quantum yields, φ_F , in CH_2Cl_2 were calculated versus a dilute quinine sulfate solution in 0.1 M H_2SO_4 as a standard using a previously described method⁴² and the following values: φ_F quinine sulfate in 0.1 M sulfuric acid = 0.54;⁴³ n_D ⁴⁴ 0.1 M H_2SO_4 = 1.33; n_D ⁴⁵ CH_2Cl_2 = 1.424. Optically dilute CH_2Cl_2 solutions of all samples were prepared in 1 cm path length quartz cuvettes with absorbances <0.1 (au). ML emission was observed by applying a constant, gentle pressure via a cotton swab or a Kimwipe against glass and weigh paper films. Powder XRD patterns were obtained using a Panalytical X'Pert

173 Pro MPD diffractometer operating at 40 kV and 40mA using Cu $\text{K}\alpha$ 174 radiation. DSC was performed on the pristine powders using a TA 175 Instruments DSC 2920 Modulated DSC, and data were analyzed using 176 the Universal Analysis software v2.3 from TA Instruments. Thermo- 177 grams were recorded using the standard mode while heating at a 178 constant rate of 10 $^{\circ}\text{C}/\text{min}$. The cooling rate was changed as indicated 179 for different measurements but was held constant throughout a given 180 heating/cooling cycle.

181 **Crystallographic Information.** Crystals for single crystal XRD were 182 grown by vapor diffusion of hexanes into ethyl acetate. Data collection 183 was performed using a Bruker Kappa Duo CCD diffractometer at 184 -120 $^{\circ}\text{C}$ with Mo $\text{K}\alpha$ radiation. Crystal data for gbmOMe: 185 orthorhombic space group $Pbca$; $a = 17.7840(19)$; $b = 7.5472(8)$; c 186 = $7.5472(8)$ \AA ; $\beta = 90^{\circ}$; $Z = 8$, $V = 3393.2(6)$ \AA^3 . The structure was 187 solved by the charge flipping method of the Bruker SHELXTL 188 program and refined to an $R = 0.0475$ using 5976 reflections with $I > 189 2\sigma(I)$.

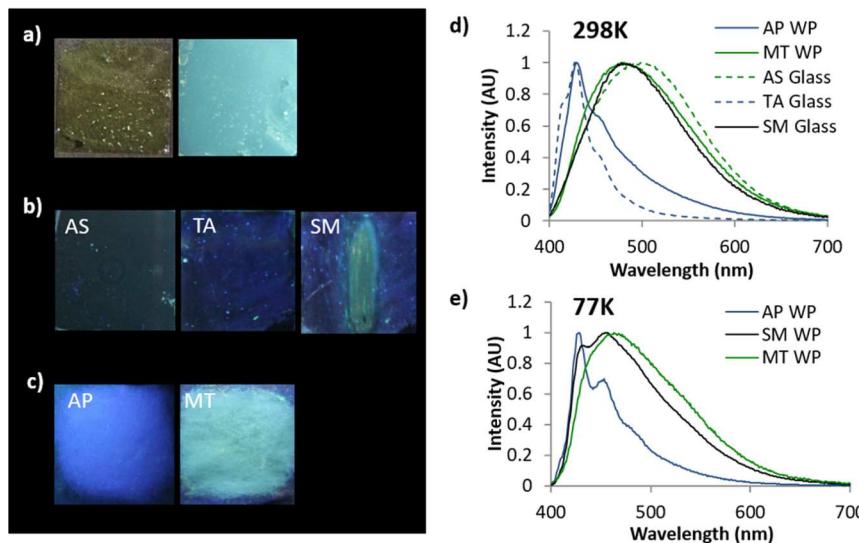
190 **Preparation of Thin Films.** Bulk powder films for ML character- 191 ization were fabricated on weigh paper substrates by smearing ~ 2 mg 192 of sample across the entire surface with a Kimwipe. Drop cast films 193 were prepared by adding 20 drops of gbmOMe/THF solutions (0.090 194 and 0.018 M) to 3" \times 1" weigh paper and glass microscope slides. 195 Spin-cast films were made using a Laurel Technologies WS-650S spin- 196 coater and applying 20 drops to glass microscope slides rotating at 197 3000 rpm. Both spin-cast and drop cast samples were dried under 198 vacuum for 20 min prior to annealing at 75 $^{\circ}\text{C}$ for 10 min. Green 199 emission remained after annealing, so films were gently smeared with a 200 Kimwipe followed by annealing at 75 $^{\circ}\text{C}$ for another 10 min to 201 produce uniform blue emission.

202 **Smeared State Decay Measurements.** Spontaneous smeared 203 emission decay measurements were performed at room temperature 204 using a PGR GS3-U3-41C6C-C video camera with a complementary 205 metal oxide semiconductor chip capable of 90 frames per second 206 (FPS) at a maximum resolution of 2048 \times 2048 pixels. The camera 207 was also equipped with a Spacecom f/0.95 50 mm lens and an 208 Edmund Optics 425 nm long pass filter to minimize excitation 209 background. The camera was operated with a Lenovo W530 laptop 210 connected via a USB 3.0 cable. Point Gray FlyCap2 software was used 211 to record videos of smeared glass and weigh paper films, and the data 212 were analyzed using a custom MATLAB 2014b program. The camera 213 was placed approximately 0.5 m above the sample, which was 214 illuminated with a 100W Black-Ray B-100AP/R lamp at 365 nm 215 located ~ 10 cm above the sample. Videos of recovering samples were 216 recorded using a frame rate of 1 frame per second (fps), and the 217 intensity of the green channel was monitored over time. The initial 218 intensity of the green channel due to sample emission prior to 219 smearing was subtracted from each pixel before fitting data to a double 220 exponential decay, and the pre-exponential weighted lifetime was 221 reported. Photostability measurements were performed using the same 222 experimental setup as recovery measurements and irradiating the 223 sample continuously for 4 h while monitoring the pixel intensity every 224 5 min.


225 ■ RESULTS AND DISCUSSION

226 **Optical Properties in Solution.** The β -diketone gbmOMe 227 was synthesized via Claisen condensation of ester and ketone 228 building blocks as previously described.² The optical properties 229 of gbmOMe were measured in dichloromethane solution 230 (Figure S1, Table S1). UV-vis spectra reveal an absorption 231 peak (λ_{abs}) at 365 nm with a molar absorptivity of 64 000 M^{-1} 232 cm^{-1} . Though the solution appeared nonemissive to the eye 233 due to a very low quantum yield ($\Phi = 0.01\%$), a peak was 234 detectable at $\lambda_{\text{em}} = 427$ nm in the steady-state emission 235 spectrum.

236 **Solid State Thermal Properties.** To achieve high color 237 contrast, mechanochromic luminescent materials are typically 238 processed by thermal annealing to produce an ordered emissive 239 state. Smearing then generates a red-shifted amorphous state.


240 However, qualitative screening of the thermal properties of 241 gbmOMe not only revealed differences between bulk solid and 242 thin film samples but also showed new phenomena. As a bulk 243 powder, gbmOMe glowed light blue ($\lambda_{\text{em}} = 453$ nm, $\Phi = 5.1\%$) 244 under UV irradiation. When the powder was heated above the 245 melting point, a melted (MT) viscous green emissive phase 246 formed ($\lambda_{\text{MT}} = 481$ nm, $\Phi = 10.0\%$). Crystallization of this 247 melted phase occurred within a few minutes after the heat 248 source was removed to yield a blue-emissive solid. However, 249 similar crystallization was not observed for melted thin films of 250 gbmOMe. Instead, the green emissive state persisted upon 251 cooling. Powder XRD patterns further confirmed that bulk 252 gbmOMe is crystalline and MT thin films are amorphous, as no 253 peaks were observed in the diffraction pattern for the latter 254 samples (Figure S2). This relative difference in thermal stability 255 of the MT phase for bulk powder and thin films may indicate a 256 thickness dependence on the crystallization rate of melted 257 gbmOMe.

