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Abstract—We develop a dynamic dictionary data structure
for the GPU, supporting fast insertions and deletions, based
on the Log Structured Merge tree (LSM). Our implementation
on an NVIDIA K40c GPU has an average update (insertion or
deletion) rate of 225 M elements/s, 13.5x faster than merging
items into a sorted array. The GPU LSM supports the retrieval
operations of lookup, count, and range query operations with
an average rate of 75 M, 32 M and 23 M queries/s respectively.
The trade-off for the dynamic updates is that the sorted array
is almost twice as fast on retrievals. We believe that our
GPU LSM is the first dynamic general-purpose dictionary data
structure for the GPU.

I. INTRODUCTION

GPU programmers generally do not consider applications
that require modifications to their data structures. NVIDIA’s
OptiX ray tracing engine [1], for instance, with very limited
exceptions [2], entirely rebuilds its BVH tree every frame.
This is in stark contrast to the sequential and external mem-
ory scenarios, in which dynamic (mutable) data structures
are a cornerstone of programming practice. Providing con-
currency to, and guaranteeing correctness within, a mutable
data structure on the massively parallel GPU is a significant
challenge. We believe that dynamic GPU data structures
that can be both efficiently built and updated on the GPU
will enlarge the scope of problems that can be addressed,
especially as data sizes increase.

In this paper we begin this study by considering a dynamic
version of one of the most basic abstract data types, the
dictionary, which supports not only lookups but range and
counting queries. Potential applications that might bene-
fit from efficient dynamic GPU data structures, especially
those supporting range queries, include finding connected
components in maximally stable extremal regions (MSER)
problem in computer vision; processing dynamic graphs
and trees; processing moving objects (e.g., real-time range
queries to find k nearest neighbors for all moving objects in
a 2D plane [3]); processing spatial data (e.g., real-time tweet
visualization from a user-defined geographical region [4]);
and dynamic memory allocators.

A. Batch operations

Depending on the number of updates required to a dy-
namic GPU data structure, we might find ourselves in one
of three scenarios; for simplicity, let’s just refer to insertion.
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If we only need to insert one, or a few, items, we could
fall back on one of many existing serial algorithms. In this
situation, there is not enough work to occupy a modern GPU
In the second scenario, the number of items to insert is at
least on the order of the number of items already in the data
structure. In this case it is likely most efficient to simply
rebuild the whole data structure. The third, and interesting,
scenario forms the very large middle ground between serial
insert and complete rebuild, when there are more than a few
insertions but not on the order of the current size of the data
structure. In this paper we focus on this case in which an
update of the data structure is potentially less expensive than
a full rebuild.

We define a batch operation on the GPU as one where the
number of items to insert or delete is large enough that the
operations can profitably be done in parallel, but not so large
that we might as well rebuild the data structure. We design
a data structure to handle a batch of queries or updates,
so that we can exploit concurrency across the batch. The
reason this is a challenge is that by increasing the number
of concurrent modifications to a shared data structure, it
becomes harder to cooperate while maintaining correctness.
For example, in a balanced tree data structure, inserting an
item requires rebalancing the tree, and parallel inserts might
require rebalancing operations that interfere with each other.
Our challenge is to find or design data structures that support
batched operations and to implement efficient algorithms
for them. We will discuss our specific assumptions for the
semantics of batch operations in Section III-A.

B. Dictionaries

We focus on the dictionary abstract data type, because
it is fundamental to many algorithms and implemented
in many interesting ways in the sequential and external-
memory contexts. Formally, a dictionary maintains a set S
of (key,value) pairs, where keys are totally ordered, that
supports the following operations:

e INSERT(k,v): & «+ (S — {(k,x)}) U {(k,v)}. If we
insert a new item whose key matches an item already
in the set, we replace the old item.

e DELETE(k): § + S — {(k, ) }. Remove all key-value
pairs with key k.

e LOOKUP(k): return (k,v) € S, or L if no such key
exists.



o COUNT(kq, k2): return the number of pairs (k, *) such
that kl S k S kg.

o RANGE(k1, ko): returns all pairs (k,*) such that k3 <
k < ks.

Insert and delete are update operations that modify the state
of the dictionary, while lookup, count and range queries are
retrieval operations', which are read-only.

Certainly existing GPU data structures, for example ar-
rays, sorted arrays and hash tables, can implement all of
these operations, but not necessarily efficiently. For example,
a sorted array is adequate for all of the retrieval operations.
But updating a sorted array, even by the insertion or deletion
of a single element, potentially requires resorting or merging
the entire data structure and hence a large number of memory
operations. A hash table [5] supports even more efficient
lookups but because it is an unordered data structure,
count and range queries are impractical, and existing GPU
hash table implementations do not support updates. A data
structure with no support for mutability can (and should!)
outperform a mutable data structure on retrieval operations,
but incremental changes to a mutable data structure can be
considerably cheaper than an entire rebuild of a non-mutable
data structure.

The lack of existing mutable data structures on GPUs
emphasizes the challenge in identifying and/or designing a
data structure that supports a set of interesting operations
with good concurrency and performance while simultane-
ously allowing mutability. We began this project with the
following goals: 1) enable efficient, concurrent mutable
insertion and deletion operations at a cheaper cost than
completely rebuilding the data structure; 2) support a full
set of queries (e.g., lookup, count and range); and 3) allow
parallel execution of all these operations to efficiently exploit
the massive parallelism offered by modern GPUs while
guaranteeing correctness at any time.

II. BACKGROUND AND PREVIOUS WORK

GPUs as General-Purpose Processors: The modern
GPU is characterized by a large number of parallel compute
units, often grouped in a SIMD configuration, and simple
control hardware, typically controlling an entire SIMD unit
in lockstep. It features a computation hierarchy visible
to software, typically including individual compute units
(“thread processors”), SIMD collections of compute units
(“warps”), and multiple cores (NVIDIA’s “streaming mul-
tiprocessors” or SMs) that can independently run blocks
up to on the order of 1k threads. We use CUDA [6] as
our programming language, which is built atop the C pro-
gramming language and offers low-level access to hardware.
Programmers write code for a single thread in a SPMD

Tn this work we have only considered LOOKUP, COUNT and RANGE
queries. However, it is straightforward to support other order-based queries
such as finding a successor or a predecessor of a certain key.

fashion as a “kernel”; the hardware is then responsible for
scheduling blocks of threads to different SMs.

