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The increasingly connected world has catalyzed the fusion of networks from different domains, which facil-
itates the emergence of a new network model—multi-layered networks. Examples of such kind of network
systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-
platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other
network models is its cross-layer dependency, which describes the associations between the nodes from dif-
ferent layers. Needless to say, the cross-layer dependency in the network plays an essential role in many
data mining applications like system robustness analysis and complex network control. However, it remains
a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth.
In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collab-
orative filtering problem. Based on this idea, we propose an effective algorithm Fascivate that can reveal
unobserved dependencies with linear complexity. Moreover, we derive FasciINATE-ZERO, an online variant of
FasciNaTE that can respond to a newly added node timely by checking its neighborhood dependencies. We
perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
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1. INTRODUCTION

Networks are prevalent and naturally appear in many high-impact domains, includ-
ing infrastructure constructions, academic research, social collaboration, and many
more. As the world is becoming highly connected, cross-domain interactions are more
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Fig. 1. An illustrative example of multi-layered networks. In Figure 1(b), each ellipse corresponds to a
critical infrastructure network in Figure 1(a) (i.e., power grid, AS network, and transportation network).
The arrows between two ellipses indicate cross-layer dependency relationships between the corresponding
two networks (e.g., a router in the AS network depends on one or more power plants in the power grid).

frequently observed in numerous applications, catalyzing the emergence of a new net-
work model—multi-layered networks [Buldyrev et al. 2010; Gao et al. 2012; Parshani
et al. 2010; Sen et al. 2014; Shao et al. 2011]. One typical example of such type of
multi-layered networks is critical infrastructure network as illustrated in Figure 1. In
an infrastructure network system, the full functioning of the autonomous system net-
work (AS network) and the transportation network is dependent on the power supply
from the power grid. While for the gas-fired and coal-fired generators in the power grid,
their functioning is fully dependent on the gas and coal supplies from the transporta-
tion network. Moreover, to keep the whole complex system working in order, extensive
communications are needed between the nodes in the networks, which are supported
by the AS network. Another example is citation networks, where papers that belong
to the same domain can be viewed as the nodes from one layer, and the cross-domain
paper citations can be considered as cross-layer dependencies. While in the biologi-
cal system, the protein—protein interaction network (PPI/gene network) is naturally
linked to the disease similarity network by the known disease—gene associations, and
the disease network is in turn coupled with the drug network by drug—disease as-
sociations. Multi-layered networks also appear in many other application domains,
such as organization-level collaboration platform [Chen et al. 2015] and cross-platform
e-commerce [Chen et al. 2013; Li et al. 2009; Lu et al. 2013; Yang et al. 2015].

One crucial topological structure that differentiates multi-layered network from
other network models is its cross-layer dependency, which describes the associations/
dependencies between the nodes from different layers. For example, in infrastructure
networks, the full functioning of the AS network depends on the sufficient power supply
from the power grid layer, which in turn relies on the functioning of the transportation
network (e.g., to deliver the sufficient fuel). Similarly, in the biological systems, the
dependency is represented as the associations among diseases, genes, and drugs. In
practice, the cross-layer dependency often plays a central role in many multi-layered
network mining tasks. For example, in the critical infrastructure network, the inter-
twined cross-layer dependency is considered as a major factor of system robustness.
This is because a small failure on the supporting network (e.g., power station malfunc-
tion in power grid) may be amplified in all its dependent networks through cross-layer
dependencies, resulting in a catastrophic/cascading failure of the entire system. On
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the other hand, the cross-layer dependency in the biological system is often the key to
new discoveries, such as new treatment associations between existing drugs and new
diseases.

In spite of its key importance, it remains a daunting task to know the exact cross-layer
dependency structure in a multi-layered network, due to noise, incomplete data sources,
and limited accessibility to network dynamics. For example, an extreme weather event
might significantly disrupt the power grid, the transportation network, and the cross-
layer dependencies in between at the epicenter. Yet, due to limited accessibility to
the damaged area during or soon after the disruption, the cross-layer dependency
structure might only have a probabilistic and/or coarse-grained description. On the
other hand, for a newly identified chemical in the biological system, its cross-layer
dependencies w.r.t. proteins and/or the diseases might be completely unknown due to
clinical limitations (i.e., the zero-start problem).

In this article, we aim to tackle the above challenges by developing effective and
efficient methods to infer cross-layer dependency on multi-layered networks. The main
contributions of the article can be summarized as (1) Problem Formulations, we define
the cross-layer dependency inference problem as a regularized optimization problem.
The key idea behind this formulation is to collectively leverage the within-layer topol-
ogy and the observed cross-layer dependency to infer a latent, low-rank representation
for each layer, which can be used to infer the missing cross-layer dependencies in the
network. (2) Algorithms and Analysis, we propose an effective algorithm—FAsSCINATE—
to infer the cross-layer dependency on multi-layered networks, and analyze its optimal-
ity, convergence, and complexity. We further present its variants and generalizations,
including an online algorithm to address the zero-start problem. (3) Evaluations, we
perform extensive experiments on five real datasets to substantiate the effectiveness,
efficiency, and scalability of our proposed algorithms. Specifically, our experimental
evaluations show that the proposed algorithms outperform their best competitors by
8.2%—-41.9% in terms of inference accuracy, while enjoying linear complexity. Moreover,
the proposed FascinaTte-ZERO algorithm can achieve up to 107 x speedup with barely
any compromise on accuracy.

The rest of the article is organized as follows. Section 2 gives the formal definitions of
the cross-layer dependency inference problems. Section 3 proposes FASCINATE algorithm
with its analysis. Section 4 introduces the zero-start algorithm FascinaTe-ZERO. Sec-
tion 5 presents the experiment results. Section 6 reviews the related works. Section 7
summarizes the article.

2. PROBLEM DEFINITION

In this section, we give the formal definitions of the cross-layer dependency inference
problems. The main symbols used throughout the article are listed in Table I. Following
the convention, we use bold upper-case for matrices (e.g., A), bold lower-case for vectors
(e.g., a), and calligraphic for sets (e.g., A). A’ denotes the transpose of matrix A. We use
the  sign to denote the notations after a new node is accommodated to the system (e.g.,
J, Ay), and the ones without the " sign as the notations before the new node arrives.
While several multi-layered network models exist in the literature (see Section 6
for a review), we will focus on a recent model proposed in Chen et al. [2015], due to
its flexibility to model more complicated cross-layer dependency structure. We refer
the readers to Chen et al. [2015] for its full details. For the purpose of this article, we
mainly need the following notations to describe a multi-layered network with g layers.
First, we need a g x g layer—layer dependency matrix G, where G(i, j) = 1 if layer-j
depends on layer-i, and G(i, j) = 0 otherwise. Second, we need a set of g within-layer
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Table I. Main Symbols

Symbol Definition and description
A B The adjacency matrices (bold upper case)
a, b Column vectors (bold lower case)

A, B Sets (calligraphic)
A(, j) | The element at ith row jth column
in matrix A
A(,:) | The ith row of matrix A
AC(:, j) | The jth column of matrix A
A’ Transpose of matrix A
A The adjacency matrix of A with the newly added node
G
A

The layer-layer dependency matrix

Within-layer connectivity matrices of the network
A= {Al,...,Ag}

D Cross-layer dependency matrices

D={Dj i, j=1,....8)

W, ; | Weight matrix for D; ;