258 The thermal properties of gbmOMe were further inves- 259 tigated using differential scanning calorimetry. The sample was 259 heated at a constant rate of 10 $^{\circ}\text{C}/\text{min}$ while the rate of cooling 260 was varied for each cycle (Figure 1). Each cycle was performed 261 fi

262 **Figure 1.** (a) DSC thermograms of consecutive heating/cooling cycles 263 of gbmOMe with varying cooling rates (ramp rate: 10 $^{\circ}\text{C}/\text{min}$). (b) 264 DSC thermograms of gbmOMe cooled to different minimum 265 temperatures (ramp rate: 10 $^{\circ}\text{C}/\text{min}$).

266 in succession to probe the thermal history. Thermograms show 267 that gbmOMe melts at 119 $^{\circ}\text{C}$ regardless of cooling rate. When 268 cooled faster than 1 $^{\circ}\text{C}/\text{min}$, crystallization was not observed 269 for the duration of the cooling cycle; however, crystallization 270 was observed upon subsequent heating. When the rate was slow 271 enough (1 or 0.5 $^{\circ}\text{C}/\text{min}$), crystallization could be seen during 272 the cooling cycle. These results indicate that the difference in 273 thermal stability of the green amorphous state of gbmOMe as a 274 bulk melt compared to melted thin films could be due to 275

Figure 2. Images of gbmOMe thin films ($\lambda_{\text{ex}} = 365$ nm) (a) on glass in the melted phase (MT) under ambient (left) and UV light (right) at room temperature; (b) on glass in AS, TA, and SM states at room temperature; and (c) on WP films in AP and MT states. Emission spectra of gbmOMe films ($\lambda_{\text{ex}} = 369$ nm) on (d) WP and glass at room temperature and (e) WP at 77K.

271 differences in the cooling rates when samples are quenched
272 (i.e., cooled) in air.

273 To gain further insight into the identity of the green emissive
274 state, successive DSC scans of gbmOMe were run while varying
275 the minimum cooling temperature from 25 to -20 °C (Figure
276 1b). When a relatively fast constant rate of heating/cooling (10
277 °C/min) was used to prevent crystallization of gbmOMe, all
278 scans that were cooled to a sufficiently low temperature showed
279 a glass transition temperature ($T_g = 2$ °C). Combined with the
280 cooling rate-dependent crystallization, the presence of a clearly
281 defined T_g could indicate a supercooled liquid state for rapidly
282 cooled gbmOMe above T_g that becomes a glass at lower
283 temperatures.

284 **Mechanochromic Luminescence.** In addition to thermal
285 responsiveness, changes in solid-state emission of gbmOMe
286 thin films can also be produced mechanically. Thin films of
287 gbmOMe were investigated on both glass (G) and weighing
288 paper (WP) substrates (Figure 2, Table S2). Glass films were
289 fabricated by spin coating dilute (0.018 M) dye/THF solutions
290 on microscope coverslips. In the as spun (AS) state (i.e., after
291 solvent evaporation), gbmOMe films on glass were locked into
292 a transparent state that glowed green ($\lambda_{\text{AS}} = 499$ nm) under UV
293 light and qualitatively resembled the melt phase. This
294 transparency is atypical given that as spun films are often
295 opaque.^{7,21} Typical thermal annealing of BF_2bdk or bdk
296 samples involves heating below the melting temperature
297 followed by cooling to produce a maximally blue-shifted state.
298 However, this process was insufficient to anneal gbmOMe
299 films, which showed no change in emission and remained in the
300 transparent green emissive state after heating and cooling.
301 Instead, gbmOMe films on glass were heated at 75 °C (below
302 $T_m = 119$ °C) for 10 min, followed by cooling to room
303 temperature, then gentle smearing with a Kimwipe. After ~ 1 h,
304 blue emissive films formed. To speed up the processing, after
305 smearing, films were again heated at 75 °C for 10 min followed
306 by cooling to produce an opaque, blue emissive, thermally
307 annealed (TA) state ($\lambda_{\text{TA}} = 428$ nm) (Figure 2d). It is possible
308 that perturbation of the amorphous phase via smearing induced
309 gbmOMe nucleation to form the crystalline TA phase.
310 According to their corresponding XRD pattern, TA thin films

311 on glass were crystalline, and AS films were amorphous (Figure
312 S2). Smearing of TA films produces green emission ($\lambda_{\text{SM}} = 478$
313 nm) that self-recovers over the course of a few minutes (Figure
314 2, Table S2).

315 Mechanochromic luminescence properties of gbmOMe were
316 also investigated on weighing paper for ready comparison with
317 many previous studies.^{21,22} Thin films were prepared by
318 smearing a small amount of gbmOMe (~ 2 mg) across a
319 piece of weighing paper. The as prepared (AP) WP film glowed
320 blue ($\lambda_{\text{AP}} = 428$ nm) under UV exposure, and smearing
321 produced green emission that rapidly regained its original blue
322 color (~ 30 s). Unlike most other ML samples, thermal
323 annealing is not required to produce the maximally blue-shifted
324 state. Recovery happens rapidly and spontaneously. Recovery of
325 smeared WP films was so rapid that an emission spectrum in
326 the SM state could not be obtained at room temperature given
327 that the green smeared emission disappeared faster than the
328 time required to perform the measurement.

329 The self-healing properties of BF_2bdk ML materials have
330 been previously ascribed by Ito et al., to the thermal back
331 population from the amorphous phase to the crystalline state.⁴⁶
332 In order to slow the rapid recovery of gbmOMe WP films and
333 observe them in the SM state, the optical properties of WP
334 films were measured at 77K (Figure 2e, Table S3). Films in the
335 SM state were produced by rubbing the sample, followed by
336 immediate submersion in liquid N_2 . Excitation spectra were also
337 recorded to probe the different emissive species that exist in
338 AP, MT, and SM weigh paper films (Figure S3). The peak
339 emission of smeared films ($\lambda_{\text{SM}} = 454$ nm) at 77K falls between
340 the slightly red-shifted peak emission of melt films ($\lambda_{\text{MT}} = 463$
341 nm) and the blue-shifted peak emission of films in the AP state
342 ($\lambda_{\text{AP}} = 429$ nm). The relative proximity in peak emission and
343 their similarly broad emission profiles indicate that the smeared
344 and melt states of WP films contain similar emissive species.
345 However, a shoulder corresponding with the emission of AP
346 films is also visible in the spectrum of the smeared film. This
347 suggests that SM gbmOMe samples are comprised of both
348 green amorphous and blue crystalline emissive species. This is
349 further supported by the excitation spectra monitored at the
350 peak emission of each film. The excitation spectrum of the SM

351 sample contains features of AP and SM films. Incomplete
 352 conversion of the sample to the amorphous state upon
 353 smearing or rapid partial recovery before immersion in liquid
 354 nitrogen may explain the presence of blue and green emissive
 355 states in the smeared WP film. On the basis of the optical
 356 characterization, the mechanically produced color changes
 357 observed in gbmOMe films on both glass and WP substrates
 358 appear to be produced by the same emissive species.

359 **Structural Characterization.** X-ray diffraction studies were
 360 performed to gain insight into crystallinity and molecular
 361 packing. As previously described, powder XRD patterns of bulk
 362 gbmOMe and thermally annealed (TA) glass films indicate that
 363 crystalline species produce blue emission and that green
 364 emission results from amorphous states (i.e., MT and AS). To
 365 further investigate the solid-state emission and intermolecular
 366 interactions, single crystals were grown by vapor diffusion of
 367 hexanes into a concentrated EtOAc solution of gbmOMe. The
 368 emission spectrum of the crystals is similar that of other
 369 material forms with blue emissive states; however, the peak
 370 emission of the crystal ($\lambda_C = 452$ nm) is red-shifted relative to
 371 emission of WP films at room temperature ($\lambda_{AP} = 429$ nm).
 372 The difference in emission profiles could indicate the presence
 373 of multiple phases in WP films (Figure S4).

