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Abstract—Network alignment and network completion are two
fundamental cornerstones behind many high-impact graph
mining applications. The state-of-the-arts have been addressing
these tasks in parallel. In this paper, we argue that network
alignment and completion are inherently complementary with
each other, and hence propose to jointly address them so that
the two tasks can benefit from each other. We formulate it
from the optimization perspective, and propose an effective
algorithm (INEAT) to solve it. The proposed method offers two
distinctive advantages. First (Alignment accuracy), our method
benefits from higher-quality input networks while mitigates the
effect of incorrectly inferred links introduced by the completion
task itself. Second (Alignment efficiency), thanks to the low-
rank structure of the complete networks and alignment matrix,
the alignment can be significantly accelerated. The extensive
experiments demonstrate the performance of our algorithm.

1. Introduction
In the era of big data, networks are often incomplete (i.e.,

veracity) and multi-sourced (i.e., variety), e.g., transaction
networks from multiple financial institutes [1]. As such,
network alignment (i.e., to find node correspondence across
multiple networks) and network completion (i.e., to infer
the missing links) become two key tasks in many graph
mining applications. Although the multi-sourced and incom-
plete characteristics often co-exist in many real networks,
the state-of-the-arts have been largely addressing them in
parallel. That is, most existing network alignment methods
have implicitly assumed the topology of the input networks
for alignment are perfectly known apriori [2], whereas the
existing network completion methods admit either a single
network (i.e., matrix completion [3]) or multiple aligned
networks (e.g., tensor completion [4]). How can we align
two networks when one or both of them have missing edges?

A natural choice could be completion-then-alignment.
That is, we first run network completion task on each of
the two input networks separately, and then align the two
complete networks. However, this strategy has some funda-
mental limits. First (Alignment accuracy), the promise of the
completion-then-alignment strategy lies in that by inferring
the missing links, it would provide higher-quality input net-
works for the alignment task. However, the completion task
itself might introduce noisy links, which might compromise,
or even outweight the benefits of the correctly inferred
missing links for the alignment task. Second (Alignment
efficiency), the network alignment alone is already compu-

tationally costly. Most of the existing methods (even with
approximation, such as [5]) have a time/space complexity
that is at least O(n2), where n is the number of nodes of
the input networks, mainly due to the computation/storage
of the sparse matrix-matrix multiplication between the input
adjacency matrices and the alignment matrix. By inferring
the missing links, network completion would make each
input network denser. If we simply conduct the network
alignment task on such densified networks, it might make
the computation even more intensive.

To address these limitations, we hypothesize that net-
work alignment and network completion are inherently com-
plementary with each other due to the following reasons.
First, (H1) alignment helps completion. If two nodes in
two networks are aligned together, intuitively, they might
share similar connectivity patterns. Therefore, the knowl-
edge about the existence or absence of links in one network
could help inferring the missing links in another network
via alignment. Second, (H2) completion helps alignment.
As mentioned above, network completion could potentially
improve the alignment accuracy by providing higher-quality
input networks. Moreover, network completion itself im-
plicitly assumes a low-rank structure of input networks,
which, if harnessed appropriately, will actually accelerate
the alignment process as we will show in the paper.

Armed with these hypotheses, we propose to jointly
address network alignment and network completion prob-
lems. We formulate it as an optimization problem with
the following two key ideas. First, in order to leverage
alignment for the completion task, we impose the low-rank
structure on the underlying (true) network, which matches
not only the observed links of the corresponding network,
but also the auxiliary observations from the other network
via the alignment matrix. Second, in order to leverage the
network completion for the alignment, we recast the network
alignment problem via the low-rank structures of complete
networks, which not only improves the alignment accuracy,
but also reduces the alignment to linear.

The rest of the paper is organized as follows. Section
2 defines the incomplete network alignment problem and
provides the preliminaries. Section 3 presents the proposed
optimization formulation and Section 4 gives its optimiza-
tion algorithm. Section 5 presents some experimental results.
Related work and conclusion are given in Section 6 and 7.

2. Problem Definition and Preliminaries
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2.1. Problem Definition
Table 1 summarizes the main symbols and notations

used throughout the paper. We use bold uppercase letters
for matrices (e.g., A), bold lowercase letters for vectors
(e.g., s), and lowercase letters (e.g., α) for scalars. We
use A(i, j) to denote the entry at the intersection of the
i-th row and j-th column of the matrix A. We denote
the transpose of a matrix by a superscript T (e.g., AT is
the transpose of A). The vectorization of a matrix (in the
column order) is denoted by vec(·), and the result vector
is denoted by the corresponding bold lowercase letter (e.g.,
s = vec(S)). Equivalently, the transformation of a vector
to its corresponding matrix is denoted by a de-vectorization
operator mat(·) (e.g., S = mat(s)).