GPUs feature a memory hierarchy: on NVIDIA GPUs,
which are typical, each thread has its own local registers;
threads within a block can quickly share data through a fast,
fixed-size, programmer-controlled “shared memory”; SMs
each have an independent L1 cache and all SMs share an
L2 cache; and a high-bandwidth external DRAM memory
holds global data accessible to all threads. To avoid in-
memory communications, NVIDIA GPUs also support fast
warp-wide voting schemes (such as ballot) that we use in
our implementation. Because global DRAM bandwidth is
often the bottleneck for GPU programs, it is crucial for
performance to structure global memory accesses as much
as possible such that neighboring threads access neighboring
locations in GPU memory (“coalesced memory accesses”).

GPU Data Structures: For general-purpose use, GPUs
basically have three data structures: an unordered array,
a sorted array, and a hash table. Application-specific data
structures, such as acceleration tree data structures used
in ray tracing [7], may also be useful for general-purpose
tasks. Historically, complex data structures used by the GPU
have been built on the CPU and then copied to the GPU
but recent work in, for example, cuckoo hashing [5] and
bounding volume hierarchy (BVH) trees [8] has focused on
data structures that can be efficiently constructed directly on
the GPU.

There have been some efforts to enhance performance
on range queries in particular data structures. For example,
Yang et al. implemented grid files (built on the CPU) for
multidimensional database queries [9]. Kim et al. built an
architecture sensitive binary tree [10] for both CPUs and
GPUs. Fix et al. implemented a brute force GPU method for
lookup and range queries on a CPU-built B+ tree, targeted
for database systems [11]. Range queries have also been
used for spatial data structures such as R-trees [12] or for
processing moving objects [13]. In general, however, there
are not yet any such data structures that support general
updates on the GPU. All the work we cite above requires a
complete rebuild for updating the data structure; and in fact
most of them can only be built on the CPU.

If range and/or counting queries were not of interest, we
might choose hash tables [5] or non-clustered B-trees. Prior
GPU work in these areas is also not efficiently updatable,
so this is also an interesting area of research, which we do
not address in this paper.

In-memory dictionaries: Dozens of sequential data
structures implement dictionaries, including 2-3 trees, red-
black trees, AVL tree, treaps, skip lists, and many more [14].
These data structures are primarily oriented for use on CPUs
when the data is memory-resident; they are not optimized for
locality of reference. They all share the trait that they have
O(log n) levels, and each level might induce a memory fault.
Throughout this work, n is the total number of elements in



the data structure.

External memory dictionaries: A different, but also
large, set of data structures were devised for cases where
memory faults dominate the cost of using the dictionary.
Because this setting emphasizes locality of reference, it has
interesting analogies to the GPU context. The most widely
used external memory dictionary is the B-tree. A B-tree is
a search tree in which each non-leaf node (except possibly
the root) has ©(B) children, where B is chosen so that B/2
keys fit in a page (in the external memory model, memory
accesses are assumed to be done in blocks of size B). Since
all the keys in a page are fetched together, a B-tree is faster
than a balanced binary tree by a factor of log B, which can
be quite significant, depending on the size of keys and the
size of pages.

B-trees enjoy an optimal number of page misses during
searches, but they are suboptimal for insertions, deletions
and updates [15]. There are some data structures that tar-
get better insertions while providing optimal searches (or
somewhat worse). The two most influential data structures
among these are the inspirations for this work: the Log-
structured Merge-tree (LSM) [16] and the Cache Oblivious
Lookahead Array (COLA) [17]. The basic idea of an LSM
is to keep a set of dictionaries, each a constant factor larger
than the one before. As insertions arrive, they are placed in
a small dictionary. When a dictionary reaches capacity, it
is merged with the next larger dictionary, and so on. In an
LSM, a query must be performed at each level. Therefore,
LSMs in the external memory context usually have a B-tree
at each level. Since O(logn) searches must be performed,
the search time in an LSM takes O(lognloggn) I/Os in
the worst case, making them slower for queries than B-
trees. The improvement comes from reducing the number
of I/Os needed to insert. Also, since items are moved from
one level of the LSM to the next in a batch, the insertions
in the next level enjoy some locality of reference. LSMs
are asymptotically much faster than straight B-trees for
insertions.

A COLA replaces the B-tree at each level with a sorted
array. This would seem to make searches slower, since, as
noted above, B-trees perform searches faster than binary
search into an array. To get fast search times, pointers are
maintained between levels via fractional cascading. Thus
COLAs enjoy the same search speed as B-trees while
achieving the same insertion complexity as the LSM.

ITII. THE GPU LSM

In this paper, we propose a GPU dictionary data
structure—the GPU LSM—that combines the general struc-
ture of the LSM and the use of sorted arrays as in the COLA.
The usual LSM implementation, with a B-tree per level, is
not cache-oblivious, which makes it a poor match for GPU

hardware with relatively small cache sizes.> We instead use
a sorted array — a cache-oblivious data structure — at each
level, like the COLA. We do not, however, maintain the
COLA’s inter-level pointers for fractional cascading, because
of the implementation complexity and performance impli-
cations, especially for parallel updates. Theoretically this
means that we perform lookup queries in O(log2 n) com-
pared to the optimal O(logn) achieved by the COLA [17]).
In practice, we observe (Section V-C1) that this deficiency
does not affect our query results much.

As we shall see, we can implement the updates in a
consistent way using only two primitives, sort and merge.
Both sort and merge are bulk primitives that have very
efficient parallel formulations for GPUs. As a result, we will
see that we can handle high rates of insertions and deletions.
Having a sorted array at each level also gives us good
locality of reference for retrievals, a requirement for any
high-performance GPU program. Finally, the hierarchical,
exponentially scaled, structure of the LSM and COLA
almost always prevents significant parts of the data structure
from being touched during insertions or deletions.