374 According to the crystal structure, gbmOMe adopts a mostly
 375 planar conformation. However, the methoxy group in the 4-
 376 position of the trimethoxy substituted phenyl ring is out of
 377 plane, which can be attributed to steric crowding by the
 378 neighboring methoxy substituents (Figure 3). Despite the

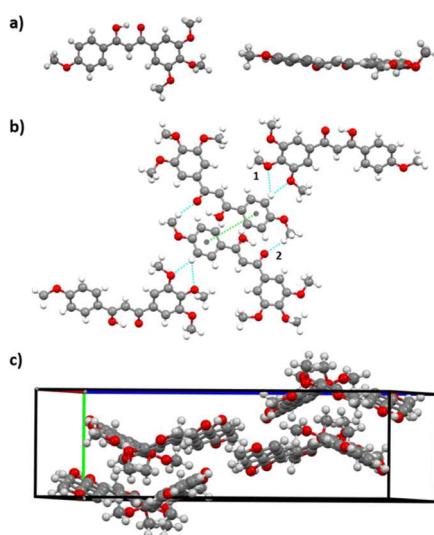
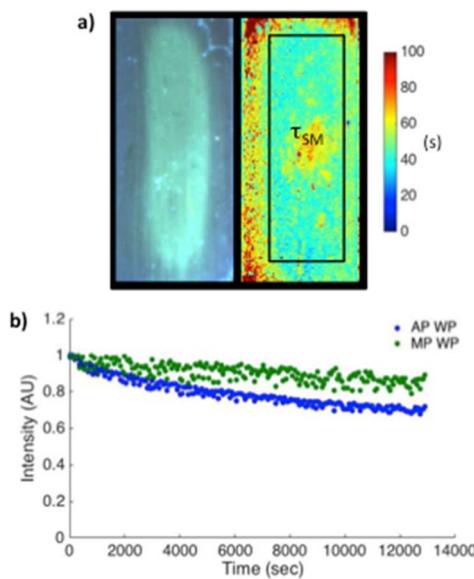


Figure 3. (a) Crystal structure of gbmOMe from top (left) and side (right) view. (b) View highlighting C–O···H–Ar and C–H···O = C interactions in gbmOMe crystals (interaction distances: (1) *m*-OMe: 2.711 Å; *p*-OMe: 2.416 Å; (2) 2:2.667 Å) and intermolecular distances (green line; 5.334 Å). (c) Unit cell of gbmOMe.

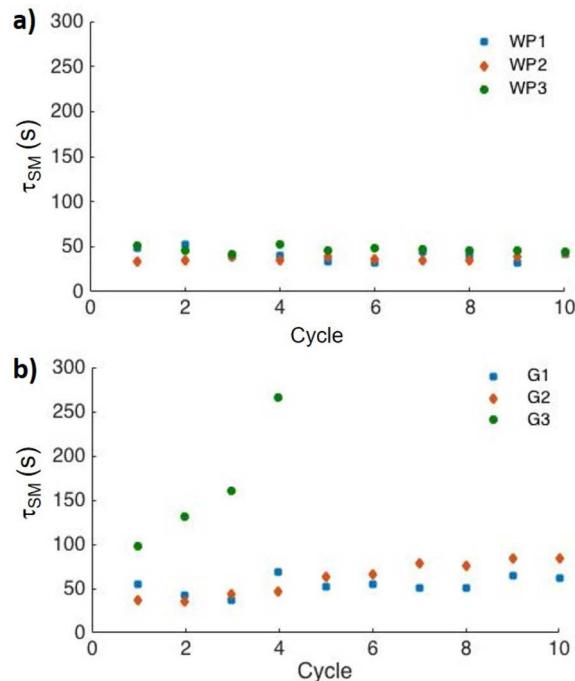

379 presence of a hydroxyl group in gbmOMe, no intermolecular
 380 hydrogen bonding is observed. In fact, the only interactions
 381 influencing the crystal packing are C–H···O–C, C–H···arene,
 382 and weak C–H···H–C van der Waals interactions. For
 383 example, multiple C–O···H–Ar interactions (1) between
 384 oxygen atoms of meta-(*m*-OMe) and para-(*p*-OMe) methoxy
 385 groups of the trisubstituted arene ring and aryl hydrogens of an
 386 adjacent dye are observed (interaction distances: *m*-OMe:
 387 2.711 Å, *p*-OMe: 2.416 Å) Additionally, C–H···O = C

388 interactions (2) are also observed between hydrogen atoms 389
 390 of methoxy groups on the monosubstituted ring and the ketone 391
 392 moiety of neighboring molecules (distance: 2.667 Å) (Figure 3b). Examination of the unit cell shows that gbmOMe 393 molecules are arranged in a herringbone configuration with 394 no evidence of face-to-face or offset dimers often observed for 395 ML active bdk-based materials.^{20,47} The intermolecular distance 396 was estimated between neighboring dyes using centroids 397 calculated for the trimethoxy substituted rings of each molecule. 398 As evidenced by the large intermolecular distance (5.334 Å), 399 π–π interactions were not observed. This may be the result of 400 out-of-plane methoxy substituents in gbmOMe preventing 401 stacking and other strong associations linked with dimer 402 formation in similar bdk systems.^{48,49} These groups may also 403 play a role in more rapid recovery.

403 **Camera Characterization of Mechanochromic Luminescence Recovery.** The ML behavior of glass and weigh 404 paper films is similar; however, there is a large difference in 405 their recovery times. All samples show blue to green ML, but 406 the smeared emission of WP films vanishes much more quickly 407 compared to that of smeared samples on glass. Film thickness, 408 substrate, or other fabrication effects may be involved. In fact, 409 the rapid recovery of gbmOMe provides a good handle for 410 investigation given the intensity of the SM emission changes on 411 a convenient time scale for measurement.

412 A camera method was developed to monitor intensity 413 changes during mechanochromic luminescence recovery in 414 gbmOMe films. Specifically, a video was recorded immediately 415 after smearing, and the intensity decay of the smearing induced 416 color changes was monitored for each pixel. The green channel 417 of the camera was used, given significant overlap between its 418 quantum efficiency and the emission profile of the smeared 419 state. Furthermore, the green channel specifically captures the 420 smeared state given that emission from the thermally annealed 421 state does not tail into this region (Figure S5). The smeared- 422 state decay for each pixel (i.e., recovery lifetime, τ_R) was 423 determined using Matlab by fitting the intensity to a double 424 exponential decay and calculating the pre-exponential weighted 425 lifetime (Figures S6 and S7). Using the τ_R for each pixel, a 426 spatially resolved colormap was generated for each video, 427 depicting the smeared region decay process on glass and WP 428 substrates (Figure 4a). By computing the mean τ_R across a 429 f4
 430 region of interest in the colormap, calculation of the average 431 smeared-state lifetime (τ_{SM}) is possible, and processes on WP 432 and glass samples may be compared.