F; Low-rank representation for layer-i ( =1, ..., 2)
m;,n; | Number of edges and nodes in graph A;
m; j Number of dependencies in D; ;

g Total number of layers

r The rank for {F;};i—1 g

t The maximal iteration number

& The threshold to determine the iteration

O D

Lym

PPl NETWORK

Fig. 2. A simplified four-layered network for biological systems.

connectivity matrices: A = {A;, ..., A,} to describe the connectivities/similarities be-
tween nodes within the same layer. Third, we need a set of cross-layer dependency
matrices D = {D; ; i, j =1,..., g}, where D; ; describes the dependencies between the
nodes from layer-; and the nodes from layer-j if these two layers are directly dependent
(i.e., G(, j) = 1). When there is no direct dependencies between the two layers (i.e.,
G(, j) = 0), the corresponding dependency matrix D; ; is absent. Taking the multi-
layered network in Figure 2 for an example, the abstract layer-layer dependency net-
work G of this biological system can be viewed as a line graph. The four within-layer
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similarity matrices in A are the chemical network (A1), the drug network (Ag), the dis-
ease network (Asz), and the PPI network (A4). Across those layers, we have three non-
empty dependency matrices, including the chemical-drug dependency matrix (D),
the drug—disease interaction matrix (Dg 3), and the disease-protein dependency matrix

(D34).!
As mentioned earlier, it is often very hard to accurately know the cross-layer depen-
dency matrices {D; ji, j =1, ..., g}. In other words, such observed dependency matrices

are often incomplete and noisy. Inferring the missing cross-layer dependencies is an es-
sential prerequisite for many multi-layered network mining tasks. On the other hand,
real-world networks are evolving over time. Probing the cross-layer dependencies is
often a time-consuming process in large complex networks. Thus, a newly added node
could have no observed cross-layer dependencies for a fairly long period of time since
its arrival. Therefore, inferring the dependencies of such kind of zero-start nodes is an
important problem that needs to be solved efficiently. Formally, we define the cross-
layer dependency inference problem (CopE) and its corresponding zero-start variant
(Cope-ZERO) as follows.

ProBLEM 1. (CopE) Cross-Layer Dependency Inference

Given: a multi-layered network with (1) layer-layer dependency matrix G; (2) within-
layer connectivity matrices A = {Aq, ..., Ag}); and (3) observed cross-layer depen-
dency matrices D =1{D; ji,j=1,...,8)

Output: the true cross-layer dependency matrices {D;, jLj=1...,8k.

ProBLEM 2. (CopE-ZERQO) Cross-Layer Dependency Inference for zero-start Nodes

Given: (1) a multi-layered network {G, A, D}; (2) a newly added node p in the lth layer;
(3) a 1 x ny vector s that records the connections between p and the existing n; nodes
in layerl;

Output: the true dependencies between node p and nodes in dependent layers of layer-l,
ie, D i(p.)(j=1...,8 G(U j)=1).

3. FASCINATE FOR PROBLEM 1

In this section, we present our proposed solution for Problem 1 (Copk). We start with
the proposed optimization formulation, and then present our algorithm (FASCINATE),
followed by some effectiveness and efficiency analysis.

3.1. FASCINATE: Optimization Formulation

The key idea behind our formulation is to treat Problem 1 as a collective collaborative
filtering problem. To be specific, if we view (1) nodes from a given layer (e.g., power
plants) as objects from a given domain (e.g., users/items), (2) the within-layer connectiv-
ity (e.g., communication networks) as an object—object similarity measure, and (3) the
cross-layer dependency (e.g., dependencies between computers in the communication
layer and power plants in power grid layer) as the “ratings” from objects of one domain
to those of another domain, then inferring the missing cross-layer dependencies can be
viewed as a task of inferring the missing ratings between the objects (e.g., users and
items) across different domains. Having this analogy in mind, we propose to formulate
Problem 1 as the following regularized optimization problem:

IMore complicated dependency relationships may exist across the layers in real settings, which can be
addressed with our model as well.
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Fizo‘é’i?...,@ = Z IW;; ©D;,; —F.F,)|% 1)
i,j: GG, j)=1

C1: Matching Observed Cross-Layer Dependencies

g 8
+a )y tr(F/(Ti - A)F)+ BY_IFil}

i=1 i=1

C2: Node Homophily C3: Regularization

where T; is the diagonal degree matrix of A; with T;(u, u) = Z;“: 1Ai(w,v); W, ; is an
n; xnj weight matrix to assign different weights to different entries in the corresponding
cross-layer dependency matrix D; ;; and F; is the low-rank representation for layer i.
For now, we set the weight matrices as follows: W; ;(u, v) :

=11ifD; ;(u, v) is observed, and W; ;(u, v) € [0, 1] if D; ;(u, v)

=0 (i.e., unobserved). To simplify the computation, we set the weights of all unobserved
entries to a global value w. We will discuss alternative choices for the weight matrices
in Section 3.3.

In this formulation (Equation (1)), we can think of F; as the low-rank representa-
tions/features of the nodes in layer i in some latent space, which is shared among
different layers. The cross-layer dependencies between the nodes from two dependent
layers can be viewed as the inner product of their latent features. Therefore, the intu-
ition of the first term (i.e., C1) is that we want to match all the cross-layer dependencies
calibrated by the weight matrix W; ;. The second term (i.e., C2) is used to achieve node
homophily, which says that for a pair of nodes u and v from the same layer (say layer-i),
their low-rank representations should be similar (i.e., small |F;(u, :) — F;(v, :)|2) if the
within-layer connectivity between these two nodes is strong (i.e., large A;(u, v)). The
third term (i.e., C3) is to regularize the norm of the low-rank matrices {F;};—1
prevent over-fitting.

Once we solve Equation (1), for a given node u from layer-i and a node v from
layer-j, the cross-layer dependency between them can be estimated as 1~)i, j(w,v) =
Fi(u, )F;(v, ).

.....

3.2. FASCINATE: Optimization Algorithm

The optimization problem defined in Equation (1) is non-convex. Thus, we seek to find
a local optima by the block coordinate descent method, where each F; naturally forms
a “block.” To be specific, if we fix all other F;(j = 1, ..., g, j # i) and ignore the constant
terms, Equation (1) can be simplified as

Jio= Y IIWi;0Mi;—FF;+ate@® (T, - ADF) + BIF 7. ()

Fiz0 S Ga =1

The derivative of J; w.r.t. F; is

9
oF;

=2 Z [-(W,; OW,;; 0D; )F; + (W, ; OW; ; © (F;F;)F;] (3)
Ji Gl =1

+ aT;F; — aA;F; + BF;
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A fixed-point solution of Equation (3) with non-negativity constraint on F; leads to
the following multiplicative updating rule for F;:

X(u, v
Fi(u, v) < F;(u, v) YEu, v;, (4)
where
X= Z (Wi,j OW;; @Di’j)Fj + aA;F; (5)
J: GG, j)=1
Y = Z (wi,j ® Wi,j ® (FiFj/))FJ‘ + o«T;F; + BF;.
J: GG, j)=1

Recall that we set W; ;(w,v) = 1 when D; ;j(u,v) > 0, and W, ;(w,v) = w when
D; ;(u,v) = 0. Here, we define Il?j as an indicator matrix for the observed entries in
D; ;, that s, Igj(u, v) =1ifD; j(u,v) > 0, and If?j(u, v) = 0if D; j(u, v) = 0. Then, the es-
timated dependencies over the observed data can be represented as R; ; = I O FF)).
}‘Nlilth these notations, we can further simplify the update rule in Equation (5) as
ollows:

X= Y DF;+cAF, (6)
J: GG, j)=1

Y= ) ((1-w’Ry;+w’FiF;)F;+oTF; + F;. (7
J: GG, j)=1

The proposed FAscINATE algorithm is summarized in Algorithm 1. First, it randomly
initializes the low-rank matrices for each layer (line 1-line 3). Then, it begins the iter-
ative update procedure. In each iteration (line 4-line 10), the algorithm alternatively

.....