A. Batch Operation Semantics

As discussed in Section I, we focus on batch operations,
consistent with the GPU’s bulk-synchronous programming
model. For queries this is straightforward: they do not
modify the data structure, so multiple queries can run simul-
taneously without correctness issues.® For updates, however,
correctness becomes challenging. We begin by defining the
specific semantics we use in batch operations:

1) The GPU LSM has a fixed batch size, defined by a
parameter b, which is also the size of the first level.
The choice of b is application and platform dependent,
and can help trade off query and update performance;

2) All update operations are in a batch of size b. We may
have mixed batches of insertions and deletions. Query
operations can be in batches of any size. Updates and
queries are performed in separate phases;

3) If we insert items with the same key in different
batches, the most recently inserted is the only valid
value of the key. All previously inserted items with that
key are termed stale. The notion of time is discretized
based on the order of batch insertions;

4) If we insert multiple items with the same key in the
same batch, an arbitrary one is chosen as the current
valid item;

5) After deleting a key, all previous instances of that
key are considered deleted and become stale. Multiple

2For example, the NVIDIA Tesla K40c provides 16 KB Lil-cache per
SM, 1.5 MB L2-cache to be shared among all SMs, and 48 KB manually
managed shared memory per SM.

3For completeness, we have also considered individual query implemen-
tations, where, for instance, a single thread can issue a new lookup query
asynchronously and independently from others.
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Figure 1: Insertion example in GPU LSM; adding a new batch of

b elements into a GPU LSM with 5b elements. Blocks with similar
colors are sorted among themselves.

deletions of the same key within a batch have the same
effect as one deletion; and

6) A key that is inserted and deleted within the same
batch is considered deleted.

Our strategy for efficiently implementing the update seman-
tics will be to tolerate the presence of some stale elements in
the data structure, so long as they do not affect current query
results. Periodically, the user can choose to clean up (flush)
the data structure, removing stale elements and improving
query efficiency.

B. Insertion

Insertions are where LSMs and COLAs really shine; in
the external memory context, their insertion performance
far outperforms simple B-trees. In the GPU LSM, since all
insertions are in units of b elements, the size of level ¢ in the
GPU LSM is b2¢, and at any time the whole data structure
contains a multiple of b elements. Each level is completely
full or completely empty. To insert a batch of size b, the
batch is first sorted. If the first level is empty, the batch
becomes the new first level. Otherwise, we merge the sorted
batch with the sorted list already residing in the first level,
forming a sorted array of size 2b, and proceed to the second
level, and so on. Figure 1 schematically shows the insertion
process in the GPU LSM. Figure 2a shows the high level
structure of the insertion algorithm.

In a GPU LSM with n = rb elements (resident elements),
the levels that contain sorted lists correspond to the set bits in
the the binary representation of the integer r. The insertion
process corresponds to incrementing r, with additions and
carries of binary arithmetic corresponding to the merging
procedure described above. The larger our choice of b, the
more parallelism can be exploited. Smaller b sizes lead to
inefficiency in the first few levels for each update operation.

Note that insertion proceeds from smaller, lower indexed,
levels to larger. Thus any item at level » must have been
inserted before any element in a lower-indexed level. We
make sure that after merging, insertion order is preserved
among elements with the same key at the same level
(Section IV-A).

The original analyses of LSMs and COLAs were based
on memory block size (see Bender et al. [17]). We apply
the same observations to batches to show that any sequence
of 7 batch insertions requires at most O(rblogr) work, that
is, O(log r) work per item. Certainly a worst-case individual
insertion requires a cascade of merges, ultimately placing the
final list in the level corresponding to the most significant
bit of r, and hence time Q(rb). But the key idea is that
such a worst-case operation can only occur infrequently. In
particular, an element residing in a list of length O(2°b) has
participated in O(i) < O(logr) merge operations, so that
the total work performed over all rb elements residing in
the GPU LSM at any time must be O(rblogr).

C. Deletion

The standard way to delete an item in a COLA is to
insert a tombstone item with the same key, indicating that
previously inserted items with that key, if any, should be
considered deleted. Deletion, then, is the insertion of a
tombstone, making deletion a kind of insertion (Figure 2a),
so that we can combine any insertion and deletion requests
into a mixed batch. As we shall see in the following
sections, this tombstoning scheme allows the GPU LSM to
perform insertions and deletions very efficiently, at the cost
of accumulating stale elements.

D. Lookup

Recall that LOOKUP(k) should return the most recently
inserted value corresponding to k, if it was not subsequently
deleted, or otherwise report that such a key does not exist. To
ensure this, we guarantee the following building invariants
during insertion and deletion:

1) Within each level, all elements are sorted by key and
thus all elements with the same key are next to each
other, forming a segment;

2) All elements within each segment (regular elements
and tombstone) are ordered from the lowest index to
the highest based on the time they were inserted, from
most recent to least recent;

3) Tombstones within a segment are placed before regular
elements with the same key.

With these invariants, it suffices to start our lookup process
from the smallest (most recent) occupied level and look for
the smallest index with key greater than or equal to k. If
we find a regular element with key equal to k, we return it
and are done. If we find a tombstone with key k, then £ is
deleted and we return no result (indicating that & was not
found). Otherwise we found no element with key k, and we
continue to the next occupied level. A high level description
of a set of lookup operations is shown in Fig. 2b.

With n = rb total elements, finding the lower bound
(a modified binary search) in each level takes O(log(b2%))
steps over logr steps, which in the worst case results in



O(log?(r) + log(r) log(b)) individual memory accesses per
query (the same cost as in the basic LSM).

E. Count and Range queries

Both COUNT and RANGE operations take a tuple (k1, k2)
as an input argument. The former returns the total number
of elements within that range of keys while the latter returns
all those valid elements as an output. COUNT and RANGE
are shown in Fig. 2c and 2d respectively. Based on the same
building semantics described in Section III-D, we implement
the following procedure.

Since each full level is sorted by key, we can use binary
search to find indices corresponding to the first key £ such
that £ > ki or kK > ko (also known as lower bound and
upper bound operation, respectively).

If duplicates and deletions were not allowed in the data
structure, we could compute a result by subtracting these
indices to have the number of elements within those bounds
(for COUNT), or just collecting all elements within those
bounds (for RANGE). However, with duplicates and deletions
allowed, this approach would include three types of extra
elements in our results: 1) tombstones, 2) deleted elements,
and 3) elements with the same key that were replaced by
later insertions. To return an accurate answer, we perform
a post-processing stage (discussed in Sections IV-C-IV-D)
to correct our preliminary potential results (Afshani et al.
discuss why counts are harder than lookups [18]). It should
be noted this extra validation could be avoided if we were
not allowing stale elements in the data structure (item 3 in
Section III-A), but that is the price that we pay to support
deletion.