433 To validate the camera method, it is important to consider 434 other decay pathways that could affect the intensity of emission. 435 For example, continuous UV irradiation for the duration of the 436 video recording could result in photobleaching. To ensure that 437 the photodegradation of gbmOMe does not significantly 438 contribute to the intensity decay, a video of gbmOMe WP 439 films was recorded under constant UV illumination. The 440 intensity change of the green channel was measured for films in 441 AP and MT states given both crystalline and amorphous species 442 are present during the smearing process (Figure 4b). For the 443 photostability control experiment, films were irradiated for over 444 3 h, which is much longer than gbmOMe recovery on both WP 444 and glass substrates. Films typically recover (i.e., show little 445 change in emission) within seconds (WP) or a few minutes 446 (glass) after smearing. During the course of the 3 h 447 photostability measurement, the intensity of crystalline AP 448 films decreased by ~20%, whereas amorphous MT films 449 showed only a slight decrease in intensity (5–10%) over the 450


Figure 4. (a) Initial frame from the video of a smeared gbmOMe glass film (left) and the corresponding colormap for the smeared intensity decay process (right). The colormap was generated from the pre-exponential weighted lifetimes of the double exponential fit associated with the intensity decay of the green channel for each pixel (τ_R). A region of interest (black rectangle) was defined to calculate the average lifetime of the smeared state (τ_{SM}). (b) Photostability experiments showing intensity over time of continuously illuminated weigh paper films in the AP and MT states ($\lambda_{ex} = 365$ nm).

451 same time period. Inspection of photostability data for shorter
 452 time frames typically used to monitor smeared emission decay
 453 (i.e., minutes) revealed that intensity differences were
 454 imperceptible. These results indicate that photodegradation is
 455 minimal and should not interfere with methods utilizing
 456 intensity to calculate smeared emission decay, τ_{SM} .

457 Sample thickness effects were investigated by three different
 458 approaches. Namely, films were prepared by different common
 459 methods (i.e., surface application of the solid, drop casting, and
 460 spin-casting), by varying the sample loading within a given
 461 method (e.g., spin-casting from solutions of different dye
 462 concentrations), and by repeated smearing, which removes
 463 some sample with each iteration. An initial investigation was
 464 conducted to get a rough idea of how these different
 465 approaches affect smeared-state decay and to screen for
 466 differences. Afterward, a more detailed study was conducted
 467 for glass films, and results are presented below.

468 Films for initial screening were prepared in the following
 469 ways. Glass films were prepared by two methods. Thicker glass
 470 films were made by drop casting from a concentrated
 471 gbmOMe/THF solution (0.090 M) and evaporating in air
 472 (G1). Thinner films were produced via spin-casting from the
 473 same concentrated (G2) and more dilute (0.018 M) solutions
 474 (G3) (note: the fabrication procedure for G3 is the same as
 475 that used to make films for ML studies on the glass above).
 476 Thicker weigh paper films were fabricated by spreading bulk
 477 gbmOMe powder (~ 2 mg) across the substrate (WP1;
 478 standard fabrication procedure for weigh paper ML films
 479 above), and thinner films were made by drop casting from the
 480 same concentrated (WP2) and dilute (WP3) solutions that
 481 were used to produce glass films. Then, glass and WP gbmOMe
 482 thin films were repeatedly smeared in the same region, and τ_{SM}

483 was calculated for up to ten smearing/recovery cycles (Figure 483 f5
 484 f5
 485).

Figure 5. Smeared-state decay (τ_{SM}) of repeatedly smeared gbmOMe thin films on (a) $3'' \times 1''$ weigh paper and (b) glass substrates ($\tau_{SM} =$ smeared-state decay (τ_R per pixel) averaged over a region of interest).

486 With the exception of G3, most films show comparable 486
 487 smeared-state decays ($\tau_{SM} < 100$) regardless of substrate and 487
 488 smearing cycle. Data for WP films shows that τ_{SM} fluctuates 488
 489 randomly between 32 and 52 s regardless of the fabrication 489
 490 process (Figure 5a). This fluctuation may simply be due to the 490
 491 noise that can be expected in the fabrication and smearing 490
 492 process. To assess this, the τ_{SM} values for all WP samples were 491
 493 averaged ($\bar{\tau}_{SM} = 41.2$ s), and the standard deviation was 492
 494 computed to be $\sigma_{SM} = 6.0$ s. Comparison of τ_{SM} data for G1 493
 495 and G2 reveals similar smeared-state decays though G2 and in 494
 496 particular shows a slight upward trend with each smearing cycle 495
 497 (G1: cycle 1 = 55 s; cycle 10 = 68 s; G2: cycle 1 = 36 s; cycle 10 = 84 s) (Figure 5b). For G3, however, the thinnest glass film, 497
 498 this effect is much more dramatic. After the first cycle, τ_{SM} is 498
 499 already roughly double that of G1 and G2 (e.g., G3 $\tau_{SM} = 98$ s; 499
 500 G1 $\tau_{SM} = 55$ s) and increases significantly with each smearing 500
 501 (i.e., thinning) cycle. After the fourth cycle ($\tau_{SM} = 266$ s), the 501
 502 signal intensity was too low for reliable camera detection, so 502
 503 data were no longer recorded. These results point to a film 503
 504 thickness effect upon smeared-state decay and a possible 504
 505 threshold, below which larger decay times are detected. While 505
 506 τ_{SM} represents an average for an entire 2D region of interest, 506
 507 greater resolution is achieved with colormaps, which display 507
 508 smeared-state decays on a pixel-level scale (τ_R). Colormaps 508
 509 associated with both weigh paper (Figure S8) and glass films 509
 510 show that regions with longer lifetimes are more 510
 511 prevalent in films that are thinner (i.e., initially, upon repeated 511
 512 smearing or due to localized smearing effects at the center of 512
 513 the sample).

514 Differences between weigh paper and glass samples may arise 514
 515 from substrate or thickness effects, initially or upon repeated 515
 516 smearing. Though G1 and WP2 were drop cast from the same 516
 517

517 initial solution, cycle 10 smeared-state lifetimes are slightly
 518 longer on glass ($\tau_{SM} = 68$ s) than weigh paper ($\tau_{SM} = 48$ s).
 519 Furthermore, the colormap of G1 after the tenth cycle shows
 520 well-defined regions with large τ_R that are not present in
 521 colormaps corresponding to WP2. These findings indicate that
 522 the dye likely interacts with cellulose paper fibers differently
 523 than with SiO_2 glass. Furthermore, qualitative observations
 524 suggest that more sample is removed from hard glass surfaces
 525 than from paper with each smearing cycle; additionally,
 526 smearing on paper may cause the dye to penetrate into the
 527 fibers and be somewhat more resistant to removal with
 528 mechanical perturbation. These substrate differences may help
 529 to explain why films on paper retain their reversible quality for
 530 longer despite similar preparation and treatment as films on
 531 glass.

532 To test whether weigh paper films also reach a point at which
 533 τ_{SM} values begin to increase, WP films with initial thicknesses
 534 smaller than those of WP1–WP3 were fabricated by spin-
 535 casting from a 0.018 M solution. Though spin-casting is
 536 somewhat unconventional for paper substrates, it nonetheless
 537 addressed challenges associated with drop casting dilute dye
 538 solutions, which still produced relatively thick films after
 539 evaporation due to the amount of solvent needed to cover the
 540 entire sample. After spin-casting and annealing at 75 °C,
 541 heterogeneous films were obtained that were thin at the centers
 542 and thicker at the edges, as confirmed by colormap histograms
 543 with bimodal distributions (Figure S10). Though a thickness
 544 gradient was observed, these films allow monitoring of the
 545 distribution of smeared-state decays on the same surface. After
 546 the first smearing/recovery cycle, the colormap showed regions
 547 with longer recovery lifetimes (τ_R) where the sample was
 548 thinnest compared to the thicker edges that recovered more
 549 quickly (Figure 6). The colormaps for subsequent smearing/