TABLE 1: Symbols and Notations
Symbols Definition
G1, G2 incomplete networks
A1,A2 two adjacency matrices of G1 and G2

n1, n2 # of nodes in A1 and A2

S an n2 × n1 alignment matrix between A2 and A1

PΩ(·), PΩ̄(·) an operator to project only to observed (unobserved) entries
U1,V1,U2,V2 low rank factorizations of A1 and A2

PΩ1 ,PΩ2 projection matrix, all 1s at all observed entries
11,12 1s vectors of length n1 and n2 respectively
λ, γ, β parameters
Tr[·] trace operator

diag(·) diagonal matrix of a vector
vec(·), mat(·) vectorization and de-vectorization operator

eig(·) eigenvalues of a matrix

Many real-world networks are incomplete. That is, we
only have knowledge about the existence (i.e., a value of
1) or absence (i.e., a value of 0) of certain entries (denoted
by the set Ω) of its adjacency matrix. For the rest entries in
the adjacency matrix, we do not know if the corresponding
links exist or not. Figure 1 presents an illustrative example.
As we can see in Figure 1(a), the nodes (1, 2, 3, 4) in the
first incomplete network have similar topology to the nodes
(6′, 7′, 8′, 9′), possibly leading to a wrong alignment result
that these two sets of nodes are aligned within each other.
However, the complete networks in Figure 1(b) (by filling
all the red lines) are identical. Thus, the nodes (1, 2, 3, 4)
can be aligned to nodes (1′, 2′, 3′, 4′) respectively, so can
the rest of nodes. On the other hand, by completing two
networks separately, noisy edges might be incorrectly added
(e.g., edge (4, 6)) and the true network structure would fail
to be recovered. The incorrectly recovered networks may
further mislead the alignment results. Therefore, how to
align incomplete networks while completing them is the key
challenge this paper aims to address.

Problem 1. INCOMPLETE NETWORK ALIGNMENT.
Given: (1) adjacency matrices A1,A2 of incomplete net-
works, (2) prior node similarity matrix H across networks.
Output: (1) the n2 ×n1 alignment matrix S, where S(x, a)
represents to what extent node-a in G1 is aligned with node-
x in G2, and (2) complete adjacency matrices A∗

1, and A∗
2.

2.2. Preliminaries
A - Network Alignment. Most existing network alignment
algorithms (such as IsoRank [6] and FINAL [5]), explicitly
or implicitly, are based on the topology consistency princi-
ple. Take FINAL as an example, the topology consistency

Figure 1: An illustrative example. Figure 1(a) shows the
input incomplete networks and Figure 1(b) shows part of
the alignment across two complete networks.

principle can be stated as follows1. Given two pairs of nodes,
say (1) node-a in G1 and node-x in G2 and (2) node-b in G1

and node-y in G2, if nodes a and b are close neighbors and so
are nodes x and y, it assumes the similarity between a and
x, and that between their neighbors b and y to be consistent,
i.e., small [Ŝ(a, x)− Ŝ(b, y)]2A1(a, b)A2(x, y), where Ŝ is
the similarity matrix. Mathematically, this naturally leads to
the following optimization problem.

min
ŝ

αŝT (D−A1 ⊗A2)ŝ+ (1− α)‖Dŝ− h‖2F (1)

where ŝ,h are the vectorization of the similarity matrix Ŝ
and the prior node similarity matrix H, D = D1 ⊗D2 and
D1,D2 are the degree matrix of A1,A2. Note that instead
of using Ŝ to infer the alignment as in [5], we use a scaled
similarity matrix S as alignment matrix in our paper where
S is the matrix form of s = Dŝ (i.e., S = mat(Dŝ)). In
other words, the entries in the alignment matrix S measure
to what extent two corresponding nodes are aligned together.
The second regularization term is to avoid trivial solutions.