FE. Cleanup

The structure we have described so far produces correct
query results even in the presence of tombstones and stale
elements (either deleted or duplicate). This allows us to per-
form faster insertions and deletions, but as tombstones and
stale elements accumulate, we will see increased memory
usage and more occupied levels, resulting in reduced query
performance. Thus we provide a CLEANUP operation, in
which all tombstones, their corresponding deleted elements,
and all duplicates (i.e., replaced elements) are removed,
followed by a reorganization of the GPU LSM.

In the theoretical sense, periodic cleanups can be done
without increasing the total work. We see this by noting
that if a cleanup is performed after O(rb) operations, its
cost is at most O(rb): rebuilding the GPU LSM from scratch
requires a radix sort, compaction to remove stale elements
and tombstones, and slicing up the remaining sorted list of
valid elements into a sequence of levels. A schedule in which
a cleanup is performed every time the GPU LSM doubles in
size can thus be amortized so that the asymptotic total work
does not change; that is, the work done in cleanup can be
“charged” to the sequence of operations that triggers it.

: Insert(batch) {

1
2: Input: a batch pf b elements I: Lookup(k) {
3: buffer <— sort(input) . .
s 2: Input: a set of lookup queries
4:140 .
. . .. 3: for each query k in parallel do
5: while level i is full do .
. 4: for i = 0 to the last level do
6: buffer <— merge(buffer, level i) N N
7. level i <= 0 5: if level i is full then
) . 6: result <— lower_bound(level i, k)
8: i+ . . X
. 7 if result is valid then
9: end while .
. o 8: return result
10: level i <— buffer .
9: end if
11: return :
10: end if
12: 11: end for
13: Delete(batch) { .
12: return |
14: Input: a batch of b elements 13: end for
15: Insert(tombed(input)) :
14: }
16: return
17: }
(a) INSERT and DELETE (b) Lookur

: Range(k1,k2) {

: Count(kLk2) { : Input: a set of range queries

1 1
2: Input: a set of count queries 2 .
3: for each query q = (k1, k2) in parallel do 3: for each_ query q = (k1, k2) in parallel do
. 4 for i = 0 to the last level do

4: for i = 0 to the last level do . .

. . 5: 1[q][i] <— lower_bound(level i, k1)
5: 1[ql[i] < lower_bound(level i, k1) . N

h : 6 u[q][i] <— upper_bound(level i, k2)
6: u[q][i] <— upper_bound(level i, k2) 7 init_count[q][i] — ulqlli] - 1[qlfi] + 1
7: init_count[q][i] +— ulql[i] - I[q][i] + I —f a a 4

8 end for

8: end for 9: end for
9: end for .

10: offset <— exclusive_scan(init_count)
11: for each query q = (k1, k2) in parallel do

3

offset <— exclusive_scan(init_count)
: for each query q = (k1, k2) in parallel do

. 12: fori= he last level
12: for i = 0 to the last level do o Qtot e last level do . .
. . .13 storing all elements in level i
13: storing all elements in level i f 1qlli] il [l int
from 1[q][i] until u[q][i] into rom ldlil - untit - ulglii] - into
. . result[q][offset[q][i]]
result[q][offset[q][i]]
14: end for
14: end for .
. . L . 15: // removing all stale elements
15: // marking all invalid (stale) elements
X g 16: result[q][:] <— post_process(result[q][:])
16: result[q][:] <— post_process(result[q][:]) . : X
N o 17: result[q][:] <— compact(result[q][:])
17: count[q] <— No. of valid elements in re- N .
sultlq]:] 18: count[q] <— No. of valid elements in re-
18: return count[q] . sultlql:] .
19: return result[q][0:count[q]-1]
19: end for
20: } 20: end for
. 21: }
(c) COUNT (d) RANGE

Figure 2: Pseudocode for the GPU LSM’s operations. Insertion
and deletion operate on a fixed-size batch of size b. Lookup, count
and range are processed in parallel on a set of input queries. In
order to simplfy the pseudocode we have only considered keys (no
values).

When is a cleanup appropriate in practice? Cleanups
are not free, but they may reduce the number of LSM
levels and increase query performance when there have
been a significant number of deletions and/or replacements.
Frequent cleanups also may be appropriate in applications
where query performance is paramount.

IV. IMPLEMENTATION DETAILS

In this section we dive deeper into the implementation de-
tails of each operation and the design choices that we make.
Our design decisions are partially influenced by hardware
characteristics (NVIDIA GPUs), programming environment
(CUDA), and available open-source GPU primitive libraries
(moderngpu* and CUB [19]). Our GPU LSM is built using
32-bit variables (both keys and values). We use the term
“element” to refer to what is stored at a specific index in
arrays (key arrays, value arrays, etc.) allocated in the GPU’s
global memory. In this work, all major operations (including
sort and merge) are done on the GPU.

4Moderngpu is available at https:/github.com/moderngpu/moderngpu.
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A. Insertion and Deletion

In Sections III-B and III-C, we noted that the implementa-
tion of insertion and deletion in the GPU LSM were similar.
In order to distinguish between a tombstone and a regular
element to be inserted, we dedicate one bit as a flag; we
refer to this bit as the status bit. The 32-bit key variable is
the 31-bit original key shifted once and placed next to the
status bit. The cost of this decision is that we lose one bit
in the key domain.

We outline our insertion procedure in Fig. 3, where for the
sake of clarity we assume a key-only (no values) scenario.
As described in Section III-B, when inserting a batch of
b elements, we first sort the new batch by their keys. In
order to fulfill the building invariants of Section III-D while
also satisfying the semantics in Section III-A, we implement
sorting and merging as follows. For sorting, we use regular
radix sort over all key variables including the status bit (line
9 in Fig. 3). For merging, we merge different levels just
based on the original keys, excluding the status bit (line 14
in Fig. 3). We make sure that stability is preserved: new
levels merged into existing levels appear first in the merged
result, to preserve batch insertion order. We use moderngpu’s
merges with a modified comparison operator and CUB’s
radix sort for this process. Since our merge is not an in-place
operation, we use double buffers and a ping-pong strategy
between them (not shown in Fig. 3).