.....

threshold &, or (2) the maximum iteration number ¢ is reached.

ALGORITHM 1: The FasciNaTE algorithm

Input: (1) a multi-layered network with (a) layer—layer dependency matrix G, (b) within-layer
connectivity matrices A = {A;, ..., A,}, and (c) observed cross-layer node dependency matri-
cesD={D;;i,j=1,...,g8}; (2) the rank size r; (3) weight w; (4) regularized parameters «
and B;

Output: low-rank representations for each layer {F;};_1

1: fori=1togdo
2 initialized F; as n; x r non-negative random matrix
3: end for

4: while not converge do

5. fori=1togdo

6.

7

8

9

compute X as Equation (6)
compute Y as Equation (7)
update F; as Equation (4)
:  end for
10: end while
11: return {Fi}i—1 .
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3.3. Proof and Analysis

Here, we analyze the proposed FascINATE algorithm in terms of its effectiveness as well
as its efficiency.

Effectiveness Analysis. In terms of effectiveness, we show that the proposed FasciNaTE
algorithm indeed finds a local optimal solution to Equation (1). To see this, we first give
the following theorem, which says that the fixed point solution of Equation (4) satisfies
the KKT condition.

TurOREM 3.1. The fixed point solution of Equation (4) satisfies the KKT condition.

Proor. The Lagrangian function of Equation (2) can be written as

L= ) [W,;oM,-FF)}; 8)
Ji G j)=1
+ atr(F;'T;F;) — atr(F;/AF;) + B||F;||% — tr(A'F)),

where A is the Lagrange multiplier. Setting the derivative of L; w.r.t. F; to 0, we get

2 ( Z [—(Wi’j @Wl"j @Di,j)Fj +(Wi,j @wi.j @(FiFj/))Fj] 9
J: Glj)=1

+ oT;F; — cA;F; + ,BFL) = A.

By the KKT complementary slackness condition, we have

[ Z (W;; O W, ; © (F;F;)F,; + oT;F; + BF; (10)
J: Gl =1

Y

(> (Wi; 0W;; 0D )F; + aAF)]w, v)Fi(u, v) = 0.
7: GG, j)=1

X

Therefore, we can see that the fixed point solution of Equation (4) satisfies the above
equation. O

The convergence of the proposed FasciNaTE algorithm is given by the following lemma.

LemmA 3.2. Under the updating rule in Equation (4), the objective function in Equa-
tion (2) decreases monotonically.

Proor. By expending the Frobius norms and dropping constant terms, Equation (2)
can be further simplified as

J; = Z (—2tr(W; ; O W, ; 0 D; ) )F;F;) +tr(W; ; OW, ; © (FiF;))Fng)) (11)
G =1

T1 T2
+ oetr(F;TiFi) —OltI‘(FEAFi) + ,BtI‘(FiF;) .
—————
Ty T, Ts
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Following the auxiliary function approach in Lee and Seung [2001], the auxiliary func-
tion H(F;, F;) of JJ; must satisfy

H(F,, F) =dJ;, HF, F) > J,. (12)
Define
F™D — arg min H (F;, F"), (13)

by this construction, we have
J = HFY, F) > HFHY FP) > JH, (14)

which proves that Ji(t) decreases monotonically.

Next, we prove that (1) we can find an auxiliary function that satisfies the above
constraints and (2) the updating rule in Equation (4) leads to global minimum solution
to the auxiliary function.

First, we show that the following function is one of the auxiliary functions of Equa-
tion (11):

HEF.F)= Y (T{+Ty+Ts+T;+T, (15)
G =1
where
ML Fi(u, k)
T{=-2) Y [(W;; 0 W;; 0D, )F;l(u, HF;u, k)X1+log ) (16)
== Fi(u, k)

[(W;; © W;; O (F; F'))F;1(u, R)F2(u, k)

Z Z Fi(u, k) ()

u=1 k=1
T,F 1w, k F2 kR
u=1 k=1 Fi(u, k)
n; n; r 5 5 Fl Fl ,
=330 e, v)F;(v, DF;(u, k)1 + log Filv R ), (19)
1 el 1 F;(v, DF;(u, k)
n; r
Ty =YY BFu.h. (20)
u=1 k=1
Here, we prove that 7/ > T; fori =1, ..., 5 term by term.
Using the inequality z > 1 + logz, we have
T{>-2) > [(Wi;0W;,; 0D, )F,lu bFiu k) =T (21)
u=1 k=1

n; n; r

Ty> =Y Y aAiw v)Fi, bF;u. k) =Ty

u=1 v=1 k=1

Expanding T, we can rewrite it as

no I I WP, v)Fi(y, DF(, v)F (v RF2(u, k)

T=333 % P E— (22)

u=1 v=1 k=1 [=1
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Let F;(u, k) = F;(u, £)Q;(u, k), and then

n njoor r
=Y 3 3 WP vF( 0)F (0, DF; (w, DF;(u, £)Q7 (u, k) (23)

u=1v=1 k=1 [=1

n; 2 2
=SS S W, 0 0, R, D, k)(Qi () + Qw ”)

u=1v=1 k=1 =1 2

n nj r r
DO W vF AL F (v, BF; (u DF (u, D)Qi(u, BQ;(u, 1)

u=1v=1 k=1 [=1

IV

n; N r

= ZZW (u, V)F;(u, DF(L, v)F (v, RF;(u, k)
u=1v=1 k=1 I=1
= T

For T';, by using the following inequality in Ding et al. [2006]

* 2
ZZ AS Béi‘ PSP (S ASB), (24)
Pt @, p)
where A e RV, B € R}fk ,S e R’fk , S* ¢ RT}"’, and A, B are symmetric, we have
T3 > atr(F;T;F;) = Ts. (25)

S(STFT?/ , we have T, = T5. Putting the above inequalities together, we have H(F;, F;) >
L Nelxt, we find the global minimum solution to H(F;, F;). The gradient of H(F;, F;) is
10H(F;, F) _ [(Wi; oW;; 0 D;)F;l(u, BF;(u, k)

2 0F;(u, k) F;(u, k)
N [(W;; OW; ;0 (FiF/J'))Fj](u, R)F;(u, k)
Fi(u, k)
[oT,F ] DFw. k) (AR DFu, k)
F(u, k) - F,(u k)
From the gradient of H(F;, F;), we can eas1ly get its Hessian matrix, which is a positive

diagonal matrix. Therefore, the global minimum of H(F;, F;) can be obtalned by setting
its gradient Equation (26) to zero, which leads to

_ (W ; 0O W, ; © FF)F; + oA F](u, k)
F2(u, k) = F2%(u, k) ! ! St i . @7
(W ; © Wi ; ©D; j)F; + oTiF; + pFil(w, k)
Recall that we have set F(t“) F; and F(t) F;. The above equation proves that the
updating rule in Equatlon (2) decreases monotonically. |

(26)

+ ﬂFi(u, k).

According to Theorem 3.1 and Lemma 3.2, we conclude that Algorithm 1 converges
to a local minima solution for Equation (2) w.r.t. each individual F;.