B - Network Completion. As mentioned earlier, incom-
plete networks might have many unobserved missing edges,
which could significantly change the true network structure
and hence mislead the topology-based network alignment.
One straightforward way to address this issue is by using
matrix completion. Most of the existing matrix completion
methods are centered around minimizing the nuclear norm
of the matrix. In [7], the authors show that the nuclear norm
‖A1‖∗ = min

U1,V1

1
2 (‖U1‖2F + ‖V1‖2F ) where A1 = U1V

T
1 ,

which allows the factorization-based completion methods.
Thus, we can recover the complete networks by minimizing

J1(U1,V1,U2,V2)

=
1

2
‖PΩ1(A1 −U1V

T
1 )‖2F +

λ

2
(‖U1‖2F + ‖V1‖2F )

+
1

2
‖PΩ2(A2 −U2V

T
2 )‖2F +

λ

2
(‖U2‖2F + ‖V2‖2F )

(2)

where the operator PΩ1 projects the value to the observed
set Ω1 of A1, e.g., PΩ1((U1V

T
1 )(i, j)) = (U1V

T
1 )(i, j),

∀(i, j) ∈ Ω1, otherwise 0; and PΩ2 is defined similarly.

3. Proposed Optimization Formulation
In this section, we present the proposed optimization

formulation to solve Problem 1. First, we present how to
formulate the alignment task and prove the low-rank struc-
ture of alignment matrix. Then we present how to leverage
the alignment matrix to infer missing edges across networks.

1. In [5], the authors generalize the topology consistency to further
accommodate node/edge attributes, which is outside the scope of this paper.
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3.1. Network Completion Helps Alignment
We use the networks recovered by Eq (2) as the in-

put networks whose adjacency matrices are of rank-r, i.e.,
A∗

1 = U1V
T
1 and A∗

2 = U2V
T
2 . We adopt Eq. (1) to

perform network alignment. Due to the potential asymmetry
of A∗

1 and A∗
2, based on the topology consistency (i.e., small

[Ŝ(a, x) − Ŝ(b, y)]2A∗
1(a, b)A

∗
2(x, y) across two directed

networks), the optimization problem is formulated as

min
ŝ

αŝT (D̂−A∗
1 ⊗A∗

2)ŝ+ (1− α)‖D̂ŝ− h‖2F (3)

where D̂ = D1⊗D2+D̂1⊗D̂2

2 , D1 = diag(U1V
T
1 11) and

D̂1 = diag(1T
1 U1V

T
1 ) are the outdegree and indegree

matrix of A∗
1, respectively. D2 and D̂2 are defined similarly.

However, directly solving the above problem requires at
least O(n2) time complexity. To address this issue, we give
the following lemma, which states the alignment matrix S
under the topology consistency (i.e., Eq. (3)) intrinsically
consists of a low-rank structure, thanks to the low-rank
structure of two complete adjacency matrices.
Lemma 1. Low-Rank Structure of the Alignment Matrix
S. Let ŝ be the solution of Eq. (3) where A∗

1 = U1V
T
1 and

A∗
2 = U2V

T
2 are complete rank-r1 and rank-r2 adjacency

matrices. Let the alignment matrix S be the scaled similarity
matrix S = mat(D̂ŝ) and H be the prior similarity matrix,
then if α < 0.5, the alignment matrix can be expressed as
S = αU2MU1 + (1− α)H where M is an r2 × r1 matrix
and r1, r2 are the ranks of A∗

1 and A∗
2, respectively.

Proof. The closed-form solution of Eq. (3) is computed by

ŝ = (1− α)D̂−1h+ α(1− α)D̂−1UΛ−1VT D̂−1h (4)

where U = U1⊗U2, V = V1⊗V2, Λ = I−αVT D̂−1U.
First, we rewrite Λ−1 as follows. Since for any two

matrices X,Y, the eigenvalues of their product satisfies
eig(XY) = eig(YX) [8], we obtain

|eig(VT̂D−1U)| = |eig(UVT D̂−1)| ≤ |eig(2UVT (D1 ⊗D2)
−1) |

= 2|eig((U1V
T
1 D

−1
1 )⊗ (U2V

T
2 D

−1
2 ))|

Here, the term U1V
T
1 D

−1
1 represents a weighted di-

rected network whose adjacency matrix has eigenvalues
within (−1, 1), so as U2V

T
2 D

−1
2 . Thus, if α < 0.5, based

on the spectrum property of Kronecker product, we have

2α|eig((U1V
T
1 D

−1
1 )⊗ (U2V

T
2 D

−1
2 ))| < 1 (5)