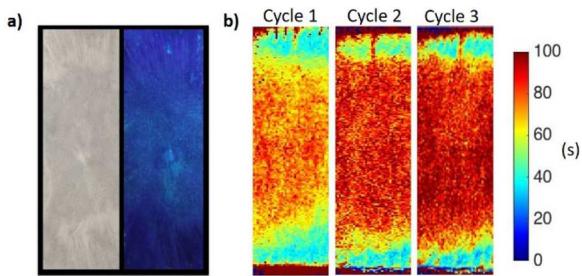
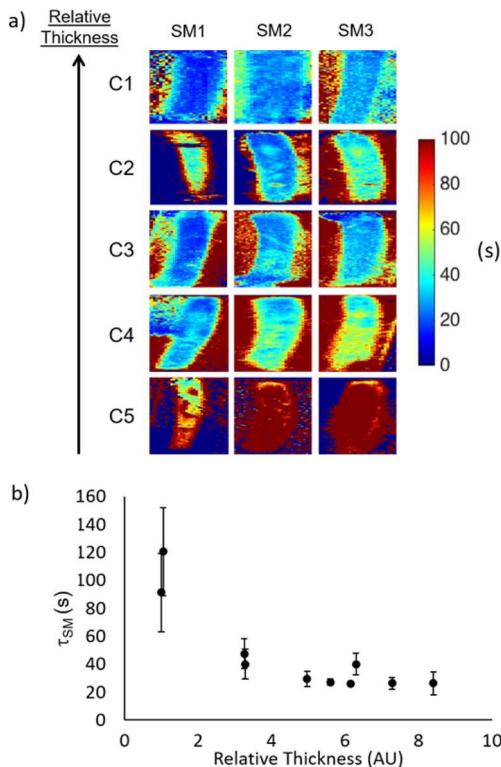
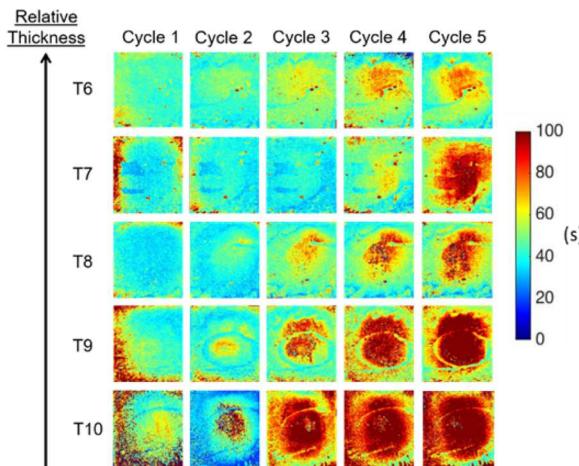


Figure 6. (a) Images of spin-cast gbmOMe films on WP under ambient light (left) and UV irradiation (right). (b) Spatially resolved colormaps of repeatedly smeared spin-cast gbmOMe on WP ($\lambda_{ex} = 365$ nm).


550 recovery cycles show the erosion of the thicker regions of the
 551 sample and a general trend toward longer smeared-state decays.
 552 Furthermore, the smeared-state decays (i.e., calculated from
 553 recovery lifetimes τ_R for a region of interest that encompasses
 554 both thicker and thinner regions) for each of the cycles ($\tau_{SM} =$
 555 66 s for cycle 1; $\tau_{SM} = 79$ s for cycle 2; $\tau_{SM} = 83$ s for cycle 3)
 556 were significantly longer than those observed for bulk and drop
 557 cast WP1–WP3 films ($35 < \tau_{SM} < 55$ s). Not only does this
 558 clearly demonstrate thickness-dependent recovery on weigh
 559 paper substrates, it also shows that differences in ML recovery
 560 behavior can be used to evaluate relative film thickness in a
 561 given heterogeneous sample.

562 According to the initial studies, it is clear that the recovery
 563 dynamics of gbmOMe thin films are dependent on sample


564 thickness. Smeared-state decays increase with decreasing film
 565 thickness, and quite dramatically so for the thinnest samples.
 566 To investigate these effects more systematically using a single
 567 common film fabrication method and substrate, gbmOMe thin
 568 films of variable thickness were prepared via spin-casting from
 569 stock solutions of different concentrations (C1 = 0.090 M; C2
 570 = 0.072 M; C3 = 0.054 M; C4 = 0.036 M; C5 = 0.018 M) on
 571 glass. This range is bracketed by concentrations used to
 572 fabricate G1 and G3 films above. Multiple films were prepared
 573 from each solvent, and the relative film thickness was estimated
 574 by measuring the absorption spectrum of each film in the AS
 575 state and using the peak absorption ($\lambda_{abs} = 363$ nm) and Beer's
 576 Law to calculate the corresponding path length of each film
 577 (Figure S11). Films in the AS state were used to determine
 578 relative initial thickness due to their transparency; TA films are
 579 opaque and incompatible with this measurement method given
 580 scattering effects. Approximate thicknesses were calculated
 581 relative to the thinnest film such that the maximum thickness
 582 was over eight times greater in the initial AS state. On the basis
 583 of the absorption spectra, some deviations in thickness were
 584 observed when spin-casting from stock solutions of the same
 585 concentration. This was especially evident for films fabricated
 586 from solution C1. Samples spin-cast from concentrated
 587 solutions produce less reproducible film thicknesses, which
 588 account for multiple points per concentration in Figure 7b.
 589 After annealing, each film was smeared in three separate
 590 locations with a cotton swab for finer control (Figure 7). Then,
 591 τ_{SM} values for each smeared region were averaged to quantify
 592 the recovery dynamics for a given film (Figure 7b) (mean $\tau_{SM} =$
 593 $\bar{\tau}_{SM}$). This approach provides insight into the reproducibility of
 594 smeared-state decay values for regions of comparable thickness.

595 The representative colormaps for films of different initial
 596 thicknesses, T1–T5, produced via spin-casting from different
 597 solvents, C1–C5, show a narrow distribution of smeared-state
 598 decays within each smeared region (Figure 7). A relatively
 599 narrow range of $\bar{\tau}_{SM}$ values (26–41 s) was observed for all but
 600 the thinnest samples (max $\bar{\tau}_{SM} = 120$ s), which corresponds to
 601 an 87% decrease in initial thickness compared to the thickest
 602 sample. Furthermore, most samples showed very little variation
 603 in $\bar{\tau}_{SM}$ regardless of the region being sampled; however, the
 604 thinnest samples showed the most significant deviation (e.g.,
 605 T5, SM1). Despite the relatively large error bars associated with
 606 data for the thinnest samples, $\bar{\tau}_{SM}$ was still significantly longer
 607 compared to thicker film decays. The trend toward longer $\bar{\tau}_{SM}$
 608 for thinner films is additional evidence of a thickness effect in
 609 gbmOMe glass films, and here, too, it appears that a critical
 610 thickness threshold must be reached before thickness effects are
 611 detected and smeared-state decays noticeably increase.

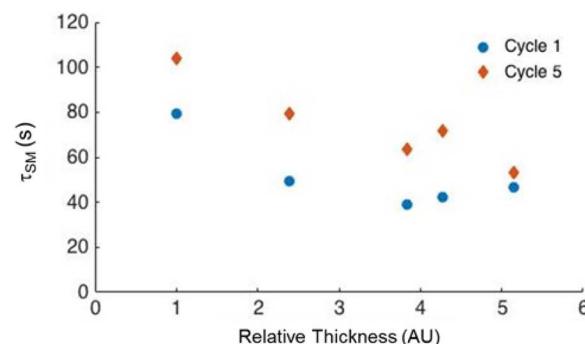

612 To gain further insight into a possible thickness threshold,
 613 the regime where smeared-state decays change most dramat-
 614 ically, another set of films with varying initial thicknesses, T6–
 615 T10, was prepared using the same method as described above.
 616 These films were further thinned by repeated smearing for five
 617 cycles (Figure 8). As expected, regions of longer smeared-state
 618 decay ($\tau_{SM} > 100$ s) developed and grew as the sample was
 619 continuously smeared. For thinner samples, these areas became
 620 pronounced after fewer cycles. This trend is illustrated by
 621 comparing the two extremes. For the thickest sample, T6, red
 622 colored regions with elevated recovery lifetimes started to
 623 develop only after cycle 4. However, for T10, the thinnest
 624 sample, longer recovery lifetimes were observed beginning with
 625 the first cycle. Additionally, as T10 was repeatedly smeared, the
 626 size of the longer recovering red region increased such that it