Since a tombstone is marked with a zero LSB, after
sorting a batch prior to insertion, a tombstone will appear
before any insertions with the same key. And, since our
merge is stable and we neglect the status bits, a regular
element from a smaller (more recent) level always appears
before all later elements with the same key (regular or
tombstone) that came from previously inserted batches.
Note that after merging we do not remove stale elements.
Nonetheless, because those stale elements appear after the
replacement or tombstone element that made them stale,
they are “invisible” to the queries. In case there are only
b < b new elements to be inserted, a user can pad the
batch by duplicating enough (b — b") copies of an arbitrary
element within the batch (e.g., the last one); only one of
those duplicates will be visible to queries. If our GPU LSM
achieves an average IR insertion rate, here we are effectively
only using Rb /b of our available insertion rate. As a result,
users should choose b wisely to balance the cost of partial
batches with the efficiency of larger batches.

Cache and shared memory usage: In the original LSM
data structures on the CPU, higher levels of the data structure
are small enough to fit in cache, so insertions are effectively
performed inside cache before getting merged with lower
levels of the data structure. In our GPU LSM, based on
our choice of having a sorted array (a cache-oblivious data
structure) in each level of the LSM, higher levels will auto-
matically cache efficiently, aided by the high associativity of

: class GPU_LSM{

1

2: uint b; // batch size

3: uint num_batch; // number of inserted batches

4: KeyType* d_Ism_key; // an array of keys for all levels

5: [f=======

6: // Input: a mixed batch of regular insertions and tombed deletions

7: Insert(KeyType keys[0:b-1]){

8: // sorting including the LSB, and storing the result into d_buffer

9: d_buffer <— CUB::sort(keys, [[(KeyType x, KeyType y){return x < y;});

10: i=0; offset = 0;

11: n_level_i=b; // number of elements in level i

12: while ((num_batch & (1 < 1)) !=0) do

13: // merging excluding the LSB

14: d_buffer <— mgpu::merge(d_Ism_key + offset, n_level_i, d_buffer, n_level_i, [1(KeyType x,
KeyType y){return (x > 1) < (y > D)});

15: gpu_memory_set(d_lsm_key + offset, 0, n_level_i); // emptying the previous level

16: i++;

17: offset +=n_level_i; n_level_i <=1;

18: end while

19: // Inserting into the first empty level:

20: gpu_memory_copy(d_lsm_key + offset, d_buffer);
21: num_batch++;

22: }

23: };

Figure 3: Implementation details for the Insert operation, which
inserts an arbitrary mixed batch of new elements to be inserted and
tombed elements to be removed.

the L2 cache on the GPU. Nevertheless, insertions/deletions
are only done in batches of size b > 1, which means
fewer levels can be fit into cache, but each level has more
elements in it (making it just as practically effective as CPU
implementations). As well, the sort and merge primitives we
chose aggressively use shared memory to achieve coalesced
global memory accesses so that final results (sorted/merged
chunks of input) are first stored into shared memory and
then stored into global memory in larger batches.

B. Lookup queries

We could implement lookup queries in two ways: a bulk
approach and an individual approach. For the bulk approach,
we would first sort all queries and then perform a sorted
search (similar to moderngpu’s) over all queries and all
occupied levels. However, sorting all queries is an expensive
operation and having all queries ready synchronously may
also be a strong assumption. Thus we focus on an individual
approach where each query can be performed independently.

Each thread can individually perform a lookup query by
simply performing a lower-bound binary search in each
occupied level, starting from the smallest level. There are
three possible outcomes: 1) we find a regular element (set
LSB) that matches our query and then return its value; 2)
we find a tombstone (zero LSB) that matches our query and
then return L; or 3) we search in all levels and nothing is
found (return ). The main bottleneck for our lookups is
the random memory accesses required in all binary searches
that we perform.

C. Count queries

Count queries provide opportunities for concurrency and
collaboration between queries. We assume there are multiple
queries to be performed (each with its (k1, ko) argument)
and each query can have any arbitrary size as its outcome.



We assign each GPU thread to a query and then perform
device-wide operations to find all results together (with
possible collaboration among threads). The procedure takes
five steps: (1) Initial count estimate: we perform two separate
binary searches for the lower and upper limits of each query
for each level. By subtracting resulting indices at each level,
we get an upper bound on the number of potentially valid
elements (lines 4-8 in Fig. 2c). For each query, we write
the per-level upper bounds next to each other in memory.
(2) Scanning stage: we perform a device-wide scan operation
over the count estimates to compute a global index for each
query result (line 10 in Fig. 2¢). (3) Initial key storage: we
use the lower limits of the queries and the global indices
computed in the previous step to copy all potential keys
into an array (lines 12-14 in Fig. 2¢). (4) Segmented sort:
we perform a segmented sort over the array (each segment
belongs to a query). LSBs (status bits) are neglected in
sorting comparisons. This stage is shown under the post-
processing procedure on line 16 in Fig. 2c. (5) Final counting
(line 17 in Fig. 2c¢): all identical keys (tombstones or regular)
are now next to each other and sorted by time step. We
count the first element of each segment only if it is not a
tombstone. As a result, if there are multiple keys, only one
of them is counted.

We use CUB’s exclusive scan (prefix-sum) for stage 2.
For stage 3, we assign each thread to a query but force the
threads in a warp to collaborate with each other in writing
out results from all 32 queries involved (for coalesced
accesses). We use moderngpu’s segmented sort for stage
4. In stage 5, we assign each query to a thread but force
the threads in a warp to collaborate with each other in
validating and counting (via warp-wide ballots) the results
for all potential matches from 32 consecutive queries.

D. Range queries

We implement RANGE operations similarly to COUNT,
differing in the final three steps (lines 17-19 in Fig. 2d).
In stage 3, we store not only all potential keys from each
query but also their corresponding values. Stage 4 becomes
a segmented sort over key-value pairs rather than just
keys. Finally, in stage 5, we first mark each valid element
(by overwriting the LSBs) and then perform a segmented
compaction based on all set LSBs (each segment represents
a query) to gather all non-stale non-tombstone elements. The
final result is the beginning memory offsets of each query,
followed by valid elements (both keys and values) belonging
to each query, sorted by their keys.