Then, we can use Taylor expansion on Λ−1 as

Λ−1 =

∞∑
k=0

(2α)k[VT (2D̂)−1U]k (6)

Next, we rewrite (2D̂)−1 as follows. Denote D̄1 = D1+
D̂1 and D̄2 = D2 + D̂2, we have
(2D̂)−1 = (D1 ⊗D2 + D̂1 ⊗ D̂2)

−1

= [I− (D̄−1
1 ⊗ D̄−1

2 )(D1 ⊗ D̂2 + D̂1 ⊗D2)]
−1(D̄−1

1 ⊗ D̄−1
2 )

=

∞∑
j=0

[(D̄−1
1 D1)⊗ (D̄−1

2 D̂2) + (D̄−1
1 D̂1)⊗ (D̄−1

2 D2)]
j

=

∞∑
j=0

j∑
i=0

(
j

i

)
[(D̄−1

1 D1)
i(D̄−1

1 D̂1)
j−i]⊗ [(D̄−1

2 D̂2)
i(D̄−1

2 D2)
j−i]

Thus, Eq. (6) can be further derived as

Λ−1 =

∞∑
k=0

∞∑
j=0

j∑
i=0

(2α)k
(
j

i

)k

[VT
1 (D̄

−1
1 D1)

i(D̄−1
1 D̂1)

j−iU1]
k

⊗ [VT
2 (D̄

−1
2 D̂2)

i(D̄−1
2 D2)

j−iU2]
k (7)

Denote s = D̂ŝ and ĥ = D̂−1h. Due to vec(ABC) =
(CT ⊗A)vec(B), by substituting Eq. (7) into Eq. (4), we

obtain the alignment matrix S = mat(D̂ŝ) as

S = αU2MUT
1 + (1− α)H (8)

where M is an r2 × r1 matrix and is computed by

M =

∞∑
k=0

∞∑
j=0

j∑
i=0

2kαk
(j
i

)k

[VT
2 (D̄−1

2 D̂2)
i(D̄−1

2 D2)
j−iU2]

k (9)

× (1− α)VT
2 ĤV1[U

T
1 (D̄−1

1 D1)
i(D̄−1

1 D̂1)
j−iV1]

k

Remarks. In practice, the matrix H in Eq. (8) is either low-
rank (e.g., a rank-one uniform matrix) or very sparse. This
naturally leads to the following effective strategy. First, we
temporarily treat the low-rank structure part as the alignment
matrix to be solved in the optimization problems (i.e., S ≈
U2MU1). We then can calibrate the result by averaging
between the learned S and the prior knowledge H, i.e., S ←
(1− α)H+ αS. A direct benefit of this strategy is that we
can reduce the overall complexity to be linear.

To take advantages of the low-rank structure of S under
the above strategy, instead of minimizing the similarity
matrix Ŝ in Eq. (3), we alternatively optimize the topology
consistency on the low-rank structure of alignment matrix
S = U2MU1 without the second regularization term, i.e.,
minimizing sT (D̂ − A∗

1 ⊗ A∗
2)s. By vec(A)T vec(B) =

Tr(ATB) and vec(ABC) = (CT ⊗ A)vec(B), network
alignment across complete networks can be formulated as

J2(U1,V1,U2,V2,M)

=
γ

2
sT vec(D2SD1 + D̂2SD̂1) + γsT vec(U2V

T
2 SV1U

T
1 )

=
γ

2
Tr(D2U2MUT

1 D1U1M
TUT

2 + D̂2U2MUT
1 D̂1U1M

TUT
2 )

− γTr(U2V
T
2 U2MUT

1 V1U
T
1 U1M

TUT
2 ) (10)

3.2. Network Alignment Helps Completion
In some applications, the information of a single network

alone might be insufficient to correctly infer missing edges.
Meanwhile, since the aligned nodes are likely to share
similar connectivity patterns, the observed existing edges in
one network could potentially help recover missing edges
in the other network via alignment. To be specific, if node-
a in G1 and node-x in G2 are aligned together, and the
neighbor of x (say node-y) is aligned with node-b that is
unobserved to connect with node-a, the completion based on
the single network information might not succeed inferring
this missing link. However, the facts that (1) a and x are
aligned, (2) b and y are aligned, and (3) there is an edge
between x and y might provide an auxiliary confidence
about the edge existence between a and b. We can estimate
such auxiliary confidence of the edge existence as