Figure 7. (a) Representative recovery lifetime (τ_R) colormaps of spin-cast gbmOMe thin films on glass with different initial thicknesses fabricated via spin-casting from different concentration stock solutions. Relative thicknesses were calculated from absorption spectra of each film. Three different regions of each film (SM1, SM2, and SM3) were smeared with a cotton swab to assess reproducibility of smeared-state decays without changing initial thickness due to sample removal. Thicknesses T1–T5 represent films spin-cast from progressively more dilute stock solutions (C1 = 0.090 M; C2 = 0.072 M; C3 = 0.054 M; C4 = 0.036 M; C5 = 0.018 M). (b) Mean smeared-state decays ($\bar{\tau}_{SM}$) as a function of relative thickness. Error bars represent one standard deviation from the mean $\bar{\tau}_{SM}$ for each sample and indicate smearing and thickness variations within a given film. Multiple films were made from each stock solution, which produced films with slight variations in initial thicknesses.

Figure 8. Spatially resolved smeared-state decay colormaps of repeatedly smeared spin-cast gbmOMe thin films with varying thicknesses on glass substrates. Samples were smeared with a Kimwipe for 2 s to aim for consistent sample removal for 5 smearing/recovery cycles. T6–T10 represent films spin-cast from progressively more dilute stock solutions (T6 = 0.090 M; T7 = 0.072 M; T8 = 0.054 M; T9 = 0.036 M; T10 = 0.014 M).

Figure 9. Smeared-state decay ($\bar{\tau}_{SM}$) versus relative initial thickness of smeared gbmOMe glass films after one and five smearing/recovery cycles.

certain amount of sample must be removed from thicker films before accessing an interfacial regime where substrate interactions can be observed. It is also possible that the material morphology changes in thinner films. Given that ML is a solid-state property, a certain particle size and number and arrangement of molecules is likely required in the extended array to observe rapid reversibility. The thinnest of samples explored in this study may reach the limits of this regime for gbmOMe.

CONCLUSION

Stimuli responsive gbmOMe has many interesting thermal and mechanochromic properties. As a thin film, gbmOMe forms a thermally stable supercooled liquid phase when melted and subsequently cooled at ambient temperature. Yet, when the bulk dye is cooled at room temperature, a metastable supercooled liquid state is formed, which eventually recrystallizes after a few minutes. Mechanochromic properties include a blue to green shift in emission upon smearing along with rapid ML recovery at room temperature. This presents a unique handle for evaluating the performance of self-recovering ML materials by a new camera method. The intensity decay of each pixel (i.e., recovery lifetime, τ_R) was used to generate a spatially

encompassed nearly the entire film after the third recovery cycle. After five smearing cycles, larger $\bar{\tau}_{SM}$ values were observed for all samples regardless of initial film thickness; however, the increases in $\bar{\tau}_{SM}$ are less significant for the thickest sample. One potential explanation for this deviation is that the thickness of T6 has not yet reached a critical region even after five smearing/recovery cycles. As observed for the first cycle, a general upward trend was observed with decreasing initial thickness until a maximum smeared-state decay ($\bar{\tau}_{SM} = 104$ s) was measured for T10. Coupled with the results for the colormaps, these trends in $\bar{\tau}_{SM}$ provide further evidence that the smeared-state decay is highly dependent on the film thickness of gbmOMe.

Experiments indicate that $\bar{\tau}_{SM}$ is relatively insensitive to thickness effects until a critical threshold is reached. This is evidenced by the small deviations in $\bar{\tau}_{SM}$ that were observed until a requisite amount of gbmOMe was removed, and films with smaller initial thicknesses show longer $\bar{\tau}_{SM}$ values (Figure 9). One potential explanation for this apparent thickness threshold is that sample–substrate interactions become more significant for thinner films and slow ML recovery. Thus,

670 resolved colormap of the recovery process. When averaged over
671 a region of interest, smeared-state decay values τ_{SM} were
672 calculated and provided a means of comparison between
673 different sample preparations, substrates, and film thicknesses.
674 Findings with thicker films illustrate the potential of gbmOMe
675 as a dynamic “renewable ink” with the ability to recover even
676 after repeated use. Thin films of gbmOMe, however, showed
677 thickness-dependent smeared-state decays on both glass and
678 WP substrates, but significant fluctuations in recovery behavior
679 were observed only in the thinnest films investigated, indicating
680 that a critical thickness must be reached before gbmOMe films
681 lose full reversibility. Kim et al. showed that quantitative force
682 measurements yield reliable results for uniform films but are
683 unreliable for molecular solids with heterogeneous coverage.³⁶
684 These results show, however, that smeared-state decays
685 obtained from camera analysis are quite reproducible even
686 with a qualitative smearing method. Particularly for fast
687 recovering ML systems, films of similar thickness on identical
688 substrates must be used to accurately compare and quantify
689 recovery in ML materials. Additionally, threshold effects may
690 well vary for different reversible ML dyes and substrates and
691 should be identified in each case. Future studies with
692 functionalized surfaces may provide additional insight into the
693 origin of substrate effects and new methods for modulating ML
694 recovery. For certain applications, it may be desirable to
695 generate films that can fully recover after many smearing/self-
696 erasing cycles. Methods that greatly hinder or prevent sample
697 removal and a reduction in sample thickness would be
698 important. Other dye–substrate combinations and protective
699 coatings that do not significantly affect ML color change and
700 recovery behaviors are avenues worth exploring.

701 ■ ASSOCIATED CONTENT

702 ■ Supporting Information

703 The Supporting Information is available free of charge on the
704 ACS Publications website at DOI: [10.1021/acsami.7b01985](https://doi.org/10.1021/acsami.7b01985).

705 Spectra and data tables for gbmOMe glass and WP films
706 at room temperature and 77 K, X-ray diffraction patterns
707 for the different phases of gbmOMe, additional
708 experimental details for the camera detection method,
709 colormaps for repeatedly smeared glass and WP thin
710 films, absorbance spectra of spin-cast glass films from
711 different concentration gbmOMe/THF stock solutions,
712 and colormaps and histograms of smeared-state decays of
713 repeatedly smeared WP films fabricated via spin-casting
(PDF)

715 Mechanochromic luminescence recovery processes for
716 gbmOMe films AP on weigh paper (AVI)

717 Mechanochromic luminescence recovery processes for
718 gbmOMe films spin-cast on weigh paper (AVI)

719 Mechanochromic luminescence recovery processes for
720 gbmOMe films spin-cast on glass (AVI)
(CIF)

722 ■ AUTHOR INFORMATION

723 Corresponding Author

724 *E-mail: fraser@virginia.edu.

725 ORCID

726 Cassandra L. Fraser: [0000-0002-8927-4694](https://orcid.org/0000-0002-8927-4694)

727 Notes

728 The authors declare no competing financial interest.

729 ■ ACKNOWLEDGMENTS

730 We thank the National Science Foundation (NSF Grant CHE-
731 1213915) and the University of Virginia Department of
732 Chemistry for support for this research and Professor James
733 Demas for helpful discussions concerning the camera detection
734 method.