E. Cleanup

As we described in Section III-F, CLEANUP removes
all stale elements (tombstones, deleted and duplicates) and
rebuilds the data structure. In its implementation, we require
1) cross-validation among different levels to remove deleted
and duplicate elements from different levels (caused by

elements from more recent levels) and 2) that the total
number of elements should remain a multiple of b after
removals. To satisfy the first item, we make sure all our inter-
mediate operations within the cleanup are “stable”, meaning
that among all instances of an arbitrary key (tombstone or
regular), temporal information is preserved. The second item
is important since we assume that the number of elements
in our data structure is a multiple of b, and this may no
longer be true after removing stale elements. We could
either remove enough tombstones and duplicates to make
sure the condition is satisfied and leave the rest unchanged
(to be processed in future cleanups), or we can simply
remove all stale elements and then pad with enough (< b)
placebo elements.> We choose the second approach because
it requires less processing and appears to be more efficient.

Our bulk strategy for cleanup is to 1) iteratively merge all
occupied levels from the smallest to the largest (neglecting
the LSB to preserve time ordering), 2) mark all unmarked
stale elements (e.g., overwriting the LSBs), 3) compact all
valid elements together (e.g., using a two-bucket multi-
split [20] to collect all unmarked valid elements in stage 2),
4) add enough placebos, and 5) redistribute (already sorted)
elements to different (new) levels. Since all levels are already
sorted, merging them together iteratively is much faster than
resorting all of them together. Our cleanup implementation
preserves timing order among elements with the same origi-
nal key, but not across different keys (smaller keys will end
up in smaller levels).

V. PERFORMANCE EVALUATION
A. What are the appropriate comparisons?

We compare our results with two data structures (Ta-
ble I): a GPU hash table (cuckoo hashing [5]), and a GPU-
maintained sorted array (GPU SA, implemented by the
authors). As noted in the introduction, neither of these data
structures are mutable. Cuckoo hashing® has bulk build and
lookup operations, but it does not support deletions and it
is not possible to increase table sizes at runtime so insertion
is possible only in a very limited sense. In the GPU SA,
insertions (or deletions) can happen by adding (or removing)
elements and resorting the whole array, which, as we shall
see, is much slower than applying updates to a GPU LSM.
Merging an already-sorted set of elements into an existing
GPU SA, however, is faster than applying a set of sorted
updates to a GPU LSM. All queries in a GPU SA are
similar to those on the GPU LSM, but only on a single
occupied level (of arbitrary size). In general, all GPU SA
queries (lookup, count, and range) have a faster worst-case

SWe pad our data structure with tombstone status bits and maximum
keys (e.g., 232 — 1 in 32-bit scenarios) at the end of the last level’s sorted
array. These elements will be invisible to queries since they are tombstones,
and will always remain at the end of the last level since no larger key is
possible.

6Cuckoo hashing code is from CUDPP: https://github.com/cudpp/cudpp.
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Cuckoo hashing  Sorted Array (GPU SA) GPU LSM

INSERT — O(n) O(log n)

DELETE — O(n) O(logn)

LOOKUP o(1) O(log n) O(log? n)
COUNT/RANGE O(n) O(logn + L) O(log?n + L)

Table I: High-level comparison of capabilities in a GPU hash table,
a sorted array and a GPU LSM. Bounds on the total work are
normalized to be per item in a data structure with n elements. L
denotes the size of the output.

scenario than the GPU LSM’s, because it is easier to search a
single sorted level (O(logn)) than to search through multiple
smaller occupied levels in the GPU LSM (O(log® n)); in
practice, though, we find that the difference is surprisingly
small.

Sorted arrays and hash tables are the only fully devel-
oped GPU data structures for general-purpose tasks with
well-known and optimized performance characteristics (in
contrast to other dictionary data structures like B-trees that
are not yet fully developed on GPUs). As a result, although
neither of them is a mutable data structure, we believe
comparing our GPU LSM against them is the right way to
benchmark our data structure. This comparison is not meant
to disprove the mutability capability of our GPU LSM but
instead to expose the price we paid for achieving it (in terms
of query performance).

As we noted in Section II, some GPU dictionary data
structures are designed to support high-performance queries
(although without any support for mutability), but most of
these are constructed sequentially on the CPU and then
transferred into the GPU, because efficient parallel construc-
tion is itself challenging enough to be avoided. B-trees, for
example, would be an excellent point of comparison because
they are more suitable for coalesced memory accesses on
GPUs (compared to a binary search that requires random
memory accesses). However, to the best of our knowledge
to date, there is not any publicly available B-tree library in
which the structure is built on the GPU.”

In the following sections we discuss insertions and dele-
tions in Section V-B, then lookups, count, and range queries
in Section V-C. All experiments are run on an NVIDIA Tesla
K40c GPU (ECC enabled), with Kepler architecture and
12 GB DRAM, and an Intel Xeon CPU E5630. All programs

7As an example, Fix et al. experimented on lookup queries on a CPU-
built B+ tree [11]. Their data structure is first built on the CPU and put
into a contiguous block of memory so that it can be transferred easily to
the GPU. They assigned all threads within a thread-block to perform each
single lookup query on their data structure. On an NVIDIA GTX 480 and
with 100k elements in their B+ tree, without considering memory transfer
time between the CPU and the GPU, they reported 20 us for each query
on the GPU and 2 ps for performing the same query on their CPU (Intel
Core 2 Quad Q9400). We do not believe their implementation represents
a competitive data structure from the B-tree family for comparison with
our LSM. As we will see in Section V-C1, with 16 M elements, our GPU
LSM can achieve an average lookup rate up to 75.7 M queries/s over 16 M
queries (0.013 us per query).