Efficiency Analysis. In terms of efficiency, we analyze both the time complexity and
the space complexity of the proposed FasciNaTE algorithm, which are summarized in
Lemmas 3.3 and 3.4. We can see that FAscINATE scales linearly w.r.t. the size of the
entire multi-layered network.
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LemMmaA 3.3. The time complexity of Algorithm 1 is O([> % (3 Ji G =1 (migr + (i +
nj)r?) + mr)lt).

Proor. In each iteration in Algorithm 1 for updating F;, the complexity of calculating
X by Equation (6) is O(}_;. ¢ j=1 ™.;7 + mr) due to the sparsity of D; ; and A;. The
complexity of computing R; ; in Y is O(m; jr). Computing F;(F;F;) requires O((n; +
n;)r?) operations and computing oT;F; + BF; requires O(m;r) operations. So, it is of
O0X_ ;. i jy=r(mijr + (m; + n;)r?)) complexity to get Y in line 7. Therefore, it takes
O} Gij=1(mi v+ +n; )r2)+m;r) to update F;. Putting all together, the complexity
of updating all low-rank matrices in each iteration is O(}"%_ (3" - G =1 (mijr + (g +
n;)r?) + m;r)). Thus, the overall complexity of Algorithm 1is O([}% (> g =1 (mijr +
(n; + nj)rz) +m;r)lt), where ¢ is the maximum number of iterations in the algorithm. 0O

LemMa 3.4. The space complexity of Algorithm 1is O 5_ (mir+m)+Y"; it Gl j)=1 M)

Proor. It takes O(}"%_, n;r) to store all the low-rank matrices, and O>"% ; m; +
> ij: Gi.j=1 ;) to store all the within-layer connectivity matrices and dependency
matrices in the multi-layered network. To calculate X for F;, it costs O(mr) to
compute ) ;-1 Di;F; and «A;F;. For Y, the space cost of computing R; ; and
Fi(F}Fj) is O(m; ;) and O(n;r) respectively. Therefore, the space complexity of cal-
culating Y. go.e1(1 — wHR; ; + w?F;F;)F; is O(max;. g¢ j-1m.; + nr). On the
other hand, the space required to compute oT;F; + BF; is O(n;r). Putting all to-
gether, the space cost of updating all low-rank matrices in each iteration is of
O(max; ;. g, j=1™,j + max; n;r). Thus, the overall space complexity of Algorithm 1

is O F (mr +m) + 3, . gujyer Mij)- O

3.4. Variants
Here, we discuss some variants of the proposed FasciNaTE algorithm.

3.4.1. Collective One Class Collaborative Filtering. By setting w € (0, 1), FASCINATE can
be used to address one class collaborative filtering (OCCF) problem, where implicit
dependencies extensively exist between nodes from different layers. Specifically, in
two-layered networks, FASCINATE is reduced to wiZAN-Dual, a weighting-based, dual-
regularized OCCF algorithm proposed in Yao et al. [2014].

3.4.2. Multi-Layered Network Clustering. By setting all the entries in the weight matrix
W; j to 1in Equation (1), we have the following objective function:

g 8
min  J= Y D —FF/|;+a) trF T - AF)+ B> |Fil7. (28

F;>0G=1,..., X .
i200=18) G =1 i—1 i—1

where F; can be viewed as the cluster membership matrix for nodes in layer-i). By
following similar procedure in Section 3.2, we can get the local optima of the above
objective function with the following updating rule:

X, (u, v)

F;(u,v) < F;(u,v) Y. )

(29)
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where
X, = Z Di,ij + aA;F; (30)
J: GG, j)=1
Y.= ) F.F/F;+oTF; +pF. (31)
J: GG, j)=1

Although in the above updating rule, we do not need to calculate R; ; for Y, com-
paring to Y in Equation (7), the overall time complexity for the algorithm is still
oYy 5, j Goy=1migr + (i + 1 r?) + mr)lt). If we restrict ourselves to two-layered
networks (i.e., g = 2), the above variant for FasciNaTE becomes a dual regularized
co-clustering algorithm [Liu et al. 2015b].

3.4.3. Unconstrained FASCINATE. In FASCINATE, we place a non-negative constraint on the
latent features {F;};—1_, in Equation (1) to pursue good interpretability and efficiency.
By discarding the non-negative constraint, we have FasciNaTE-UN, an unconstrained
variant of FASCINATE, which can be solved with a gradient descent method as shown
in the Algorithm 2. It first randomly initializes the low-rank matrices for each layer
(line 1-line 3) and then begins the iterative update procedure. In each iteration (line
method one by one. Similar to FascINATE, the two criteria we use to terminate the
iteration are (1) either the difference of the objective function (J in Equation (1))
between two successive iterations is less than a threshold &, or (2) the maximum it-
eration number ¢ is reached. The complexity of computing g—; is the same with the
complexity of computing X and Y in Algoritm 1. However, in the backtracking line
search procedure in step 7, calculating the value of the objective function oJ; is re-
quired to find step size v with complexity O} ;. g j=1 mn;r + n?r). This quadratic
complexity would increase the overall complexity of Algoritm 2 significantly in large
systems.

ALGORITHM 2: The FascinaTe-UN algorithm

Input: (1) a multi-layered network with (a) layer—layer dependency matrix G, (b) within-layer
connectivity matrices A = {Ay, ..., A}, and (c) observed cross-layer node dependency matri-
cesD={D;;i,.j=1,..., g}; (2) the rank size r; (3) weight w; (4) regularized parameters o
and B; (5) parameters a € (0,0.5), b € (0,1)

Output: low-rank representations for each layer {F;};_1 .

1: fori =1togdo

2 initialized F; as n; x r random matrix

3: end for

4: while not converge do

5. fori=1togdo

6:

7

8

9

compute % with Equation (3)
7 <step size from backtracking line search
Fi <~ Fi -7
:  end for
0: end while
1: return {F;}i_1 4

3eJ;
9F;

e

3.4.4. Collective Matrix Factorization. Instead of exploiting node homophily effect from
each layers, we can view the within-layer networks as additional constraints for matrix
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factorization problem as modeled in the following objective function:

g g
pogmn (;) 1 IWi.j © D;; — FiF )|} + Zl |A; — F.F/I7 + p Zl IFil7. (32)
l,J: L,J])= 1= 1=

where F; is the latent features for nodes in layer-i.
Again, the above problem can be solved with similar procedure in FasciNaTE. The
updating rules are as follows:

lXcol(uy v)
Fl(u, U) <~ Fl(u, U) m, (33)

where X.,; and Y., are defined as follows:

Xeo = Z D; ;F; + 20A;F; (34)
J: GG =1

Y. = Z (1 - wz)Rqu’ + wQFiFj')Fj + 2aF;F;'F; + BF;. (35)
J: GG =1

The complexity of the above method is of the same order with FAscINATE. In particular,
when the within-layer connectivity matrices A = {Ay, ..., A;} are absent, the proposed
FascIiNATE can be viewed as a collective matrix factorization method in Singh and
Gordon [2008].

While the proposed FasciNaTE includes these existing methods as its special cases,
its major advantage lies in its ability to collectively leverage all the available informa-
tion (e.g., the within-layer connectivity and the observed cross-layer dependency) for
dependency inference. As we will demonstrate in the experimental section, such a me-
thodical strategy leads to a substantial and consistent inference performance boosting.
Nevertheless, a largely unanswered question for these methods (including FASCINATE)
is how to handle zero-start nodes. That is, when a new node arrives with no observed
cross-layer dependencies, how can we effectively and efficiently infer its dependen-
cies without rerunning the algorithm from scratch. In the next section, we present a
sub-linear algorithm to solve this problem (i.e., Problem 2).