A∗
1(a, b) ≈

n2∑
x,y

S(a, x)S(b, y)A2(x, y) = (STA2S)(a, b) (11)

where S = U2MUT
1 is the alignment matrix learned from

the topology consistency. In our experiments, we find that
such auxiliary confidence is most powerful to estimate the
existence/absence of an edge (a, b) when such an edge itself
is not observed in G1 (i.e.,(a, b) ∈ Ω̄1). Mathematically, this
can be formulated as the following objective function.
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J3(U1,V1,U2,V2,M)

=
β

2
‖PΩ̄1

(U1V
T
1 −U1M

TUT
2 A2U2MUT

1 )‖2F
+

β

2
‖PΩ̄2

(U2V
T
2 −U2MUT

1 A1U1M
TUT

2 )‖2F
(12)

where Ω̄1 and Ω̄2 are the unobserved set of A1 and A2.

3.3. Overall Objective Function
We impose the nonnegativity constraints on all the

variables U1,V1,U2,V2,M to guarantee the matrices
A∗

1,A
∗
2,S to be nonnegative. Combining Eq. (2), Eq. (10)

and Eq. (12) together, the overall optimization problem is
min

U1,V1,U2,V2,M
J(U1,V1,U2,V2,M) = J1 + J2 + J3

s.t U1,U2,V1,V2,M ≥ 0 (13)

4. Proposed Optimization Algorithm
Since the overall objective function Eq. (13) is not

jointly convex, we optimize it by block coordinate descent,
i.e., alternatively minimizing w.r.t one variable group while
fixing the others until convergence. Due to the space limi-
tation, we only show the minimization procedures over U1.
Other variables V1,U2,V2,M can be solved similarly as
U1. The derivative of Eq. (2) w.r.t U1 is computed by

∂J1

∂U1
= X1 −Y1 (14)

where X1 = [PΩ1 � (U1V
T
1 )]V1 + λU1

Y1 = (PΩ1 �A1)V1

and PΩ1
(i, j) = 1 for (i, j) ∈ Ω1, otherwise PΩ1

(i, j) = 0.
The derivative of Eq. (10) over U1 is computed by

∂J2

∂U1
= X2 −Y2 (15)

where

X2 =
γ

2
[(U1M

TUT
2 D2U2M)�U1]1r11

T
1 V1

+
γ

2
111

T
r1 [(M

TUT
2 D̂2U2MUT

1 )�UT
1 ]V1

+ γ(D1U1M
TUT

2 D2U2M+ D̂1U1M
TUT

2 D̂2U2M)

Y2 = γV1U
T
1 U1M

TUT
2 U2V

T
2 U2M

+ γU1M
TUT

2 U2V
T
2 U2MUT

1 V1

+ γU1V
T
1 U1M

TUT
2 V2U

T
2 U2M

And the derivative of Eq. (12) over U1 is
∂J3

∂U1
= X3 −Y3 (16)

where
X3 = 2β[PΩ̄1

� (U1M
TUT

2 A2U2MUT
1 )]U1M

TUT
2 A2U2M

+ 2βA1U1M
TUT

2 [PΩ̄2
� (U2MUT

1 A1U1M
TUT

2 )]U2M

+ β[PΩ̄1
� (U1V

T
1 )]V1

Y3 = β[PΩ̄1
� (U1M

TUT
2 A2U2MUT

1 )]V1

+ β[PΩ̄1
� (U1V

T
1 +V1U

T
1 )]U1M

TUT
2 A2U2M

+ βA1U1M
TUT

2 [PΩ̄2
� (U2V

T
2 +V2U

T
2 )]U2M

and matrix PΩ̄2
(i, j) = 1 for any (i, j) /∈ Ω2.

A fixed-point solution of ∂J
∂U1

= 0 under nonnegativity
constraint of U1 leads to the multiplicative update rule

U1(u, v) ← U1(u, v)
4

√
Y1(u, v) +Y2(u, v) +Y3(u, v)

X1(u, v) +X2(u, v) +X3(u, v)
(17)

Initialization. Since the optimization problem in Eq. (13) is
not a joint convex problem, a good initialization could play
an important role of obtaining a good solution. For U1 and

U2, we initialize them by solving the symmetric nonneg-
ative matrix factorization of A1 and A2, e.g., minimizing
‖A1 − U1U

T
1 ‖2F over U1 ≥ 0. Same as [9], we use the

following multiplicative update to obtain the solution

U1 ← U1 � [
1

2
+

1

2

A1U1

U1(UT
1 U1)

] (18)

Then we set V1 = U1 due to the symmetry of A1 and ini-
tialize U2,V2 similarly. Given the initial U1,V1,U2,V2,
we can initialize M based on Eq. (9) as

M = (1− α)
K∑

k=0

αk+1(UT
2 D

−1
2 U2)

kUT
2 D

−1
2 HD−1

1 U1(U
T
1 D

−1
1 U1)

k(19)

where K can be set to a large number, e.g., 500.
Overall, the algorithm is summarized in Algorithm 1.