GPU LSM Sorted Array (GPU SA)

b min rate  max rate  mean rate || minrate max rate  mean rate
227 727.8 727.8 727.8 727.8 727.8 727.8
226 585.3 727.7 648.8 583.1 727.7 647.4
225 421.1 727.1 585.5 4722 726.8 561.2
224 270.3 727.1 537.9 346.0 727.0 459.2
223 155.5 726.3 485.2 224.0 723.2 334.0
222 84.3 714.8 4412 132.6 709.9 219.2
221 44.0 694.0 398.1 74.2 691.2 131.2
220 224 664.2 354.1 39.8 658.7 73.8
219 11.3 558.2 289.4 20.5 555.9 39.4
218 5.6 432.0 220.7 10.5 422.1 203
217 2.8 326.8 159.9 2.6 319.1 103
216 1.4 194.3 98.0 13 184.8 52
215 0.7 101.4 58.4 0.6 95.9 26

mean 2253 || 16.7
Cuckoo Hash 361.7

Table II: Minimum/maximum/harmonic mean insertion rates (M
elements/s) for GPU LSM (and GPU SA) and with various batch
sizes. These numbers are recorded over all possible number of
resident batches for 1 < r < 227 /b. We also note the bulk build
rate of cuckoo hashing with an 80% load factor.

are compiled with NVIDIA’s nvce compiler (version 7.5.17)
with the -O3 optimization flag.

B. Insertions and deletions

For any batch, including an arbitrary set of insertions and
deletions, the GPU LSM provides the same performance
(i.e., performance does not depend on status bits). As a re-
sult, here we just consider pure insertion. Our principal target
is an application scenario where we repeatedly insert batches
of elements into our data structure. On this scenario—which
we quantify as “effective insertion rate”—the GPU LSM has
considerably better theoretical and experimental behavior
than a hash table or a sorted array, as we will see at the end
of this subsection. However, before we explore this scenario,
we must first consider two preliminary scenarios: 1) building
the data structure from scratch (“bulk build”) and 2) inserting
one single batch into an already-built data structure (“batch
insertion”).

Bulk build: Suppose there are initially a set of kb
available elements from which we want to build a GPU
LSM. This operation requires a sort and is similar to building
a sorted array (GPU SA); the bulk build of either is faster
than cuckoo hashing (up to 2x). Our GPU sustains 770 M el-
ements/s for key-value radix sort. Then we must segment this
array into at most log k sorted levels corresponding to its
GPU LSM levels (in-memory transfers with 288 GB/s = 36
G elements/s); this time is negligible compared to sorting.®
Cuckoo hashing with an 80% load factor has a build rate of
361.7 M elements/s, roughly 2x slower than both the GPU
LSM and the GPU SA.

8If we have multiple batches to insert into a non-empty GPU LSM, all
batches can be sorted together and then iteratively merged from the highest
valued batch until the lowest valued batch (to make sure deletions and time
information are correctly preserved).



Batch insertion: To insert a new batch into an existing
GPU LSM, we first sort the batch then iteratively merge
with the lowest-indexed full levels until we reach the first
empty level. As a result, if there are r resident batches in the
GPU LSM prior to the new insertion, the first empty level’s
index will be the least significant zero bit in r (we call it
Jfz(r)). The total amount of time required for inserting a new
batch to a GPU LSM (total of b elements), also depicted in
Fig. 4a, is T (r) = T + (2057 — I)Trgergm where T3, is
the time spent to sort a batch of size b and Tnﬁerge is the time
spent to merge two batches of size b. The second term can
be derived because merge is a linear operation, and hence
merging two arrays each of size 2¥b takes about 25717} e ge.

Because of this complex behavior and in order to better
compare the GPU LSM’s performance with GPU SA and
hash tables, we conduct the following experiment with
a fixed batch size b: We randomly generate n = 227
elements and incrementally insert batches of b elements
([n/b] batches) into the GPU LSM. After each insertion,
we compute the insertion rate for that batch (b divided by
the insertion time). By doing so, we have considered all
possible resident batches of 1 < r < [n/b]. We continue
this approach for different batch sizes.

Table II shows the minimum rate (when all levels are
full), the maximum rate (when the first level is empty), and
the harmonic mean of all possible other outcomes. We have
also repeated the same experiment for the GPU SA. The
minimum rate for GPU LSM is usually worse than the GPU
SA’s because of iterative merges. However, the mean rate
is always better than the GPU SA, because in practice, on
average, very few merges are performed before finding an
empty level. For a fixed n, if a smaller b is chosen for
the GPU LSM, there will be more full levels and hence
more iterative merges and as a result slower performance.
Averaged (harmonic mean) over all batch sizes, the GPU
LSM’s insertion rate is 225.3 M elements/s, which is 13.5x
faster than SA.

Effective insertion rate: How does the GPU LSM
compare with the GPU SA with repeated inserts? The
effective insertion rate for the GPU LSM gets increasingly
better than the GPU SA as more and more batches are
inserted. The reason is that for the GPU SA to handle
insertions, each time the new batch must be sorted and then
merged with all other elements (O(1/n) rate). However,
it is possible (by summing and bounding T (r) over a
series of batch insertions) to show that for the GPU LSM
the effective insertion rate is instead O(1/logn). To show
this experimentally, we start with an empty GPU LSM
and incrementally insert batches. After each insertion we
compute the effective rate (number of resident elements
divided by total time). Figure 4b shows the results for
various batch sizes. Repeating the same experiment for GPU
SA, it is clear that its performance degrades at a higher rate
as the number of elements increases. In short, while merging
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Figure 4: (a) Batch insertion time in GPU LSM. (b) Effective
insertion rate for a series of batch insertions in GPU LSM,
and a sorted array (GPU SA). Each color represents a
different batch size.

into a GPU SA is fast and the GPU SA could potentially be
used for dynamic inserts, it is clear both theoretically and in
practice that the GPU LSM is the superior data structure for
insertions, and, with the tombstoning scheme, for deletions
as well.

C. Queries: Lookup, count and range operations

The performance of queries in the GPU LSM depends
on the specific arrangement of full levels in the current
data structure. Searching more levels requires more work.
Also the larger the levels to be searched, the more work.
We observe in this section that query performance depends
mainly on the average number of full levels, and hence for
a fixed number of elements, a GPU LSM with larger batch
size usually has superior query performance.