735 ■ REFERENCES

- 1 Morris, W. A.; Kolpaczynska, M.; Fraser, C. L. Effects of α -Substitution on Mechanochromic Luminescence and Aggregation-Induced Emission of Difluoroboron β -Diketonate Dyes. *J. Phys. Chem. C* **2016**, *120*, 22539–22548.
- 2 Zhang, G.; Lu, J.; Fraser, C. L. Mechanochromic Luminescence Quenching: Force-Enhanced Singlet-to-Triplet Intersystem Crossing for Iodide-Substituted Difluoroboron–Dibenzoylmethane–Dodecane in the Solid State. *Inorg. Chem.* **2010**, *49*, 10747–10749.
- 3 Zhang, G.; Lu, J.; Sabat, M.; Fraser, C. L. Polymorphism and Reversible Mechanochromic Luminescence for Solid-State Difluoroboron Avobenzone. *J. Am. Chem. Soc.* **2010**, *132*, 2160–2162.
- 4 Zhang, G.; Palmer, G. M.; Dewhurst, M. W.; Fraser, C. L. A Dual-Emissive-Materials Design Concept Enables Tumour Hypoxia Imaging. *Nat. Mater.* **2009**, *8*, 747–751.
- 5 DeRosa, C. A.; Samonina-Kosicka, J.; Fan, Z.; Hendargo, H. C.; Weitzel, D. H.; Palmer, G. M.; Fraser, C. L. Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide. *Macromolecules* **2015**, *48*, 2967–2977.
- 6 DeRosa, C. A.; Seaman, S. A.; Mathew, A. S.; Gorick, C. A.; Fan, Z.; Demas, J. N.; Peirce, S. M.; Fraser, C. L. Oxygen Sensing Difluoroboron β -Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging. *ACS Sens.* **2016**, *1*, 1366–1373.
- 7 Nguyen, N. D.; Zhang, G.; Lu, J.; Sherman, A. E.; Fraser, C. L. Alkyl Chain Length Effects on Solid-State Difluoroboron β -Diketonate Mechanochromic Luminescence. *J. Mater. Chem.* **2011**, *21*, 8409–8415.
- 8 Zhang, X.; Liu, X.; Lu, R.; Zhang, H.; Gong, P. Fast Detection of Organic Amine Vapors Based on Fluorescent Nanofibrils Fabricated from Triphenylamine-Functionalized β -Diketone-Boron Difluoride. *J. Mater. Chem.* **2012**, *22*, 1167–1172.
- 9 Zhang, G.; Kim, S. H.; Evans, R. E.; Kim, B. H.; Demas, J. N.; Fraser, C. L. Luminescent Donor-Acceptor β -Diketones: Modulation of Emission by Solvent Polarity and Group II Metal Binding. *J. Fluoresc.* **2009**, *19*, 881–889.
- 10 Zeng, S.; Zhang, D.; Huang, W.; Wang, Z.; Freire, S. G.; Yu, X.; Smith, A. T.; Huang, E. Y.; Nguon, H.; Sun, L. Bio-Inspired Sensitive and Reversible Mechanochromisms via Strain-Dependent Cracks and Folds. *Nat. Commun.* **2016**, *7*, 11802.
- 11 Ciardelli, F.; Ruggeri, G.; Pucci, A. Dye-Containing Polymers: Methods for Preparation of Mechanochromic Materials. *Chem. Soc. Rev.* **2013**, *42*, 857–870.
- 12 Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials. *Adv. Mater.* **2016**, *28*, 1073–1095.
- 13 Chi, Z.; Zhang, X.; Xu, B.; Zhou, X.; Ma, C.; Zhang, Y.; Liu, S.; Xu, J. Recent Advances in Organic Mechanofluorochromic Materials. *Chem. Soc. Rev.* **2012**, *41*, 3878–3896.
- 14 Zhang, X.; Chi, Z.; Zhang, Y.; Liu, S.; Xu, J. Recent Advances in Mechanochromic Luminescent Metal Complexes. *J. Mater. Chem. C* **2013**, *1*, 3376–3390.
- 15 Fang, Y.; Ni, Y.; Leo, S.-Y.; Wang, B.; Basile, V.; Taylor, C.; Jiang, P. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers. *ACS Appl. Mater. Interfaces* **2015**, *7*, 23650–23659.
- 16 Jiang, Y. An Outlook Review: Mechanochromic Materials and Their Potential for Biological and Healthcare Applications. *Mater. Sci. Eng., C* **2014**, *45*, 682–689.
- 17 Butler, T.; Morris, W. A.; Samonina-Kosicka, J.; Fraser, C. L. Mechanochromic Luminescence and Aggregation Induced Emission for a Metal-Free β -Diketone. *Chem. Commun.* **2015**, *51*, 3359–3362.

796 (18) Butler, T.; Morris, W. A.; Samonina-Kosicka, J.; Fraser, C. L. 863
797 Mechanochromic Luminescence and Aggregation Induced Emission of 864
798 Dinaphthoylemethane β -Diketones and Their Boronated Counterparts. 865
799 *ACS Appl. Mater. Interfaces* **2016**, *8*, 1242–1251.

800 (19) Hubaud, J. C.; Bombarda, I.; Decome, L.; Wallet, J. C.; Gaydou, 866
801 E. M. Synthesis and Spectroscopic Examination of Various Substituted 867
802 1,3-Dibenzoylmethane, Active Agents for UVA/UVB Photoprotection. 868
803 *J. Photochem. Photobiol. B* **2008**, *92*, 103–109.

804 (20) Morris, W. A.; Sabat, M.; Butler, T.; DeRosa, C. A.; Fraser, C. L. 869
805 Modulating Mechanochromic Luminescence Quenching of Alkylated 870
806 Iodo Difluoroboron Dibenzoylmethane Materials. *J. Phys. Chem. C* 871
807 **2016**, *120*, 14289–14300.

808 (21) Morris, W. A.; Liu, T.; Fraser, C. L. Mechanochromic 872
809 Luminescence of Halide-Substituted Difluoroboron β -Diketonate 873
810 Dyes. *J. Mater. Chem. C* **2015**, *3*, 352–363.

811 (22) Liu, T.; Chien, A. D.; Lu, J.; Zhang, G.; Fraser, C. L. Arene 874
812 Effects on Difluoroboron β -Diketonate Mechanochromic 875
813 Luminescence. *J. Mater. Chem.* **2011**, *21*, 8401–8408.

814 (23) Shen, X. Y.; Yuan, W. Z.; Liu, Y.; Zhao, Q.; Lu, P.; Ma, Y.; 876
815 Williams, I. D.; Qin, A.; Sun, J. Z.; Tang, B. Z. Fumaronitrile-Based 877
816 Fluorogen: Red to Near-Infrared Fluorescence, Aggregation-Induced 878
817 Emission, Solvatochromism, and Twisted Intramolecular Charge 879
818 Transfer. *J. Phys. Chem. C* **2012**, *116*, 10541–10547.

819 (24) Han, T.; Gu, X.; Lam, J. W. Y.; Leung, A. C. S.; Kwok, R. T. K.; 880
820 Han, T.; Tong, B.; Shi, J.; Dong, Y.; Tang, B. Z. Diaminomaleonitrile- 881
821 Based Schiff Bases: Aggregation-Enhanced Emission, Red Fluores- 882
822 cence, Mechanochromism and Bioimaging Applications. *J. Mater. 883*
Chem. C **2016**, *4*, 10430–10434.

824 (25) Poon, C.-T.; Wu, D.; Lam, W. H.; Yam, V. W. A. Solution- 884
825 Processable Donor-Acceptor Compound Containing Boron(III) 885
826 Centers for Smal01-Molecule-Based High-Performance Ternary 886
827 Electronic Memory Devices. *Angew. Chem.* **2015**, *127*, 10715–10719.

828 (26) Gong, Y.; Tan, Y.; Liu, J.; Lu, P.; Feng, C.; Yuan, W. Z.; Lu, Y.; 887
829 Sun, J. Z.; He, G.; Zhang, Y. Twisted D- π -A Solid Emitters: Efficient 888
830 Emission and High Contrast Mechanochromism. *Chem. Commun.* 889
831 **2013**, *49*, 4009–4011.