4. FASCINATE-ZERO FOR PROBLEM 2

A multi-layered network often exhibits high dynamics, e.g., the arrival of new nodes.
For example, for a newly identified chemical in the biological system, we might know
how it interacts with some existing chemicals (i.e., the within-layer connectivity). How-
ever, its cross-layer dependencies w.r.t. proteins and/or diseases might be completely
unknown. This section addresses such zero-start problems (i.e., Problem 2). Without
loss of generality, we assume that the newly added node resides in layer-1, indexed as
its (n; + 1)th node. The within-layer connectivity between the newly added node and
the existing n; nodes is represented by a 1 x n; row vector s, where s(u) (u=1,...,n;1)
denotes the (within-layer) connectivity between the newly added node and the uth
existing node in layer-1.

We could just rerun our FasciNaTE algorithm on the entire multi-layered network
with the newly added node to get its low-rank representation (i.e., a 1 x r row vector f),
based on which its cross-layer dependencies can be estimated. However, the running
time of this strategy is linear w.r.t. the size of the entire multi-layered network. For
example, on a three-layered infrastructure network whose size is in the order of 14
million, it would take FasciNaTe 2, 500+ seconds to update the low-rank matrices {F;}
for a zero-start node with rank r = 200, which might be too costly in online settings.
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In contrast, our upcoming algorithm is sub-linear, and it only takes less than 0.001
seconds on the same network without jeopardizing the accuracy.

There are two key ideas behind our online algorithm. The first is to view the newly
added node as a perturbation to the original network. In detail, the updated within-
layer connectivity matrix A; for layer-I can be expressed as

it (36)

where A; is the within-layer connectivity matrix for layer-1 before the arrival of the
new node.
Correspondlngly, the updated low-rank representation matrix for layer-1 can be ex-

pressed as Fy = [Fl(nlxr) f']’, where Fl(nlxr) is the updated low-rank representation for

the existing n; nodes in layer-1. Then, the new objective function o in Equation (1) can
be reformatted as

J= Z W, ; 0@, - FiF/j)H%‘ + Z W1, 0@y — F1F})|I% 37
”z%&” 1 J: G(1,)=1
n; n; n m
+Z > A IF )~ Fiw )13+ D0 Y Ara wlFaw ) - B, )13
i=2 u=1 v=1 u=1 v=1

+8 Z IF: 15 + BIF 7 + 0 D sIE —F1v, )5 + BIFIS.

i=2 v=1

Since the newly added node has no dependencies, we can set

v | Wi, 5, .| Duj
WI’J - |:0(1><nj) i| ’ Dl"] - |:0(1><nj) )

Therefore, the second term in o can be simplified as

Y Wi, 0Dy = FipunF)IE. (38)
J: G(1,))=1

Combining Equation (37), Equation (38), and J in Equation (1) together, J can be
expressed as

J=dJ+J, (39)

where J' = a 3" s()||f — F1(v, )| + BIIfl|2, and J is the objective function without
the newly arrived node.

The second key idea of our online algorithm is that in Equation (39), J is often orders
of magnitude larger than J'. For example, in the BIO dataset used in Section 5.2.2,
J is in the order of 103 while J1 is in the order of 10*1 This naturally leads to the
local optimal solution to Equation (1) w1th0ut the newly arrlved node) and (2) optimize
J! to find out the low-rank representation f for the newly arrived node. That is, we
seek to solve the following optimization problem:

f=arg I}_li(l)’l Jb subject to: Fip, ) = F} (40)

with which, we can get an approximate solution {F;};_;
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To solve f, we take the derivative of J! w.r.t. f and get

1 el
%% = pt+a Y s)E - Fiv, ) (41)

v=1

=(B+a ) sw)f - asF;.

v=1

Since « and g are positive, the Hessian matrix of JJ! is a positive diagonal matrix.
Therefore, the global minimum of J! can be obtained by setting its derivative to zero.
Then, the optimal solution to J! can be expressed as

%
asF;

T Btay s

For the newly added node, f can be viewed as the weighted average of its neighbors’ low-
rank representations. Notice that in Equation (42), the non-negativity constraint on f
naturally holds. Therefore, we refer to this solution (i.e., Equation (42)) as FASCINATE-
ZERO. In this way, we can successfully decouple the cross-layer dependency inference
problem for zero-start node from the entire multi-layered network and localize it only
among its neighbors in layer-1. The localization significantly reduces the time com-
plexity, as summarized in Lemma 4.1, which is linear w.r.t. the number of neighbors of
the new node (and therefore is sub-linear w.r.t. the size of the entire network).

f (42)

LemmA 4.1. Let nnz(s) denotes the total number of within-layer links between the
newly added node and the original nodes in layer-1 (i.e., nnz(s) is the degree for the
newly added node). Then, the time complexity of FASCINATE-ZERO is O(nnz(s)r).

Proor. Since the links between the newly added node and the original nodes in layer-
1 are often very sparse, the number of non-zero elements in s (nnz(s)) is much smaller
than n;. Therefore, the complexity of computing sF; can be reduced to O(nnz(s)r). The
multiplication between o and sF; takes O(r). Computing > ', s(v) takes O(nnz(s)).
Thus, the overall complexity of computing f is O(nnz(s)r). O

Remarks. Following the similar procedure in FasciNaTE-ZERO, it is easy to extend
the zero-start problem to the scenario where a new within-layer edge is added to two
existing nodes. Suppose in layer-1, a new edge < u, v > is added between node u and
node v. To find out the updated low-rank matrices (F;} efficiently after the perturbation,
we can partition the nodes in the multi-layered network into following two parts:
(1) nodes that can be affected by either node u or node v (denoted as N and
(2) nodes that are irrelevant to both node u and node v (denoted as N\*"}). Specifically,
we define that node w can be affected by node u if and only if there exists a path
from u to w, and the links in the path can be either within-layer edges or cross-layer
dependencies; otherwise, node w is viewed as irrelevant to u. By this definition, we
have N N A\l = @ and the new objective function o can be decomposed into two
parts as

J = gl 4 s, (43)

where J? only contains the optimization terms for the latent features of the affected
nodes ({F,}«), while J\®! contains the terms for latent features of irrelevant nodes
({F;}\M«v)) As the newly added edge < u, v > in layer-I would not cause any changes in
J\@ (F; )\ would remain the same with the previous local optima solution {F3)\(¥),
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Table II. Statistics of Datasets

Dataset # of Layers | # of Nodes | # of Links | # of CrossLinks

CITATION 3 33,249 27,017 4,589
INFRA-5 5 349 379 565
INFRA-3 3 15,126 29,861 28,023,500
SOCIAL 3 125,344 214,181 188,844

BIO 3 35,631 253,827 75,456
Al ’
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Fig. 3. The abstract dependency structure of each dataset.

T}lerefore, the only terms, we need to optimize is J ) wrt. the affected latent features
(e,

5. EVALUATIONS

In this section, we evaluate the proposed FasciNATE algorithms. All experiments are
designed to answer the following questions:

—Effectiveness. How effective are the proposed FasciNaTE algorithms in inferring the
missing cross-layer dependencies?
—Efficiency. How fast and scalable are the proposed algorithms?