It alternatively updates each variable group (line 3-7) until
it converges or tmax is reached. In each iteration, the time
complexity is O(nr2 +min{|Ω̄|, |Ω|}r). The algorithm out-
puts the complete networks A∗

1,A
∗
2 and alignment matrix

S by averaging between U2MUT
1 and H (line 10).

Algorithm 1 INEAT: Incomplete Network Alignment.

Input: (1) adjacency matrices A1, A2 of the incomplete networks
G1, G2, (2) prior alignment preference H, (3) the rank r1, r2,
(3) parameters α, λ, γ, β. and (4) maximum iteration number
tmax.

Output: (1) the alignment matrix S, and (2) the complete adja-
cency matrices A∗

1,A
∗
2.

1: Initialize U1,V1,U2,V2 as Eq. (18), M as Eq. (19), t = 1;
2: while not converge and t ≤ tmax do
3: Update U1 by Eq. (17) until convergence;
4: Update V1 until its convergence;
5: Update U2 until its convergence;
6: Update V2 until its convergence;
7: Update M until convergence;
8: Set t ← t+ 1;
9: end while

10: A∗
1 = U1V

T
1 , A∗

2 = U2V
T
2 and S = αU2MUT

1 +(1−α)H.

5. Experimental Results
5.1. Experimental Setup
Datasets. We evaluate the proposed algorithm on three types
of real-world networks. The statistics of all the datasets
are summarized in Table 2. Based on these datasets, we
construct four pairs of incomplete networks by the following
steps. For each dataset, we first generate a random permu-
tation matrix and use it to construct the second permuted
network. Then, in each of these two networks, we remove
0.1%, 0.5%, 1%, 5%, 10%, 15%, 20% of the total number of
edges uniformly at random to generate unobserved edges.
Comparison Methods.
• Alignment. To evaluate the alignment performance of our

algorithm, we compare with the following existing net-
work alignment algorithms, including (1) NetAlign [10],
(2) IsoRank [6], (3) FINAL-P+ [5]. Besides, to validate
whether alignment and imputation are mutually beneficial
from each other, we use the low-rank networks recovered
solely by Eq. (2) as the input networks for FINAL-P+.
We name this method as FINAL-IMP. We also show the
alignment results by the degree similarity (DegSim), which
is also used as the prior knowledge matrix H of INEAT.

• Completion. To evaluate the completion performance, we
compare with existing matrix completion methods which
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TABLE 2: Statistics of Datasets.
Category Network # of Nodes # of Edges

Collaboration Gr-Qc 5,241 14,484
Infrastructure Oregon 7,352 15,665

Social Google+ 23,628 39,194
Social Youtube 1,134,890 2,987,624

are for a single network, including (1) the method based
on Eq. (2) (NMF-IMP), (2) accelerated proximal gradient
based nuclear norm minimization (NNLS) [11], (3) Rie-
mannian trust-region based completion (RTRMC) [12].

5.2. Effectiveness Analysis
We first evaluate the alignment accuracy with different

numbers of unobserved edges in the incomplete networks.
We use a heuristic greedy matching algorithm as the post
processing step on the alignment matrix to obtain the one-
to-one mapping matrix between two input networks, then
compute the alignment accuracy with respect to the ground-
truth (i.e., the permutation matrix). The results are summa-
rized in Figure 2. We have the following observations. First,
we observe that INEAT outperforms the baseline methods.
To be specific, our method achieves an up to 30% alignment
accuracy improvement, compared with the baseline methods
that directly align across two incomplete networks (i.e.,
NetAlign, IsoRank, FINAL-P+). Second, the degree simi-
larity (i.e., H) alone gives a very poor performance on the
alignment accuracy, whereas by averaging H and U2MU1,
the alignment matrix (i.e., results of INEAT) provides a
much better accuracy. This verifies the effectiveness of our
strategy combining the low-rank structure of alignment ma-
trix and prior knowledge H. Third, the accuracy of INEAT is
higher than that of FINAL-IMP, which indicates that solving
the alignment and completion tasks simultaneously indeed
achieves a better performance than the completion-then-
alignment strategy. Specifically, as Figure 2(a) and Figure
2(b) show, in some cases, the pure completion may introduce
too much noise in the incomplete networks and lead to an
even worse alignment result than that of other alignment
baseline methods without performing network completion.