832 (27) Mutai, T.; Satou, H.; Araki, K. Reproducible On–off Switching 890
833 of Solid-State Luminescence by Controlling Molecular Packing 891
834 through Heat-Mode Interconversion. *Nat. Mater.* **2005**, *4*, 685–687.

835 (28) Liu, W.; Wang, Y.; Sun, M.; Zhang, D.; Zheng, M.; Yang, W. 892
836 Alkoxy-Position Effects on Piezofluorochromism and Aggregation- 893
837 Induced Emission of 9,10-Bis(alkoxystyryl)anthracenes. *Chem. Com- 894*
mun. **2013**, *49*, 6042–6044.

839 (29) Zhang, X.; Ma, Z.; Yang, Y.; Zhang, X.; Jia, X.; Wei, Y. Fine- 895
840 Tuning the Mechanofluorochromic Properties of Benzothiadiazole- 896
841 Cored Cyano-Substituted Diphenylethene Derivatives through D–A 897
842 Effect. *J. Mater. Chem. C* **2014**, *2*, 8932–8938.

843 (30) Zhang, X.; Chi, Z.; Xu, B.; Jiang, L.; Zhou, X.; Zhang, Y.; Liu, S.; 898
844 Xu, J. Multifunctional Organic Fluorescent Materials Derived from 899
845 9,10-Distyrylanthracene with Alkoxy Endgroups of Various Lengths. 900
846 *Chem. Commun.* **2012**, *48*, 10895–10897.

847 (31) Galer, P.; Korošec, R. C.; Vidmar, M.; Šket, B. Crystal Structures 901
848 and Emission Properties of the BF_2 Complex 1-Phenyl-3-(3,5- 902
849 Dimethoxyphenyl)-Propane-1,3-Dione: Multiple Chromisms, Aggre- 903
850 gation- or Crystallization-Induced Emission, and the Self-Assembly 904
851 Effect. *J. Am. Chem. Soc.* **2014**, *136*, 7383–7394.

852 (32) Samonina-Kosicka, J.; Derosa, C. A.; Morris, W. A.; Fan, Z.; 905
853 Fraser, C. L. Dual-Emissive Difluoroboron Naphthyl-Phenyl β - 906
854 Diketonate Polylactide Materials: Effects of Heavy Atom Placement 907
855 and Polymer Molecular Weight. *Macromolecules* **2014**, *47*, 3736–3746.

856 (33) Hariharan, P. S.; Venkataraman, N. S.; Moon, D.; Anthony, S. 908
857 P. Self-Reversible Mechanochromism and Thermochromism of a 909
858 Triphenylamine-Based Molecule: Tunable Fluorescence and Nano- 910
859 fabrication Studies. *J. Phys. Chem. C* **2015**, *119*, 9460–9469.

860 (34) Morris, W. A.; Butler, T.; Kolpaczynska, M.; Fraser, C. L. 911
861 Stimuli Responsive Furan and Thiophene Substituted Difluoroboron 912
862 β -Diketonate Materials. *Mater. Chem. Front.* **2017**, *1*, 158–166.

863 Mizuguchi, K.; Kageyama, H.; Nakano, H. Mechanochromic 913
864 Luminescence of 4-[bis(4-Methylphenyl)amino]benzaldehyde. *Mater. 914*
Lett. **2011**, *65*, 2658–2661.

865 (36) Chung, K.; Kwon, M. S.; Leung, B. M.; Wong-Foy, A. G.; Kim, 915
866 M. S.; Kim, J.; Takayama, S.; Gierschner, J.; Matzger, A. J.; Kim, J. 916
867 Shear-Triggered Crystallization and Light Emission of a Thermally 917
868 Stable Organic Supercooled Liquid. *ACS Cent. Sci.* **2015**, *1*, 94–102.

869 (37) Shirota, Y.; Kageyama, H. Charge Carrier Transporting 918
870 Molecular Materials and Their Applications in Devices. *Chem. Rev.* 919
871 **2007**, *107*, 953–1010.

872 (38) Shirota, Y. Photo- and Electroactive Amorphous Molecular 920
873 Materials-Molecular Design, Syntheses, Reactions, Properties, and 921
874 Applications. *J. Mater. Chem.* **2005**, *15*, 75–93.

875 (39) Zografi, G.; Newman, A. Interrelationships Between Structure 922
876 and the Properties of Amorphous Solids of Pharmaceutical Interest. *J. 923*
Pharm. Sci. **2017**, *106*, 5–27.

876 (40) Mathew, A. S.; De Rosa, C. A.; Demas, J. N.; Fraser, C. L.; 924
877 DeRosa, C. A.; Demas, J. N.; Fraser, C. L. Difluoroboron β -Diketonate 925
878 Materials with Long-Lived Phosphorescence Enable Lifetime Based 926
879 Oxygen Imaging with a Portable Cost Effective Camera. *Anal. Methods* 927
880 **2016**, *8*, 3109–3114.

881 (41) Williams, D. B. G.; Lawton, M. Drying of Organic Solvents: 928
882 Quantitative Evaluation of the Efficiency of Several Desiccants. *J. Org. 929*
Chem. **2010**, *75*, 8351–8354.

882 (42) Caraway, E. R.; Demas, J. N.; DeGraff, B. A. Luminescence 930
883 Quenching Mechanism for Microheterogeneous Systems. *Anal. Chem.* 931
884 **1991**, *63*, 332–336.

885 (43) Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. 932
886 Microwave Synthesis of Fluorescent Carbon Nanoparticles with 933
887 Electrochemiluminescence Properties. *Chem. Commun.* **2009**, 5118– 934
888 5120.

889 (44) Chow, Y. L.; Johansson, C. I.; Zhang, Y.-H.; Gautron, R.; Yang, 935
890 L.; Rassat, A.; Yang, S.-Z. Spectroscopic and Electrochemical 936
891 Properties of 1,3-Diketonatoboron Derivatives. *J. Phys. Org. Chem.* 937
892 **1996**, *9*, 7–16.

893 (45) Heller, C. A.; Henry, R. A.; McLaughlin, B. A.; Bliss, D. E. 938
894 Fluorescence Spectra and Quantum Yields. Quinine, Uranine, 9,10- 939
895 Diphenylanthracene, and 9,10-Bis(phenylethynyl)anthracenes. *J. 940*
Chem. Eng. Data **1974**, *19*, 214–219.

896 (46) Ito, F.; Sagawa, T. Quantitative Evaluation of Thermodynamic 941
897 Parameters for Thermal Back-Reaction after Mechanically Induced 942
898 Fluorescence Change. *RSC Adv.* **2013**, *3*, 19785–19788.

899 (47) Sun, X.; Zhang, X.; Li, X.; Liu, S.; Zhang, G. A Mechanistic 943
900 Investigation of Mechanochromic Luminescent Organoboron Materi- 944
901 als. *J. Mater. Chem.* **2012**, *22*, 17332–17339.

902 (48) Morris, W. A.; Sabat, M.; Butler, T.; DeRosa, C. A.; Fraser, C. L. 945
903 Modulating Mechanochromic Luminescence Quenching of Alkylated 946
904 Iodo Difluoroboron Dibenzoylmethane Materials. *J. Phys. Chem. C* 947
905 **2016**, *120*, 14289–14300.

906 (49) Fedorenko, E. V.; Mirochnik, A. G.; Beloliptsev, A. Y.; Isakov, V. 948
907 V. ($S_2 \rightarrow S_0$) and ($S_1 \rightarrow S_0$) Luminescence of Dimethylaminostyryl- β - 949
908 Diketonates of Boron Difluoride. *Dyes Pigm.* **2014**, *109*, 181–188.