5.1. Experimental Setup

5.1.1. Datasets Description. We perform our evaluations on five different datasets, in-
cluding (1) a three-layer cross-domain paper citation network in the academic research
domain (CITATION); (2) a five-layer Italy network in the critical infrastructure domain
(INFRA-5); (3) a three-layer network in the critical infrastructure domain (INFRA-3);
(4) a three-layer Comparative Toxicogenomics Database (CTD) network in the bio-
logical domain (BIO); and (5) a three-layer Aminer academic network in the social
collaboration domain (SOCIAL). The statistics of these datasets are shown in Table II,
and the abstract layer—layer dependency graphs of these four datasets are summa-
rized in Figure 3 In all these four datasets, the cross-layer dependencies are binary
and undirected (i.e., D; j(u, v) = D;;(v, w)).

CITATION. The construction of this publication network is based on the work in Li
et al. [2015]. It contains three layers, which correspond to the paper citation networks
in Artificial Intelligence (AI), Database (DB), and Data Mining (DM) domains. The
cross-domain citations naturally form the cross-layer dependencies in the system. For
example, the cross-layer dependency between Al layer and DM layer indicates the
citations between AI papers and DM papers. The papers in the system are from the
top conferences in the corresponding areas as shown in Table III. The number of nodes
in each layer varies from 5,158 to 18,243, and the number of within-layer links ranges
from 20,611 to 40,885. The number of cross-layer dependencies ranges from 536 to
2,250. The structure of the entire system is shown in Figure 3(a).

INFRA-5. The construction of this critical infrastructure network is based on the
data implicated from an electrical blackout in Italy in Sept 2003 [Rosato et al. 2008].
It contains five layers, including four layers of regional power grids and one Internet
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Table Ill. List of Conferences in Each Domain

Domain Al DM DB
IJCAI KDD | SIGMOD
Conferences | AAAI | ICDM VLDB
ICML SDM ICDM
NIPS | PKDD PODS

network [Rosato et al. 2008]. The regional power grids are partitioned by macrore-
gions.2 To make the regional networks more balanced, we merge the Southern Italy
power grid and the Island power grid together. The power transfer lines between the
four regions are viewed as cross-layer dependencies. For the Italy Internet network,
it is assumed that each Internet center is supported by the power stations within a
radius of 70km. Its abstract dependency graph is shown in Figure 3(b). The smallest
layer in the network has 39 nodes and 50 links, while the largest network contains 151
nodes and 158 links. The number of dependencies is up to 307.

INFRA-3. This dataset contains the following three critical infrastructure networks:
an airport network,? an AS network,* and a power grid [Watts and Strogatz 1998]. We
construct a three-layered network in the same way as Chen et al. [2015]. The three
infrastructure networks are functionally dependent on each other. Therefore, they form
a triangle-shaped multi-layered network as shown in Figure 3(c). The construction of
the cross-layer dependencies is based on geographic proximity.

SOCIAL. This dataset contains three layers, including a collaboration network
among authors, a citation network between papers, and a venue network [Tang et al.
2008]. The number of nodes in each layer ranges from 899 to 62,602, and the number of
within-layer links ranges from 2,407 to 201,037. The abstract layer—layer dependency
graph of SOCIAL is shown in Figure 3(d). The collaboration layer is connected to the
paper layer with the authorship dependency, while the venue layer is connected to the
paper layer with publishing dependency. For the Paper-Author dependency, we have
126,242 links cross the two layers; for the Paper-Venue dependency, we have 62,602
links.

BIO. The construction of CTD network is based on the works in Davis et al. [2015],
Razick et al. [2008], and Van Driel et al. [2006]. It contains three layers, which are
chemical, disease, and gene similarity networks. The number of nodes in these net-
works ranges from 4,256 to 25,349, and the number of within-layer links ranges from
30,551 to 154,167. The interactions between chemicals, genes, and diseases form the
cross-layer dependency network as shown in Figure 3(e). For Chemical-Gene depen-
dency, we have 53,735 links cross the two layers; for Chemical-Disease dependency, we
have 19,771 links; and for Gene-Disease dependency, we have 1,950 links.

For all datasets, we randomly select 50% cross-layer dependencies as the training
set and use the remaining 50% as the test set.

5.1.2. Comparing Methods. We compare FascINATE with the following methods, includ-
ing (1) FasciNnaTE-CLusT—a variant of the proposed method for the purpose of depen-
dency clustering, (2) FasciNnaTe-UN—a variant of FasciNATE without non-negative con-
straint, (3) MulCol—a collective matrix factorization method [Singh and Gordon 2008],
(4) PairSid—a pairwise OCCF method proposed in Yao et al. [2014], (5) PairCol—a pair-
wise collective matrix factorization method degenerated from MulCol, (6) PairNMF—a
pairwise non-negative matrix factorization (NMF)-based method [Lin 2007], (7) Pair-

2https://en.Wikipedia.org/wiki/F irst-level_ NUTS_of _the_European_Union.
Shttp://www.levmuchnik.net/Content/Networks/NetworkData.htm].
4http://snap.stanford.edu/data/.
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Rec—a pairwise matrix factorization-based algorithm introduced in Koren et al. [2009],
(8) FlatNMF—an NMF based method that treats the input multi-layered network as
a flat-structured single network (i.e., by putting the within-layer connectivity matrices
in the diagonal blocks, and the cross-layer dependency matrices in the off-diagonal
blocks), and (9) FlatRec—a matrix factorization-based method using the same tech-
niques as PairRec but treating the input multi-layered network as a single network as
in FlatNMF.

For the experimental results reported in this article, we set rank r = 100, maximum
iteration ¢ = 100, termination threshold £ = 10~8, weight w? = 0.1, regularization
parameters « = 0.1, 8 = 0.1, and backtracking line search parametersa = 0.1, 5 = 0.8
unless otherwise stated.

5.1.3. Evaluation Metrics. We use the following metrics for the effectiveness evaluations.

—MAP. It measures the mean average precision over all entities in the cross-layer
dependency matrices [Li et al. 2010]. A larger MAP indicates better inference per-
formance.

—R-MPR. 1t is a variant of Mean Percentage Ranking for OCCF [Hu et al. 2008]. MPR
is originally used to measure the user’s satisfaction of items in a ranked list. In our
case, we can view the nodes from one layer as users, and the nodes of the dependent
layer(s) as items. The ranked list therefore can be viewed as ordered dependencies by
their importance. Smaller MPR indicates better inference performance. Specifically,
for a randomly produced list, its MPR is expected to be 50%. Here, we define R-MPR =
0.5 — MPR so that larger R-MRP indicates better inference performance.

—HLU. Half-Life Utility is also a metric from OCCF. By assuming that the user
will view each consecutive items in the list with exponential decay of possibility, it
estimates how likely a user will choose an item from a ranked list [Pan et al. 2008].
In our case, it measures how likely a node will establish dependencies with the nodes
in the ranked list. A larger HLU indicates better inference performance.

—AUC. Area under ROC (Receiver Operating Characteristic) curve is a metric that
measures the classification accuracy. A larger AUC indicates better inference
performance.

—Prec@K. Precision at K is defined by the proportion of true dependencies among the
top K inferred dependencies. A larger Prec@K indicates better inference performance.

5.1.4. Machine and Repeatability. All the experiments are performed on a machine with
two processors of Intel Xeon 3.5GHz with 256GB of RAM. The algorithms are pro-
grammed with MATLAB using single thread. We will release the code and all the
non-proprietary datasets after the paper is published.