For lookups, we start from the first full level and continue
until we find the query key, so the worst case happens when
the query does not exist in the data structure. For count and
range queries all levels must be searched regardless. The
larger the range in a count or range query (e.g., ko — k1),
the more elements are expected to fall within it and hence
more work is required for their final validation, which results



none existing all existing L=38 L =1024
b min max mean GPU SA ‘ min max mean GPU SA b min max mean  GPU SA ‘ min max mean GPU SA
224 1168 1168 1168 1068 | 1068 1068 1068 1167 z 2% 270 1037 480 73.5 258 417 301 4.10
223 1168 1331 1244 1124 1068 1186 1124 124.3 § 29 224 041 398 68.6 251 413 2386 4.09
2%2 616 1831 1059 1139 747 1422 1047 128.9 z 2 10 829 351 63.0 244 410 279 4.08
221 414 2374 840 118.4 517 1947 911 132.9 2 27 162 676 274 56.1 236 406 263 4.04
220 307 2913 684 120.3 393 2511 776 135.0 © 2% 51 447 239 47.3 232 399 257 3.99
219 252 3317 577 1234 320 2992 675 138.7 ~
215 20 3615 5Ll 1254 | 272 3320 607 1412 g2, #2721 384 21127 180 143 1.81
217 195 3767 474 1268 | 243 3473 567 1430 g 2, 4 @32 319 382 | 125 181 137 1.81
216 181 3861 455 1276 | 227 3657 549 1441 g 2, 146 505 249 338 4123 181135 181
2 2 129 363 198 29.1 120 181 128 1.81
Cuckoo hash 498.9 ‘ 758.0 ~ 216 110 230 15.1 25.0 118 176 127 1.80

Table IIl: Lookup rate (M queries/s): searching for the same
number of keys as there are elements in the data structure such
that no (left) or all (right) queries exist. For GPU LSM, we
have gathered results from all possible number of batches for
1 < r < 2%'/b. For GPU SA we have only reported the harmonic
mean. Cuckoo hashing is with 80% load factor.

in reduced performance.

Because of the complex relation of query performance
with level distributions, we conduct the following exper-
iment: For any fixed batch size b and total of n = 224
elements, we build every possible GPU LSM with 1 <
r < n/b resident batches. In each case, we generate the
same number of queries as there are elements in the data
structure. We report the minimum rate, the maximum rate,
and the harmonic mean of queries. The same experiment is
repeated on a sorted array (GPU SA) of the same size.

1) Lookup queries: Table III shows the result of this
experiment in two scenarios: 1) all queries exist (right)
or 2) none exist (left). In this experiment we see that the
mean query rate of the GPU LSM decreases as the batch
size decreases, because on average the total number of
occupied levels increases. Averaged (harmonic mean) over
all batch sizes in Table III, our GPU LSM gets 67.9 (or
75.7) M queries/s for none (or all) scenarios. Similarly, the
GPU SA reaches 119.0 (or 133.3) M queries/s, which are
both almost 1.75x faster than their respective GPU LSM
rate. The cuckoo hash table is also 7.34x (or 10.01x) faster
than the GPU LSM. Recall, however, that both the GPU SA
and hash tables are immutable data structures.

2) Count and Range queries: Unlike lookup queries,
count and range queries will always search through all full
levels of a GPU LSM. However, there is a new important
factor in their performance: the expected range (L) of each
argument. The larger the L, the more keys fall within its
range, and hence more potential results must be validated.
Table IV shows the same experiment we describe at the
beginning of this section, followed by the same number of
queries with two different L values. Averaged over all batch
sizes, count queries for L = {8,1024} reach {32.7, 2.8}
M queries/s, which is {1.84x, 1.45x} slower than performing
the same queries on a SA with the same size. Similarly for
range queries and averaged over all batch sizes, we reach
{23.3, 1.3} M queries/s, which is {1.39x, 1.36x} slower than

Table IV: Count and Range queries in GPU LSM and GPU SA
with expected range L = 8,1024. We have gathered results from
all possible number of batches for 1 < r < 224 /b.

the GPU SA. Noted that it is not possible to efficiently use
hash tables for any of these queries at all. Count queries
are also always faster than range queries because range
queries have to perform a more expensive validation stage
(Section IV-D), and in the end they have to return all valid
elements as opposed to just sending back a total count.

D. Cleanup and its relation with queries

Our observations show that the cleanup operation—
discussed in Section III-F and detailed in Section IV-E—is
much more efficient than rebuilding the whole data structure
from scratch. Also, it can greatly improve query performance
by reducing the number of full levels and hence may be
useful to perform regularly.

Our experiments show that the speed of the cleanup
operation mostly depends on the total number of resident
elements in the data structure, and less significantly on
the percentage of elements that need to be removed (stale
elements). The more elements to be removed the better. For
example, with n = (26 — 1)b elements where b = 220,
cleanup operations when {10, 50}% of elements should be
removed runs at {1870.2, 1828.2} M elements/s. A GPU
LSM with roughly the same size (n = (27 — 1)b with
b = 219) with {10, 50}% of elements removed results in
{1842.5, 1794.3} M elements/s. Since the GPU LSM’s bulk
build sustains 728 M elements/s (Section V-B), cleanup is
up to 2.5x faster than building all elements from scratch.

Depending on the number of resident batches, cleanup can
speed up queries by potentially reducing the total number of
full levels. For example, with 10% removals, n = (27 — 1),
and b = 2'8, cleanup takes 19.23 ms to finish. After cleanup,
we can perform 32 million lookup queries in 132.5 ms,
which is almost 4.8x faster than performing the exact same
queries before the cleanup (including the cleanup time). This
is an important result, since it motivates the user to regularly
perform cleanups if she needs to perform a lot of queries
during the lifetime of a GPU LSM.



VI. CONCLUSION

We proposed and implemented the GPU LSM, a dynamic
dictionary data structure suitable for GPUs, with fast batch
update operations (insertions and deletions) as well as a
variety of parallel queries (lookup, count, and range). We
find that we can update the GPU LSM much more efficiently
than we can a sorted array, especially for small batch sizes,
at the cost of a small constant factor in query time. It might
be possible to improve the query time by employing the
fractional cascading idea used in COLA [17], at the cost of
a more complicated insertion and more memory; it is not
clear whether this would be practical or not. Similar ideas
might be useful in other GPU data structures, for example
BVH trees, which might be useful for applications such as
collision detection and ray tracing in dynamic scenes.
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