Second, to evaluate the effectiveness of INEAT for net-
work completion, we assume the missing edges are recov-
ered if the corresponding entries of the completed adjacency
matrix are larger than a certain threshold (e.g., set to be 0.3
in our paper). Then, we calculate the recovery rate over the
total number of missing edges. The results are shown in
Figure 3. As we can see, INEAT has a higher recovery rate
than other baseline methods, indicating that the completion
performance is indeed improved by alignment.

5.3. Efficiency Analysis
Quality-Speed Trade-off. We evaluate the balance of

our algorithm between the alignment accuracy and running
time. Here, we show the trade-off results on the collabora-
tion network with 10% unobserved edges in Figure 4. As we
can see, the running time of our method is slightly higher
than IsoRank and FINAL-P+, but it achieves a 15%-25%
alignment accuracy improvement across the incomplete net-
works. Meanwhile, our method is much faster than NetAlign.

Scalability. We use the Youtube dataset to study the
scalability of our method (i.e., running time vs. size of the

network). As we can see from Figure 5, the running time is
linear w.r.t the number of nodes in the networks.

6. Related Work
Network Alignment. Network alignment is a funda-

mental task in many applications, including bioinformat-
ics [13], data mining [14], etc. Many network alignment
algorithms are based on the topology consistency. One
well-known method IsoRank computes the cross-network
pairwise topology similarities by propagating the similar-
ities of their neighboring pairs [6]. Koutra et al. propose
BigAlign algorithm to align across the bipartite networks
which assumes that one network is a noisy permutation
of the other network [2]. Zhang et al. use the similar
permutation assumptions of the networks and introduce
the transitivity property to align multiple networks [15].
More recently, there are alignment algorithms to align the
attributed networks. For instance, COSNET formulates the
local consistency among the attributes of each node and
the global topology consistency to find the alignment across
networks [16]. Zhang et al. propose an attributed network
alignment algorithm by adopting the topological, node and
edge attribute consistency principles [5]. However, most,
if not all, of the existing methods implicitly assume input
networks are complete without missing edges.

Network Completion. Kim et al. propose an Expec-
tation Maximization (EM) based method that fits the net-
work structure under the Kronecker graph model and re-
estimates the parameters using a scalable Gibbs sampling
approach [17]. Another work proposed by Masrour et al.
leverages node similarity matrix [3]. In addition, inferring
the missing edges can be considered as an adjacency matrix
completion problem. One well-known matrix completion
method is based on singular value thresholding (SVT) to
minimize the nuclear norm [18]. To speed up, Toh and Yun
propose an accelerated proximal gradient method to solve
a nuclear norm regularized linear least squares problem
[11]. In addition to matrix completion, tensor completion
is very powerful in many areas [19]. Some work use tensor
completion on multiple aligned networks [4]. Nonetheless,
how input networks are aligned beforehand is not answered.

7. Conclusion
In the era of big data, the multi-sourced and incom-

plete characteristics often co-exist in many real networks.
However, the state-of-the-arts have been largely addressing
them in parallel. In this paper, we propose to jointly address
network alignment and network completion so that the two
tasks can benefit from each other. We formulate incomplete
network alignment problem as an optimization problem
and propose a multiplicative update algorithm (INEAT). To
our best knowledge, the proposed INEAT algorithm is the
first network alignment algorithm with a provable linear
complexity. The empirical evaluations demonstrate both the
effectiveness in network alignment and network completion,
and the efficiency. Future work includes extending our al-
gorithm to handle attributed networks.
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(a) Cr-Qc collaboration network.
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(b) Oregon infrastructure network.
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(c) Google+ social network.
Figure 2: (Higher is better.) Alignment accuracy vs. the number of unobserved edges in the networks.

(a) Cr-Qc collaboration network. (b) Google+ social network.

Figure 3: Recovery rate vs. the number of unobserved edges.
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Figure 4: Balance between

run time and accuracy.
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