5.2. Effectiveness

In this section, we aim to answer the following three questions, (1) how effective is
FasciNaTE for Problem 1 (i.e., Copg)? (2) how effective is FAscINATE-ZERO for Problem 2
(i.e., ConeE-ZERO)? and (3) how sensitive are the proposed algorithms w.r.t. the model
parameters?

5.2.1. Effectiveness of FASCINATE. We compare the proposed algorithms and the existing
methods on all the five datasets. The results are shown in Table IV through Table VIII.
As FasciNaTe-UN is not scalable to large networks, we only evaluate its performance
on two small datasets—CITATION and INFRA-5 (Table IV and Table V). There are
several interesting observations. First is that our proposed FasciNaTE algorithm and its
variants (FASCINATE-CLUST and FasciNaTE-UN) consistently outperform all other meth-
ods in terms of all the five evaluation metrics. We perform a t-test between FASCINATE
algorithms and other comparing methods w.r.t. the MAP metric. The results show that
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Table IV. Cross-Layer Dependency Inference on CITATION

Methods MAP R-MPR HLU AUC | Prec@10
FASCINATE 0.1389 | 0.3907 | 19.1264 | 0.8523 | 0.0428
Fascinate-Crust | 0.1347 | 0.3882 | 19.8367 | 0.8487 | 0.0407
FasciNaTE-UN 0.1873 | 0.2685 | 25.1961 | 0.7423 | 0.0532

MulCol 0.1347 | 0.3882 | 19.8367 | 0.8487 | 0.0459
PairSid 0.1623 | 0.3868 | 21.8641 | 0.8438 | 0.0480
PairCol 0.1311 | 0.3838 | 19.1697 | 0.8388 | 0.0446
PairNMF 0.0338 | 0.1842 4.4397 | 0.6009 | 0.0103
PairRec 0.0351 | 0.2582 5.3407 | 0.6527 | 0.0129
FlatNMF 0.0811 | 0.3539 | 12.1835 | 0.8084 | 0.0284
FlatRec 0.0032 | 0.3398 0.0608 | 0.8113 | 0.0001

Table V. Cross-Layer Dependency Inference on INFRA-5

Methods MAP R-MPR HLU AUC | Prec@10
FascINATE 0.5040 | 0.3777 | 67.2231 | 0.8916 | 0.2500
FasciNate-Crust | 0.4297 0.3220 56.8215 | 0.8159 0.2340
FasciNaTE-UN 0.4354 | 0.3631 | 60.2393 | 0.8575 | 0.2412

MulCol 0.4523 | 0.3239 | 59.8115 | 0.8329 | 0.2413
PairSid 0.3948 | 0.2392 | 49.5484 | 0.7413 | 0.2225
PairCol 0.3682 | 0.2489 | 48.5966 | 0.7406 | 0.2309
PairNMF 0.1315 | 0.0464 | 15.7148 | 0.5385 | 0.0711
PairRec 0.0970 | 0.0099 9.4853 0.5184 | 0.0399
FlatNMF 0.3212 | 0.2697 | 44.4654 | 0.7622 | 0.1999
FlatRec 0.1020 | 0.0778 | 11.5598 | 0.5740 | 0.0488

Table VI. Cross-Layer Dependency Inference on INFRA-3

Methods MAP R-MPR HLU AUC | Prec@10
FasciNATE 0.4780 | 0.0788 | 55.7289 | 0.6970 | 0.5560
FasciNate-Crust | 0.5030 | 0.0850 | 49.1223 | 0.7122 | 0.4917
FasciNaTE-UN - — — — -

MulCol 0.4606 | 0.0641 | 49.3585 | 0.6706 | 0.4930
PairSid 0.4253 | 0.0526 | 47.7284 | 0.5980 | 0.4773
PairCol 0.4279 | 0.0528 | 48.1314 | 0.5880 | 0.4816
PairNMF 0.4275 | 0.0511 | 48.8478 | 0.5579 | 0.4882
PairRec 0.3823 | 0.0191 | 38.9226 | 0.5756 | 0.3895
FlatNMF 0.4326 | 0.0594 | 45.0090 | 0.6333 | 0.4498
FlatRec 0.3804 | 0.0175 | 38.0550 | 0.5740 | 0.3805

FascINATE is significantly better with a 0.01 significance level. Second, by exploiting
the structure of multi-layered network, FASCINATE, FASCINATE-CLUST, FAscINATE-UN, and
MulCol can achieve significantly better performance than the pairwise methods in
most datasets. Third, among the pairwise baselines, PairSid and PairCol are better
than PairNMF and PairRec. The main reason is that the first two algorithms utilize
both within-layer connectivity matrices and cross-layer dependency matrix for matrix
factorization, while the latter two only use the observed dependency matrix. Finally,
the relatively poor performance of FlatNMF and FlatRec implies that simply flattening
the multi-layered network into a single network is insufficient to capture the intrinsic
correlations across different layers.
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Table VII. Cross-Layer Dependency Inference on SOCIAL

Methods MAP R-MPR HLU AUC | Prec@10
FASCINATE 0.0660 | 0.2651 | 8.4556 | 0.7529 | 0.0118
Fascinate-Crust | 0.0667 | 0.2462 | 8.2160 | 0.7351 | 0.0108
FasciNate-UN - — - — -

MulCol 0.0465 | 0.2450 | 6.0024 | 0.7336 | 0.0087
PairSid 0.0308 | 0.1729 | 3.8950 | 0.6520 | 0.0062
PairCol 0.0303 | 0.1586 | 3.7857 | 0.6406 | 0.0056
PairNMF 0.0053 | 0.0290 | 0.5541 | 0.4998 | 0.0007
PairRec 0.0056 | 0.0435 | 0.5775 | 0.5179 | 0.0007
FlatNMF 0.0050 | 0.0125 | 0.4807 | 0.5007 | 0.0007
FlatRec 0.0063 | 0.1009 | 0.6276 | 0.5829 | 0.0009

Table VIII. Cross-Layer Dependency Inference on Bio

Methods MAP R-MPR HLU AUC | Prec@10
FascINATE 0.3979 | 0.4066 | 45.1001 | 0.9369 | 0.1039
Fascivate-Crust | 0.3189 | 0.3898 | 37.4089 | 0.9176 | 0.0857
Fascinate-UN - - - - -
MulCol 0.3676 | 0.3954 | 42.8687 | 0.9286 | 0.0986
PairSid 0.3623 | 0.3403 | 40.4048 | 0.8682 | 0.0941
PairCol 0.3493 | 0.3153 | 38.4364 | 0.8462 | 0.0889
PairNMF 0.1154 | 0.1963 15.8486 | 0.6865 | 0.0393
PairRec 0.0290 | 0.2330 3.6179 0.7105 | 0.0118
FlatNMF 0.2245 | 0.2900 | 26.1010 | 0.8475 | 0.0615
FlatRec 0.0613 | 0.3112 8.4858 0.8759 | 0.0254
1 T 1
——_
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Fig. 4. Performance of FasciNaTE and FasciNaTE-CLusT on INFRA-3 dataset under different missing value
percentages.

We also test the sensitivity of the proposed algorithms w.r.t. the sparsity of the
observed cross-layer dependency matrices (i.e., the ratio of the missing values) on
INFRA-3. The results in Figure 4 demonstrate that both FasciNaTE and FASCINATE-
Curust perform well even when 90%+ entries in the dependency matrices are missing.

5.2.2. Effectiveness of FASCINATE-ZERO. To evaluate the effectiveness of FAsciNATE-ZERO,
we randomly select one node from the Chemical layer in the BIO dataset as the newly
arrived node and compare the inference performance between FasciNaTE-ZERO and
FasciNaTE. The average results over multiple runs are presented in Figure 5. We can
see that FasciNaTE-ZERO bears a very similar inference power as FASCINATE, but it is

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 42, Publication date: June 2017.



Cross-dependency inference in multi-layered networks 42:21

Bio Chemical
0.8 : ‘
—e— FASC-ZERO
|| ——FASC
07 r=200
0.6f '_:_:_:_:_:_:_:_-..-..-_-_.—....-.‘-_-_- =100
r=50
o 05 B
<
= 0.4}
0.3+ e r=20
0.2t & ---------------- r=10
0.1 ‘ ‘ ‘
10 10° 102
time (s)

1000
0

100 0 100 100

(a) Impact of o and r. (b) Impact of 5 and 7. (¢) Impact of o and (3 .
(fixing 5 = 0.1) (fixing o = 0.1) (fixing » = 100)

Fig. 6. The parameter studies of the BIO dataset.

orders of magnitude faster. We observe similar performance when the zero-start nodes
are selected from the other two layers (i.e., Gene and Disease).

5.2.3. Parameter Studies. There are three parameters «, 8, and r in the proposed Fas-
CINATE algorithm. « is used to control the impact of node homophily, 8 is used to avoid
over-fitting, and r is the number of columns of the low-rank matrices {F;}. We fix one of
these parameters, and study the impact of the remaining two on the inference results.
From Figure 6, we can see that MAP is stable over a wide range of both « and 8. As for
the third parameter r, the inference performance quickly increases w.r.t. r until it hits
200, after which the MAP is almost flat. This suggests that a relatively small size of the
low-rank matrices might be sufficient to achieve a satisfactory inference performance.

For FasciNaTE-UN, we study the impact of the backtracking line search parameters
on its performance. By fixing «, 8, and rank r to 0.1, 0.1, and 100, respectively, we
examine a wide range of a and b within their domains as shown in Figure 7. We can see
that the inference performance is sensitive to the combination of @ and b because subtle
parameter changes may affect the convergence speed in Algoritm 2 greatly, which would
have impact on the inference performance within limited iterations consequently.
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Fig. 7. The backtracking line search parameter study of the INFRA-5 dataset.
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Fig. 8. Wall-clock time vs. the size of the network.

5.3. Efficiency

The scalability results of FasciNATE and FasciNATE-ZERO are presented in Figure 8. As
we can see in Figure 8(a), FASCINATE scales linearly w.r.t. the overall network size (i.e.,
>.i(mi +m) + 3, ;m; ), which is consistent with our previous analysis in Lemma 3.3.
As for FasciNaTe-ZERO, it scales sub-linearly w.r.t. the entire network size. This is
because, by Lemma 4.1, the running time of FAsciNATE-ZERO is only dependent on the
neighborhood size of the newly added node, rather than that of the entire network.
Finally, we can see that FasciNaTE-ZERO is much more efficient than Fascinare. To be
specific, on the entire INFRA-3 dataset, FascinaTe-ZERO is 10,000,000+ faster than
FASCINATE (i.e., 1.878 x 10~* seconds vs. 2.794 x 103 seconds).

In addition, we compare the running time of FasciNaTE and FasciNATE-UN on CITA-
TION and INFRA-5 networks. The results are as shown in Figure 9. As we can see,
FasciNaTE-UN is orders of magnitude slower than FASCINATE to achieve similar inference
results, which is consistent to our complexity analysis in Section 3.4.
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Fig. 9. Wall-clock running time of FasciNaTe and FasciNvaTe-UN.

6. RELATED WORK

In this section, we review the related literature, which can be classified into following
two categories: (1) multi-layered network, and (2) collaborative filtering.

Multi-Layered Network. Multi-layered networks (also referred as network of net-
works in some scenarios) have attracted a lot research attentions in recent years.
In Kivela et al. [2014], the authors provide a comprehensive survey about different
types of multi-layered networks, including multi-modal networks [Heath and Sio-
son 2009], multi-dimensional networks [Berlingerio et al. 2011], multiplex networks
[Battiston et al. 2014], and inter-dependent networks [Buldyrev et al. 2010]. The
network studied in our article belongs to the category of inter-dependent networks.
One of the mostly studied problems in inter-dependent networks is network robust-
ness [Gao et al. 2011]. Most of the previous researches are based on two-layered net-
works [Buldyrev et al. 2010; Gao et al. 2012; Parshani et al. 2010; Shao et al. 2011],
with a few exceptions that focus on arbitrarily structured multi-layered networks [Chen
et al. 2015]. Notice that all these existing works assume that the network structure
(including both the within-layer connectivity and the cross-layer dependency) is given a
prior, which is not the case in real-world applications due to noise, limited accessibility,
and so forth. In Chen et al. [2016], a collaborative filtering-based method is proposed to
infer the missing cross-layer dependencies in multi-layered network. Other remotely
related studies include cross-network ranking [Ni et al. 2014] and clustering [Ni et al.
2015; Liu et al. 2015a] in the context of multi-layered networks and [Xu et al. 2013;
Zhou et al. 2015; Zhang et al. 2016] in multi-view data analysis.

Collaborative Filtering. As mentioned earlier, the cross-layer dependency infer-
ence problem is conceptually related to collaborative filtering [Goldberg et al. 1992].
Commonly used collaborative filtering methods can be roughly classified into two basic
models: neighborhood models [Breese et al. 1998] and latent factor models [Koren et al.
2009]. As the latent factor model is more effective in capturing the implicit dependen-
cies between users and items, many variants have been proposed to address implicit
feedback problems [Hu et al. 2008; Ma 2013], OCCF problems [Pan et al. 2008], feature
selection problems [Li et al. 2016a, 2016b], and even crowdsourcing problems in high
dimensional settings [Zhou and He 2016]. Instead of only using the user-item rating
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matrix for preference inference, Li et al. [2010] propose a method that can effectively
incorporate user information into OCCF to improve the performance. To further exploit
more data resources for preference inference, Yao et al. [2014] propose wiZAN-Dual
to take both user similarity network and item similarity network as side information
for OCCF. In Zheng et al. [2013], multiple similarity networks of users and items are
integrated together for drug-target interaction prediction. In Li et al. [2009] and Yang
et al. [2015], user and item features are incorporated into the traditional collaborative
filtering algorithms for cross-domain recommendation. To deal with domains with mul-
tiple dependencies, Singh and Gordon [2008] propose a collective matrix factorization
model to learn the dependencies across any two inter-dependent domains. Some less
studied scenarios in collaborative filtering include handling cold-start problems [Xu
et al. 2015] and user/item dynamics [Koren 2009; He et al. 2016] (e.g., the arrival a
new user or item and a new rating between an user and an item).

7. CONCLUSIONS

In this article, we formally define the cross-layer dependency inference problem (Copg)
and its zero-start problem (Cope-ZERO) in the context of multi-layered networks. To
address these problems, we propose to formulate the inference problem as a collective
collaborative filtering problem and introduce FascINATE, an algorithm that can effec-
tively infer the missing dependencies with provable optimality and scalability. In par-
ticular, by modeling the impact of zero-start node as a perturbation in the multi-layered
network, we derive FasciNATE-ZERO, an online variant of FAascINATE that can approx-
imate the dependencies of the newly added node with sub-linear complexity w.r.t. the
overall system size. The experimental results on five real-world datasets demonstrate
the superiority of our proposed algorithm both by its effectiveness and efficiency.
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